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Abstract. A novel evolving surface finite element method, based on a novel equivalent formu-
lation of the continuous problem, is proposed for computing the evolution of a closed hypersurface
moving under a prescribed velocity field in two- and three-dimensional spaces. The method improves
the mesh quality of the approximate surface by minimizing the rate of deformation using an artificial
tangential motion. The transport evolution equations of the normal vector and the extrinsic Wein-
garten matrix are derived and coupled with the surface evolution equations to ensure stability and
convergence of the numerical approximations. Optimal-order convergence of the semi-discrete evolv-
ing surface finite element method is proved for finite elements of degree k ≥ 2. Numerical examples
are provided to illustrate the convergence of the proposed method and its effectiveness in improving
mesh quality on the approximate evolving surface.

Key words. Evolving surface finite element method, artificial tangential velocity, mesh property,
transport equations, optimal error estimate, stability

AMS subject classifications. 35R01,65M12, 65M15, 65M60

1. Introduction. We consider the evolution of a closed hypersurface Γ(t) in Rd,
where d = 2 or 3, under a given velocity field u in Rd × [0, T ]. The evolving surface
Γ(t) can be represented by the image of the flow map Xu(·, t) : Γ(0) → Γ(t), which
satisfies the equation

∂tX
u(·, t) = u(Xu(·, t), t) on Γ(0) (1.1)

for t ∈ [0, T ], subject to the initial condition Xu(x, 0) = x for x ∈ Γ(0). Stable and
accurate numerical approximations to the surface evolution in (1.1) play fundamental
roles in solving partial differential equations (PDEs) on a moving surface [18, 22, 39],
as well as solving PDEs in a bulk domain with a moving boundary/interface by the
arbitrary Lagrangian–Eulerian (ALE) methods [20, 23, 26, 40, 41] and Eulerian (unfit-
ted) approaches [16, 45, 47]. Problem (1.1) is also relevant to the PDE-constrained
shape optimization [29], the motion of interfaces in two-phase flows [27,32] and fluid-
structure interactions [46], where the velocity field u is unknown and needs to be solved
in the bulk domain.

This paper concerns the evolving surface finite element methods (FEMs) for dis-
cretizing (1.1). As a Lagrangian method, the accuracy of an evolving surface FEM in
approximating the evolution of a surface, or the solutions of PDEs on an evolving sur-
face, can be greatly influenced by the mesh quality of the triangulation which forms the
approximate surface. One of the main difficulties is that the mesh often becomes dis-
torted as time grows unless some techniques are used to redistribute the mesh points;
see [1]. In order to overcome this difficulty, Barrett, Garcke & Nürnberg introduced
a fully discrete type of artificial tangential velocity which drives the mesh points to
move tangentially on the surface to improve the mesh quality; see [4, 5]. The method
proposed by Barrett, Garcke & Nürnberg (which we refer to as the BGN method) was
designed and became successful for approximating geometric flows, including mean
curvature flow, Willmore flow, surface diffusion and Helfrich flow [2, 5–7] with good
mesh quality. The BGN method has also been successfully applied to improve mesh
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quality of a stationary surface [5, Remark 4.3], and to other applications including two
phase flow [11,27], image segmentation [14], and growth of structures [8–10,24].

An alternative approach to constructing artificial tangential velocities which could
improve the mesh quality of the approximate surfaces was proposed by Elliott & Fritz
in [21], where the tangental velocity is regarded as a kind of built-in reparametrization
by the DeTurck flow techniques. By this approach, a family of tangential velocity
for geometric flows which depends on an adjustable parameter was proposed in [21],
and error estimates were established for curve shortening flow on a two-dimensional
plane. The techniques were used in [3] for developing numerical methods, with rigorous
error estimates, for approximating forced curve shortening flow coupled to a reaction-
diffusion equation on the curve and in [44] for the finite difference discretization of
the mean curvature flow with convergence proof. It is also important to mention
that the improved nodal distribution can be also achieved by prescribing tangential
velocity [24, 25], equilibrium of spring model [35] and the reparametrization of arc
length [13,15,33,42,43].

Albeit its success in improving the mesh quality, rigorous proof of convergence of
the BGN method for the various problems remains open due to the lack of explicit
formulation of the tangential velocity. The available error estimates using the DeTurck
flow also require the flow map to satisfy some parabolic evolution equations on the
evolving curves. The development of stable numerical approximations (with rigorous
stability and error estimates) for the numerical approximations to the surface evolution
in (1.1) using the BGN method and the DeTurck flow techniques is still challenging.

It is known that the spatially semi-discretized BGN method ensures the equidis-
tribution of vertices for evolving curves [5]. Recently, it was shown in [30] that the
tangential velocity generated by the temporally semi-discretized version of the BGN
method formally tends to (as the time stepsize tends to zero) the velocity which
minimizes the following energy functional which represents the instantaneous rate of
deformation: ∫

Γ(t)

|∇Γ(t)v(t)|2 (1.2)

under the constraint v(t)·n(t) = V (t), where n(t) is the normal vector on Γ(t) and V (t)
is the normal velocity of the surface in the corresponding geometric flow. Motivated by
the above interpretation, we consider the following modified flow map, with a modified
velocity v, for describing the surface evolution governed by (1.1):

d

dt
Xv(·, t) = v(Xv(·, t), t) on Γ(0), (1.3a)

v · n = u · n on Γ(t), (1.3b)
−∆Γv = κn on Γ(t). (1.3c)

The modified velocity v determined by (1.3b)–(1.3c) is exactly the minimizer of the
energy functional

∫
Γ
|∇Γv|2 under the constraint v ·n = u ·n, with κ being a Lagrange

multiplier in the constrained optimization problem. Therefore, the surface evolving
under the modified velocity v has the same shape as the surface evolving under velocity
u, but with minimal instantaneous rate of deformation at every time t ∈ [0, T ]. The
novel formulation in (1.3b)–(1.3c) is regarded as a continuous limiting formulation of
the BGN method with an explicit description of the tangential velocity. Thus, the
approximation to (1.3) by the evolving surface FEM should reduce mesh distortion
compared with the numerical approximations which directly discretize (1.1).

However, the direct application of the evolving surface FEM for (1.3) does not
lead to good stability estimates. The reason is that, based on the stability and error
estimates of evolving surface FEM for (1.3b)–(1.3c) in [30], the H1-norm error in ap-
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proximating v needs to be bounded by the H1-norm error in approximating n which,
however, depends on the piecewise H2-norm error in approximating X. This depen-
dence on the error of X (in terms of its second-order partial derivatives) is too strong
to be controlled in the stability and error estimates. This difficulty is overcome in [30]
by recovering n through the parabolic evolution equations of n discovered by Huisken
for mean curvature flow [31] and by Kovács, Li & Lubich for Willmore flow [37]. These
evolution equations of the normal vector were used to design convergent evolving sur-
face FEMs for mean curvature flow and Willmore flow in [30, 36, 37]. However, these
evolution equations highly depend on the specific geometric flows. Up to the authors’
knowledge, no counterpart for the general surface evolution problem in (1.1) has been
derived in literature.

The objective of this article is to design a numerically stable evolving surface
FEM for solving (1.3) by establishing and utilizing the evolution equations of the
normal vector n and the extrinsic Weingarten matrix ∇Γn properly, and prove the
optimal convergence of the numerical approximations. In Section 2.2 we shall prove
that the normal vector n on the evolving surface Γ(t) determined by (1.3a)–(1.3c) can
be recovered by solving the following two transport equations of p : Γ(t) → Rd and
q : Γ(t) → Rd×d and one elliptic equation of n : Γ(t) → Rd:

∂•
t p− ((v − u) · ∇Γ) p = −(I − ppT )(∇u)p, (1.3d)

∂•
t q − ((v − u) · ∇Γ)q = p(v − u)T q2 −

d∑
j=1

(I − ppT )∇2uj(I − ppT )pj

+ q∇uppT + pT∇upq − q(∇u)T (I − ppT )

− (I − ppT )(∇u)q + ppT (∇Γv)
T q, (1.3e)

n−∆Γn = p−∇Γ · q, (1.3f)
where p = n and q = ∇Γn are different notations of the normal vector and the Wein-
garten matrix, respectively. The key idea is that we delicately select (1.3d)–(1.3f) from
their various equivalent formulations in order to have the following two advantages for
the numerical approximations. On the one hand, the evolution equations (1.3d)–(1.3e)
can provide full order approximation to the geometrical quantities such as the normal
vector and the Weingarten matrix. On the other hand, the normal vector n obtained
from (1.3f) can satisfy the following requirement: By estimating n in terms of p and
q, and then estimating p and q in terms of X and v, the L∞(0, t;H1)-norm error in
approximating n from solving (1.3d)–(1.3f) can be bounded by the L∞(0, t;H1)-norm
error of X and the L2(0, t;H1)-norm error of v. In this way, the main difficulty in
the stability analysis for (1.3a)–(1.3c) (i.e., the dependence on the piecewise H2-norm
error in approximating X, as mentioned in the last paragraph above) can be circum-
vented, and the energy estimate for transport equation can be applied after paying
special attention on the integration by part argument in the framework of evolving
surface FEM for piecewise smooth surfaces. Accordingly, the L∞(0, t;H1)-norm error
of X and the L2(0, t;H1)-norm error of v can be controlled in the stability estimates
by using Gronwall’s inequality.

