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Maximal parabolic LP-regularity of linear parabolic equations on an evolving surface is shown by pulling
back the problem to the initial surface and studying the maximal L”-regularity on a fixed surface. By
freezing the coefficients in the parabolic equations at a fixed time and utilizing a perturbation argument
around the freezed time, it is shown that backward difference time discretizations of linear parabolic
equations on an evolving surface along characteristic trajectories can preserve maximal LP-regularity in
the discrete setting. The result is applied to prove the stability and convergence of time discretizations
of nonlinear parabolic equations on an evolving surface, with linearly implicit backward differentiation
formulae characteristic trajectories of the surface, for general locally Lipschitz nonlinearities. The dis-
crete maximal LP-regularity is used to prove the boundedness and stability of numerical solutions in the
L=(0,T;W'*) norm, which is used to bound the nonlinear terms in the stability analysis. Optimal-order
error estimates of time discretizations in the L= (0, T;W1*°°) norm is obtained by combining the stability
analysis with the consistency estimates.

Keywords: evolving surface, nonlinear parabolic equations, locally Lipschitz continuous, backward dif-
ferentiation formulae, linearly implicit, maximal L”-regularity, stability, convergence, maximum norm.

1. Introduction

This paper concerns discrete maximal L”-regularity for parabolic partial differential equations (PDEs)
on an evolving surface and its application to the analysis of evolving surface nonlinear parabolic equa-

tions of the form

9% u+u(Vrg) - v) —Apgu = f(u, V) on I"(¢) for ¢ € (0,T],
u(-,0) = u® onI'(0)=T17?,

where I"(t) C R™*! is an m-dimensional evolving closed hypersurface with given velocity v, Vi and
Ar(;) denote the surface gradient and Laplacian, respectively, and d° denotes the material derivative, see
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Section 2.1 for more details. The function f is a given smooth nonlinear function of # and Vru but not
necessarily globally Lipschitz continuous.

We recall, that an abstract evolution equation # — Au = f on the Banach space X is said to have the
maximal LP-regularity if for any f € LP(]0,T],X) the following estimate holds:

el 2 j0,71,%) + 1Aull o o,71.%) < ClIf e (o,7).%)-

We refer to Amann (1995); Kunstmann & Weis (2004); LadyzZenskaja ef al. (1968); Lions (1996); Lu-
nardi (2013) for the maximal regularity of parabolic partial differential equations.

Partial differential equations on evolving surfaces have received much attention in recent years due
to their applications in physics and biology, see, e.g. Barreira et al. (2011); Chaplain et al. (2001); Deck-
elnick & Elliott (2001); Elliott & Stinner (2010); Elliott & Ranner (2015); Alphonse et al. (2015a,b) and
the survey articles Deckelnick et al. (2005); Dziuk & Elliott (2013); Barrett et al. (2020), which col-
lect many applications and numerical results. Energy-diminishing and structure-preserving methods for
evolving surfaces driven by curvature flows have been developed in many articles; see Bao & Zhao
(2021); Barrett et al. (2007, 2008); Duan et al. (2021); Dziuk (1991); Jiang & Li (2021).

The numerical analysis of nonlinear evolving surface PDEs was considered in many articles (for pa-
pers on linear problems we refer to the references of the above surveys). Error estimates of semi-discrete
finite element methods for the Cahn—Hilliard equation with nonlinearity f(u) = u — > on an evolving
surface were obtained by Elliott and Ranner Elliott & Ranner (2015). Error bounds of semi-discrete
finite element methods for Cahn—Hilliard equations with a general locally Lipschitz continuous nonlin-
earity f(u) were studied in Beschle & Kovdcs (2020). The discrete maximum principle was established
for semi-linear evolving surface PDE systems with nonlinearity f(u;,...,u;) in Frittelli et al. (2018),
wherein the discrete maximum principle was applied to prove error bounds for full discretization with
backward Euler scheme. Error estimates of full discretization with backward differentiation formulae
(BDF methods) for quasi-linear and semi-linear evolving surface PDEs with a general nonlinear f(u)
were proved in Kovacs & Power Guerra (2016).

In all of these articles the numerical solutions were proved bounded in L in order to use the local
Lipschitz continuity of the solution to obtain stability and convergence. However, the techniques cannot
be applied to nonlinearities of the form f(u,V(,)u), which often appear in solution driven evolving
surface PDEs and curvature flows; see Kovacs et al. (2017, 2019, 2020a,b); Binz & Kovacs (2021). In
this case, the error analysis typically requires proving the W!>-boundedness of numerical solutions in
order to bound the nonlinear terms in the stability and convergence estimates.

For linear parabolic equations on an evolving surface, a W !*-norm error estimate of semi-discrete fi-
nite element solutions was shown in Kovacs & Power Guerra (2018). For full discretization of parabolic
equations on stationary surfaces by the backward Euler time-stepping scheme, L™-norm error estimates
were shown in Kroner (2016). The approach of both papers depends on the linear structure of the
equations and cannot be extended to nonlinear problems.

For nonlinear evolving surface PDEs with nonlinearity of the form f (u, VF(,)u) (e.g. mean curvature
flow, Willmore flow, etc. Kovacs et al. (2017, 2019, 2020a,b); Binz & Kovacs (2021)), the numerical
methods are often based on discretizations along the flow, and the W1*=_norm bounds of the error and
numerical solution in the literature are obtained from optimal-order H'-norm error bounds and the
inverse estimates for finite element functions. As a result, at least quadratic surface finite elements are
required to be used, and a certain grid-ratio condition T = O(h") is also needed in the error analysis.

The objective of this paper is to establish the maximal LP-regularity of non-linear evolving surface
PDEs, and to show maximal LP-regularity and W'-norm estimates of temporally semi-discrete BDF
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methods for evolving surface problems. We then use the established results to prove error estimates in
the W'**-norm for the temporal semi-discretization of evolving surface PDEs with nonlinearity of the
form f(u, Vr(yu).

In flat domains, discrete maximal LP-regularity has been used for analysis of time discretizations
Akrivis et al. (2017); Kunstmann et al. (2018); Akrivis & Li (2018) and full discretization Cai et al.
(2019) of nonlinear parabolic equations. The W!**-norm error estimates established in this paper are
complementary to the analysis of fully discrete evolving surface FEMs in Kovics et al. (2017, 2019),
which cannot allow & — 0 for a fixed stepsize 7. Through analyzing the temporal semi-discretization
and full discretization separately as in Li & Sun (2013), the W'*-norm error estimates of temporal
semi-discretization in this paper would open the door towards the analysis of fully discrete evolving
surface finite element methods with linear surface finite elements and without grid-ratio conditions.

We will start by showing maximal LP-regularity for linear evolving surface PDEs on a stationary
surface, and then extend this result to evolving surfaces using the pull-back map, a perturbation argument
in time, and relying on classical PDE theory. A general abstract formulation based on the pull-back map
was first used for evolving surface problems in Alphonse ef al. (2015a,b) to show well-posedness and
regularity results (maximal regularity estimates were not shown therein). Using the results of Kovacs
et al. (2016) we will show that the maximal L”-regularity property is preserved by BDF discretizations
of linear problems on stationary surfaces and then extend the result to evolving surfaces by a perturbation
argument in time. We then use the obtained discrete maximal regularity results to prove error estimates
for BDF time discretization of nonlinear parabolic problems on evolving surfaces. The nonlinearity
f:RxR™1 R is assumed to be smooth but may not have global Lipschitz continuity.

The paper is organised as follows: In Section 2, we introduce the basic notation and function spaces
on evolving surfaces, and the definition of weak solutions. In Section 3, we prove the maximal parabolic
LP-regularity of linear parabolic equations on evolving surfaces by pulling back the equations to the
initial surface I'?, then using a perturbation argument we extend this result to evolving surface problems.
In Section 4, we prove discrete maximal L”-regularity of BDF time discretizations for linear problems.
We first establish this result for parabolic equations on a stationary surfaces, and then extend the result
to evolving surfaces by a perturbation argument in time, via a similar argument as in the time continuous
case. In Section 5, we prove stability and error bound in the maximum norm for linearly implicit BDF
methods for nonlinear parabolic problems on evolving surfaces.

2. Notation
2.1 The evolving surface

Let m > 1 be a fixed integer. We assume that the evolution of a hypersurface I'(t) C R”*! is given by a
diffeomorphic flow map X (-,¢) : I’ — I"(t), where I" is a smooth m-dimensional initial hypersurface
and X (-,0) equals the identity map. We assume that X (y,¢) is smooth with respect to (y,7) € '’ x [0, T
and the inverse function X ~!(x,) is smooth with respect to x € I'(¢) uniformly for ¢ € [0, T].

