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Abstract. We develop proper correction formulas at the starting k − 1 steps to restore the desired
kth-order convergence rate of the k-step BDF convolution quadrature for discretizing evolution equations
involving a fractional-order derivative in time. The desired kth-order convergence rate can be achieved even
if the source term is not compatible with the initial data, which is allowed to be nonsmooth. We provide
complete error estimates for the subdiffusion case α ∈ (0, 1), and sketch the proof for the diffusion-wave case
α ∈ (1, 2). Extensive numerical examples are provided to illustrate the effectiveness of the proposed scheme.
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1. Introduction. We are interested in the convolution quadrature (CQ) generated by
high-order backward differentiation formulas (BDFs) for solving the fractional-order evolu-
tion equation (with 0 < α < 1)

(1.1)

{
∂αt (u(t)− v)−Au(t) = f(t), 0 < t < T,

u(0) = v,

where f is a given function, and ∂αt u denotes the left-sided Riemann-Liouville fractional time
derivative of order α, defined by (cf. [20])

(1.2) ∂αt u(t) :=
1

Γ(1− α)

d

dt

∫ t

0

(t− s)−αu(s) ds,

where Γ(z) :=
∫∞

0
sz−1e−sds is the Gamma function. Under the initial condition u(0) = v,

the Riemann-Liouville fractional derivative ∂αt (u− v) in the model (1.1) is identical with the
usual Caputo fractional derivative [20, pp. 91].

In the model (1.1), the operator A denotes either the Laplacian ∆ on a polyhedral domain
Ω ⊂ Rd (d = 1, 2, 3) with a homogenous Dirichlet boundary condition, or its Galerkin finite
element approximation ∆h. Thus A satisfies the following resolvent estimate (cf. [1, Example
3.7.5 and Theorem 3.7.11] and [37])

(1.3) ‖(z −A)−1‖L2(Ω)→L2(Ω) ≤ cφ|z|−1, ∀z ∈ Σφ,

for all φ ∈ (π/2, π), where Σθ := {z ∈ C \ {0} : | arg z| < θ} is a sector of the complex plane
C. The model (1.1) covers a broad range of applications related to anomalous diffusion, e.g.,
dynamics of protein molecules, contaminant transport in complex geological formations and
relaxation in polymer systems [35].
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There has been much recent interest in developing high-order schemes for problem (1.1),
especially spectral methods [3, 4, 21, 41] and discontinuous Galerkin [8, 28–30]. In this work,
we develop robust high-order schemes based on CQs generated by high-order BDFs. The
CQ developed by Lubich [23–25] provides a flexible framework for constructing high-order
methods to discretize the fractional derivative ∂αt u. By its very construction, it inherits
the stability property of linear multistep methods, which greatly facilitates the analysis of
the resulting numerical scheme, in a way often strikingly opposed to standard quadrature
formulas [25, pp. 504]. Hence, it has been widely applied to discretize the model (1.1),
especially the CQ generated by BDF1 and BDF2 (with BDFk denoting BDF of order k).
In the literature, the CQ generated by BDF1 is commonly known as the Grünwald-Letnikov
formula (see [2] for related discussions and its high-order variants).

By assuming that the solution is sufficiently smooth, which is equivalent to assuming
smoothness of the initial data v and imposing certain compatibility conditions on the source
term f at t = 0, the stability and convergence of the numerical solutions of fractional
evolution equations have been investigated in [7, 11, 38, 40, 42]. In general, if the source
term f is not compatible with the given initial data, the solution u of the model (1.1) will
exhibit weak singularity at t = 0, which will deteriorate the convergence rate of the numerical
solutions. This has been widely recognized in fractional ODEs [9,10] and PDEs [6,17,34]. In
particular, direct implementation of the CQ generated by high-order BDFs for discretizing
the fractional evolution equations generally only yields first-order accuracy. To restore the
theoretical O(τk) rate of BDFk, two different strategies have been proposed.

For fractional ODEs, one idea is to use starting weights [23] to correct the CQ in dis-
cretizing the fractional time derivative ∂αt ϕ(tn), cf. (2.1) below, by

∂̄ατ ϕ
n =

1

τα

n∑
j=0

bn−jϕ
j +

M∑
j=0

wn,jϕ
j ,

where M ∈ N and the weights wn,j depend on α and k. The starting term
∑M
j=0 wn,jϕ

j is

to capture all leading singularities so as to recover a uniform O(τk) rate of the scheme. This
approach works well for fractional ODEs, however, its extension to fractional PDEs relies on
expanding the solution into power series of t, which requires imposing certain compatibility
conditions on the source f .

The second idea is to split f into f(t) = f(0) + (f(t)−f(0)) and to approximate f(0) by
∂̄τ∂

−1
t f(0), with a similar treatment of the initial data v. This leads to a corrected BDF2 at

the first step and restores the O(τ2) rate for any tn > 0. The idea was introduced in [26] for
solving a variant of (1.1) in the diffusion-wave case and then systematically developed in [6]
for BDF2, and was recently extended to (1.1) in [17] for both subdiffusion and diffusion-wave
cases. Higher-order extension of this idea is possible, but is still unavailable in the literature.

The goal of this work is to develop robust high-order BDFs for fractional evolution
equations along the second strategy [6, 17]. Instead of extending this strategy to each high-
order BDF method, separately, we develop a systematic strategy for correcting initial steps
for high-order BDFs, based on a few simple criteria, cf. (2.13) and (2.14) for the model (1.1).
These criteria emerge naturally from solution representations, and are purely algebraic and
straightforward to construct. The explicit correction coefficients will be given for BDFs up
to order 6. For BDFk, the correction is only needed at the starting k− 1 steps and thus the
resulting scheme is easy to implement.

We develop proper corrections for high-order BDFs for both subdiffusion, i.e., α ∈ (0, 1),
and diffusion wave, i.e., α ∈ (1, 2). It is noteworthy that for α ∈ (1, 2), high-order BDFs can
be either unconditionally or conditionally stable, depending on the fractional order α, and in
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the latter case, an explicit CFL condition on the time step size τ is given. Theoretically, the
corrected BDFk achieves the kth-order accuracy at any fixed time t = tn (when tn is bounded
from below), and the error bound depends only on data regularity, without assuming any
compatibility conditions on the source term or extra regularity on the solution (cf. Theorems
2.2 and 3.2). These results are supported by the numerical experiments in Section 4.

The rest of the paper is organized as follows. In Section 2 we develop the correction
for the subdiffusion case, including the motivations of the algebraic criteria for choosing
the correction coefficients. The extension of the approach to the diffusion wave case is
given in Section 3. Numerical results are presented in Section 4 to illustrate the efficiency
and robustness of the corrected schemes. Appendix A gives an alternative interpretation
of our correction method in terms of Lubich’s convolution quadrature for operator-valued
convolution integrals. Some lengthy proofs are given in Appendices B–E. Throughout, the
notation c denotes a generic positive constant, whose value may differ at each occurrence,
but it is always independent of the time step size τ and the solution u.

2. BDFs for Subdiffusion and its Correction. Let {tn = nτ}Nn=0 be a uniform
partition of the interval [0, T ], with a time step size τ = T/N . The CQ generated by BDFk,
k = 1, . . . , 6, approximates the fractional derivative ∂αt ϕ(tn) by

(2.1) ∂̄ατ ϕ
n :=

1

τα

n∑
j=0

bjϕ
n−j ,

with ϕn = ϕ(tn), where the weights {bj}∞j=0 are the coefficients in the series expansion

(2.2) δτ (ζ)α =
1

τα

∞∑
j=0

bjζ
j with δτ (ζ) :=

1

τ

k∑
j=1

1

j
(1− ζ)j .

Below we often write δ(ζ) = δ1(ζ), i.e., with τ = 1. The coefficients bj can be computed
efficiently by the fast Fourier transform [32,36] or recursion [39]. Correspondingly, the BDF
for solving (1.1) seeks approximations Un, n = 1, . . . , N , to the exact solution u(tn) by

(2.3) ∂̄ατ (U − v)n −AUn = f(tn).

If the solution u is smooth and has sufficiently many vanishing derivatives at 0, then Un

converges at a rate O(τk) [23, 25]. However, it generally only exhibits a first-order accuracy
when solving fractional PDEs, due to the weak solution singularity at 0, even if the initial
data v and source term f are smooth [33], as observed numerically [6,17]. For α = 1, BDFk
is known to be A(ϑk)-stable with angle ϑk = 90◦, 90◦, 86.03◦, 73.35◦, 51.84◦, 17.84◦ for
k = 1, 2, 3, 4, 5, 6, respectively [14, pp. 251].

To restore the kth-order accuracy, we correct BDFk at the starting k − 1 steps by (as
usual, the summation disappears if the upper index is smaller than the lower one)

(2.4)
∂̄ατ (U − v)n −AUn = a(k)

n (Av + f(0)) + f(tn) +

k−2∑
`=1

b
(k)
`,nτ

`∂`tf(0), 1 ≤ n ≤ k − 1,

∂̄ατ (U − v)n −AUn = f(tn), k ≤ n ≤ N.

where a
(k)
n and b

(k)
`,n are coefficients to be determined below. They are constructed so as to

improve the accuracy of the overall scheme to O(τk) for a general v ∈ D(A) and a possibly
incompatible source f . The only difference between (2.4) and (2.3) lies in the correction
terms at the starting k − 1 steps. Hence, the scheme (2.4) is easy to implement.