In practice, (1.3d)–(1.3f) require solving additional d2 + 2d scalar functions on
evolving surface, with the computational cost comparable to solving (1.3a)–(1.3c).
Therefore, the computational cost of solving (1.3a)–(1.3f) is equivalent to solving
(1.3a)–(1.3c) without significant increase. In addition, the increase in computational
cost will be more acceptable for typical applications such as solving PDEs in a bulk
domains Ω(t) with an evolving boundary Γ(t) = ∂Ω(t), as the computational cost of
solving the surface PDEs in (1.3a)–(1.3f) is often negligible compared with the com-
putational cost of solving PDEs in the bulk domain. This is demonstrated in the last
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numerical example in Example 4.4.
The rest of this article is organized as follows. In Section 2, we introduce the basic

notations and formulas to be used in the construction and analysis of the numerical
method, and present the derivation of the evolution equations in (1.3d)–(1.3f). Then
we present the weak formulation and the evolving surface FEM for (1.3), as well as
the corresponding matrix-vector formuation for practical computation. At the end of
Section 2, we present the main theorem on the convergence of the evolving surface FEM
for (1.3). In Section 3, we prove the stability and convergence of the evolving surface
FEM. In Section 4, we present several numerical examples to support the theoretical
analysis in this article and to illustrate the effectiveness of the proposed method in
improving the mesh quality of the approximate evolving surfaces. In addition, we
present an example to show the capability of the proposed artificial tangential velocity
in improving the effectiveness of the arbitrary Lagrangian–Eulerian method for solving
PDEs on a domain with moving boundary.

2. The numerical scheme and main result. In this section, we introduce
the basic notations and formulas to be used in the construction and analysis of the
numerical method. By using these formulas, we derive the PDEs in (1.3d)–(1.3f)
which are used to recover the normal vector n on the evolving surface, which is needed
in determining the modified velocity v through (1.3a)–(1.3c). Then we present the
weak formulation and evolving surface FEM for the system (1.3), as well as the main
theorem on the convergence of numerical solutions.

2.1. Basic notations and formulas. It is known that for a smooth surface Γ
with principle curvatures κi bounded by δ−1, the distance projection onto Γ is well
defined in a neighborhood of Γ, i.e.,

Ωδ(Γ) := {x ∈ Rd : dist(x,Γ) ≤ δ},
where dist(x,Γ) denotes the distance from x to Γ; see [28, Lemma 14.17]. Namely, for
any point x̂ ∈ Ωδ(Γ), its distance projection a(x̂) ∈ Γ is determined by

a(x̂) = x̂− dist(x̂,Γ)n(a(x̂),Γ), (2.1)
with n(a(x̂),Γ) denoting the normal vector of Γ at a(x̂). With the help of the distance
projection in (2.1), one can define the normal extension of u from Γ to Ωδ(Γ) by

uℓ = u ◦ a. (2.2)

The surface gradient of a scalar-valued function η ∈ H1(Γ,R) is defined as a
column vector ∇Γη := (I − nnT )(∇ηℓ)|Γ. The jth component of ∇Γη is denoted
by Djη. The surface gradient of a vector-valued function η ∈ H1(Γ,Rd) is denoted
by ∇Γη =

(
∇Γη1, · · · ,∇Γηd

)
, with the columns being the surface gradients of the

components of u. The surface Hessian of η is defined as ∇2
Γη = ∇Γ(∇Γη). Following

[12, Lemma 15], the surface Hessian is not symmetric. Moreover, the commutator
satisfies

[Di, Dj ]η := (DiDj −DjDi)η = ni∇Γnj · ∇Γη − nj∇Γni · ∇Γη. (2.3)
Let A = ∇Γn ∈ Rd×d denote the extrinsic Weingarten matrix.

For a function w defined on an evolving surface
⋃

t∈[0,T ] Γ(t) × {t}, the material
derivative of w with respect to the velocity of the evolving surface (1.3a) is defined as

∂•
t w(X

v(x, t), t) =
d

dt
w(Xv(x, t), t), x ∈ Γ(0).

An important relation between the surface gradient and the material derivative is the
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following formula (see [19, Lemma 2.6]):
∂•
t ∇Γ(t)w = ∇Γ(t)(∂

•
t w)− (∇Γ(t)v − nΓ(t)n

T
Γ(t)(∇Γ(t)v)

T )∇Γ(t)w. (2.4)

K−

E

K+

e−

e+

(TxE)⊥

(TxE)⊥

x µ−
µ+

n+ n−

x

n−n+

µ−µ+

E

Fig. 2.1. Illustration of n± and µ±, which lie in the same plane (TxE)⊥.

Next, we introduce the Stokes theorem on a closed, globally continuous piecewise
smooth surface Γh =

⋃
i Γh,i composed of smooth elements Γh,i. We denote by E the

collection of common edges of adjacent smooth pieces, and denote by Pτ and H the
piecewise-defined tangential projection and mean curvature of Γh, respectively.

Let E ∈ E be a common edge of two adjacent elements K+ and K− as illustrated
in Figure 2.1. Induced by the outward normal vectors n±, the orientations of E as
boundary of K± are indicated by unit vectors e±. The outward conormal vectors µ±
are defined by µ± = e± ×n± on E. The jump of µ at E is defined as [µ]E = µ++µ−.
Since e+ + e− = 0, we deduce

[µ]E = e+ × (n+ − n−). (2.5)
Suppose n± are close enough so that n+ + n− is nonzero, we denote the unit angle
bisector direction of n± as n̂ := (n+ + n−)/|n+ + n−|. It is easy to verify that [µ]E is
parallel to n̂, i.e.,

[µ]E = ±|[µ]E |n̂. (2.6)
For η ∈ H1(Γh,Rd), by applying the Stokes theorem on each smooth Γh,i (see [18,
(2.2)]) and summing over all smooth pieces, we derive∫

Γh

∇Γh
· η =

∑
E∈E

∫
E

η · [µ]E +

∫
Γh

H(η · n). (2.7)

The following formula is derived directly.∫
Γh

((v · ∇Γh
)η) · η =

1

2

[∑
E∈E

∫
E

|η|2v · [µ]E +

∫
Γh

|η|2
[
H(v · n)− (∇Γh

· v)
]]

. (2.8)

2.2. Derivation of (1.3d)–(1.3f). For the evolving hypersurface Γ(t) with veloc-
ity field v, following [12, Lemma 37], the evolution of n is described by

∂•
t n = −(∇Γv)n, (2.9)

which can be reformulated into a nonlinear perturbation of a transport equation by
using (1.3b) and the Leibniz rule,

∂•
t n = −(∇Γ(v − u))n− (∇Γu)n = ((v − u) · ∇Γ)n− (I − nnT )(∇u)n, (2.10)

where the last equality uses the relation (v − u) · n = 0 and the symmetry of ∇Γn.
Equation (2.10) is exactly the evolution equation in (1.3d) with the notation p = n.
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By Leibniz rule, we have
Di((v − u)jDjn) = Di(v − u)jDjn+ (v − u)jDjDin+ (v − u)j [Di, Dj ]n,

together with (2.3), (u− v) · n = 0 and A = ∇Γn, we obtain
∇Γ(((v − u) · ∇Γ)n) = ∇Γ(v − u)A+ ((v − u) · ∇Γ)A+ n(v − u)TA2. (2.11)

Similarly, we can obtain
∇2

Γuk = (I − nnT )∇2uk(I − nnT )−A∇Γukn
T − nT∇ΓukA. (2.12)

By taking surface gradient of (2.10) and using the identities in (2.11)–(2.12), we obtain
∇Γ∂

•
t n = ∇Γ(v − u)A+ ((v − u) · ∇Γ)A+ n(v − u)TA2 −A(∇Γu)

T

− ni

(
(I − nnT )∇2ui(I − nnT )−A∇uin

T − nT∇uiA
)
. (2.13)

Then, combining (2.4) and (2.13), we obtain the following evolution equation for A:

∂•
t A = ((v − u) · ∇Γ)A+ n(v − u)TA2 −

d∑
j=1

(I − nnT )∇2uj(I − nnT )nj

+A∇unnT + nT∇unA−A(∇u)T (I − nnT )

− (I − nnT )(∇u)A+ nnT (∇Γv)
TA. (2.14)

Equation (1.3e) is obtained by replacing n and A by p and q in (2.14), respectively.
Since p = n and q = ∇Γn, it follows that n−∆Γn = p−∇Γ · q. This proves (1.3f).