The material velocity (which is simply called velocity below) and material derivative on the surface
are respectively given, for x = X (y,¢) € I'(t) with y € I'?, by

v(x,1) = 9 X (y,1), 2.1)

and

2%u(x,t) = %u(X(y,t)J).
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Let n be the unit outward normal vector to the surface I"(t). We denote by V- (,yu the tangential gradient
of the function u, and denote by Ar(;yu = V() - Vr(;)u the Laplace-Beltrami operator acting on u.

Since the Ricci curvature of the surface I'(z) depends only on the second-order partial derivatives of
the flow map, it follows that the Ricci curvatures of the surfaces I'(¢), ¢ € [0, T], are uniformly bounded
(possibly negative). For more details on all these basic concepts we refer to Dziuk & Elliott (2007);
Deckelnick et al. (2005); Dziuk & Elliott (2013), and the references therein. An unified abstract theory
for evolving problems is found in Elliott & Ranner (2021).

2.2 Function spaces

We briefly introduce some Sobolev and Bochner-type function spaces to be used in this paper. More
details can be found in Alphonse et al. (2015a,b).
On a given surface I'(¢) the conventional Sobolev space W' (I"(¢)), 1 < p < o, can be defined as

whr(r(r) = {welLP(I'(r) | Vrwe L"(F(t))’"“},

and analogously W*”(I(¢)) can be defined for any integer k > 0; see Demlow (2009); Dziuk & Elliott
(2007). Fork < 0and 1 < p < e, W&P(I (1)) denotes the dual space of W ¥ (I'(¢)), with 1 /p+1/p/ =
1.

On the space-time manifold %7 = U,¢(o,7)(I"(¢) X {t}) the inhomogeneous Sobolev spaces, collect-

ing time-dependent functions mapping into time-dependent spaces (note the subscript ), are defined
by

lﬂaﬂwm@@»:{w%%%RM&OEWMUv»mJGmJL
£ () kg € L70T) 22)
WO, T WEI(E (1)) = {w e LEO,TsWH(I (1)) | 9*w e L (O, Ts W (1)}, 23)

with the standard notational convention H*(I"(¢)) = W*2(I(¢)). Since the flow map X (-,¢) : ' — I"(¢)
is a diffeomorphism, it follows that, for s = 0,1, w € W7 (0, T;W*4(I"(¢))) if and only if w(X (v,1),t) €
WoP(0,T;Wk4(I'?)) as a function of (y,¢) € I'" x (0,T).

REMARK 2.1 The function spaces defined in (2.2) and (2.3) are the same as those in Alphonse et al.
(2015a,b) or Alphonse et al. (2021) (denoted therein by L{;Vk-q and W‘;]kp ,)» but employing a different
notation here. We adopt the notation in (2.2)—(2.3) in order to distinguish the following three different

spaces:
LP(0,T:LYI(r))), LP(0,T:LY(I(s))), and LP(0,T;LY(I"°)),

which are all used in this article. In our notation, the subscript 7 in L/ (0,T;L%(I"(¢))) means that the L?
norm is integrated against the evolving surface I"(t) which depends on ¢, and therefore

L7(0,T;LA(I (1)) = LY (0, T: LY (I'(s)))

is independent of symbol in the subscript, while the second space LP(0,T;L?(I"(s))) does depend on
the stationary surface I"(s) and therefore depends on s.

Analogously, we define C;([0,T];W*4(I"(t))) to be the space of functions w : %y — R such that
w(X (y,1),t) € C*([0,T]; W54(I'?)) as a function of y and z. We will also use the following abbreviation:

H' () = L2(0,T:H (T(1))) NH} (0.T:L(T(1))-
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2.3 Weak formulation

The weak formulation of (1.1) reads as follows: A function u € H'(%7)NL> (0, T;W'=(I(1))) is called
a weak solution of (1.1) if the following equation holds for all ¢ € H'(%) such that 9*¢ = 0:

d
dar /I_(I)“‘P + /I_(I)Vr(t)” “Vrune = /F([)f(mVp(,)u) 0, for almost every ¢ € [0,T]. 2.4

In the case of linear problem the regularity condition u € L*(0,T;W!>(I"(¢))) can be relaxed as in
(Dziuk & Elliott, 2007, Definition 4.1).

2.4 Linearly implicit BDF methods for the nonlinear problem

For a time stepsize T > 0 and for#, =nt,n=0,1,...,N with N < T /1, we consider the temporal semi-
discretization of the weak formulation (2.4) by a linearly implicit k-step BDF, with 1 < k < 6: Find an
approximation u" to u(-,#,) determined by

u"*j(p"*f+/1_(t )Vr(t,l)un'vmn)fpn = f@ Ve e",  nx>k,  (2.5)

I'(ty)

1 k
*Z@/
TiZ0 JT(tj)

where §;, j =0,...,k, are the coefficients of the k-step BDF method, ¢/ := ¢(-,1;) € H'(I'(t;)) satis-
fying @/ o X (-,t;) = @ for j=1,...,N, and " are the extrapolated values given by

k—1
" = Z ’)/jyX(tmtn—j—l)unijila nz ka (2.6)
i=0

with 7;, j =0,...,k— 1, being the coefficients of the polynomial y() = 7 L1—-(1-0)k) =X, %l
and Zx(t,s) denoting the flow map from I"(s) to I'(r). In other words, for any function w defined on
I'(s), Zx(t,s)wis a function on I'(r), defined by

(Zx(t,s)w)(X(-,1)) :=w(X(-,s)), onI®. 2.7)

For given "/, j = 1,...,k, the extrapolated values in f(&",Vr,)a") are known and therefore u" €
H'(I"(t,)) can be determined uniquely by the linearly equation (2.5).

The coefficients 8;, j =0,...,k of the k-step BDF method is determined by the generating polyno-
mial

£

It is known that the k-step BDF method has order k and is A(oy)-stable for 1 < k < 6, with a; =
o =0.57,03 =047797, 04 = 040757, 05 = 0.2880 7 and o = 0.0991 &, and unstable for k > 6,
see (Hairer & Wanner, 1996, Section V.2). The A(a)-stability is equivalent to |arg ()| < @ — a for
ICI< 1.

In this paper we shall prove the following result by using the temporally semi-discrete maximal
LP-regularity of evolving surface PDEs.

k .
~ Y 5,0, 2.8)
j=0

?\ \
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THEOREM 2.1 Let p and g be positive numbers satisfying 2/p+m/q < 1, and let I"(t) C R™*! be suf-
ficiently smooth. If the solution of the nonlinear evolving surface problem (1.1) is sufficiently smooth,
ie.

ue G([0,TW(I (1)) N G0, TLAUT (1)),

and the error " = u" — u(-,t,) in the starting values is sufficiently small, satisfying

[Jnax (! el a(r ) + ||e"\|wzﬁq(r(,n))) < Cott for some constant Cy > 0, (2.9

then there exists a constant Tp > 0 such that for T < 7y the temporally semi-discrete solution given by
(2.5) satisfies the following estimates for N < T/ t:

N || n_ g n—1p N »
e — Fx (ty,th—1)e »
<1:Z - +’L’Z||en€v27q(r(tn))> <crh, (2.10)
= L) 0=l
k
lrgnn;g(NHe”||W1,m(r(,n)) < Cth (2.11)

The constants 7y and C > 0 are independent of 7 and N (but may depend on Cy, T and u).

The proof of Theorem 2.1 is based on the temporally semi-discrete maximal L?-regularity for evolv-
ing surface PDEs, which is used in to prove the W' boundedness of numerical solutions through error
estimates in the discrete L (0,T;L9(I"(¢))) norm and an inhomogeneous Sobolev embedding inequality;
see Lemma 5.1. The temporally semi-discrete maximal L”-regularity result for evolving surface PDEs
is established in Section 4 based on the continuous version established in Section 3.

3. Maximal L”-regularity of linear evolving surface PDEs
In this section, we present the maximal L?-regularity for the linear evolving surface PDE problem
a.M—‘y-MVF(t)-V—AF(,)u:f on F(I), 3.1
u(-0)=u®  onI(0)=I7, '

with a given function f : % — R (independent of u).
The weak formulation of the linear problem (3.1) with f € L(0,7;L(I"(¢))) reads: Find u €
H' (%) — C,([0,T); L*((¢))) such that, for all ¢ € H'(4r) with 9°¢ =0,

d
< Vigu-V :/ , 32
& ~/F(t)u(P+~/F(t) r@o-Vrin® m)f(P (3.2)

holds for almost every ¢ € [0, T], with the initial condition u(-,0) = u° on I"(0) = I"°.