Remark 2.1. In the scheme (2.4), the derivative ∂`tf(0) may be replaced by its (k−`−1)-
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order finite difference approximation f (`), without sacrificing its accuracy.

Remark 2.2. The correction in (2.4) is minimal in the sense that there is no other
correction scheme which modifies only the k−1 starting steps while retaining the O(τk) rate.
This does not rule out corrections with more starting steps. We give an alternative correction
closely related to (2.4) in Appendix A.

2.1. Derivation of the correction criteria. Now we derive the criteria for choosing

the coefficients a
(k)
j and b

(k)
`,j , cf. (2.13) and (2.14) below, using Laplace transform and

its discrete analogue, the generating function [26, 37]. We denote by ̂ taking Laplace

transform, and for a given sequence (fn)∞n=0, denote by f̃(ζ) :=
∑∞
n=0 f

nζn its generating
function. First we split the right hand side f into

(2.5) f(t) = f(0) +

k−2∑
`=1

t`

`!
∂`tf(0) +Rk,

and Rk is the corresponding local truncation error, given by

(2.6) Rk = f(t)− f(0)−
k−2∑
`=1

t`

`!
∂`tf(0) =

tk−1

(k − 1)!
∂k−1
t f(0) +

tk−1

(k − 1)!
∗ ∂kt f,

where ∗ denotes Laplace convolution. Thus the function w(t) := u(t)− v satisfies

(2.7) ∂αt w −Aw = Av + f(0) +

k−2∑
`=1

t`

`!
∂`tf(0) +Rk,

with w(0) = 0. Since w(0) = 0, the identity ∂̂αt w(z) = zαŵ(z) holds [20, Remark 2.8, pp.
84], and thus by Laplace transform, we obtain

zαŵ(z)−Aŵ(z) = z−1(Av + f(0)) +

k−2∑
`=1

1

z`+1
∂`tf(0) + R̂k(z).

By inverse Laplace transform, the function w(t) can be readily represented by

(2.8)

w(t) =
1

2πi

∫
Γθ,δ

eztK(z)
(
Av + f(0)

)
dz

+
1

2πi

∫
Γθ,δ

eztzK(z)
( k−2∑
`=1

1

z`+1
∂`tf(0) + R̂k(z)

)
dz,

with the kernel function

(2.9) K(z) = z−1(zα −A)−1.

In the representation (2.8), the contour Γθ,δ is defined by

Γθ,δ = {z ∈ C : |z| = δ, | arg z| ≤ θ} ∪ {z ∈ C : z = ρe±iθ, ρ ≥ δ},
oriented with an increasing imaginary part. Throughout, we choose the angle θ in Γθ,δ such
that π/2 < θ < min(π, π/α) and hence, zα ∈ Σθ′ with θ′ = αθ < π for all z ∈ Σθ. By the
resolvent estimate (1.3), there exists a constant c which depends only on θ and α such that

(2.10) ‖(zα −A)−1‖ ≤ c|z|−α and ‖K(z)‖ ≤ c|z|−1−α, ∀z ∈ Σθ.

Next, we give a representation of the discrete solution Wn := Un−v, which follows from
lengthy but simple computation, cf. Appendix B.

Theorem 2.1. Let f ∈ Ck−1([0, T ];L2(Ω)) and
∫ t

0
(t−s)α−1‖∂ks f(s)‖L2(Ω)ds <∞. The
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discrete solution Wn := Un − v is represented by

Wn =
1

2πi

∫
Γτθ,δ

eztnµ(e−zτ )K(δτ (e−zτ ))(Av + f(0)) dz

+
1

2πi

∫
Γτθ,δ

eztnδτ (e−zτ )K(δτ (e−zτ ))

k−2∑
`=1

(
γ`(e

−zτ )

`!
+

k−1∑
j=1

b
(k)
`,j e
−ztj

)
τ `+1∂`tf(0) dz(2.11)

+
1

2πi

∫
Γτθ,δ

eztnδτ (e−zτ )K(δτ (e−zτ ))τR̃k(e−zτ ) dz,

with the contour Γτθ,δ := {z ∈ Γθ,δ : |=(z)| ≤ π/τ} (oriented with an increasing imaginary
part), where the functions µ(ζ) and γ`(ζ) are respectively defined by

(2.12) µ(ζ) = δ(ζ)

(
ζ

1− ζ
+

k−1∑
j=1

a
(k)
j ζj

)
and γ`(ζ) =

(
ζ
d

dζ

)`
1

1− ζ
.

By comparing the kernel functions in (2.8) and (2.11), we deduce that in order to have
O(τk) accuracy, the following three conditions should be satisfied for z ∈ Γτθ,δ:

|δτ (e−zτ )− z| ≤ c|z|k+1τk, |µ(e−zτ )− 1| ≤ c|z|kτk,∣∣∣∣(γ`(e−zτ )

`!
+

k−1∑
j=1

b
(k)
`,j e
−ztj

)
τ `+1 − 1

z`+1

∣∣∣∣ ≤ c|z|k−`−1τk.

Note that for BDFk, the estimate |δτ (e−zτ )−z| ≤ c|z|k+1τk holds automatically (cf. Lemma
B.1). It suffices to impose the following two criteria (by changing e−zτ to ζ and zτ to 1− ζ):

for BDFk, choose the coefficients {a(k)
j }

k−1
j=1 and {b(k)

`,j }
k−1
j=1 such that

|µ(ζ)− 1| ≤ c|1− ζ|k,(2.13) ∣∣∣∣γ`(ζ)

`!
+

k−1∑
j=1

b
(k)
`,j ζ

j − 1

δ(ζ)`+1

∣∣∣∣ ≤ c|1− ζ|k−`−1, ` = 1, . . . , k − 2,(2.14)

where the functions µ(ζ) and γ`(ζ) are defined in (2.12). It can be verified that for BDFk,
k = 3, . . . , 6, the leading singularities on the left hand side of (2.14) do cancel out, and thus
the criterion can be satisfied.

2.2. Computation of the coefficients a
(k)
j and b

(k)
`,j . First we compute the coeffi-

cients a
(k)
j . To this end, we rewrite

∑k−1
j=1 a

(k)
j ζj as

k−1∑
j=1

a
(k)
j ζj = ζ

k−2∑
j=0

cj(1− ζ)j .(2.15)

Thus, by writing ζ = 1− (1− ζ), expanding the summation and collecting terms, we obtain
(with the convention c−2 = c−1 = 0)

µ(ζ) =

k∑
j=1

1

j
(1− ζ)j

(
ζ

1− ζ
+ ζ

k−2∑
j=0

cj(1− ζ)j
)

=

k−1∑
j=0

1

j + 1
(1− ζ)j

(
1− (1− ζ)−

k∑
j=0

cj−2(1− ζ)j +

k−1∑
j=0

cj−1(1− ζ)j
)
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=

k−1∑
j=0

1

j + 1
(1− ζ)j −

k∑
j=1

1

j
(1− ζ)j −

k−1∑
j=2

( j∑
`=0

1

j − `+ 1
c`−2

)
(1− ζ)j

+

k−1∑
j=1

( j∑
`=0

1

j − `+ 1
c`−1

)
(1− ζ)j +O

(
(1− ζ)k

)
= 1 +

k−1∑
j=1

(
1

j + 1
− 1

j
−

j∑
`=0

1

j − `+ 1
c`−2 +

j∑
`=0

1

j − `+ 1
c`−1

)
(1− ζ)j +O

(
(1− ζ)k

)
= 1 +

k−1∑
j=1

(
− 1

j(j + 1)
−
j−1∑
`=1

1

j − `
c`−1 +

j−1∑
`=0

1

j − `
c`

)
(1− ζ)j +O

(
(1− ζ)k

)
.

Thus by choosing c`, ` = 0, . . . , k − 2, such that

j−1∑
`=0

1

j − `
c` =

1

j(j + 1)
+

j−1∑
`=1

1

j − `
c`−1, j = 1, . . . , k − 1,(2.16)

Criterion (2.13) follows. The coefficients a
(k)
j can be computed recursively from (2.16) and

(2.15), and are given in Table 1. The result for k = 2 recovers exactly the correction in [17],
and thus our algebraic construction generalizes the approach in [17].