For later convenience, let us denote U = (ul, ∂xi
ul, ∂xixj

ul)i,j,l=1,··· ,d ∈ Rd+d2+d3

and introduce smooth functions,
g(U, p, q, v,∇Γv) = p(v − u)T q2 − q(∇u)T (I − ppT )− (I − ppT )(∇u)q + q∇uppT

+pT∇upq + ppT (∇Γv)
T q −

d∑
j=1

(I − ppT )∇2uj(I − ppT )pj , (2.15)

f(U, p) = − (I − ppT )(∇u)p. (2.16)

2.3. The evolving surface finite element discretization. Given a closed
smooth initial surface Γ(0) ⊂ Rd and its admissible family of shape-regular and quasi-
uniform (see [18]) triangulations Th with mesh size h, an isoparametric finite element
space Sh[x(0)] of degree k can be defined on the piecewise polynomial approximate sur-
face Γh[x(0)] as in [17], where x(0) = (x1, · · · , xN ) ∈ R3N collects all nodes xj ∈ Γ(0)
that correspond to the degrees of freedom of Sh[x(0)]. With respect to the discretized
velocity vh(t) ∈ Sh[x(0)], the evolution of x(0) determines x(t) = (x1(t), · · · , xN (t))
and consequently the evolving approximate surface Γh[x(t)], which is represented by
a unique finite element function Xh(·, t) ∈ Sh[x(0)] (the discrete flow map) satisfying

Xh (xj , t) = xj(t), ∀ j = 1, . . . , N.

Then, the material derivative ∂•
t,h of uh defined on ∪t∈[0,T ]Γh(t)× {t} is defined as

∂•
t,huh(y, t) =

d

dt
uh(Xh(x, t), t), ∀ y = Xh(x, t) ∈ Γh[x(t)].

The finite element basis functions of Sh[x(t)] are denoted by ϕj [x(t)], j = 1, . . . , N ,
which are pull backs of ϕj [x(0)] by the discrete flow map and satisfy the following
identities:

ϕj [x(t)] (xi(t)) = δij , ∂•
t,hϕj [x(t)] = 0, i, j = 1, . . . , N. (2.17)

6



With ⟨·, ·⟩Γh
denoting the L2 inner product on Γh, the evolving surface FEM for solving

(1.3) is to seek Xh ∈ Sh[x(0)]
d and

(vh, κh, nh, ph, qh) ∈ Sh[x(t)]
d × Sh[x(t)]× Sh[x(t)]

d × Sh[x(t)]
d × Sh[x(t)]

d×d

such that
∂tXh(x, t) = vh ◦Xh(x, t) (2.18a)

⟨vh · nh, χκ⟩Γh
= ⟨u · nh, χκ⟩Γh

(2.18b)
⟨∇Γh

vh,∇Γh
χv⟩Γh

= −⟨κhnh, χv⟩Γh
(2.18c)

⟨∂•
t,hph, χp⟩Γh

− ⟨((vh − u) · ∇Γh
)ph, χp⟩Γh

= ⟨f(U, ph), χp⟩Γh
(2.18d)

⟨∂•
t,hqh, χq⟩Γh

− ⟨((vh − u) · ∇Γh
)qh, χq⟩Γh

= ⟨g(U, ph, qh, vh,∇Γh
vh), χq⟩Γh

(2.18e)
⟨nh, χn⟩Γh

+ ⟨∇Γh
nh,∇Γh

χn⟩Γh
= ⟨ph, χn⟩Γh

+ ⟨qh,∇Γh
χn⟩Γh

, (2.18f)
hold for all test functions

(χv, χκ, χn, χp, χq) ∈ Sh[x(t)]
d × Sh[x(t)]× Sh[x(t)]

d × Sh[x(t)]
d × Sh[x(t)]

d×d.

Remark 2.1. (2.18a)–(2.18c) can be used independently after choosing nh as the
geometrical normal vector field of Γh, i.e, solving velocity by

⟨vh · nh, χκ⟩hΓh
= ⟨u · nh, χκ⟩Γh

(2.19a)
⟨∇Γh

vh,∇Γh
χv⟩Γh

= −⟨κhnh, χv⟩hΓh
, (2.19b)

where ⟨·, ·⟩hΓh
denotes the mass lumping inner product. In the numerical experiments

of Section 4 (i.e., Example 4.2), we can see that Scheme (2.19) may improve the
mesh distribution on a surface but has lower accuracy than (2.18) for high-order finite
elements. Theoretically, it is also difficult to prove the stability and convergence of
(2.19) to the solution of (1.3b)–(1.3c).

The initial values for (2.18) are chosen as follows. Given the initial isoparametric
interpolated surface Γh[x(0)], we choose Xh(·, 0) = id|Γh[x(0)]. The initial values for
ph and qh are set as the Lagrange interpolations of the exact functions. The error
estimates for the Lagrange interpolation guarantee the following result (see [17]):

∥pℓh(0)− p(0)∥L2(Γ(0)) + ∥qℓh(0)− q(0)∥L2(Γ(0)) ≲ hk+1, (2.20)
where we have used notation a ≲ b to standard for the statement “a ≤ Cb for some
constant C which is independent of h”.

2.4. Matrix-vector formulation. In this section, we follow [36, 38] to rewrite
(2.18a)–(2.18f) into a matrix-vector formulation. We denote by n, v, p and q the
vectors that collect the nodal values of nh, vh, ph and qh respectively. Since ph and qh
are defined on Γh[x(t)] and take values in Rd and Rd×d separately, we explicitly write
down the entries of p and q. For i ≤ N , k, ℓ ≤ d,

p(i−1)d+ℓ = (ph(Xh(xi, t)))ℓ, q(i−1)d2+(k−1)d+ℓ = (qh(Xh(xi, t)))k,ℓ.

The mass and stiff matrices corresponding to the finite element space Sh[x(t)] are
defined with the following entries, for i, j ≤ N ,

Mij(x) =

∫
Γh[x]

ϕi[x]ϕj [x], Aij(x) =

∫
Γh[x]

∇Γh[x]ϕi[x] · ∇Γh[x]ϕj [x]. (2.21)

Let K(x) = M(x) +A(x). Define B(x,n) ∈ RN×dN and E(x,v) ∈ RN×N by

Bi,(j−1)d+m(x,n) =

∫
Γh[x]

ϕiϕj(nh)m, 1 ≤ m ≤ d, (2.22)
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Eij(x,v) =

∫
Γh[x]

((vh − u) · ∇Γh[x])ϕj · ϕi. (2.23)

Let Id be the d×d identity matrix and let ⊗ denote the kronecker product, we introduce
M[d](x) = M(x)⊗ Id, A[d](x) = A(x)⊗ Id, E[d](x,v) = E(x,v)⊗ Id.

We define the nodal vectors g(x,p,v,q) ∈ RN×d2 , f(x,p) ∈ RN×d, F(x,q) ∈ RN×d

and the normal velocity V(x,n) ∈ RN by requiring for χq ∈ RN×d2 , χp,χn ∈ RN×d

and χ ∈ RN ,
χT

qg(x,p,v,q) = ⟨g(U, ph, qh, vh,∇Γh
vh), χq⟩Γh[x], (2.24)

χT
p f(x,p) = ⟨f(U, ph), χp⟩Γh[x], (2.25)

χT
nF(x,q) = ⟨qh,∇Γh

χn⟩Γh[x], (2.26)
χTV(x,n) = ⟨u · nh, χ⟩Γh[x]. (2.27)

The matrix-vector form of (2.18) can be formulated as follows,
ẋ = v, (2.28a)

B(x,n)v = M(x)V(x,n), (2.28b)
B(x,n)Tκ+A[d](x)v = 0, (2.28c)
M[d](x)ṗ−E[d](x,v)p = f(x,p), (2.28d)

M[d2](x)q̇−E[d2](x,v)q = g(x,p,v,q), (2.28e)
M[d](x)n+A[d](x)n = M[d](x)p+ F(x,q). (2.28f)

The superscripts of d will be omitted in later discussion for the sake of brevity.