By pulling back (3.1) onto the initial surface I'® (see Appendix), one can see that there exists a
smooth function a(y,t) and a smooth linear transform B(y,) on the tangent space T,I"® at y € I'%, such
that u € H'(%r) is a solution of (3.2) if and only if the function

U(y’t) = M(X(y7t)7t)

defines a solution U € H'(I'° x (0,T)) of the following weak problem, for all y € H'(I"%)

& [ aU w0 + [ BOOVRUGD row) = [ ab0Foowl). 63
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holds for almost all ¢ € [0, T], with F(y,t) := f(X(y,¢),¢) and the initial condition U (-,0) = u”.
Since the Riemannian metric on the evolving surface is positive definite, from the expressions (A.3)
and (A.9)—(A.10) it follows that the functions a(y,?) and B(y,t) satisfy the following estimates:

c'<ayr <c, VyeI? viel0,T], (3.4)
C&1? <B(y1)g,- & < CI§, P, VE e T, I, VyeI®, vie0,1], (3.5)
where C is some positive constant (depending only on the given flow map), see also (Alphonse et al.,

2015a, Theorem 2.32), and (Vierling, 2014, Lemma 3.2).
Moreover, there exists a smooth and invertible linear operator K (y,) : T,I"® = Ty, »I"(t) such that

(VF(t)u)(X(y’t)vt) :K(y’t)VFOU(y7t) for U(y’t) = M(X(yvt)at)' (3.6)

The expressions of a(y,t),B(y,t) and K(y,#) in a local chart can be found in Appendix. We also refer to
Alphonse et al. (2015a,b) for more details on abstract formulation and pull-back techniques.

Through integration by parts, we obtain that (3.3) is the weak formulation of the parabolic PDE on
the fixed initial surface I"°:

d

a0V D) = Vo (BEOVRUGD) =ala)F (56) on T0x (0.7),

U(-,0) = u.

(3.7)

The equivalence of strong solutions and the original and the pull-back equation is given in (Alphonse
et al., 2015a, Theorem 2.32), while for a well-posedness result see Theorem 3.6 therein.

REMARK 3.1 For the weak formulations on the evolving surfaces, as in (2.4), (2.5) and (3.2), we
consider a test function ¢ with d*¢ = 0. For the weak formulation on a stationary surface, as in (3.3),
we consider a test function y only defined on the stationary initial surface.

We first show the following maximal LP-regularity result on the stationary initial surface.

THEOREM 3.1 (Maximal LP-regularity in the Lagrangian coordinates) If u® = 0, then the solution U of
the pulled-back PDE (3.7) obeys the following estimate:

10Ul r(0,7:00r0)) T N Ul o 0,7 w2a(r0)) S ClIF oo riaroyy  VF € LP(0,T;L4(°),  (3.8)
with 1 < p,g < e. The constant C > 0 only depends on ¥r.

In order to prove Theorem 3.1, we first show the following lemma — the maximal L? regularity
result for a problem with coefficients a(y,s) and B(y,s) frozen at some fixed time s € [0, T].

LEMMA 3.1 For any fixed s € (0,7, the solution of the problem

d (a(y,S)U(y,t)) ~Vro- (B(%S)VroU(y,t)) =F(yt) onI",

dt (3.9)
U(y,0)=0 onI?,
satisfies the following estimate:
10:U | o (0,5:29(r0)) T U | o 0,55w2.9(r0)) < CUF Nl o 0,559 (10 (3.10)

where the constant C > 0 may depend on T, but is independent of s € (0,7].
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Proof. Note that U is a solution of (3.7) if and only if u(x,) = U(X ' (x,t),t) is a solution of (3.2).
Similarly, U is a solution of (3.9) if and only if us(x,#) = U(X~!(x,s),t) is a solution of

d
— s—&-/VYS-VY:/SVeLzF,
dt/m)M(P o r(s)s - Vrs® m)f‘l’ 0 (I'(s))

with f;(x,1) = a(X ' (x,s),s) "' F(X~'(x,s),t). This is the weak form of the heat equation on the fixed
surface I'(s), i.e.

&tus(xat)_AF(s)uS(xﬂt) :fs(xﬂt) onF(s),

us(x,0) =0 onI(s).

If we define Us(x,1) = e "ug(x,1), then Uy is a solution of the following shifted equation:

() = ApyUs(et) + Us(oot) = Fi(xot) - onT(s),
dr 3.11)

Us(x,0) =0 onI'(s),

with Fy(x,t) := e ~"a(X ' (x,s5),5) "' F(X~!(x,s),t). In view of this equivalence it is sufficient to prove
that the solution of the equation above satisfies the following maximal L”-regularity estimate:

10:Usl|r 0,s:29(r(s))) T 1Us e (0,sw2a(rs))) < CIFslI Lo 0.s:29(r(s)))- (3.12)

By choosing € = C;l (o — I)K’1 in (Li & Yau, 1986, Corollary 3.1), we see that the fundamental
solution G(t, x,y) of the equation (3.11) satisfies the following Gaussian estimate for some constant K,

by

0 < Gy(t,x,y) < Kot 'e For | (3.13)

where the constant Kj is independent of s € [0,T], depending only on the lower bound of the Ricci
curvature of the family of surfaces I'(s), s € [0, T]. Therefore, the conditions of (Hieber & Pruss, 1997,
Theorem 3.1) are satisfied with m =2 and p(r) = Koe /%o, which implies that the solution of (3.11)
satisfies the maximal L”-regularity estimate (3.12). This completes the proof of Lemma 3.1. g
Proof of Theorem 3.1. The proof is based on a perturbation argument, and combines it with Lemma 3.1.
This idea originates form Savaré (Savaré, 1993, Proof of Theorem 2.1), and had proved to be useful
many times since then, in particular in the context of discrete maximal L”-regularity Akrivis et al.
(2017); Kunstmann et al. (2018); Akrivis & Li (2018).

We rewrite (3.7) such that the coefficients on the left-hand side are fixed at time s in exchange for
extra terms on the right-hand side:

d

dr (a(y’S)U(y’t)) —Vro- (B(yvs)VFOU(y,l))

= a(n0)F (1) + 5 ((a,9) ~a0u)U 0o0)) + Vo~ ((B0) ~ BO:5) Vol :1)).

(3.14)
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By applying Lemma 3.1 to the equation above in the time interval [0, s], we obtain

10U | 1p 0,500 (r0)) + 1U || 1o (0 520 (10
d
< CllaF 5 +Cl|— ,s) —a(y,1))U(y,t
o hoaany + €| (w09 ey} |

+c‘ (3.15)

Vro- ((BG.0) = Bys)VroU (1))
LP(0,5;L4(T70))
< C||FHLP(0,s;L‘1(F°)) +C(H |s_t‘alUHLP(O,s;L‘I(F0)) + H(a’a)UHLP(O,s;L‘I(FO)))
+CH |S*t|U||Lﬂ(0,s;W2«q(1"0))’

where we have used the smoothness of the functions a(y,#) and B(y,?) to derive the last inequality. We
define

t/
( ) - ||atU||Lp 01" L4 1—'0 +||UHL]} Ot’ W2q(1"0)) / (Hal ( )HLt] 1"0 +HU( )||W2q 1"0 )
with d,L(¢) = || .U, )”Lq roy + U, )||W2q o) Then raising (3.15) to power p yields

L(s )<C||F||Lp oL +C(||ls—zloU],

(r9) LP(0,s;L4(I'9)) +||U||LP Oqu(FO)))

+CH|S_I|UHLPOsW2‘1(FO))
<CIFIL 0o, +c/ s =8 (10U oy + 1V 15 20r0)) 8 + CIU|Zn 0 0oy

<C||F|" +c/ (s—1)PaL()de +C|U]|?

LP(0,5;L4(I0))

LP(0,5;L4(170))

=C|F|?, 19(0.5:L4(1)) —I—C/ p(s—0)P1L(r) dt+C||U||L,,(Oqu 1oy (integration by parts)
—1
<CIFIL 0oy +CPT? /0 LA+ ClU |, g gporoy.  VsE0.T]

Since U(+,0) = 0, it follows that

||U||Ll’OquFO /H/af dn

ars [ [ U m g o dna
LI(I'%)

<T? / L(r)dt
0

Substituting this into the estimate of L(s) above, we obtain

L(s) < CIIFII7p 0 oparo) +c/ fdr, Vsel[0,T).