Table 1
The coefficients a

(k)
j computed by (2.15)

order of BDF a
(k)
1 a

(k)
2 a

(k)
3 a

(k)
4 a

(k)
5

k = 2 1
2

k = 3 11
12 − 5

12

k = 4 31
24 − 7

6
3
8

k = 5 1181
720 − 177

80
341
240 − 251

720

k = 6 2837
1440 − 2543

720
17
5 − 1201

720
95
288

Next we compute the coefficients b
(k)
`,j . First we expand γ`(ζ)

`! −
1

δ(ζ)`+1 in 1− ζ as

γ`(ζ)

`!
− 1

δ(ζ)`+1
=

k−`−2∑
j=0

g
(k)
`,j (1− ζ)j +O(|1− ζ|k−`−1),(2.17)

and then choose the coefficients b
(k)
`,j , j = 1, . . . , k−1 to satisfy (2.14). To this end, we rewrite∑k−1

j=1 b
(k)
`,j ζ

j into the following form:

k−1∑
j=1

b
(k)
`,j ζ

j = ζ

k−2∑
j=0

d
(k)
`,j (1− ζ)j =

k−2∑
j=0

d
(k)
`,j (1− ζ)j −

k−1∑
j=1

d
(k)
`,j−1(1− ζ)j .(2.18)

Then it suffices to choose

d
(k)
`,0 = −g(k)

`,0 ,(2.19a)

d
(k)
`,j = d

(k)
`,j−1 − g

(k)
`,j for j = 1, . . . , k − `− 2,(2.19b)

d
(k)
`,j = 0 for j = k − `− 1, . . . , k − 2.(2.19c)

Now the coefficients b
(k)
`,j can be computed recursively using (2.17), (2.19) and (2.18), and the
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results are given in Table 2. Note that for k = 4 and 6, the coefficients b
(k)
k−2,j , j = 1, 2 . . . , k−1

vanish identically.

Table 2
The coefficients b

(k)
`,j .

order of BDF b
(k)
`,1 b

(k)
`,2 b

(k)
`,3 b

(k)
`,4 b

(k)
`,5

k = 3 ` = 1 1
12 0

k = 4 ` = 1 1
6 − 1

12 0

` = 2 0 0 0

k = 5 ` = 1 59
240 − 29

120
19
240 0

` = 2 1
240 − 1

240 0 0

` = 3 1
720 0 0 0

k = 6 ` = 1 77
240 − 7

15
73
240 − 3

40 0

` = 2 1
96 − 1

60
1

160 0 0

` = 3 − 1
360

1
720 0 0 0

` = 4 0 0 0 0 0

2.3. Error estimates. We state the error estimate for (2.4) in the following theorem,
whose proof can be found in Appendix C.

Theorem 2.2. Let Criteria (2.13) and (2.14) hold, and f ∈ Ck−1([0, T ];L2(Ω)) and∫ t
0
(t − s)α−1‖∂ks f(s)‖L2(Ω)ds < ∞. Then for the solution Un to (2.4), the following error

estimate holds for any tn > 0

‖Un − u(tn)‖L2(Ω) ≤cτk
(
tα−kn ‖f(0) +Av‖L2(Ω) +

k−1∑
`=1

tα+`−k
n ‖∂`tf(0)‖L2(Ω)

+

∫ tn

0

(tn − s)α−1‖∂ks f(s)‖L2(Ω)ds

)
.

Remark 2.3. Note that the estimate depends only on the regularity of f and v, rather
than the regularity of u. Theorem 2.2 implies that for any fixed tn = const > 0, the rate
is O(τk) for BDFk. In order to have a uniform O(τk) rate, the following compatibility
conditions are needed:

f(0) +Av = 0, and ∂
(`)
t f(0) = 0, ` = 1, . . . , k − 1.

Otherwise, the estimate deteriorates as t → 0, in accordance with the regularity theory: the
solution (and its derivatives) exhibits weak singularity at t = 0 [33].

Remark 2.4. The estimate in Theorem 2.2 requires Av ∈ L2(Ω), i.e., v is reasonably
smooth. Upon minor modifications of the proof in Appendix C, one can derive a similar error
estimate for v ∈ L2(Ω):

‖Un−u(tn)‖L2(Ω) ≤ cτk
(
t−kn ‖v‖L2(Ω)+

k−1∑
`=0

tα+`−k
n ‖∂`tf(0)‖L2(Ω)+

∫ tn

0

(tn−s)α−1‖∂ks f(s)‖L2(Ω)ds

)
.
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3. Corrected BDF for diffusion-wave problem. Now we extend the strategy in
Section 2 to the diffusion-wave problem, i.e., 1 < α < 2:

(3.1) ∂αt (u(t)− v − tb)−Au(t) = f(t),

with the initial conditions u(0) = v and u′(0) = b, where

(3.2) ∂αt u(t) :=
1

Γ(2− α)

d2

dt2

∫ t

0

(t− s)1−αu(s) ds.

The main differences from the subdiffusion case lie in the extra initial condition b and better
temporal smoothing property [17]. A direct implementation of BDFk can fail to yield the
O(τk) rate, as the subdiffusion case, and further, requires unnecessarily high regularity on
f . We shall develop a corrected scheme to tackle both issues. First, to exploit the extra
smoothing, we rewrite f as f = ∂tg with g = ∂−1

t f . Then (3.1) can be rewritten as

(3.3) ∂αt (u− v − tb)−Au = ∂tg,

Next we correct the first k − 1 steps, and seek approximations Un, n = 1, . . . , N , by
(3.4)

∂̄ατ (U − v − tb)n −AUn = a(k)
n Av + c(k)

n τAb+ ∂̄τg
n +

k−2∑
`=1

b
(k)
`,nτ

`−1∂`−1
t f(0), 1 ≤ n ≤ k − 1,

∂̄ατ (U − v − tb)n −AUn = ∂̄τg
n, k ≤ n ≤ N.

The scheme involves ∂̄τg
n, instead of fn, which enables one to relax the regularity require-

ment on f . The correction terms are to ensure the desired O(τk) rate.

Now we derive algebraic criteria for choosing the coefficients in (3.4) using Laplace trans-
form and generating function. First, since g(0) = 0, g(t) can be split into

(3.5) g(t) =

k−2∑
`=1

t`

`!
∂`tg(0) +Rk =

k−2∑
`=1

t`

`!
∂`−1
t f(0) +Rk,

where Rk is the local truncation error Rk = tk−1

(k−1)!∂
k−1
t g(0) + tk−1

(k−1)! ∗ ∂
k
t g(t). Thus, the

function w = u− v − tb satisfies

∂αt w −Aw = Av + tAb+

k−2∑
`=1

∂t
t`

`!
∂`−1
t f(0) + ∂tRk.

By Laplace transform and the kernel K(z) from (2.9), we derive a representation of w(t):

(3.6)

w(t) =
1

2πi

∫
Γθ,δ

eztK(z)(Av + z−1Ab)dz

+
1

2πi

∫
Γθ,δ

eztzK(z)

( k−2∑
`=1

1

z`
∂`−1
t f(0) + zR̂k(z)

)
dz,

where the angle θ ∈ (π/2, π) is close to π/2 such that αθ < π, and δ is small.

Since BDFk is A(ϑk)-stable, the scheme (3.4) is unconditionally stable for any α <
α∗(k) := π/(π−ϑk). The critical value α∗(k) is 1.91, 1.68, 1.40 and 1.11 for k = 3, . . . , 6. In
contrast, for α ≥ α∗(k), it is only conditionally stable. Note that for any α ∈ (1, 2), the curve
δ(e−iθ)α is not tangent to the real axis at the origin (i.e., θ close to zero). This naturally
gives rise to the following condition.

Condition 3.1. Let r(A) be the numerical radius of A, and the following condition
holds: (i) α < α∗(k) or (ii) α ≥ α∗(k) and ταr(A) ≤ c(α, k) − γ for some γ > 0, where the
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constant c(α, k) is given by the intersection point (closest to the origin) of {δ(ζ)α : |ζ| = 1}
with the negative real axis.

Remark 3.1. Condition 3.1(ii) specifies the CFL condition on the time step size τ (so
it holds only if r(A) <∞). The CFL constant c(α, k) is not available in closed form, but can
be determined numerically; see Fig. 1 for the values.

It is interesting to observe the qualitative differences of BDFs of different order. For
example, the CFL constant c(α, 6) of BDF6 does not approach zero even for α tends to 2;
and there is an interval of α values for which the CFL constant c(α, 4) for BDF4 is larger
than c(α, 3) for BDF3, i.e., BDF4 is less stringent in time step size.

1.6 1.8 2
0

1

2

3

α

c
(α

,k
)

 

 

k=3

k=4

1 1.5 2
0

1

2

3

α

c
(α

,k
)

 

 

k=5

k=6

Fig. 1. The CFL constant c(α, k) for BDFk, k = 3, 4, 5, 6, at different α values.

The next result gives the representation of the solution Wn = Un−v−tnb, which follows
from simple yet lengthy computations, cf. Appendix D.

Theorem 3.1. Let f ∈ Ck−2([0, T ];L2(Ω)) and
∫ t

0
(t − s)α−2‖∂k−1

s f(s)‖L2(Ω)ds < ∞.
Under Condition 3.1, Wn := Un − v − tnb is represented by

Wn =
1

2πi

∫
Γτθ,δ

eztnµ(e−zτ )K(δτ (e−zτ ))Av dz

+
1

2πi

∫
Γτθ,δ

eztnK(δτ (e−zτ ))δτ (e−zτ )

(
γ1(e−zτ ) +

k−1∑
j=1

c
(k)
j e−ztj

)
τ2Ab dz

+
1

2πi

∫
Γτθ,δ

eztnδτ (e−zτ )K(δτ (e−zτ ))

k−2∑
`=1

(
δ(e−zτ )

γ`(e
−zτ )

`!
+

k−1∑
j=1

b
(k)
`,j e
−ztj

)
τ `∂`−1

t f(0) dz

+
1

2πi

∫
Γτθ,δ

eztnδτ (e−zτ )2K(δτ (e−zτ ))τR̃k(e−zτ ) dz,

(3.7)

with Γτθ,δ := {z ∈ Γθ,δ : |=(z)| ≤ π/τ} (oriented with an increasing imaginary part), for some
θ sufficiently close to π/2, where µ(ζ) and γ`(ζ) are defined in (2.12).