2.5. Convergence of the numerical approximations. Let X∗
h(·, t) ∈ Sh[x(0)]

be the interpolation of the smooth flow map X(·, t) : Γ(0) → Rd. We introduce
the interpolated surface Γ∗

h(t), which is the finite element surface determined by the
interpolated flow map Xv

h(·, t) ∈ Sh[x(0)].
For a smooth evolving surface (thus the curvature is bounded uniformly with

respect to t ∈ [0, T ]), there exists a sufficiently small constant h0 > 0 such that for
h ≤ h0 the interpolated surface satisfies Γ∗

h(t) ⊂ Ωδ(t) for all t ∈ [0, T ]. For any finite
element function fh ∈ Sh[x(t)], we first identify fh as an element in Sh[x

∗(t)] through
nodal vectors, and then lift it as in (2.2) into a function fL

h defined on Γ(t).
The main theoretical result of this article is the following theorem.
Theorem 2.1. We assume that the vector field u and the solution (X, v, κ, p, q, n)

of (1.3) are sufficiently smooth for t ∈ [0, T ]. In particular, the flow map X : Γ0 ×
[0, T ] → R3 and its inverse map X(·, t)−1 : Γ(t) → Γ0 are both sufficiently smooth,
uniformly with respect to t ∈ [0, T ]. Then there exists a constant h0 > 0 such that,
for initial triangulations which are shape regular and quasi-uniform with mesh size
h ≤ h0, the solutions to the evolving surface FEM in (2.18) with finite elements of
degree k ≥ 2 satisfy the following error bounds,

∥IdLΓh(t)
− IdΓ(t)∥H1(Γ(t))d ≲ hk, ∥Xℓ

h(·, t)−X(·, t)∥H1(Γ0)d ≲ hk,

∥vLh (·, t)− v(·, t)∥H1(Γ(t))d ≲ hk, ∥nL
h (·, t)− n(·, t)∥H1(Γ(t))d ≲ hk,

∥pLh (·, t)− n(·, t)∥L2(Γ(t))d ≲ hk, ∥qLh (·, t)−∇Γn(·, t)∥L2(Γ(t))d2 ≲ hk.

3. Proof of Theorem 2.1.

3.1. Error and Defect. Let x∗(t) be the nodal vector that collects the position
of Γ∗

h(t). We denote the position error by ex(t) = x(t) − x∗(t). Let v∗(t) denote the
8



nodal vector of v∗h(t), which is the Ritz projection of v(t) defined by requiring

⟨v∗h(t), χv⟩Γ∗
h(t)

+ ⟨∇Γ∗
h
v∗h(t),∇Γ∗

h
χv⟩Γ∗

h(t)
= ⟨v(t), χℓ

v⟩Γ(t) + ⟨∇Γv(t),∇Γχ
ℓ
v⟩Γ(t), (3.1)

for all χv ∈ Sh[x(t)]
d. The error bounds for Ritz projection follow from [34, Theo-

rem 6.3],

∥v∗,ℓh − v∥L2(Γ) + h(∥v∗,ℓh − v∥H1(Γ) + ∥v∗,ℓh − v∥L∞(Γ)) ≲ hk+1∥v∥Hk+1(Γ). (3.2)
Let κ∗

h, p∗h, q∗h and n∗
h be the Lagrange interpolations of the exact κ, p, q and n and let

κ∗, p∗, q∗, n∗ collect the corresponding nodal values. The nodal errors are denoted
as ev = v− v∗, eκ = κ− κ∗, ep = p− p∗, eq = q− q∗, en = n− n∗, eV = V(x,n)−
V(x∗,n∗). The consistency errors dv ∈ RN , dκ,dp,dn ∈ RdN and dq ∈ Rd2N are
defined by requiring for χκ ∈ RN , χv,χp,χn ∈ RdN and χq ∈ Rd2N ,

χT
κM

∗dv = ⟨v∗h · n∗
h, χκ⟩Γ∗

h
− ⟨u · n∗

h, χκ⟩Γ∗
h
, (3.3)

χT
vM

∗dκ = ⟨κ∗
hn

∗
h, χv⟩Γ∗

h
+ ⟨∇Γ∗

h
v∗h,∇Γ∗

h
χv⟩Γ∗

h
, (3.4)

χT
pM

∗dp = ⟨∂•
t,hp

∗
h − ((v∗h − u) · ∇Γ∗

h
)p∗h − f(U, p∗h), χp⟩Γ∗

h
, (3.5)

χT
qM

∗dq = ⟨∂•
t,hq

∗
h − ((v∗h − u) · ∇Γ∗

h
)q∗h − g(U, p∗h, q

∗
h, v

∗
h,∇Γ∗

h
v∗h), χq⟩Γ∗

h
, (3.6)

χT
nM

∗dn = ⟨n∗
h − p∗h, χn⟩Γ∗

h
+ ⟨∇Γ∗

h
n∗
h − q∗h,∇Γ∗

h
χn⟩Γ∗

h
. (3.7)

Error equations are obtained as follows,
B∗ev = (B∗ −B)v +M∗eV − (M∗ −M)V −M∗dv, (3.8a)
(B∗)T eκ +A∗ev = ((B∗)T −BT )κ+ (A∗ −A)v −M∗dκ, (3.8b)
Mėp +E∗p∗ −Ep = (M∗ −M)ṗ∗ + f(x,p)− f(x∗,p∗)−M∗dp, (3.8c)
Mėq +E∗q∗ −Eq = (M∗ −M)q̇∗ + g(x,p,v,q)− g(x∗,p∗,v∗,q∗)−M∗dq,

(3.8d)
Ken −Mep = (K∗ −K)n∗ − (M∗ −M)p∗ + F(x,q)− F(x∗,q∗)−M∗dn. (3.8e)

3.2. Geometric estimates on the intermediate surface. In this section, we
recall some bilinear estimates in [36, 38] concerning M∗ − M and A∗ − A in (3.8).
Their proofs are based on the intermediate surface between Γh and Γ∗

h . Let Γθ
h be a

finite element surface with nodal vector xθ = x∗ + θex. As θ varies, the velocity field
eθx ∈ Sh[x

θ] generates a map bθ : Γ0
h = Γ∗

h → Γθ
h. The material derivative is defined by

∂•
θf(bθ(p)) =

d

ds
|s=θf(bs(p)), ∀p ∈ Γ∗

h.

Given a nodal vector w, we can define finite element functions wθ
h ∈ Sh[x

θ] such that
∂•
θw

θ
h = 0. It is known that

∥w∥2M(x) = wTM(x)w = ∥wh∥2L2(Γh[x])
,

∥w∥2A(x) = wTA(x)w =
∥∥∇Γh[x]wh

∥∥2
L2(Γh[x])

,

∥w∥2K(x) = wTK(x)w = ∥wh∥2H1(Γh[x])
,

∥w∥2∗,x = wTM(x)K(x)−1M(x)w = ∥wh∥H−1
h (Γh[x])

.

According to [36, Lemma 7.2 and (7.7)], when the following condition is satisfied,
∥∇Γ∗

h
e0x∥L∞(Γ∗

h)
≤ 1/4, (3.9)
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then
∥w∥M(xθ) is h-uniformly equivalent for θ ∈ [0, 1],

so are the norms ∥w∥A(xθ) and ∥∇Γθ
h
wθ

h∥L∞(Γθ
h)
.

(3.10)

The following results can be directly obtained from [38, Lemma 4.1].
Lemma 3.1. Suppose that condition (3.9) is satisfied. Then,

zT (M−M∗)w ≲ ∥z∥M∗∥ex∥A∗∥w0
h∥L∞(Γ∗

h)
, (3.11)

zT (A−A∗)w ≲ ∥z∥A∗∥ex∥A∗∥∇Γ∗
h
w0

h∥L∞(Γ∗
h)
. (3.12)

The following lemma estimates some important geometric quantities on Γθ
h including

the normal, the piecewisely defined mean curvature HΓθ
h

and jump of conormal.
Lemma 3.2. Suppose that condition (3.9) is satisfied. Then,

∥∂•
θnΓθ

h
∥L∞(Γθ

h)
≲ ∥∇Γ∗

h
e0x∥L∞(Γ∗

h)
. (3.13)

Furthermore, there exists h0 > 0 such that for h ≤ h0, we have
∥HΓθ

h
∥L∞(Γθ

h)
≲ 1 + h−1∥∇Γ∗

h
e0x∥L∞(Γ∗

h)
, (3.14)

∥∂•
θ |[µ]|∥L∞(Eθ) ≲ ∥∇Γ∗

h
e0x∥L∞(Γ∗

h)
, ∥[µ]∥L∞(Eθ) ≲ hk + ∥∇Γ∗

h
e0x∥L∞(Γ∗

h)
. (3.15)

Proof. The first inequality (3.13) has been proved in [38, Lemma 4.5] and it can
be directly obtained from the following analogy of (2.9),

∂•
θnΓθ

h
= −(∇Γθ

h
eθx)nΓθ

h
. (3.16)

Applying surface gradient to (3.16) and using (2.4) yield

∂•
θA

θ = −
d∑

i=1

∇2
Γθ
h
eθxinΓθ

h i
−Aθ(∇Γθ

h
eθx)

T − (∇Γθ
h
eθx − (nΓθ

h
nT
Γθ
h
)(∇Γθ

h
eθx)

T )Aθ, (3.17)

where Aθ = ∇Γθ
h
nΓθ

h
denotes the piecewisely defined Weingarten matrix. By taking

trace, applying |tr(AB)| ≤ ∥A∥F ∥B∥F and inverse inequality, we obtain
|∂•

θHΓθ
h
| ≲ h−1∥∇Γθ

h
eθx∥L∞(Γθ

h)
+ ∥Aθ∥F . (3.18)

where ∥ · ∥F denotes the Frobenius norm. Furthermore, we have

d

dθ
∥Aθ∥F ≤ ∥∂•

θA
θ∥F ≤

d∑
i=1

∥∇2
Γθ
h
eθxi∥F + 3∥Aθ∥F ∥∇Γθ

h
eθx∥F

≲ h−1∥∇Γθ
h
eθx∥L∞(Γθ

h)
+ ∥Aθ∥F .