Then applying Gronwall’s inequality yields

( ) < C”F”Lp 0. TLq(FO))
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which implies
10: Ul o (0,7:29r0)) + U 0,7 w24(r0)) < ClIF | 1o 0,7520(r0))-
This completes the proof of Theorem 3.1. 0
It is crucial to note that usually maximal parabolic regularity estimates do not hold for the interesting
cases p or g = co. However, such type of estimate can be obtained via a space-time Sobolev embedding
result as in the planar case Kunstmann et al. (2018).

LEMMA 3.2 Letw € W' (0,T;L4((t))) NLF (0, T;W24(I(¢))) for 2/p+m/q < 1 with I'(t) C R™+!
and w(+,0) = 0. Then the following bound holds:

”W”L;"O,T;Wl-"“(l"(t))) < Cp,q(||‘9°W||L§’(0,T;Lq(r<z))) + ”WHLf’(O,T;WZ-‘?(F(t))))' (3.16)

Proof. In view of the definition U (y,7) = u(X(y,t),t), combining this with the definition of the material
derivative we have

d
I'u(xt) = uX(1),1) =qUe), for x=X(yr)el'(r),
which then yields

||3'u(-,t)\|Zq(r(t)) - /r°

Since C~! < a(y,t) < C as shown in (3.4), we obtain the following norm equivalence:

Suxun,0)'atrnay = [ a0, a1

dr

CollU (1) llaqroy < 10°u(-0)llaqry) < CLllAU (1) llpaqroy  for 1< g <eo. 3.17)

Inequality (3.16) follows from the same bounds for flat domains proved in (Kunstmann et al., 2018,
Lemma 3.1) and the norm equivalence in (3.17). O
On the right-hand side of (3.16), the expression appears as in Theorem 3.2 below.
We now translate the continuous maximal L”-regularity estimate of Theorem 3.1 back to the evolv-
ing surface functional analytic setting, formulating it for the linear evolving surface PDE (3.1).

THEOREM 3.2 (Maximal L”-regularity in the surface coordinates) Let u’ =0andlet f € L’ (0,T;L(I(t)))
with 1 < p,g < co. Then the solution u of the linear evolving surface PDE problem (3.1) obeys the fol-
lowing maximal parabolic L?-regularity estimate:

10°ull o 0,7:00(r(ryy) + 1|20 mow2a(r ) < CUF N 0.7:00 (0 (r)))- (3.18)
Furthermore, if f € LY (0,T;L9(I"(t))) such that 2/p+m/q < 1, then the following bound holds:

lull o wr=r ) < €pa CI Nl 0,750y - (3.19)
The constants C > 0 and ¢, ;, > 0 may depend on the final time 7 (increasing function of T').

Proof. Since u(x,t) = U(X~'(x,t),t) and the inverse flow map X ! (x,#) is smooth with respect to x,
through the composition of the two functions U (-,¢) and X ~!(-,¢) we obtain

CollU () lwaa(roy <IuCs0)llwaairey) < CHIU 1) llwaagro- (3.20)

In view of the norm equivalence relations in (3.17) and (3.20), inequality (3.18) is an immediate conse-
quence of (3.8). The second estimate in (3.19) directly follows from the first (with suitable p and ¢) and
Lemma 3.2. O
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4. Maximal L”-regularity of BDF methods for linear evolving surface PDEs
4.1 BDF methods for evolving surface PDEs

We consider a k-step BDF method for the weak formulation (3.2), with 1 < k < 6. For a time stepsize
7> 0 and for t, = nt < T we determine a semi-discrete approximation «” to u(-,,) by

1 k
,Zgj/ W' "I 4
Tj=0 F(’n—j)

for all " € I'(t,) such that 9" o X(-,2,) = ¢°, n=0,1,...,N. The starting values ', i = 0,...,k— 1,
are assumed to be given. They can be precomputed using either a lower order method with smaller step
sizes, or an implicit Runge—Kutta method.

The order of the method for k£ < 5 is known to be retained for parabolic abstract evolution equations
Akrivis & Lubich (2015) (see the recent paper Akrivis et al. (2020) for k = 6), for linear parabolic evolv-
ing surface PDEs Lubich ef al. (2013), for general partial differential equations Akrivis et al. (2017);
Akrivis & Li (2018) using discrete maximal regularity, and also for discretizations of the mentioned
geometric flows Kovacs & Lubich (2018); Kovics et al. (2019, 2020a); Binz & Kovacs (2021).

Vit Vi) 0" —/ Fe)e, n=k @1

I'(t)

4.2 Discrete maximal LP-regularity

Similarly as in the time-continuous case, the equations (4.1) are pulled back to the initial surface, then
the functions U"(y) = u”*(X (y,,)), n > k, are solutions of the following problem:

726/ St )U" ’w+/ B(,t,)VoU" - Vyoy = / St)F'y, >k, 4.2)

with F" = f(X(-,t,),t,) for all w € H'(I'®). Note that (4.2) is the weak formulation of the following
PDE problem on the initial surface I"°:

1 ¢ iy
=Y jaltn U = Vo (B(-,t,,)Vl—oU”> = a-,1,)F". 4.3)
j=0
For a sequence of functions (U”" )ZV:() defined on the initial surface I'°, we denote by
1 & .
==Y U/, for n=0,12,.., (4.4)
T4

the discrete time derivative defined by the k-step BDF method (where U” = 0 for n < —1). Similarly
as in AKkrivis et al. (2017); Kunstmann et al. (2018), considering piecewise constant functions, for a
sequence of functions (v”)i,vzo C W/4(I'%) we define the norm

1

P
(rznvnw,qro) , for pe[1,0),

100l (wiaqroy) = 4.5)

max_|[v" HW/q )5 for p = ce.

0<n<N )

In terms of these notations, we have the following result.
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THEOREM 4.1 (Discrete maximal LP-regularity for BDF methods) Let F" € LY(I” 0) for nt < T, with
1 < g < oo. Then the solutions of (4.2) obey the following estimate for 1 < p < e and N < T /7,
+ ||(U”)1rY=0||LP(W2~f1(FO))

‘ U" — Unfl N
’ ( T )nO LP(L4(I'0)) (4.6)

< C||(Fn)ﬁ]:k||u(m(r0)) +C(T_l||(Ui)f‘€:_ol||LP(L4(F0)) + ”(Ui)i'(:_()l”LI’(WZ"I(FO)))v

where the term ||(F")N_ || Lp(La(roy) vanishes when N <k, and the constant C > 0 is independent of 7
and N, but may depend on p,qg andon T.

. ; ; _ n—j_gn—j-1 _.
REMARK 4.1 Since %Zlf':o o;un/ can be expressed as %ZI;‘:O o;U 1 = ):/;:(1) Qi% with
some coefficients 0}, j =0,...,k— 1, it follows that

= N U"— Unfl
0 <), ]

+C(T WU o aqroy + 1UDZS o waaqroy) — for N> k. (4.8)

N
“.7)

n=0

Therefore, (4.6) implies

5 N n
H (aTU )n:OHLP(L‘I(FO)) +(U )fy:OHLP(WZ-‘I(FO))
< C”(Fn)f;/:k”LP(L‘I(FO)) +C(t (U5, Lo (ra(roy) + U= Lo (w2a(roy)):

Proof of Theorem 4.1. The proof is divided into two parts. In Part I, we show discrete maximal
LP-regularity for stationary surfaces, via a series of auxiliary lemmas. In Part II, we extend the result
to evolving surface problems by using the result from Part I and a perturbation argument in time. The
proof has a parallel structure to the proof of Theorem 3.1 in the continuous case.

Part I: Discrete maximal LP-regularity on a stationary surface.