Like before, from the representations (3.6) and (3.7), we arrive at the following algebraic

criteria for choosing the coefficients a
(k)
j , c

(k)
j and b

(k)
`,n:

|µ(ζ)− 1| ≤ c|1− ζ|k,(3.8) ∣∣∣∣γ1(ζ) +

k−1∑
j=1

c
(k)
j ζj − 1

δ(ζ)2

∣∣∣∣ ≤ c|1− ζ|k−2,(3.9)



10 ∣∣∣∣δ(ζ)
γ`(ζ)

`!
+

k−1∑
j=1

b
(k)
`,j ζ

j − 1

δ(ζ)`

∣∣∣∣ ≤ c|1− ζ|k−`, ` = 1, 2, . . . , k − 2,(3.10)

where the functions µ(ζ) and γ`(ζ) are defined in (2.12).
By comparing Criterion (3.8) with (2.13), and respectively Criterion (3.9) with (2.14),

the coefficients a
(k)
j are identical with that for α ∈ (0, 1), and respectively c

(k)
j with b

(k)
1,j for

α ∈ (0, 1). However, due to the presence of the extra factor δ(ζ), the coefficients b
(k)
`,j are

different from that of the case 0 < α < 1, and have to be determined. The procedure for

computing b
(k)
`,j is similar to that in Section 2.2, and the coefficients b

(k)
`,j are given in Table 3.

Table 3
The coefficients b

(k)
`,j according to Criterion (3.10).

order of BDF b
(k)
`,1 b

(k)
`,2 b

(k)
`,3 b

(k)
`,4 b

(k)
`,5

k = 3 ` = 1 1
12 − 1

12

k = 4 ` = 1 5
24 − 1

3
1
8

` = 2 0 0 0

k = 5 ` = 1 257
720 − 187

240
137
240 − 107

240

` = 2 1
240 − 1

120
1

240 0

` = 3 − 1
720

1
720 0 0

k = 6 ` = 1 749
1440 − 1031

720
31
20 − 577

720
47
288

` = 2 1
80 − 1

30
7

240 − 1
120 0

` = 3 − 1
288

1
180 − 1

480 0 0

` = 4 0 0 0 0 0

Last, we state an error estimate for the approximation Un. The proof is similar to that
of Theorem 3.2, but with g = ∂−1

t f in place of f ; see Appendix E for a sketch.
Theorem 3.2. Let Criteria (3.8)–(3.10) hold, and Condition 3.1 be fulfilled, and f ∈

Ck−2([0, T ];L2(Ω)) and
∫ t

0
(t − s)α−2‖∂k−1

s f(s)‖L2(Ω)ds < ∞. Then for the solution Un to
(3.4), the following error estimate holds for any tn > 0

‖Un − u(tn)‖L2(Ω) ≤cτk
(
tα−kn ‖f(0) +Av‖L2(Ω) + tα+1−k

n ‖Ab‖L2(Ω)

+

k−2∑
`=1

tα+`−k
n ‖∂`tf(0)‖L2(Ω) +

∫ tn

0

(tn − s)α−2‖∂k−1
s f(s)‖L2(Ω)ds

)
.

Remark 3.2. Theorem 3.2 only requires (k−1)th derivative of f in time, instead of kth

derivative of f as in Theorem 2.2. Thus it relaxes the regularity condition.

4. Numerical experiments and discussions. Now we present numerical results to
show the efficiency and accuracy of the schemes (2.4) and (3.4) in one-spatial dimension, on
the unit interval Ω = (0, 1). In space, it is discretized with the piecewise linear Galerkin
finite element method [15]: we divide Ω into M equally spaced subintervals with a mesh size
h = 1/M . Since the convergence behavior of the spatial discretization is well understood,
we focus on the temporal convergence. In the computation, we fix the time step size τ at
τ = t/N , where t is the time of interest. We measure the accuracy by the normalized errors
eN = ‖u(tN )−UN‖L2(Ω)/‖u(tN )‖L2(Ω), where the reference solution u(tN ) is computed using
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a much finer mesh. All the computations are carried out in MATLAB R2015a on a personal
laptop, and further, to observe error beyond double precision, we employ the Multiprecision
Computing Toolbox1 for MATLAB.

4.1. Numerical results for subdiffusion. Consider the following examples:

(a) v = x(1− x) ∈ H2(Ω) ∩H1
0 (Ω) and f ≡ 0;

(b) v ≡ 0 and f(x, t) = cos(t)(1 + χ(0,1/2)(x)).
(c) v ≡ 0 and f(x, t) = 2tα + Γ(1 + α)x(1− x).

The numerical results for case (a) by the corrected scheme (2.4) are presented in Table
4, where the numbers in the bracket denote the theoretical rate predicted by Theorem 2.2. It
converges steadily at an O(τk) rate for all BDFs, which agrees well with the theory, showing
clearly its robustness. Surprisingly, the asymptotic convergence of BDF6 kicks in only at a
relatively small time step size, at N = 50, which contrasts sharply with other BDF schemes.
Thus in the preasymptotic regime, BDF5 is preferred over BDF6. To further illustrate
Theorem 2.2, in Fig. 2, we plot the numerical solution by BDF5 and its error profile. The
solution decays first rapidly and then slowly, resulting in an initial layer. This layer shows
clearly the limited temporal regularity of the solution at 0 and as a result, the approximation
error near 0 is predominant, partly confirming the prefactor tα−kn in Theorem 2.2.

Table 4
The L2-norm error eN for case (a) at tN = 1, by the corrected scheme (2.4) with h = 1/100.

α k\N 50 100 200 400 800 rate
2 5.66e-5 1.39e-5 3.46e-6 8.64e-7 2.16e-7 ≈ 2.00 (2.00)
3 2.29e-6 2.76e-7 3.39e-8 4.20e-9 5.23e-10 ≈ 3.01 (3.00)

0.25 4 1.42e-7 8.33e-9 5.04e-10 3.10e-11 1.91e-12 ≈ 4.02 (4.00)
5 1.26e-8 3.41e-10 1.01e-11 3.07e-13 9.45e-15 ≈ 5.03 (5.00)
6 1.09e-5 1.60e-9 2.55e-13 3.82e-15 5.83e-17 ≈ 6.04 (6.00)
2 1.74e-4 4.30e-5 1.07e-5 2.65e-6 6.62e-7 ≈ 2.00 (2.00)
3 7.73e-6 9.29e-7 1.14e-7 1.41e-8 1.76e-9 ≈ 3.01 (3.00)

0.5 4 5.12e-7 2.98e-8 1.80e-9 1.10e-10 6.83e-12 ≈ 4.02 (4.00)
5 4.75e-8 1.27e-9 3.76e-11 1.14e-12 3.52e-14 ≈ 5.03 (5.00)
6 3.01e-5 2.79e-9 9.85e-13 1.47e-14 2.25e-16 ≈ 6.05 (6.00)
2 4.84e-4 1.19e-4 2.93e-5 7.30e-6 1.82e-6 ≈ 2.00 (2.00)
3 2.55e-5 3.04e-6 3.72e-7 4.60e-8 5.71e-9 ≈ 3.01 (3.00)

0.75 4 1.94e-6 1.11e-7 6.68e-9 4.09e-10 2.53e-11 ≈ 4.02 (4.00)
5 2.95e-7 5.30e-9 1.55e-10 4.70e-12 1.45e-13 ≈ 5.03 (5.00)
6 1.67e-3 3.01e-7 4.53e-12 6.61e-14 1.01e-15 ≈ 6.07 (6.00)

To illustrate the impact of initial correction, we present in Table 5 the numerical results
by the uncorrected BDF scheme (2.3), and two popular finite difference schemes, i.e., L1 [22]
and L1-2 [12,27]. The uncorrected BDFk scheme can only achieve an O(τ) rate, and they all
have almost identical accuracy, irrespective of the order k. This low-order convergence is due
to the poor approximation at the initial steps, which persists in the numerical solutions at
later steps. Meanwhile, for sufficiently smooth solutions, the L1 and L1-2 schemes converge
at a rate O(τ2−α) and O(τ3−α), respectively. For general problem data, the L1 scheme
converges at an O(τ) rate [16, 19]. The L1 and L1-2 schemes delivers only an O(τ) rate for
case (a), due to insufficient solution regularity. Although not presented, it is noted that the

1http://www.advanpix.com/, last accessed on January 11, 2017.

http://www.advanpix.com/
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numerical results for other fractional orders are similarly. Thus, the correction is necessary
in order to retain the desired rate, even for smooth initial data.
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(a) numerical solution

-0.06

0

-0.04

-0.02

0.02
1

0

0.02

0.04 0.8

0.04

t

0.06

0.6

x

0.06

0.08

0.4
0.08

0.2

0.1 0

(b) error profile

Fig. 2. Numerical solution and error profile for case (a), with α = 0.5, h = 1/100, τ = 0.002 and BDF5.

Table 5
The L2-norm error eN for case (a) at tN = 1, by the uncorrected scheme (2.3) with h = 1/100.