Using Gronwall’s inequality, and boundedness of ∥A∗∥F from [17, Prop. 2.3] yields
∥Aθ∥F ≲ ∥A∗∥F + h−1 sup

s∈[0,θ]

∥∇Γs
h
esx∥L∞(Γs

h)

≲ ∥A∗∥F + h−1∥∇Γ∗
h
e0x∥L∞(Γ∗

h)
≲ 1 + h−1∥∇Γ∗

h
e0x∥L∞(Γ∗

h)
. (3.19)

Then (3.14) is proved by combining (3.18)–(3.19) and integration over [0, θ].
Let Eθ be the edge that joins two adjacent elements Kθ

± on Γθ
h. According to

(2.9), we obtain ∂•
θn

θ
± = −(∇Γθ

h
eθx|Kθ

±
)nθ

±. Then

∂•
θ |nθ

+ − nθ
−|2 = 2(nθ

+ − nθ
−, ∂

•
θ (n

θ
+ − nθ

−)) ≲ |nθ
+ − nθ

−|∥∇Γθ
h
eθx∥L∞(Γθ

h)
.

By using relation (2.5), we obtain the pointwise estimation
∂•
θ |[µ]Eθ | = ∂•

θ |nθ
+ − nθ

−| ≲ ∥∇Γ∗
h
e0x∥L∞(Γ∗

h)
. (3.20)
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By [17, Prop. 2.3], ∥[µ]∥L∞(E∗) ≤ ∥n+ − nℓ
Γ∥L∞(K∗

+) + ∥n− − nℓ
Γ∥L∞(K∗

−) ≲ hk. Inte-
grating (3.20) over [0, θ] yields

∥[µ]∥L∞(Eθ) ≲ ∥[µ]∥L∞(E∗) + ∥∇Γ∗
h
e0x∥L∞(Γ∗

h)
≲ hk + ∥∇Γ∗

h
e0x∥L∞(Γ∗

h)
. (3.21)

3.3. Stability estimates. In this section, we present stability analysis for (3.8)
under the following assumption.

Assumption 3.1. There exists t∗ ≥ 0 such that for t ∈ [0, t∗],

∥e0x∥W 1,∞(Γ∗
h)

≤ h(k−1)/2, ∥e0v∥W 1,∞(Γ∗
h)

≤ h(k−1)/2, (3.22a)
∥e0n∥W 1,∞(Γ∗

h)
≤ h(k−1)/2, ∥e0n∥L∞(Γ∗

h)
≤ h(k+1)/2, (3.22b)

∥e0p∥L∞(Γ∗
h)

≤ h(k−1)/2, ∥e0q∥L∞(Γ∗
h)

≤ h(k−1)/2. (3.22c)

At the end of this section we shall prove that Assumption 3.1 holds for t∗ = T (when
h is smaller than some constant).

The estimates for the transport term in (3.8c)–(3.8d) are presented in the following
proposition, where the jump terms of conormals are estimated using Lemma 3.2.

Proposition 3.3 (Perturbation of the transport equation). Let k ≥ 2 and
z∗,0h , v∗,0h be uniformly bounded in W 1,∞(Γh[x

∗]). Suppose that condition (3.9) and
Assumption 3.1 hold true. Then we obtain

eTz (E(x,v)z−E(x∗,v∗)z∗) ≲ ∥ex∥2K∗ + ∥ev∥2M∗ + ∥ez∥2M∗ . (3.23)

The proof of Proposition 3.3 relies on several lemmas established in the litera-
ture. For detailed proofs, refer to Proposition 2.7 in [17] and (A.4) in [30]. The only
difference is the numerical suface Γh and it can be easily addressed using the norm
equivalence (3.10) under assumption 3.1. Therefore, we omit their proof here.

Lemma 3.4. Let IΓh
denote the interpolation into Sh[x]. Under Assumption 3.1,

the interpolated function IΓh
u has the following error bound:

∥u− IΓh
u∥L∞(Γh) + h∥u− IΓh

u∥H1(Γh) ≲ h2. (3.24)

Lemma 3.5. Under Assumption 3.1, for w1, w2 ∈ Sh[x],
∥w1w2 − IΓh

(w1w2)∥L2(Γh) ≲ h2∥w1∥H1(Γh)∥w2∥W 1,∞(Γh). (3.25)

Proof. [Proof of Proposition 3.3] We introduce the following finite element func-
tions on Γθ

h: vθh = v∗,θh + θeθv and zθh = z∗,θh + θeθz. By definition in (2.23), we derive

eTz (E(x,v)z−E(x∗,v∗)z∗) =

∫ 1

0

d

dθ

∫
Γθ
h

((vθh − u) · ∇Γθ
h
)(z∗,θh + θeθz) · eθzdθ = I1 + I2.

For I1, by the Leibniz rule, ∂•
θu = (eθx · ∇)u and (2.4), we have

I1 =

∫ 1

0

d

dθ

∫
Γθ
h

((vθh − u) · ∇Γθ
h
)z∗,θh · eθzdθ

=

∫ 1

0

∫
Γθ
h

((vθh − u) · ∇Γθ
h
)z∗,θh · eθz∇Γθ

h
· eθxdθ +

∫ 1

0

∫
Γθ
h

((eθv − ∂•
θu) · ∇Γθ

h
)z∗,θh · eθzdθ

+

∫ 1

0

∫
Γθ
h

((
− (∇Γθ

h
eθx)

T +∇Γθ
h
eθxnΓθ

h
nT
Γθ
h

)
(vθh − u) · ∇Γθ

h

)
z∗,θh · eθzdθ

≲ (∥ex∥K∗ + ∥ev∥M∗)∥ez∥M∗ .
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For I2, we apply (2.8) to transfer the surface gradient from ez to vh − u and obtain∫ 1

0

d

dθ
θ

∫
Γθ
h

((vθh − u) · ∇Γθ
h
)eθz · eθzdθ =

∫
Γh

((vh − u) · ∇Γh
)ez · ez

=
1

2

[ ∑
Eh∈Eh

∫
Eh

|ez|2(vh − u) · [µ]Eh
+

∫
Γh

|ez|2
[
HΓh

(vh − u) · nΓh
−∇Γh

· (vh − u)
]]

=
1

2

2∑
i=1

Ji.

Next, we prove the smallness of ∥(vh − u) · nΓh
∥L∞(Γh) which is implied by (2.18b).

We first apply the inverse inequality to the globally continuous piecewise polynomial
function (vh − IΓh

u) · nh after employing the triangle inequality. Then we get
∥(vh − u) · nh∥L∞(Γh) ≲ h−1∥(vh − IΓh

u) · nh∥L2 + ∥(u− IΓh
u) · nh∥L∞

≲ h−1∥(vh − u) · nh∥L2 + h−1∥(u− IΓh
u) · nh∥L2 + ∥(u− IΓh

u) · nh∥L∞

≲ h−1∥(vh − u) · nh∥L2 + h∥nh∥L∞(Γh), (3.26)
where the second line results from triangle inequality and the last line results from
Lemma 3.4. For the first term in (3.26), we test χκ = IΓh

((vh − IΓh
u) · nh) in (2.18b)

and obtain
∥(vh − u) · nh∥L2(Γh) ≤ ∥(vh − u) · nh − IΓh

((vh − IΓh
u) · nh) ∥L2(Γh). (3.27)

By using the superconvergence result in Lemma 3.5 after applying triangle inequality
to (3.27), we obtain
∥(vh − u) · nh∥L2(Γh) ≲ ∥(u− IΓh

u) · nh∥L2(Γh) + h2∥vh − IΓh
u∥H1(Γh)∥nh∥W 1,∞(Γh).