We start by recalling that (Arendt ez al., 2011, Example 3.7.5) implies that the self-adjoint negative
definite operator @ (s) = Ap(y) — 1 : D(%A(s)) — L*(I(s)) with domain D(.%(s)) = H*(I(s)) gener-
ates a bounded analytic semigroup {E>(z,s)}zex, , on L*(I'(s)), where £, = {z € C: |arg(z)| < m/2}
(a sector of angle 7/2 on the complex plane). We have seen that the kernel Gy(z,x,y) of the semigroup
{Ex(t,s) }+>0 satisfies the Gaussian estimate (3.13). Consequently, the kernel G,(t,x,y) has an analytic
extension to the right half-plane, satisfying (see (Davies, 1989, pp. 103))

2

w ol
Gs(z,x,))| < Colz| " 2e O, VzeZy, Vx,yel'(s), V6e€(0,1/2), 4.9)

where the constant Cy is independent of s € [0, T'] (depending only on Ky and 6). In other words, the ro-
tated operator —eie,;zfg(s) satisfies the condition of (Kunstmann & Weis, 2004, Theorem 8.6, with m =2
and g(r) = Cge™" 2/ Co); also see (Kunstmann & Weis, 2004, Remark 8.23). As a consequence of (Kun-
stmann & Weis, 2004, Theorem 8.6), {E»(z,5)}zex, , extends to an analytic semigroup {Eq(z,s) }zex,
on LI(I"(s)), for all 1 < g < e, R-bounded in the sector Xy for all 8 € (0,7/2), where the R-bound is
independent of s € [0, 7] (depending only on Cy and g). We refer to Kunstmann & Weis (2004) for a
general discussion on R-boundedness.

Then Weis’ characterization of maximal L?-regularity (Weis, 2001, Theorem 4.2) immediately im-
plies the following result.
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LEMMA 4.1 (R-boundedness of the resolvent, Weis (2001)) Let <7 (s) denote the generator of the
semigroup {E,(t,s)}/~0, with 1 < g < oo. Then the set {z(z— (s))! : z€ Zg} is R-bounded for all
0 € (0,7), and the R-bound depends only on Kp, 6 and g.

REMARK 4.2 The operator @ (s) ! : L*(I"(s)) — D((s)) naturally extends to <7,(s) ' : L(I"(s)) —
D(y(s)) with 7, (s) denoting the operator Ar(;) — 1 with domain W24(I(s)); see (Jin et al., 2018,
Appendix).

Lemma 4.1 and (Kovécs et al., 2016, Theorem 4.1 and 4.2, Remark 4.3) imply the following maxi-
mal LP-regularity result for BDF discretizations of the heat equation on a stationary surface.

LEMMA 4.2 For any given s € [0, 7], the solutions U!" of the discretized equation

1 & ,
- Y sUl 7 —Ar Ul =F!, onTI(s), k<n<N, (4.10)
Jj=0

with starting values U!, i =0,...,k— 1, and F" := a(X~!(-,s),s) "' F*(X~!(.,s)), satisfy the following
discrete maximal LP-regularity estimate for 0 < N < T/7:
n\N
+ U ) n=oll Lr (w24 (roy)

I(=5).
=0llLr(La(r%))

< CJ|(F )n:k”Ll’(L‘i(FO))+C(T_1||( ) HLI’ L9(I'0)) + (U, )z O”LI’ WZq(FO))) (4.11)

where U;! := 0 and the term ||(Fy")\_ || (z4(r0)) vanishes if N < k, and the constant C > 0 is indepen-
dent of N, Tand s € [0, T].

Proof.  Since @ (s) = Ar(;) — 1 in Lemma 4.1, we first consider the following problem (with an
additional low-order term):

1 & :
- Y sUl T —Ar Ul +U!=F!',  onI(s), forkt<nt<T, 4.12)
j=0

For the problem (4.12), Lemma 4.1 and (Kovics et al., 2016, Theorem 4.1 and 4.2, Remark 4.3) imply,
+ U=l e (W24 (I"0))

forN <T/r,
|GEoe),
=kIILp(L4())

C”(Fn)n iller(raqroy +C(7 i 7()l||LP(L‘i(F0))+H(Usi)f':()]HLP(WZ-‘Z(FO)))? (4.13)

In the case U] = 0 for 0 < n < k— 1, it is known that the following inequality holds (cf. (Li, 2021,
inequality (3.4))):

_INN
() ey <l G 2.
T =kllLr(La(roy)

In the case U!' # 0 for 0 < n < k— 1 one can modify the above inequality by including the starting

kllLr(La (FO))
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values, i.e.

n n—1
(555) L =l G B2,
=k U’(L‘i(FO)) =k

Inequalities (4.13) and (4.14) imply that

(=)..

< C||(F )n:k||LP(Lq(r0))+C( 1||(Usl:)i'<:_01||LP(L4(F0))Jr”(Uf)f:_()l”LI’(WZv‘?(FO)))'

+Ct (UMbl o (raqroy)-
LP(La(I0))

(4.14)

+ U=l o wzagroy
LP(L4(I'0))

This proves (4.11) for the problem (4.12) (which has an additional lower order term).
We now turn to prove (4.11) for the original problem (4.10), by removing the lower order term using
a perturbation argument. To this end, we add the low-order term U} to both sides of (4.10),

1 & .
- Y Ul —Ar U+ U =F'+U!,  onI(s) k<n<T/x, (4.15)
Jj=0

and apply the estimate (4.15) to the problem above. We therefore obtain, for N < T /7,

(=),
=0

< C[|(U; )n:0||Lp(Lq(r0)) +C[(Fy Lo (za(roy)
cr(WUH, 2o aqroy + | U)o lLrw2a(roy)- (4.16)

+ ”(Usrl)iv:()HLP(Wz"l(FO))

LpP(L4(I0))

Using a Holder inequality and U;l =0, yields the estimate

N n 1 J Lyp
H(Urn)n OHLp 14 1"0 _TZ HUnHLq I"O - TZ TZ
Jj=0 La(r)
N n 7 n J j=1yp
P\ P U; - U
TZ <121p>‘ TZ s THs

=0\ j=0 =0 T L4(I)
(Y
=0 T j=ollLr(La(roy)

Raising (4.16) to power p yields

H(U" ),
n=011Lr(L1(I'?))

( j ] 1> 14
T j=ollzp(za(r0))

+C(H( s )n:k”Ll’(L‘i(FO))+T71||(Usi)i‘{:7()1”LP(L‘l(FO))+ ”(U;);Z()lHLI’(W2~‘1(F0)))p'

P

+H(Un)n OHp W2q [‘0))
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By a discrete Gronwall inequality we obtain the estimate (4.11). ]
By the change of variable U"(y) = U?(X (y,s)) the equation (4.10) can be equivalently written as

1 ¢ ,
- Y Sja(-,)U" 7 = Vo« (B(-,5)VpoU") =F" onT° k<n<T/t. 4.17)
Jj=0

This, together with Lemma 4.2, implies the following result.

LEMMA 4.3 For any given s € [0, T], the solutions of (4.17) satisfy the discrete maximal LP-regularity
estimate for 0 < N < T/t
-+l (Un)IrY:OHLP(WZ»‘i(FO))

(=),
T n=0llzr(La(r0))

< C||(Fn)1;¥:kHLp(Lq(F0)) ‘|‘C(771 ||(Ui)§:ol ||Lp(Lq(F0)) + H(Ui){'(;ol HLP(WM(rO))), (4.18)

where U ™! := 0 and the term || (Fyn)g:kHLp(Lq(ro)) vanishes if N < k, and the constant C > 0 is indepen-
dent of N, Tand s € [0, T].

Part I1: Extension to evolving surfaces.

Lemma 4.3 requires the coefficients of (4.17) to be frozen at some fixed time s € [0, 7). We therefore
need to extend Lemma 4.3 to equation (4.3), which has time-dependent coefficients. To this end, we use
the perturbation arguments analogously as in the proof of Theorem 3.1 but in the time-discrete setting.