α N 50 100 200 400 800 rate
BDF3 4.98e-3 2.48e-3 1.24e-3 6.19e-4 3.09e-4 ≈ 1.00 (1.00)
BDF4 4.97e-3 2.48e-3 1.24e-3 6.19e-4 3.09e-4 ≈ 1.00 (1.00)

0.5 BDF5 4.97e-3 2.48e-3 1.24e-3 6.19e-4 3.09e-4 ≈ 1.00 (1.00)
BDF6 4.94e-3 2.48e-3 1.24e-3 6.19e-4 3.09e-4 ≈ 1.00 (1.00)

L1 5.10e-3 2.52e-3 1.25e-3 6.24e-4 3.11e-4 ≈ 1.04 (1.00)
L1-2 3.57e-3 1.73e-3 8.40e-4 4.08e-4 1.99e-4 ≈ 1.04 (−−)

Next we consider the inhomogeneous problem in case (b). Since the source f is smooth
in time, Theorem 2.2 is applicable, which predicts an O(τk) rate for the corrected BDFk
scheme (2.4). This is fully supported by the numerical results in Table 6. Like before, the
uncorrected scheme (2.3) and the L1 and L1-2 schemes can only achieve an O(τ) rate, despite
the smoothness of the problem data, cf. Table 7.

Last, we consider case (c), where the exact solution is given by u = tαx(1 − x). The
source f = 2tα + Γ(1 + α)x(1 − x) is not regular enough in time. It can be verified that
f ∈ W 1+α−ε,1(0, T/2;L2(Ω)) ∩W 1+α−ε,∞(T/2, T ;L2(Ω)) for any small ε > 0. The proof
of Theorem 2.2 indicates that the numerical solutions converge at a rate O(τm) at t = T if
f ∈ Wm,1(0, T/2;L2(Ω)) ∩Wm,∞(T/2, T ;L2(Ω)) for m ≤ k, and the interpolation between
the two cases m = 1 and m = 2 yields a rate O(τ1+α−ε) for this example. The numerical
results in Table 8 are consistent with this theoretical prediction, and illustrate the sharpness
of Theorem 2.2 with respect to the regularity assumption on f .

4.2. Numerical results for diffusion-wave. Consider the following example:
(d) v(x) = x(1− x), b(x) = sin(2πx) and f = et(1 + χ(0,1/2)(x))
For the diffusion-wave model, the scheme (3.4) is only conditionally stable for α ≥

α∗(k) = π/(π−ϑk), with a stability threshold τ0 = (c(α, k)/r(A))1/α, according to Condition
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Table 6
The L2-norm error eN for case (b) at tN = 1, by the corrected scheme (2.4) with h = 1/100.

α k\N 50 100 200 400 800 rate
2 6.67e-6 1.65e-6 4.10e-7 1.02e-7 2.55e-8 ≈ 2.00 (2.00)
3 2.68e-7 3.20e-8 3.91e-9 4.83e-10 6.00e-11 ≈ 3.01 (3.00)

0.25 4 2.14e-8 1.25e-9 7.57e-11 4.65e-12 2.88e-13 ≈ 4.02 (4.00)
5 1.90e-9 5.11e-11 1.51e-12 4.61e-14 1.42e-15 ≈ 5.03 (5.00)
6 1.63e-6 2.40e-10 3.79e-14 5.68e-16 8.67e-18 ≈ 6.05 (6.00)
2 1.76e-5 4.35e-6 1.08e-6 2.70e-7 6.62e-8 ≈ 2.00 (2.00)
3 6.35e-7 7.56e-8 9.22e-9 1.14e-9 1.42e-10 ≈ 3.01 (3.00)

0.5 4 5.23e-8 3.03e-9 1.83e-10 1.12e-11 6.95e-13 ≈ 4.02 (4.00)
5 4.94e-9 1.33e-10 3.91e-12 1.19e-13 3.66e-15 ≈ 5.03 (5.00)
6 3.14e-6 2.91e-10 1.02e-13 1.52e-15 2.32e-17 ≈ 6.05 (6.00)
2 3.03e-5 7.47e-6 1.86e-6 4.63e-7 1.16e-7 ≈ 2.00 (2.00)
3 1.10e-6 1.31e-7 1.59e-8 1.96e-9 2.43e-10 ≈ 3.01 (3.00)

0.75 4 9.98e-8 5.72e-9 3.43e-10 2.10e-11 1.30e-12 ≈ 4.02 (4.00)
5 1.57e-8 2.81e-10 8.24e-12 2.50e-13 7.68e-15 ≈ 5.03 (5.00)
6 8.95e-5 1.61e-8 2.40e-13 3.50e-15 5.33e-17 ≈ 6.07 (6.00)

Table 7
The L2-norm error eN for case (b) at tN = 1, by the uncorrected scheme (2.3) with h = 1/100.

α N 50 100 200 400 800 rate
BDF2 5.14e-4 2.57e-4 1.29e-4 6.45e-5 3.22e-5 ≈ 1.00 (1.00)
BDF3 5.19e-4 2.59e-4 1.29e-4 6.45e-5 3.23e-5 ≈ 1.00 (1.00)
BDF4 5.18e-4 2.59e-4 1.29e-4 6.45e-5 3.23e-5 ≈ 1.00 (1.00)

0.5 BDF5 5.19e-4 2.59e-4 1.29e-4 6.45e-5 3.23e-5 ≈ 1.00 (1.00)
BDF6 5.15e-4 2.59e-4 1.29e-4 6.45e-5 3.23e-5 ≈ 1.00 (1.00)

L1 5.98e-4 2.86e-4 1.39e-4 6.80e-5 3.35e-5 ≈ 1.02 (1.00)
L1-2 3.71e-4 1.80e-4 8.76e-5 4.25e-5 2.07e-5 ≈ 1.04 (−−)

3.1. To illustrate the sharpness of the threshold τ0 or equivalently the CFL constant c(α, k),
we consider case (d) with k = 5, α = 1.5, h = 1/M = 1/100. The eigenvalues of the discrete
Laplacian A are available in closed form [15]:

λhj = λ̄hj /(1− h2

6 λ̄
h
j ), with λ̄hj = − 4

h2
sin2 πj

2(N + 1)
, j = 1, 2, . . . ,M − 1.

Thus the numerical radius r(A) = maxj(λ
h
j ) ≈ 1.2 × 105, and with the value c(α, k) = 1.58

from Fig. 1, it gives a stability threshold τ0 ≈ 5.60× 10−4. In Fig. 3, we plot the numerical
solutions computed by the corrected scheme (3.4) with N = 1700 (i.e., τ = 5.88× 10−4) and
N = 1800 (i.e., τ = 5.55 × 10−4). The scheme (3.4) is unstable for N = 1700 but stable
for N = 1800. This confirms the sharpness of the CFL constant c(α, k) in Condition 3.1.
In Table 9, we present the L2 error for α > α∗ and small τ (such that it satisfies the CFL
condition). The numerical results indicate the desired O(τk) rate, supporting the theory.

For α < α∗(k) = π/(π−ϑk), the corrected scheme (3.4) based on BDFk is unconditionally
stable. Numerically, the corrected scheme (3.4) converges at an O(τk) rate steadily, cf. Table
10, which agrees well with Theorem 3.2.
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Table 8
The L2-norm error eN for case (c) at tN = 1, by the corrected scheme (2.4) with h = 1/100.

α k\N 50 100 200 400 800 rate
2 4.31e-5 1.81e-5 7.59e-6 3.16e-6 1.30e-6 ≈ 1.27 (1.25)
3 3.19e-5 1.34e-5 5.61e-6 2.33e-6 9.45e-7 ≈ 1.28 (1.25)

0.25 4 2.76e-5 1.15e-5 4.81e-6 1.99e-6 8.03e-7 ≈ 1.28 (1.25)
5 2.46e-5 1.03e-5 4.29e-6 1.77e-6 7.11e-7 ≈ 1.29 (1.25)
6 2.31e-5 9.64e-6 4.02e-6 1.65e-6 6.63e-7 ≈ 1.29 (1.25)
2 1.62e-5 5.76e-6 2.04e-6 7.21e-7 2.52e-7 ≈ 1.51 (1.50)
3 9.78e-6 3.48e-6 1.23e-6 4.32e-7 1.50e-7 ≈ 1.52 (1.50)

0.5 4 8.03e-6 2.82e-6 9.93e-7 3.48e-7 1.20e-7 ≈ 1.53 (1.50)
5 6.87e-6 2.42e-6 8.51e-7 2.93e-7 1.02e-7 ≈ 1.53 (1.50)
6 6.46e-6 2.22e-6 7.81e-7 2.73e-7 9.33e-8 ≈ 1.53 (1.50)
2 3.37e-6 1.02e-6 3.05e-7 9.15e-8 2.73e-8 ≈ 1.74 (1.75)
3 1.32e-6 4.02e-7 1.21e-7 3.59e-8 1.06e-8 ≈ 1.75 (1.75)

0.75 4 1.03e-6 3.04e-7 9.00e-8 2.65e-8 7.76e-9 ≈ 1.77 (1.75)
5 8.37e-7 2.48e-7 7.33e-8 2.16e-8 6.30e-9 ≈ 1.77 (1.75)
6 5.52e-6 2.21e-7 6.59e-8 1.94e-8 5.64e-9 ≈ 1.77 (1.75)
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Fig. 3. The numerical solutions for case (d) at t = 1, with N = 1700 (τ = 5.88× 10−4) and N = 1800
(τ = 5.56× 10−4), h = 1/100. The theoretical stability threshold is τ0 = 5.60× 10−4.