Combining the above results leads to
∥(vh − u) · nh∥L∞(Γh) ≲ h

(
1 + ∥ev∥H1(Γh) + ∥ex∥L∞(Γh)

)
(1 + ∥en∥W 1,∞(Γh)).

The difference of nh and nΓh
is estimated by inserting the normal vector of Γ∗

h,

∥nh − nΓh
∥L∞(Γh) ≤ ∥n1

h − n∗,1
h ∥L∞(Γh) + ∥n∗,1

h − nΓ∗
h
◦ b−1

1 ∥L∞(Γh)

+ ∥nΓ∗
h
◦ b−1

1 − nΓh
∥L∞(Γh)

≲ ∥en∥L∞(Γh) + hk + ∥ex∥W 1,∞(Γh).

For k ≥ 2, Assumption 3.1 yields the boundedness of en, ex and ev in W 1,∞(Γh). By
combining the above two estimates, we derive that

∥(vh − u) · nΓh
∥L∞(Γh) ≲ h+ ∥en∥L∞(Γh) + ∥ex∥W 1,∞(Γh). (3.28)

Let Eh be the common edge of the two adjacent elements K±. By (2.6), we get
∥(vh − u) · [µ]Eh

∥L∞(Eh) ≲ ∥(vh − u) · (nK+
+ nK−)∥L∞(Eh)∥[µ]∥L∞(Eh)

≲ (h+ ∥en∥L∞(Γh) + ∥ex∥W 1,∞(Γh))∥[µ]∥L∞(Eh),

where the last inequality is from (3.28). By using the trace inequality, we obtain

J1 =
∑

Eh∈Eh

∫
Eh

(ez)
2(vh − u) · [µ]Eh

≤ (hk + ∥∇Γ∗
h
e0x∥L∞(Γ∗

h)
)(h+ ∥en∥L∞(Γh) + ∥ex∥W 1,∞(Γh))

∑
Eh∈Eh

∥ez∥2L2(Eh)

≲ h−1(hk + ∥∇Γ∗
h
e0x∥L∞(Γ∗

h)
)(h+ ∥e0n∥L∞(Γ∗

h)
+ ∥e0x∥W 1,∞(Γ∗

h)
)∥ez∥2M∗ .
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The term J2 can be estimated by using Lemma 3.2 and (3.28), i.e.,

J2 ≲
(
∥HΓh

∥L∞(Γh)∥(vh − u) · nΓh
∥L∞(Γh) + ∥∇Γh

· (vh − u)∥L∞(Γh)

)
∥ez∥2M∗

≲ (1 + h−1∥∇Γ∗
h
e0x∥L∞(Γ∗

h)
)(h+ ∥e0n∥L∞(Γ∗

h)
+ ∥e0x∥W 1,∞(Γ∗

h)
)∥ez∥2M∗

+ (1 + ∥e0v∥W 1,∞(Γ∗
h)
)∥ez∥2M∗ .

For k ≥ 2, the estimates of I1, J1 and J2 lead to I1+I2 ≲ ∥ex∥2K∗ +∥ev∥2M∗ +∥ez∥2M∗ .
This proves the result of Proposition 3.3.

Lemma 3.6. Under Assumption 3.1, the following result holds for k ≥ 2:
eTV(KV(x,n)−K∗V(x∗,n∗)) ≲ (∥en∥K∗ + ∥ex∥K∗)∥eV∥K∗ . (3.29)

Proof. Since K = M + A, we only need to prove the following result which
corresponds to A (the part corresponding to M is simpler and omitted):

eTV(AV(x,n)−A∗V(x∗,n∗)) ≲ (∥en∥K∗ + ∥ex∥K∗)∥eV∥A∗ . (3.30)
Let us abbreviate V(x∗,n∗) (see (2.27)) as V∗. Note that V∗ collects the nodal values
of PΓ∗

h
(u · n∗

h) ∈ Sh[x
∗], where PΓ∗

h
denotes the L2 projection onto Sh[x

∗]. Thus, we
derive

eTV(AV −A∗V∗) =

∫ 1

0

d

dθ

∫
Γθ
h

∇Γθ
h
PΓθ

h
(u · nθ

h) · ∇Γθ
h
eθV

=

∫ 1

0

∫
Γθ
h

DΓθ
h
eθx∇Γθ

h
PΓθ

h
(u · nθ

h) · ∇Γθ
h
eθV +∇Γθ

h
∂•
θPΓθ

h
(u · nθ

h) · ∇Γθ
h
eθV ,

where DΓθ
h
eθx = tr(Eθ)Id − (Eθ + (Eθ)T ) and Eθ = ∇Γθ

h
eθx. According to [30, (3.21)],

the material derivative of L2 projection has the explicit formula,

∂•
θPΓθ

h
(u · nθ

h) = PΓθ
h
((eθx · ∇)u · nθ

h + u · eθn) + PΓθ
h

[
(I − PΓθ

h
)(u · nθ

h)∇Γθ
h
· eθx

]
.

For the simplicity of notation, we denote
K0 = ∇Γθ

h
PΓθ

h
(u · nθ

h), K1 = PΓθ
h
(u · eθn),

K2 = PΓθ
h
(eθx · ∇)u · nθ

h, K3 = PΓθ
h

[
(I − PΓθ

h
)(u · nθ

h)∇Γθ
h
· eθx

]
,

so that the expression of eTV(AV −A∗V∗) derived above can be written as

eTV(AV −A∗V∗) =

∫
Γθ
h

(DΓθ
h
eθx)K0 · ∇Γθ

h
eθV +∇Γθ

h
(K1 +K2 +K3) · ∇Γθ

h
eθV .

By inverse inequality and Lemma 3.5, we obtain
∥∇Γθ

h
K1∥L2 ≤ ∥∇Γθ

h
PΓθ

h
((I − IΓθ

h
)u · eθn)∥L2 + ∥∇Γθ

h
(I − PΓθ

h
)(IΓθ

h
u · eθn)∥L2

+ ∥∇Γθ
h
(IΓθ

h
u · eθn)∥L2

≲ h−1∥(I − IΓθ
h
)u · eθn∥L2 + h∥IΓθ

h
u∥W 1,∞∥eθn∥H1 + ∥eθn∥H1 .

Likewise, we have
∥∇Γθ

h
K3∥L2 ≲ h−1∥(I − PΓθ

h
)(u · nθ

h)∇Γθ
h
· eθx∥L2

≲ h−1
(
∥(I − PΓθ

h
)(u · n∗,θ

h )∥L∞∥∇Γθ
h
· eθx∥L2 + ∥(I − Iθh)(u · eθn)∥L2

)
≲ ∥en∥K∗ + ∥ex∥K∗ .

The other terms have no essential differences. Therefore, (3.30) is proved.
Proposition 3.7 (Stability estimates). Suppose that k ≥ 2 and Assumption
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3.1 holds. There exists h0 > 0 such that for h ≤ h0, the errors in (3.8a)– (3.8e) satisfy
the following stability results

∥ex(t)∥2K∗ ≲
∫ t

0

∥ev∥2K∗ + ∥ex∥2K∗ ds, (3.31)

∥ev(t)∥K∗ ≲ ∥ex(t)∥K∗ + ∥en(t)∥K∗ + ∥dv(t)∥M∗ + ∥dκ(t)∥M∗ , (3.32)

∥ep(t)∥2M∗ ≲ ∥ep(0)∥2M∗ +

∫ t

0

∥ex∥2K∗ + ∥ev∥2M∗ + ∥ep∥2M∗ + ∥eq∥2M∗ + ∥dp∥2M∗ds,

(3.33)

∥eq(t)∥2M∗ ≲ ∥eq(0)∥2M∗ +

∫ t

0

∥ex∥2K∗ + ∥ev∥2K∗ + ∥ep∥2M∗ + ∥eq∥2M∗ + ∥dq∥2M∗ds,

(3.34)
∥en∥2K∗ ≲ ∥ex∥2A∗ + ∥ep∥2M∗ + ∥eq∥2M∗ + ∥dn∥2∗. (3.35)

Proof. The proof consists of three parts that correspond to the velocity equa-
tion (3.8a)-(3.8b), the evolving normal and Weingarten matrix (3.8c)–(3.8d) and the
recovered normal part (3.8e) respectively.

Compared with [30, (3.10b)–(3.10c)], the velocity part has the same form after
replacing the normal velocity from the mean curvature H in [30] to V. Then we
deduce that for k ≥ 2 and t ∈ [0, t∗],
∥ev(t)∥K∗ ≲ ∥ex(t)∥K∗ + ∥en(t)∥K∗ + ∥eV(t)∥K∗ + ∥dv(t)∥M∗ + ∥dκ(t)∥M∗ . (3.36)

According to (3.29) in the preceding lemma,
∥eV∥2K∗ ≲ ∥eV∥2K = eTV(KV −K∗V∗) + eTV(K∗ −K)V∗

≲ (∥en∥K∗ + ∥ex∥K∗)∥eV∥K∗ , (3.37)
Substituting the estimation of ∥eV∥K∗ into (3.36) yields (3.32).