We rewrite (4.3) into the following form, with frozen coefficients on the left-hand side and pertur-
bation terms on the right-hand side, for brevity omitting the spatial arguments in the coefficients, we
obtain

1 & .
=Y Salt)U" = Vo (B(tN)VFoU”)
j=0

k
— a(t)F" + % Y. 8ialtn) —altr-;)U" 7 = Vro- ((Blw) ~ B1)VroU")
f=

= a(ty)F" +G" + H". (4.19)

Applying Lemma 4.3 to the equation above, and using the bound (3.4) for a(z,), yields
+| (Un)f;/:0||u>(w2-q(r0))

(),
T n=01lLr(L2(I0))

< ClF"_illerzacroy) + CING™ =il ooy + CINEH il o za(ro))
+C(e M NUN S o) + U e wzacroy))-

(4.20)

The second and third terms on the right-hand side are bounded further separately. For the second term
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we obtain
1 k
16" ey < 3 X 8att) a0
=i Lq(r‘))
=||(alty) —a(tn)) Z6U”’+Z6 altn) = altn=) jn-
1(ro)
5 o altn) —altn—j)  n-;
< [l(a(en) — alt))FU" o U
L9(I9)

< Cliy = tal[|00" | g o) +C€ Z HU"*"”Lq(FO)v
=0

t 1
where we have used the estimate | - nj)

to derive the last inequality.
For the third term similar estimates yield

| < C, following from the temporal smoothness of (A.3),

k
1H" || a(roy < Clin = tal [U" w200y + € Y NIU™ | a(roy-
j=0

Substituting the estimates for G” and H" into (4.20) yields

(=),
T n=0

k
< C||(Fn)y=k||u(m(1‘0)) +CY, ”(Unij)y:kHU(Lq(Fo))
=0

+C (v = 120Ul zaroy) + 1 (iw = 1l Ul o wzaroy)
+C(eNUN S ooy + 1 UG e w2aqroy)
< ClIF"_illerzaqroy) + CINU™Mo Lo waqroy)
+C([I(tv = 1l 9 Uil o (raqroy) + 11 (tv = 1l U)ol o w2 o))
+C(e M NUNS e + IO e wzaroy): (4.21)

+| (Un)nN:0||LP(W2"I(FO))
LP(L1(I0))

which holds for 0 < N < T/t.
Analogously to the proof of Theorem 3.1, we define

= |(=),
n=0

1
i (e

p

+IURoll?
LI’(L‘/(FO)) Ollgp qu 1"0))

' (4.22)
01 20 g0 )

L9(I'0)
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with L=! = 0. Then (4.21) and summation by parts imply the following estimate for L":

<l FE] +C Ul

+C(ta = tw]9<U") oI,

LP(L4(T0)) LP(L4(T0))

Lq[‘() +CH(|tn_tN|Un)
+C(r(UH ||LP(L4(F0))+||( i)i'(:_olHLﬁ(qu(rO)))

C”(Fn)n k”Lp L9(I0) +CH(Un)]nV:O||Zp(Lq(FO))

k”Lp W2 q(r()))

+CZ jtn =t 1” (19U" 1 g oy + 10" 2.0
n=k

+C(t | i)/'(_IHLP raroy T I(U i)]'(_IHLp(qu(FO)))
<C||(Fn)n k”Lp L) +C||(Un)n 0||p
U"—uyn— 1

e (]2

n=0

LP(L9(r))
P

+UmE ., r0)> (using (4.7) here)
L4(I'0)

+C(t _1”( i)]'{_ ||LP(L‘7(F0))+||( i)’-“”lm W2~‘1(F0)))
_CH(Fn)n k”Lp L4(I9)) +CH( )n OHLP L4(I0))
+C2|tn—tN\p(L"fL"_1) (L 1:=0)
n=0
+C(t (U5, 2o zaqroy) + (U, Lo (w2aroy)
= C”(Fn)n k”Lp L4 1"0 +CH(Un)£1V:0||pU(Lq(FO))

+C Z (Ita—1 —tn]P = Jtu —tn|P)L*! (summation by parts)

n=0
—1( (7 rivk—1 ink—1
+C(T [(U")iZ0 ooy + 11U )iZo lpwaqroy))-
By the bound
a1 —tn|” — |t —tn|" = TZ\l‘n—le” Utuy —tn| P < TpTP !,
i=1

the last estimate is further bounded by

LY < CII(F el +CIWUnsll7,

LP(L4(T9)) LP(L4(T0))

N
+C(t (U leraqroy + | U l2rw2a(roy) +CT Y Ll
Applying discrete Gronwall inequality, we obtain

CH<Fn)n k”Lp L4(r9)) +CH(Un)n OHLp L4(I0))
+Cc(r (U )i:0||LP(L‘7(F0))+||( )i:0||LP(W2~‘1(F0)))'
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Then substituting (4.22) into the last inequality yields
+ (U™ lLr(w2a(roy)

(=),
T n=0llzr(La(r o))

< CIF" N _illr oy + CNUM Aol (zagroy)
+C(r MUY Lo (zaqroy) + |l U Lo w2a(roy)),

(4.23)

which holds for N < T/, with a constant depending on p and T, but independent of N or 7.
Similarly as for (4.16), the low-order term ||(U™)N_ || Lp(14) on the right-hand side is removed by a
discrete Gronwall argument. This completes the proof of Theorem 4.1. U

5. Proof of Theorem 2.1

In this section, we show stability and convergence of linearly implicit BDF methods for the nonlinear
evolving surface PDE problem (1.1) by using the discrete maximal L”-regularity of BDF methods estab-
lished in Theorem 4.1, in combination with a mathematical induction on the boundedness of numerical
solutions in the W' norm, which will be derived by using the following discrete Sobolev embedding
inequality, the time-discrete version of Lemma 3.2.

LEMMA 5.1 (Discrete inhomogeneous Sobolev embedding) Let 1 < p,q < oo, satisfying 2/p+m/q < 1
with [0 C R and let (W), C W24(I"°) be a sequence of functions (setting w~' = 0). Then

wh — w1 N
max {|w”[| = (1.0 (roy) < C(H ()

0<n<N T n=0

+ (Wn)izvonu(wlq(m))) ; (.1
Lp(L4(r'%))

where the constant C > 0 is independent of N > 0.

Proof. In the case of planar domain, Lemma 5.1 was proved in (Cai et al., 2019, Lemma 3.6) as an
extension of the continuous version of inhomogeneous Sobolev embedding in (Kunstmann et al., 2018,
Lemma 3.1). On the smooth surface I" 0 as shown in (Hebey, 2000, p. 9), there exist (2 j,(pj,ocj),
j=1,...,m, such that

1. {Q;:j=1,...,m} is an open coverning of I'’;

2. ¢;:Q; — Misalocal chartfor j=1,...,m;

3.{aj:j=1,...,m} is a partition of unity such that supp(e;;) C ; for j=1,...,m.

Then the Sobolev norm [[w||y«p oy is equivalent to }7', [|(war;) o (pﬂ\wwm” forl< p<e. Asa
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result, for any fixed 1 < p,q < eosuchthat2/p+m/q <1,

n
o W17 1= o))

~ z I0v" ) o 1.

<CZ(

T

'<Wa, Q) — <"1aj>o<p,-)” ?
0

)0 )0l s )
u’(m(m) R e @)

m N (W _anl p
TED M) 3 [ (L PP [R) ) MRt AT
j=1n=0 L1(2;) j=1n=0
N m Wn_wn—l P
<C T(Z (%%)O% ) +CZ (ZH (w"a;) o @l (W24(Q; )))
n=0 \j=1 L4(Q))
N anwnfl 14
SCZT ( T +CZTHW"”LI) WZq[‘O))
n=0 L9(I'0) n=0

(W" — ] )N
T n=0

This proves the result of Lemma 5.1. t

14
+|(W")fqvo||u(w2«q(r0))> :
LP(L9(I0))

5.1 Stability

Let us first formulate the pull-back of the nonlinear problem (1.1) onto the initial surface I'° similarly
as (3.7), which yields the following problem:

d
4 (AC0UC0) =V (BOVRU(0) ) = b0 f (U0 KCOVRUGD), o
U(,O) = uov
where the matrix K (y,7) is introduced in (3.6). The linearly implicit BDF methods for (5.2) reads
1 & N . .
- Y 8a" U = Vo (B'VRU") =d" f(U" K"V 0"), (5.3)

j=0
where we employed the notations
a'=a(,ty), B"=B(ty), K'=K(.,t,) and U"=u(X(t,),t:),
and U" = Z’;;(l) YiUn—j-1.

The exact solution U = U (-, 1,) of (5.2) satisfies (5.3) up to a defect (consistency error) D", i.e

1 ) ) ~ ~
- Y 8;a" UL — Vo (B'VoUL) =d"f(U!K"VoU!) + D" n>k (5.4)
j=0
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We denote the errors between the numerical solution and the exact solution by E” = U" — U}'. Upon
subtracting (5.4) from (5.3), we obtain the following error equation for n > k:

1 & . . . .
Y G B Vo (BVE") =d" ( F(@ K"V o) — f(Uf,K”VFon)) —D'. (5.5
=0

Using the discrete maximal parabolic LP-regularity result in Theorem 4.1, we now prove that the
error E" satisfies the following stability result.