Table 9
The L2-norm error eN for case (d) at tN = 1, by the corrected scheme (3.4), with h = 1/10.

k (α∗) α\N 100 200 400 800 1600 rate
3 (1.91) 1.95 2.96e-5 3.84e-6 5.00e-7 6.40e-8 8.27e-9 ≈ 2.96 (3.00)
4 (1.68) 1.75 2.08e-6 1.43e-7 9.29e-9 5.92e-10 3.74e-11 ≈ 3.98 (4.00)
5 (1.40) 1.5 7.29e-8 2.49e-10 6.22e-12 1.72e-13 5.05e-15 ≈ 5.14 (5.00)
6 (1.11) 1.5 5.67e-2 2.56e-10 6.88e-13 1.05e-14 1.62e-16 ≈ 6.03 (6.00)
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Table 10
The L2-norm error eN for case (d) at tN = 1, by the corrected scheme (3.4), h = 1/100.

k (α∗) N 100 200 400 800 1600 rate
1.25 2.34e-5 5.85e-6 1.46e-6 3.65e-7 9.14e-8 ≈ 2.00 (2.00)

2 (2.00) 1.5 6.87e-5 1.69e-5 4.18e-6 1.04e-6 2.59e-7 ≈ 2.00 (2.00)
1.75 3.15e-4 8.55e-5 2.21e-5 5.62e-6 1.42e-6 ≈ 1.98 (2.00)
1.25 1.54e-8 1.66e-9 3.20e-10 4.80e-11 6.33e-12 ≈ 3.00 (3.00)

3 (1.91) 1.5 4.22e-6 5.12e-7 6.30e-8 7.82e-9 9.74e-10 ≈ 3.00 (3.00)
1.75 5.27e-5 6.43e-6 7.93e-7 9.78e-8 1.15e-8 ≈ 3.02 (3.00)

4 (1.68) 1.25 2.74e-8 1.64e-9 1.00e-10 6.20e-12 3.63e-13 ≈ 4.00 (4.00)
1.5 1.88e-7 1.27e-8 8.22e-10 5.19e-11 3.07e-12 ≈ 4.00 (4.00)

5 (1.40) 1.1 3.32e-10 9.52e-12 2.85e-13 8.71e-15 2.69e-16 ≈ 5.00 (5.00)
1.3 2.38e-7 1.28e-10 1.08e-12 3.40e-14 1.06e-15 ≈ 5.00 (5.00)

6 (1.11) 1.05 3.31e-5 1.94e-7 1.28e-10 7.58e-17 7.39e-19 ≈ 6.68 (6.00)

referees for their constructive comments.

Appendix A. An alternative view on the correction scheme (2.4). In this ap-
pendix, we discuss the connection between our approach and the one in [25]. The observation
of this connection is due to Professor Christian Lubich.

For the following integral and its convolution quadrature approximation

(A.1) u(t) =
1

2πi

∫
Γθ,δ

F (z)etzdz and Un =
1

2πi

∫
Γτθ,δ

F (δτ (e−τz))etnzdz,

Lubich [25, Theorem 2.1] showed the following error estimate away from t = 0:

|Un − u(tn)| ≤ ctν−k−1
n τk,(A.2)

where ν ∈ R is a parameter in the kernel estimate | d
m

dzmF (z)| ≤ c|z|−ν−m, m ≥ 0. If we
choose F (z) = (zα −A)−1z−`−1∂`tf(0) in (A.1), then

u(t) =
1

2πi

∫
Γθ,δ

(zα −A)−1z−`−1∂`tf(0)etzdz

and

Un =
1

2πi

∫
Γτθ,δ

(δτ (e−τz)α −A)−1δτ (e−τz)−`−1∂`tf(0)etnzdz

are integral representations of the solutions of

∂αt u(t)−Au(t) =
t`

`!
∂`tf(0), with u(0) = 0,(A.3)

∂̄ατ U
n −AUn = τ `ω(`)

n ∂`tf(0), with U0 = 0,(A.4)

respectively, which are the solutions and approximations of (1.1) corresponding to a single

component in the splitting (2.5). The weights {ω(`)
n }∞n=0 are generated by the expansion

δ(ζ)−`−1 =
∑∞
n=0 ω

(`)
n ζn. By [25, Theorem 2.1], {Un} has the desired accuracy (A.2). Our

scheme (2.4) is connected with (A.4) as follows: we replace δ(ζ)−`−1 by an O(|ζ − 1|k−`−1)

accurate approximation γ`(ζ)
`! +

∑k−1
j=1 b

(k)
`,j ζ

j , cf. (2.14). Our choice of the kernel leads to

∂̄ατ U
n −AUn =

t`n
`!
∂`tf(0) + b

(k)
`,nτ

`∂`tf(0),(A.5)
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which differs from (A.4) only in the starting k − 1 steps, since b
(k)
`,n = 0 for n ≥ k. Further,

(A.5) is minimal (or optimal) in the sense that it is the unique scheme that only modifies
the starting k − 1 steps while retaining an accuracy of O(τk).

Appendix B. Proof of Theorem 2.1. We need a few estimates on δτ (e−zτ ).

Lemma B.1. Let α ∈ (0, 2). For any ε, there exists θε ∈ (π/2, π) such that for any
θ ∈ (π/2, θε), there exist positive constants c, c1, c2 (independent of τ) such that

c1|z| ≤ |δτ (e−zτ )| ≤ c2|z|, δτ (e−zτ ) ∈ Σπ−ϑk+ε,

|δτ (e−zτ )− z| ≤ cτk|z|k+1, |δτ (e−zτ )α − zα| ≤ cτk|z|k+α, ∀ z ∈ Γτθ,δ.

Proof. Since the function δ(ζ)/(1 − ζ) has no zero in a neighborhood N of the unit
circle [5, Proof of Lemma 2] and for θ sufficiently close to π/2, e−zτ lies in the neighborhood
N , there are positive constants c′1 and c′2 such that

c′1 ≤
|δ(e−zτ )|
|1− e−zτ |

=
|δτ (e−zτ )|
|(1− e−zτ )/τ |

≤ c′2, ∀ z ∈ Γτθ,δ.

Since c̃1|zτ | ≤ |1− e−zτ | ≤ c̃2|zτ | for z ∈ Γτθ,δ, the first estimate follows.

When |ζ| ≤ 1 and ζ 6= 0, we have δτ (ζ) ∈ Σπ−ϑk for the A(ϑk) stable BDFk [14]. Hence,
by expressing e−zτ as e−|z|τ cos(θ)e−i|z|τ sin(θ), we have

|δτ (e−zτ )− δτ (e−i|z|τ sin(θ))| = |δτ (e−|z|τ cos(θ)e−i|z|τ sin(θ))− δτ (e−i|z|τ sin(θ))|

≤ ce−σ|z|τ cos(θ)
∣∣∣δ′τ (e−σ|z|τ cos(θ)e−i|z|τ sin(θ))zτ cos(θ)

∣∣∣
for some σ ∈ (0, 1), by the mean value theorem. For θ close to π/2 and z ∈ Γτθ,δ, by Taylor
expansion, |z|τ ≤ π/ sin θ and the first estimate, we have

τ |δ′τ (e−σ|z|τ cos(θ)e−i|z|τ sin(θ))| ≤ c and |δτ (e−i|z|τ sin(θ))| ≥ c|z|.
Consequently, we deduce

|δτ (e−|z|τ cos(θ)e−i|z|τ sin(θ))− δτ (e−i|z|τ sin(θ))| ≤ c| cos(θ)||δτ (e−i|z|τ sin(θ))|
≤ c|θ − π/2||δτ (e−i|z|τ sin(θ))|.(B.1)

Hence, δτ (e−τz) lies in a sector Σπ−ϑk+c|θ−π/2|. If θ > π/2 is sufficiently close to π/2, then
c|θ − π/2| < ε. This proves the second assertion.

The third estimate is given in [37, eq. (10.6)]. The last estimate follows from

|δτ (e−zτ )α − zα| = α

∣∣∣∣∣
∫ δτ (e−zτ )

z

ξα−1dξ

∣∣∣∣∣ ≤ max
ξ
|ξ|α−1|δτ (e−zτ )− z|,(B.2)

where ξ lies in the line segment with end points δτ (e−zτ ) and z. Since δ(e−iθ) > 0 for
θ ∈ (0, π) (see, e.g., [13, pp. 214–216] or [14, pp. 246] for the plot), it follows from the
continuity estimate (B.1) and by choosing θε sufficiently close to π/2 that =δτ (e−zτ ) > 0 for
z ∈ Γτθ,δ with =z > 0, from which and the first estimate we deduce

|ξ|α−1 ≤ max(|z|α−1, |δτ (e−zτ )|α−1) ≤ c|z|α−1.

This inequality and (B.2) yield the last estimate.
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Proof of Theorem 2.1. The functions Wn, n = 1, . . . , N , satisfy (with W 0 = 0):

∂̄ατW
n −AWn = (1 + a(k)

n )(Av + f(0)) +

k−2∑
`=1

(
t`n
`!