Inequalities (3.33)–(3.34) are proved by employing the energy estimation to (3.8c)
and (3.8d) with test functions ep and eq respectively and using the bilinear error
estimate (3.23). Here we only present a detailed proof of (3.34). A similar proof can
be applied to (3.8c) by treating a simpler nonlinear term. Testing (3.8d) with eq, we
derive

eTqMėq = eTq (Eq−E∗q∗) + eTq (M
∗ −M)q̇∗ + eTq (g − g∗)− eTqM

∗dq. (3.38)
By using Leibniz rule, [36, (7.11)] and norm equivalence (3.10), the first term can be
estimated as follows,

eTqMėq = −1

2
eTq

d

dt
Meq +

1

2

d

dt

(
eTqMeq

)
≥ −c∥eq∥2M∗ +

1

2

d

dt
∥eq∥2M.

Applying (3.23) and (3.11), we derive
eTq (Eq−E∗q∗) + eTq (M

∗ −M)q̇∗ ≲ ∥ex∥2K∗ + ∥ev∥2M∗ + ∥eq∥2M∗ . (3.39)
By Newton-Leibniz formula, the third term can be rewritten as an integral,

eTq (g − g∗) =

∫ 1

0

d

dθ

∫
Γθ
h

g(U, pΓθ
h
, qΓθ

h
, vΓθ

h
,∇Γθ

h
vΓθ

h
) : eθqdθ

=

∫ 1

0

∫
Γθ
h

(∂•
θg(U, pΓθ

h
, qΓθ

h
, vΓθ

h
,∇Γθ

h
vΓθ

h
) + g∇Γθ

h
· eθx) : eθqdθ,

where pΓθ
h
, qΓθ

h
and vΓθ

h
are finite element functions in Sh[x

θ] corresponding to p∗+θep,
q∗ + θeq and v∗ + θev, respectively. Recalling the Assumption 3.1 and the smooth-
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ness of u, we deduce that pΓθ
h
, qΓθ

h
, U |Γθ

h
and ∇U |Γθ

h
are bounded in L∞(Γθ

h), vΓθ
h

is
bounded in W 1,∞(Γθ

h). Then the smoothness (local Lipschitz) of g (see (2.15)) yields
∥g(U, pΓθ

h
, qΓθ

h
, vΓθ

h
,∇Γθ

h
vΓθ

h
)∥L∞(Γθ

h)
≤ C and ∥∂ig(U, pΓθ

h
, qΓθ

h
, vΓθ

h
,∇Γθ

h
vΓθ

h
)∥L∞(Γθ

h)
≤

C for i = 1, · · · , 5. This, together with
∂•
θU = (eθx · ∇)U, ∂•

θpΓθ
h
= eθp, ∂•

θ qΓθ
h
= eθq , ∂•

θvΓθ
h
= eθv,

∂•
θ∇Γθ

h
vΓθ

h
= ∇Γθ

h
eθv − (∇Γθ

h
eθx − nΓθ

h
nT
Γθ
h
(∇Γθ

h
eθx)

T )∇Γθ
h
vΓθ

h
,

implies that
eTq (g − g∗) ≲ ∥eq∥M∗ (∥ex∥K∗ + ∥ep∥M∗ + ∥eq∥M∗ + ∥ev∥K∗) .

Thus, (3.34) is obtained by integrating the following inequality from 0 to t,
d

dt
∥eq∥2M∗ ≲ ∥eq∥2M∗ + ∥dq∥2M∗ + ∥ex∥2K∗ + ∥ev∥2K∗ + ∥ep∥2M∗ .

To prove (3.35), we test (3.8e) with en and obtain
eTnKen = eTnMep+eTn (K

∗−K)n∗−eTn (M
∗−M)p∗+eTn (F−F∗)−eTnM

∗dn, (3.40)
where F and F∗ are abbreviations for F(x,q) and F(x∗,q∗). Since ∥n∗

h∥W 1,∞(Γ∗
h)

and
∥p∗h∥L∞(Γ∗

h)
are bounded, using the bilinear estimations (3.11)-(3.12), we derive

eTn (K
∗ −K)n∗ − eTn (M

∗ −M)p∗ ≲ ∥en∥K∗∥ex∥A∗ .

According to (2.25), we obtain

eTn (F− F∗) =

∫ 1

0

d

dθ

∫
Γθ
h

qΓθ
h
: ∇Γθ

h
eθndθ

=

∫ 1

0

∫
Γθ
h

eθq : ∇Γθ
h
eθndθ +

∫ 1

0

∫
Γθ
h

qΓθ
h
: ∇Γθ

h
eθn∇Γθ

h
· eθxdθ

+

∫ 1

0

∫
Γθ
h

qΓθ
h
: (−(∇Γθ

h
eθx − nΓθ

h
nT
Γθ
h
(∇Γθ

h
eθx)

T ))∇Γθ
h
eθndθ

≲ ∥en∥K∗(∥eq∥M∗ + ∥ex∥A∗).

By applying the norm equivalence (3.10) and Young’s inequality, we obtain
∥en∥2K∗ ≤ CeTnKen ≤ C∥en∥K∗(∥ex∥A∗ + ∥ep∥M∗ + ∥eq∥M∗ + ∥dn∥∗)

≤ 1

2
∥en∥2K∗ + c(∥ex∥2A∗ + ∥ep∥2M∗ + ∥eq∥2M∗ + ∥dn∥2∗).

By absorption, we finish the proof of (3.35).

3.4. Error estimates. The following lemma of consistency estimates can be
shown by using the geometric perturbation errors between bilinear forms on the con-
tinuous surface and the interpolated surface. In particular, the estimation of ∥dv∥M∗

and ∥dκ∥M∗ can be found in [30, Lemma 3.9], and the estimation of ∥dn∥∗, ∥dp∥M∗

and ∥dq∥M∗ is standard and therefore omitted.
Lemma 3.8 (Consistency estimates). Under the conditions of Theorem 2.1,

the consistency errors defined in (3.3)–(3.7) satisfy the following estimates:
∥dv∥M∗ + ∥dκ∥M∗ + ∥dn∥∗ + ∥dp∥M∗ + ∥dq∥M∗ ≲ hk. (3.41)

Since x(0), p(0), q(0) are chosen as Lagrange interpolations in the same way as
x∗, p∗ and q∗, we obtain ep = 0, eq = 0 and ex = 0. After solving n(0) and v(0) from
(2.28f) and (2.28b)–(2.28c), according to (3.32), (3.35) and Lemma 3.8, the following
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bound can be satisfied for sufficiently small h,
∥ep(0)∥M∗ + ∥eq(0)∥M∗ + ∥ex(0)∥K∗ + ∥en(0)∥K∗ + ∥ev(0)∥K∗ ≲ hk. (3.42)

By inverse inequalities and continuity, there exists t∗ > 0 such that the Assumption 3.1
holds for t ∈ [0, t∗]. Then for k ≥ 2, there exists h0 > 0 such that for h ≤ h0, (3.31)–
(3.32) and Lemma 3.7 hold for t ∈ [0, t∗]. Without loss of generality, we can take
t∗ ∈ [0, T ] to be the supreme value such that Assumption 3.1 holds. By substituting
estimations of ev and en into (3.31)–(3.32), we derive the following Grönwall type
inequality,

∥ex(t)∥2K∗ + ∥ep(t)∥2M∗ + ∥eq(t)∥2M∗

≲
∫ t

0

∥ex(s)∥2K∗ + ∥ep(s)∥2M∗ + ∥eq(s)∥2M∗ds

+

∫ t

0

∥dv(s)∥2M∗ + ∥dκ(s)∥2M∗ + ∥dn(s)∥2∗ + ∥dp(s)∥2M∗ + ∥dq(s)∥2M∗ds.

Using the consistency error bound in Lemma 3.8, we obtain by Grönwall’s inequality
that

∥ex(t)∥2K∗ + ∥ep(t)∥2M∗ + ∥eq(t)∥2M∗ ≲ hk.

Consequently, by (3.32) and (3.35), we obtain
∥ev(t)∥K∗ + ∥en(t)∥K∗ ≲ hk.

By the continuity of semidiscrete finite element solutions in time, the above estimate
still holds for [0, t∗+δ]. By inverse inequality, there exists h0 > 0 such that for h ≤ h0,
the Assumption 3.1 holds for [0, t∗ + δ]. Hence we have t∗ = T and (3.42) holds for all
t ∈ [0, T ]. Thus, the proof of Theorem 2.1 can be completed by combining the error
estimates of the Ritz projection and Lagrange interpolation of the projected solutions
introduced in Section 3.1.