PROPOSITION 5.1 (Stability) Let 1 < p,q < oo be numbers satisfying 2/p +m/q < 1. There exist
sufficiently small positive constants By and 7y (independent of 7, but may depend on T'), such that if
T < Tp and the starting values and the defects satisfy the bounds

T NU = UDE ooy + 1T = UD g rwzagroy) < Bos (5.6)
and 1"kl (za(roy) < Bo, (5.7

Then the error E" = U" — U" between the solutions of (5.3) and (5.4) (with E~! = 0) satisfies the
following stability estimates for N < T/ :
+l (En)ﬁz\]:OHLP(WZJI(FO))

(=),
T n=0l1Lr(L9(I0))

< (| (Dn)iv=k”u7(m(r0)) +C(r (BN Iz aroyy + |l (ENS, 2o (w2a(r0y))s (5.8

E" o
omax, [E" Iy 1.0y

<CH(Dn)Ily:kHLP(Lq(FO))JFC(T_l||(Ei){'(:_(}||LP(Lq(F0))JF||(Ei)f:_olHLP(WM(FO)))- (5.9

The constants By, 7o and C are independent of 7 and N, but may depend on the exact solution U, and T .

Proof. Similarly as in Akrivis et al. (2017); Kunstmann et al. (2018), let us assume that M < T /7 is the
maximal integer such that the numerical solution satisfies the estimate

U 1= < [Udllcqozpaniy +1 for  n< M. (5.10)

Such an M indeed exists since (5.10) holds at least for the initial values (with M = k for sufficiently
small fy). In fact, by the triangle inequality and the combination of (5.6) with Lemma 5.1, we have

max ||E¥|y 100y < CBo < 1
Ogigk?glﬂ [lw1.=(roy < CPo

or fy sufficiently small.

We will now use discrete maximal L”-regularity to show the stability bounds (5.8)—(5.9) form < M,
which would imply that M is not maximal for (5.10) unless M = [T/7] (i.e. the maximal integer not
strictly bigger than T'/7).

(a) Under assumption (5.10), by the local-Lipschitz continuity of f, we have

[f(O" K"V o0") = f(U K"V U S C(IE"|+|VE"),  n<M. (5.11)
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By applying Theorem 4.1 to the error equation (5.5) up to N < M, and using (5.11), we obtain
+ 1 (E" Aol o wea(roy)

(=),
T =0llLr(Le(r0))

< C|(F@ K"V poi") = f(UL K"V oUWl o uaroy) + CIH D"l o aaqroy)
+C(t (BN, lLr(zaroy + I(ED = Il (W24(r0))

< CIENY il qu(ro +CI (DNl o eaqroy
+C(z(EYS ”LP ooy +I(E Dol (w2a(r0))

<C||(E )n OHU qu(ro +CH( n) k
+C(z (7 ||LP La(roy t I(EN, ||LP Ww2a(ro)))

<e|(E")L OHLI’ WM(FO +Ce | (EM)- OHLP L4(I0Y) +C|‘(Dn)n k”LP L4(I0))
+C(t (BN ||1_P L(I"0)) +I(ED); OHLP w24 (roy)),

(5.12)

n= HLI’ L9(I9))

where we have used the Sobolev interpolation inequality (cf. (Adams & Fournier, 2003, Theorem 4.12))
IE" 1oy < €NIElw2a(ro) +Ce | E"||aro),

with an arbitrary parameter € > 0. By choosing ¢ sufficiently small, the leading term e[| (E™)Y_ || LP(W24(I0))

can be absorbed to the left-hand side. Then, similarly as (4.16), the low-order term C|| (E")N_ || ,.» (L9(1))
on the right-hand side above can be removed by using Gronwall’s inequality. This proves the first esti-
mate (5.8) form < M.

The W'*(I"%) error estimate can be obtained by applying Lemma 5.1:

EN_—E" 1
o225 NE =) H() S

Combining (5.8) and (5.13) yileds (5.9) for N < M.
(b) A triangle inequality and the above estimate imply

+ |(En)2]0||LP(W2»‘I(FO))> : (5.13)
LP(L4(I0))

|U£/IHW1‘°°(FU)+HEM”W]‘&(FO)

[UM] 1oy <
< |U£/IHW17M(1—0) +CBy (here (5.6)—(5.7) are used).

|
|
For a sufficiently small By > 0 (independent of M and 7) this implies that the inequality in (5.10) holds

for n = M+ 1 as well. Thus M cannot be maximal unless M = [T /7]. Therefore, (5.10) holds for
= [T /7] and the estimates (5.8)—(5.9) was proved for all N < T' /. O

5.2 Consistency

In this section we show that the defect (or consistency error) D" obtained by inserting the exact solution
into the BDF method (5.4), are bounded in the required norms by Ct¥ for the linearly implicit BDF
methods of order k. Hence, the assumed defect bounds in Proposition 5.1 are indeed satisfied.
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LEMMA 5.2 Let the solution u, and hence also its pull-back U,, be sufficiently smooth. Then the defect
D" of the linearly implicit k-step BDF method, given by (5.4), is bounded by

max ||D" <cth, 5.14
k@g;h\l ||L<1(F0) ( )

where the constant C > 0 only depends on %7, the exact solution u (respectively U) and T

Proof. Using the differential equation (5.2), recalling that its solution U (+,#,) = U}, we can rewrite the
defect D" from (5.4) in the form

D= LY St Ut ) = L a0 )
Tj:() jA\In—j sln—j ot sin sin

+a(s1) [F(UCo12), K1) VioU (- 80)) = FU (1) K (- 12) Vo U (1))

We then estimate the two pairs separately, using the standard techniques for consistency errors in BDF
methods. Using the definition of the order of BDF methods (through the generating functions 6(&) and
¥(€) from (2.8) and (2.6)), together with Taylor expansion and bounded Peano kernels, in the same way
as in Akrivis et al. (2017); Akrivis & Lubich (2015); Lubich et al. (2013), we can obtain the pointwise
bound

ID* | paqroy < CT*,  for  n=k,...,[T/1].

5.3 Convergence

The stability and consistency results proved in the last two subsections imply the following error esti-
mates. Proof of Theorem 2.1. The error functions " = u" —u(-,t,) and E" = U" — U (-, t,) are related
through

(X(t,))=E" and (Fx(ty,tn_1)e" ) (X (-,1,)) = E" L.

Lemma 5.2 for the defects and the O(7*) assumption on the error of the starting values (2.9) imply that
the assumed bounds (5.6)—(5.7) of Proposition 5.1 are satisfied for sufficiently small step size 7. Then
the stability estimates (5.8)—(5.9) imply

(+x(
T
n=0

+CI(E" N llpw2aroyy  (pulled back to I'°)

n_ gn—1\N
< (*=—)
T n=k|lLP(L4(I0))

| (Dn)g:kHLl’(L‘i(FO)) +C(t (BN, Lo (zaqroy) + I(ENZ, lLr(w2a(roy))
k

1

P » ) ?
s )
prey D

e" _yx(tnvtn—l)e’H]
T

and

n k
Og}lag]vue ||W1’°°(F([")) s
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REMARK 5.1 The error estimate (2.11) implies the boundedness of ||u" leﬁw(r(,n», uniform with respect
to the step size 7. After being pulled back to the initial surface, the estimate (2.10) yields

[(U" = U (s ta) )=t | o w2aqroy) < CT. (5.15)

(=),
T n=1
n__ pn—1\N
< (")
T n=1

and

+ Ui | waqroy
LP(L4(I0))

+C[(E")L, Lo (w2a(roy)

Lp(L4(I0))
U tn) = U tae)\ Y (5.16)
+H< S p SL )) U Gt o wea oy
n=111Lr(L4(r0))
Uta) = U tuer) \ Y
oot | (Sl = lutemn)) IR e
n=1LP(L4(IY))
<C.
Correspondingly, we have
V| —9)((1‘",1‘"_1)14”71 ,
(TZ —H’Z R ) <C. (5.17)
= T LI(T (1))
The estimate (5.15) further implies
N
H( Z S (U — r,,,-))) <cttl < (5.18)
n=111LP(W24(I'0))
By using the triangle inequality, we have
|G L),
=kllLr(W24(I'0))
. N 1 k N
<|(t L sw-vean) (3L outa)
j=0 n=k||Lp (W2a(1"0)) T2 n=k||LP (W2 (I"0))
< C+ ||8tU||Lp(0,T;W2'q(FO)) < C (519)

6. Numerical experiments

To support the theoretical results in Theorem 2.1, we present some numerical results with linear evolving
surface finite elements and BDF methods of order k (specified later). Quadratures of sufficiently high
order were used to compute the finite element vectors and matrices so that the resulting quadrature error
does not feature in the discussion of the accuracies of the schemes. The parametrisation of the finite
elements was inspired by Bartels ef al. (2006). The initial meshes were all generated using DistMesh
by Persson & Strang (2004), without taking advantage of any symmetry of the surface.