+ b
(k)
`,nτ

`

)
∂`tf(0) +Rk(tn), 1 ≤ n ≤ k − 1,

∂̄ατW
n −AWn = Av + f(0) +

k−2∑
`=1

t`n
`!
∂`tf(0) +Rk(tn), k ≤ n ≤ N.

By multiplying both sides by ζn, summing over n and collecting terms, we obtain
∞∑
n=1

ζn∂̄ατW
n −

∞∑
n=1

AWnζn

=

( ∞∑
n=1

ζn +

k−1∑
j=1

a
(k)
j ζj

)
(Av + f(0)) +

k−2∑
`=1

( ∞∑
n=1

t`n
`!
ζn +

k−1∑
j=1

b
(k)
`,j τ

`ζj
)
∂`tf(0) + R̃k(ζ)

=

(
ζ

1− ζ
+

k−1∑
j=1

a
(k)
j ζj

)
(Av + f(0)) +

k−2∑
`=1

(
γ`(ζ)

`!
+

k−1∑
j=1

b
(k)
`,j ζ

j

)
τ `∂`tf(0) + R̃k(ζ),

where R̃k(ζ) =
∑∞
n=1Rk(tn)ζn and we have used elementary identities

(B.3)

∞∑
n=1

ζn =
ζ

1− ζ
and

∞∑
n=1

n`ζn =

(
ζ
d

dζ

)`
1

1− ζ
:= γ`(ζ).

Next we simplify the summations on both sides. Since W 0 = 0, by the convolution rule,∑∞
n=1 ζ

n∂̄ατW
n = δτ (ζ)αW̃ (ζ), and consequently, we obtain

W̃ (ζ) = K(δτ (ζ))

[
τ−1µ(ζ)(Av + f(0)) +

k−2∑
`=1

δτ (ζ)

(
γ`(ζ)

`!
+

k−1∑
j=1

b
(k)
`,j ζ

j

)
τ `∂`tf(0) + δτ (ζ)R̃k(ζ)

]
.

where K is given by (2.9), and µ(ζ) and γ`(ζ) are given by (2.12). Since W̃ (ζ) is analytic
with respect to ζ in the unit disk on the complex plane, thus Cauchy’s integral formula and
the change of variables ζ = e−zτ give the following representation for arbitrary % ∈ (0, 1)

(B.4) Wn =
1

2πi

∫
|ζ|=%

ζ−n−1W̃ (ζ)dζ =
τ

2πi

∫
Γτ
eztnW̃ (e−zτ ) dz,

where Γτ is given by Γτ := {z = − ln(%)/τ + iy : y ∈ R and |y| ≤ π/τ}. Note that

(1) η(ζ) := δτ (ζ)/(1− ζ) is a polynomial without roots in a neighborhood N of the unit
circle [5]. Thus, η(ζ)α is analytic in N .

(2) By choosing θ and % sufficiently close to π/2 and 1, and 0 < δ < − ln(%/τ), the
function e−τz lies in N for

z ∈ Στθ,δ = {z ∈ Σθ : |z| ≥ δ, |Im(z)| ≤ τ/π, Re(z) ≤ − ln(%)/τ};
(3) (1− e−τz)α is analytic for z ∈ C\(−∞, 0] ⊃ Στθ,δ.

Hence, δτ (e−τz)α = τ−α(1 − e−τz)αη(e−τz)α is analytic for z ∈ Στθ,δ. By choosing ε small

enough, Lemma B.1 implies 0 6= δτ (e−τz)α ∈ Σα(ϑk+ε) ⊂ Σπ−ε for z ∈ Στθ,δ. Thus

K(δτ (e−τz)) = δτ (e−τz)−1(δτ (e−τz)α − A)−1 is analytic for z ∈ Στθ,δ, which is a region
enclosed by Γτ , Γτθ,δ and the two lines Γτ± := R ± iπ/τ (oriented from left to right). Since

the values of eztnW̃ (e−zτ ) on Γτ± coincide, Cauchy’s theorem allows deforming the contour
Γτ to Γτθ,δ in the integral (B.4) to obtain the desired representation.

The regularity assumptions on f is needed to guarantee that the right-hand side is well
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defined; see Appendix C.

Appendix C. Proof of Theorem 2.2.
The proof of Theorem 2.2 relies on the splitting u(tn) − Un = w(tn) − Wn and the

representations (2.8) and (2.11), and then bounding each term using (2.10). The details are
given below. First, we give some useful estimates.

Lemma C.1. Let Criteria (2.13) and (2.14) hold. Then for z ∈ Γτθ,δ, there hold

‖µ(e−zτ )K(δτ (e−zτ ))−K(z)‖ ≤ cτk|z|k−1−α,∥∥∥∥(δτ (e−zτ )α −A)−1

(
1

`!
γ`(e

−zτ ) +

k−1∑
j=1

b
(k)
`,j e
−jzτ

)
τ `+1 − z−`K(z)

∥∥∥∥ ≤ cτk|z|k−`−1−α.

Proof. Since |1−e−zτ | ≤ cτ |z| for z ∈ Γτθ,δ, by Criterion (2.13), there holds |µ(e−zτ )−1| ≤
c|1− e−zτ |k ≤ cτk|z|k. Meanwhile, by the triangle inequality, we have

‖K(δτ (e−zτ ))−K(z)‖ = ‖δτ (e−zτ )−1(δτ (e−zτ )α −A)−1 − z−1(zα −A)−1‖
≤ |δτ (e−zτ )−1 − z−1|‖(δτ (e−zτ )α −A)−1‖

+ |z|−1‖(δτ (e−zτ )α −A)−1 − (zα −A)−1‖.
The identity (δτ (e−zτ )α − A)−1 − (zα − A)−1 = (zα − δτ (e−zτ )α)(δτ (e−zτ )α − A)−1(zα −
A)−1, Lemma B.1 and the resolvent estimate (2.10) imply directly ‖K(δτ (e−zτ ))−K(z)‖ ≤
c|τ |k|z|k−1−α. Thus, we obtain the first estimate by

‖µ(e−zτ )K(δτ (e−zτ ))−K(z)‖ ≤ |µ(e−zτ )− 1|‖K(δτ (e−zτ ))‖
+ ‖K(δτ (e−zτ ))−K(z)‖ ≤ cτk|z|k−1−α ∀z ∈ Γτθ,δ.

Next we show the second estimate. By Lemma B.1, there holds

|δτ (e−zτ )`+1 − z`+1| ≤ c|δτ (e−zτ )− z||z|` ≤ cτk|z|k+`+1 ∀z ∈ Γτθ,δ.

By Criterion (2.14), there holds∣∣∣∣γ`(e−zτ )

`!
+

k−1∑
j=1

b
(k)
`,j e
−jzτ − 1

δ(e−zτ )`+1

∣∣∣∣ ≤ cτk−`−1|z|k−`−1 ∀z ∈ Γτθ,δ.

Hence, for any z ∈ Γτθ,δ, we have∥∥∥∥(δτ (e−zτ )α −A)−1

(
1

`!
γ`(e

−zτ ) +
k−1∑
j=1

b
(k)
`,j e
−jzτ

)
τ `+1 − z−`K(z)

∥∥∥∥
≤
∥∥∥∥(δτ (e−zτ )α −A)−1

[(
1

`!
γ`(e

−zτ ) +

k−1∑
j=1

b
(k)
`,j e
−jzτ

)
τ `+1 − δτ (e−zτ )−`−1

]∥∥∥∥
+ ‖δτ (e−zτ )−`K(δτ (e−zτ ))− z−`K(z)‖ ≤ cτk|z|k−`−1−α.

This completes the proof of the lemma.
Proof of Theorem 2.2. By (2.8) and (2.11), we appeal to the splitting

Un − u(tn) = Wn − w(tn) = I1 +

k−2∑
`=1

I2,` − I3 + I4,

where the terms I1, . . . , I4 are given by

I1 =
1

2πi

∫
Γτθ,δ

eztn
(
µ(e−zτ )K(δτ (e−zτ ))−K(z)

)
(Av + f(0))dz,
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I2,` =
1

2πi

∫
Γτθ,δ

eztn
[
δτ (e−zτ )

(
γ`(e

−zτ )

`!
+

k−1∑
j=1

b
(k)
`,j e
−zτj

)
τ `+1K(δτ (e−zτ ))− z−`K(z)

]
∂`tf(0) dz,

I3 =
1

2πi

∫
Γθ,δ\Γτθ,δ

eztnK(z)
(
Av + f(0) +

k−2∑
`=1

z−`∂`tf(0)
)
dz,

I4 =
1

2πi

∫
Γτθ,δ

eztn(δτ (e−zτ )α −A)−1τR̃k(e−zτ )dz − 1

2πi

∫
Γθ,δ

eztn(zα −A)−1R̂k(z)dz.

It suffices to bound these terms separately. By Lemma C.1, and choosing δ = t−1
n in the

contour Γτθ,δ, we bound the first term I1 by

‖I1‖L2(Ω) ≤ cτk‖Av + f(0)‖L2(Ω)

(∫ π/(τ sin θ)

δ

ertn cos θrk−1−αdr +

∫ θ

−θ
eδtn| cosψ|δk−αdψ

)
≤ cτk(tα−kn + δk−α)‖Av + f(0)‖L2(Ω) ≤ cτktα−kn ‖Av + f(0)‖L2(Ω).