4. Numerical examples. In this section, we present numerical examples to sup-
port the theoretical results obtained in Theorem 2.1 by demonstrating the convergence
of numerical approximations and the improvement of mesh quality by the proposed
method. In addition, we present an example to show the capability of the proposed
artificial tangential velocity in improving the effectiveness of the arbitrary Lagrangian–
Eulerian method for solving PDEs on a domain with moving boundary. The evolving
surface FEMs in the bulk and the surface are both implemented by the open sourced
high performance Python package: NGsolve; see https://ngsolve.org.

Example 4.1 (Convergence of numerical approximations). We test the
errors and convergence rates of the proposed method by considering the evolution of
a hypersurface S(t) ⊂ Rd with d = 2, 3 under the velocity field

u(x, t) = x(1− |x|), (4.1)

with S(0) = {x ∈ Rd : |x| = 1/2} being the circle/sphere of radius 1/2. In this
case, the sphere S(t) is a circle/sphere centered at the origin with radius r = r(t)
which satisfies the differential equation dr/dt = r(1 − r), and the modified velocity
v determined by (1.3b)–(1.3c) coincides with the original velocity u on S(t). The
solution with initial condition r(0) = 1/2 is given by r(t) = 1/(1 + exp(−t)).

We approximate the surface evolution by the proposed method with a semi-implicit
k-step backward differentiation formula (with k being the same of the degree of finite
elements in space), with a sufficiently small time stepsize so that the errors from time
discretization are negligibly small in observing the convergence rates of the spatial
discretizations. The H1 errors of position, velocity and normal vector, i.e., ∥ex∥K∗ ,
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∥ev∥K∗ and ∥en∥K∗ and the L2 norm of errors in Q, i.e., ∥eQ∥2M∗ = ∥ep∥2M∗+∥eq∥2M∗ ,
are presented in Figure 4.1. For both curves in 2D and surfaces in 3D, we observe
kth-order convergence with respect to the mesh size h. This is consistent with the
theoretical result proved in Theorem 2.1.
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(a) Expansion of circles in 2D, k=2
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(b) Expansion of spheres in 3D, k=2
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(c) Expansion of circles in 2D, k=3
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(d) Expansion of spheres in 3D, k=3

Fig. 4.1. Errors of numerical solutions at T = 1/8 (Example 4.1).

Example 4.2 (Improvement of mesh quality). We consider the evolution of
a curve Γ(t) ⊂ R2 under velocity field (4.1), with initial condition

Γ(0) =
{
(x, y) ∈ R2 :

(
x− 1

4

)2

+
(
y − 1

4

)2

=
1

4

}
. (4.2)

The evolving curve is approximated by using the proposed method in (2.18) with finite
elements of degree k = 3 and the semi-implicit Euler method in time discretization.
The trajectories of the mesh points given by velocity field u and the proposed method
are demonstrated in Figure 4.2 (b) and (c), respectively. Clearly, the proposed method
effectively improves the mesh quality on the evolving curve.

Next, we consider an evolving surface Γ(t) = {(x, y, z) ∈ R3 : φ(x, y, z, t) = 1}
described by a level set function

φ(x, y, z, t) =
x2

a2(t)
+

y2

a2(t)
+G

( z2

L2(t)

)
.

with G(s) = 200s(s− 199/200), a(t) = 0.1 + 0.05 sin(2πt) and L(t) = 1 + 0.2 sin(4πt).
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Fig. 4.2. Evolution of a curve Γ(t) under velocity field u (Example 4.2).

The surface evolves under the following velocity field:

u(x, y, z, t) = −φt∇φ

|∇φ|2
. (4.3)

This example is considered in [24] for illustrating the importance of using tangential
motion to improve the mesh quality of a discrete surface.

Using the same initial mesh, we compare the performance of the proposed method
with k = 1 and k = 4, the direct method, and Scheme (2.19) with finite elements of
degree k = 1 and k = 4 in approximating the evolving surface at T = 0.6. Figure 4.3
shows the initial mesh and the approximate meshes at T = 0.6.

(a) Initial mesh (b) Scheme (2.18), k = 1 (c) Scheme (2.18), k = 4

(d) Exact velocity (e) Scheme (2.19), k = 1 (f) Scheme (2.19), k = 4

Fig. 4.3. Evolving surface at T = 0.6 computed by the proposed method (k = 1 in (b) and
k = 4 in (c)), the direct method (d) and Scheme (2.19) in Remark 2.1 (k = 1 in (e) and k = 4 in
(f)) (Example 4.2).

Compared to the clustered mesh obtained using the exact velocity field (i.e., Fig-
ure 4.3 (d)), the numerical results show that the proposed Scheme (2.18) with k = 4
improves the mesh quality while keeping accurate in approximating the shape of the
surface, while the proposed Scheme (2.18) with k = 1 is inaccurate in approximating
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the shape of the surface. Scheme (2.19) with k = 1 also improves the mesh quality
but with less accuracy, while Scheme (2.19) with k = 4 leads to worse results instead
of higher accuracy.

The numerical results indicate that the proposed Scheme (2.18) with high-order
finite elements can improve both mesh quality and accuracy in approximating the
shape of the surface. It is also the only scheme among these that is proved convergent
to the exact surface evolution.

Example 4.3 (Improvement of mesh quality). We consider the following
velocity field:

u(x, t) = x(1− |x|2) +
(
1.2− 0.2

x2

|x|

)
(−x2, x1). (4.4)

As visualized in Figure 4.4, the velocity field rotates anticlockwise. The evolutions of
the curve Γ(t) under the velocity field in (4.4) with initial condition

Γ(0) = {(x1, x2) : |x1|2 + 9|x2|2 = 1}
by the direct method (i.e., mesh points move with velocity u) and the proposed method
are presented in Figure 4.4. The proposed method significantly improves the mesh
quality for this example again.
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Fig. 4.4. Evolution of a curve Γ(t) under velocity field u (Example 4.3).

Example 4.4 (PDEs in a domain with moving boundary). In the last
example, we demonstrate the effectiveness of the proposed method in combination
of the arbitrary Lagrangian–Eulerian method for solving PDEs in a domain with a
moving boundary, i.e., the parabolic equation

∂tφ−∆φ = f (4.5)
in domain Ω(t) with its boundary Γ(t) = ∂Ω(t) evolving under the velocity field
u in (4.4). By the arbitrary Lagrangian–Eulerian method, we solve the following
reformulated equation:

∂•
t φ− (w · ∇)φ+∆φ = f, (4.6)

where w is the mesh velocity and ∂•
t denotes the material derivative with respect to

w. The mesh velocity in the bulk domain Ω(t) is obtained by a harmonic extension of
the boundary velocity. Thus the direct method solves the bulk PDEs with boundary
mesh points moving under velocity u, while the proposed method solves the bulk PDEs
with boundary mesh points moving under a modified velocity with tangential motion
determined by solving some boundary PDEs.

The influence of the proposed method on the mesh quality in the bulk domain
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can be clearly observed in Figure 4.5. Compared with solving PDEs in bulk domain,
the computational cost of solving boundary PDEs is relatively small, as presented in
Figure 4.6.

(a) The mesh at t = 0 (b) Mesh by the direct method (c) Mesh by proposed method

Fig. 4.5. ALE moving mesh at t = 4 with finite elements of degree k = 3.
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Fig. 4.6. CPU time per time step for solving the bulk and boundary PDEs.
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(a) Finite elements of degree k = 2
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Fig. 4.7. L∞(0, T ;L2) errors of the numerical solutions to (4.5).

The errors eEφ and eTφ of the numerical solutions up to time T = 4 given by the
20



direct method and the proposed method, respectively, in approximating the exact
solution φ(x, t) = log(2 + t) + exp(x2 + y2) (with f and Dirichlet boundary condition
determined by this exact solution), are presented in Figure 4.7. From Figures 4.6 and
4.7 we see that the proposed method is about 100 times more accurate than the direct
method with roughly the same CPU time.

5. Conclusions. We have presented a novel evolving surface finite element method,
by constructing an artificial tangential velocity based on novel equivalent formulation
of the continuous problem, for computing the evolution of hypersurface under a smooth
prescribed velocity field in Rd, d = 2, 3. We have proved the stability and optimal-
order convergence of the proposed method for finite elements of degree k ≥ 2, and have
illustrated the effectiveness of the constructed artificial tangential velocity in main-
taining good mesh quality of the evolving surfaces through the numerical examples.
Moreover, the application of the proposed method in solving PDEs in an evolving
bulk domain has revealed the great benefit from the proposed method in decreasing
the error of numerical solutions without essentially increasing the computational cost.
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