We consider the parabolic problem (1.1) with the following nonlinear source term:

f(u,Vru) = |VrulPu+p
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i.e. which corresponds to the harmonic map heat flow (cf. Elliott & Fritz (2016)) with an additional
remainder p, on the evolving surface given by

r)={xeR® | a(t)'x{+3+x3-1=0},

where a(t) = 1 + § sin(27t), see Dziuk & Elliott (2007), and also Dziuk et al. (2012); Kovdcs & Power
Guerra (2018, 2016); Kovacs (2018). The initial value and the inhomogeneity p are chosen correspond-
ing to the exact solution u(x,7) = e "x|x,. In the experiments we use a sequence of meshes (with roughly
doubling degrees of freedom, see plots) and for a sequence of time steps 71| = T /2 with 7p = 0.2.

In order to illustrate the convergence results (2.11) of Theorem 2.1 we have computed the L= (W' )
norm of the errors between the fully discrete numerical solution and (the nodal interpolation of the)
exact solution. The L*(W!*) norm is computed by evaluating the (elementwise linear) fully discrete
numerical solution and its gradient on each element. Note that for linear evolving surface finite element
solutions the norm in (2.10) does not make sense globally on Ij,(#,). The initial values are chosen to be
the nodal interpolation of the exact initial values u(-,#;), fori =0,...,k— 1.

In Figure 1, left- and right-hand sides, we report the L*(W ') norm of the errors of the second and
fourth order BDF method, respectively, over the time interval [0, 7] with 7 = 1. The log-log plots of
Figure 1 report on the L™ (W !>*) norm of the errors against against the time step size 7. In both plots, the
lines marked with different symbols and different colours correspond to different mesh widths, while
on each line a marker corresponds to a time step sizes T,. We can observe two regions in the figures: a
region where the temporal discretisation error dominates, matching the O(7¥) order of the BDF method
(k=2 and 4), see (2.11) of Theorem 2.1, (see the reference lines), and a region, with small time step
size, where the spatial discretisation error dominates (the error curves flatten out).

llu — Uﬁ,HL%(Wm) [[u— uﬁ,HL““(W‘m)

» 102 & — & 7 »
= * -3 o — = .
2 e £ 102 -
- s - 4
S Pt z A
10 —a&— dof 210 - —&— dof 210
—o— dof 426 Vi —o— dof 426
—— dof 882 e —— dof 882
10 ——dof 1914 || Py ——dof 1914
—— dof 3882 102 % ——dof 3882 | |
—+— dof 7458 vl —+— dof 7458
—A— dof 12066 e —A— dof 12066
10° —— dof 16386 v —x— dof 16386
—s7— dof 20322 / —s7— dof 20322
/

mmO()

e o)
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FIG. 1. L= (W1*) norm of the errors for a BDF2 and BDF3 / linear ESFEM discretisations for the evolving surface PDE.

7. Conclusions

We have established the basic maximal LP-regularity results of BDF methods for evolving surface
parabolic PDEs. By using these results, we have proved optimal-order convergence of BDF meth-

step size (1)

107

10

102
step size (1)

10"
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ods for nonlinear evolving surface PDEs with a general nonlinear term which is not necessarily globally
Lipschitz continuous. The maximal LP-regularity results of BDF methods established in this paper
and the techniques to handle locally Lipschitz continuous nonlinearities in evolving surface PDEs may
be used to remove the grid ratio conditions T = O(h*) for mean curvature flow and Willmore flow in
Kovécs et al. (2019, 2020b) through analyzing the temporal semi-discretization and full discretization
separately as in Li & Sun (2013).
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Appendix: Expressions of a(X,?), B(X,7) and K(x,¢) in a local chart

For each point x € I"(0) there exists an open ball D C R” and a smooth map ¢: D — R™*! (called

local parametrization) such that ¢ is bijective and the (m+ 1) x m Jacobian matrix V¢ has rank m, and

x € (D) C I'. By using the abbreviation X; := X(-,¢), the composition map X, 0 ¢ : D — I'(t) C R"*!

is a local chart of I'(), with the Riemannian metric tensor

d(Xi09)(5) IXiop)(§) _ i I(Xi 0 @)m(S) (X0 P)m(S)
d&i d¢; el & 95 7

If we define g = det(g;;), then the surface area element dS; on I"(¢) can be expressed as

dsi((X; 0 9)(§)) = V/8(&,1)dE.

Hence, for two functions u(-,¢) and @(-,¢) defined on I"(¢),

L 0= 02 0 0)E) (9 X0 9) )V 5011

gij(&:1) = véeD. (A

— / 1) 0 X)(@(E)) (@(-,1) 0 X,)( mda (A2)

_ " g(‘piv
_/<p<D>mr(o> &O)DeX0).1) g0~ 1(y),0)’

where we have used the change of variable y = ¢(&) in the last equality. By comparing (3.2) and (3.3),
we obtain

_ /sl
a(y,t) = of ) (A.3)
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It is easy to check that the function a(y,?) given by (A.3) is well-defined, i.e., independent of the
choice of the local parametrization ¢. In fact, if we choose another local parametrization @ : D — R"*!
then

#F 7 (0),1) = det ("f IX;09), 9<X13¢>,>

mt1 283 (X, 0 9) aijgk 2 9(X,00), 9§
[Zl(,; & ag)(zl & 85;”
o [EE (L5 )R
m+1 o o
= det (g%‘) det < r;l a()gék(P)r a(Xatgl(p)r) aet <j§j>
= det (g%)zg(fpl(WJ)

and similarly,

which imply

Similarly, it is well known that the tangential gradient V-, u can be expressed in the local chart by
(Jost, 2011, equation (3.1.17))

d(uoX,09) d(X;00)

V X o g ) (A'4)
( F() t (P ”21 a(g] aél

L d(uoX;o@) do
(VF(O)(“OXt))O(PZi’glg"(',o)aié; PR (A.5)

where g'/ is the inverse matrix of g;; defined in (A.1). As a result, we have

[(Vrgyu)o (X 0@)]- a(g’éq’) = a(”(;);w), (A.6)

(Ve (moX))o @] géi a(”;ék"’) (A7)
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By using the identities above, we have

/ Vr( )M Vp(t>(pdS,
(Xro@)(D)NI(¢)

d(uoX;0@) (X, 00) 2 d(@poX;op) d(X;00)
/”21 3E, 9E MZ: FE & V(1) dé
d(uoX;00) 2 d(poX;0p) o/ )
_/IJZ’I agj kJZ:’ Tglk( 7t)\/g(7’t)d<§
_ ii(.py 2eXio9) I(@oXiop) (A8)
-, ,}Zlﬁ S T T
l] o o) (o} @) al
_/uzlﬁg ( ouoX)) o g a@)(u olpox)oe)- 52 ) ot
= [ AGDI(Tro)woX)) 0 0(E))- [(Vro)(9oX) 0 9(E)] V(. 0)d¢
_/ oo 20D VO (40X - Vi) (@ 0 X)dSo,
with
£, 99(&) (£
Z Geen G e e (Ao

and B(-,t) = A(-,t)op~!

B(y,1) = Zg 3,00 0) (07 (1) ® (9, @) (9 (1), VyeI(0). (A.10)

g((P '(y, =

Again, B(y,t) is well-defined and independent of the choice of the local parametrization (the proof is
similar as that for a(y,z) below (A.3)).

By fixing a local parametrization ¢ : D — R™*! of the surface I"(0), it is straightforward to verify
the positivity and smoothness of a(y, ) and B(y,t) at a fixed point y € I"(0). The lower and upper bounds
in (3.4)—(3.5) are consequences of the compactness of surface I"(0).

Let K(y,t) : Ty — Tx(y,) be a linear operator defined by

K(y’t)[gé, o ()]:a()ggq))o(p_l(y), i=1,...,m, (A.11)

where {3<P o~ \(y), gg; o@~'(y)} is a basis for the tangent space Ty at y € I'(0), and {3(;(17;1?) o

o' (y), 2522 g"" 0@~ !(y)} abasis for the tangent space Ty (y,,) at X (v, )er( ). Then (A.4)—(A.5) imply
that

K(y,t)vr(o)(uOXt) ZVF(I)M. (A.12)
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Since the matrix of the linear operator K (y,#) under this choice of bases is the identity matrix, it follows
that the operator K (y,t) is smooth and invertible.
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