By Lemma C.1 and choosing δ = t−1
n in Γτθ,δ, we bound the terms I2,` by

‖I2,`‖L2(Ω) ≤ cτk‖∂`tf(0)‖L2(Ω)

(∫ π/(τ sin θ)

δ

ertn cos θrk−`−1−αdr +

∫ θ

−θ
eδtn| cosψ|δk−`−αdψ

)
≤ cτktα+`−k

n ‖∂`tf(0)‖L2(Ω), ` = 1, 2..., k − 1.

Direct computation yields the following estimate on I3:

‖I3‖L2(Ω) ≤ cτk
(
tα−kn ‖Av + f(0)‖L2(Ω) +

k−2∑
`=1

tα+`−k
n ‖∂`tf(0)‖L2(Ω)

)
.

The term I4 is the error of the numerical solution with a compatible right-hand side Rk.

Upon recalling the definition of Rk in (2.6), we use the splitting Rk = tk−1

(k−1)!∂
k−1
t f(0) +

tk−1

(k−1)! ∗ ∂
k
t f(t) =: R1

k +R2
k. Then we have I4 = I1

4 + I2
4 with

Ii4 =
1

2πi

∫
Γτθ,δ

eztn(δτ (e−zτ )α −A)−1τR̃ik(e−zτ )dz − 1

2πi

∫
Γθ,δ

eztn(zα −A)−1R̂ik(z)dz.

By repeating the preceding argument and (2.17), we have the estimate for I1
4 :

‖I1
4‖L2(Ω) ≤ cτktα−1

n ‖∂k−1
t f(0)‖L2(Ω),

and using the argument in [18, Lemma 3.7],

‖I2
4‖L2(Ω) ≤ cτk

∫ tn

0

(tn − s)α−1‖∂ks f(s)‖L2(Ω)ds.

This completes the proof of the theorem.

Appendix D. Proof of Theorem 3.1. Using the splitting (3.5), the functions Wn,
n = 1, . . . , N , satisfy (with W 0 = 0):

∂̄ατW
n −AWn = (1 + a(k)

n )Av + (tn + τc(k)
n )Ab+

k−2∑
`=1

(
∂̄τ t

`
n

`!
+ b

(k)
`,nτ

`−1

)
∂`−1
t f(0) + ∂̄τRk(tn),

1 ≤ n ≤ k − 1,

∂̄ατW
n −AWn = Av + tnAb+

k−2∑
`=1

∂̄τ t
`
n

`!
∂`−1
t f(0) + ∂̄τRk(tn), k ≤ n ≤ N.
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By multiplying both sides by ζn and summing over n from 1 to ∞, we obtain

∞∑
n=1

ζn∂̄ατW
n −

∞∑
n=1

AWnζn =

( ∞∑
n=1

ζn +

k−1∑
j=1

a
(k)
j ζj

)
Av +

( ∞∑
n=1

τnζn +

k−1∑
j=1

τc
(k)
j ζj

)
Ab

+

k−2∑
`=1

( ∞∑
n=1

∂̄τ t
`
n

`!
ζnn +

k−1∑
j=1

b
(k)
`,j τ

`−1ζj
)
∂`−1
t f(0) +

∞∑
n=1

∂̄τRk(tn)ζn.

Using the identities in (B.3), the convolution rule
∑∞
n=1 ζ

n∂̄ατW
n = δτ (ζ)αW̃ , and

∞∑
n=1

ζn∂̄τ
t`n
`!

= δτ (ζ)

∞∑
n=0

t`n
`!
ζn = δ(ζ)

τ `−1

`!
γ`(ζ),

we derive

W̃ (ζ) = K(δτ (ζ))

τ−1µ(ζ)Av + δτ (ζ)

(
γ1(ζ) +

k−1∑
j=1

c
(k)
j ζj

)
τAb

+

k−2∑
`=1

δτ (ζ)

(
δ(ζ)

γ`(ζ)

`!
+

k−1∑
j=1

b
(k)
`,j ζ

j

)
τ `−1∂`tg(0) + δτ (ζ)2R̃k(ζ)

 .
Under Condition 3.1 (i), by choosing ε small enough, Lemma B.1 implies 0 6= δτ (e−τz)α ∈
Σα(ϑk+ε) ⊂ Σπ−ε for z ∈ Στθ,δ. Under Condition 3.1 (ii), we have dist(δ(e−zτ )α, ταS(A)) > 0
(cf. Appendix E), where S(A) denotes the closure of the spectrum of A in the complex plane
C. In either case, the operator K(δτ (e−τz)) = δτ (e−τz)−1(δτ (e−τz)α − A)−1 is analytic for
z ∈ Στθ,δ, which is the region enclosed by the four curves Γτθ,δ, − ln(%)/τ+iR and R±iπ/τ (for
θ and % sufficiently close to π/2 and 1, respectively). Then, like in the proof of Theorem 2.1,
the assertion follows from Cauchy’s integral formula and the change of variables ζ = e−zτ .

Appendix E. Proof of Theorem 3.2. Under Condition 3.1(i), Theorem 3.2 can be
proved as Theorem 2.2, using (3.6) and (3.7). Under Condition 3.1(ii), it can be proved
analogously, if the following resolvent estimate holds:

‖(δτ (e−zτ )α −A)−1‖ ≤ c|z|−α, ∀ z ∈ Γτθ,δ.(E.1)

To prove (E.1), we use the following estimate [31, Theorem 3.9, Chapter 1, pp. 12]:

‖(δτ (e−zτ )α −A)−1‖ = τα‖(δ(e−zτ )α − ταA)−1‖
≤ cτα dist(δ(e−zτ )α, ταS(A))−1, ∀ z ∈ Γτθ,δ,(E.2)

where S(A) denotes the closure of the spectrum of A in C. For the discrete Laplacian A = ∆h,
we have S(A) = [−r(A), 0]. Note that in a small neighborhood of θ = 0, simple expansion
shows that the contour δ(e−iθ) and the segment [−r(A), 0] intersects at θ = 0 only, with
an angle π/2. Thus the angle between the contour δ(e−iξτ )α, ξ ∈ [−πτ ,

π
τ ], and the segment

[−r(A), 0] in the neighborhood of ξτ = 0 is (1− α/2)π > 0, and it follows that, for small κ,

dist(δ(e−iξτ )α, ταS(A)) ≈ |δ(e−iξτ )α| sin[(1− α/2)π] ≥ c|δ(e−iξτ )α| if |ξ|τ ≤ κ.
Furthermore, CFL condition 3.1(ii) implies

dist(δ(e−iξτ )α, ταS(A)) ≥ c ≥ c|ξτ |α if κ ≤ |ξ|τ ≤ π.
Let Γτθ = {z ∈ C : arg(z) = θ, −πτ ≤ |z| sin(θ) ≤ π

τ }. Then the angle between the contour
δ(e−zτ )α, z ∈ Γτθ , and the segment [−r(A), 0] is π − αθ > 0 (if θ is close to π/2). For small
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κ and z ∈ Γτθ , |z|τ sin(θ) ≤ κ, we have

dist(δ(e−zτ )α, ταS(A)) ≈ |δ(e−zτ )α| sin(π − αθ) ≥ c|δ(e−zτ )α| ≥ c|zτ |α.
Estimate (B.1) implies |δ(e−zτ )− δ(e−i|z|τ sin(θ))| ≤ c|θ − π/2|, and thus

|δ(e−zτ )α − δ(e−i|z|τ sin(θ))α| ≤ c|θ − π/2|min(|δ(e−zτ )|α−1, |δ(e−i|z|τ sin(θ)|α−1)

≤ c|θ − π/2||zτ |α−1, z ∈ Γτθ .

Hence, if z ∈ Γτθ and κ ≤ |z|τ sin(θ) ≤ π, with θ close to π/2, we have

dist(δ(e−zτ )α, ταS(A)) ≥ dist(δ(e−i|z|τ sin(θ))α, ταS(A))− |δ(e−zτ )α − δ(e−i|z|τ sin(θ))α|
≥ c− c|θ − π/2||zτ |α−1 ≥ c− c|θ − π/2||zτ sin(θ)|α−1

≥ c− c|θ − π/2|max(κ, π)α−1 ≥ c ≥ c|zτ |α.
Thus we have dist(δ(e−zτ )α, ταS(A)) ≥ c|zτ |α for z ∈ Γτθ . This inequality and (E.2) yield
(E.1) for z ∈ Γτθ,δ ∩ Γτθ . Further, if z ∈ Γτθ,δ\Γτθ , then |z| = δ and −θ < arg(z) < θ, and

Taylor expansion yields |δ(e−zτ )|α ≤ |zτ |α ≤ δατα. By choosing δ small, we have

dist(δ(e−zτ )α, ταS(A)) ≥ λminτ
α − δατα ≥ cτα,

where λmin is the smallest positive eigenvalue of the operator A (which can be made inde-
pendent of h). This and (E.2) yield

‖(δτ (e−zτ )α −A)−1‖ ≤ c ≤ cδ−α = c|z|−α, ∀ z ∈ Γτθ,δ\Γτθ .
This completes the proof of (E.1).
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