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Abstract. As a specific type of shape gradient descent algorithm, shape gradient flow
is widely used for shape optimization problems constrained by partial differential equa-
tions. In this approach, the constraint partial differential equations could be solved by
finite element methods on a domain with a solution-driven evolving boundary. Rigorous
analysis for the stability and convergence of such finite element approximations is still
missing from the literature due to the complex nonlinear dependence of the boundary
evolution on the solution. In this article, rigorous analysis of numerical approximations
to the evolution of the boundary in a prototypical shape gradient flow is addressed.
First-order convergence in time and kth order convergence in space for finite elements
of degree k > 2 are proved for a linearly semi-implicit evolving finite element algorithm
up to a given time. The theoretical analysis is consistent with the numerical experi-
ments, which also illustrate the effectiveness of the proposed method in simulating two-
and three-dimensional boundary evolution under shape gradient flow. The extension of
the formulation, algorithm and analysis to more general shape density functions and
constraint partial differential equations is also discussed.

1. Introduction

Shape optimization constrained by partial differential equations (PDEs) has wide applications
in modern science and engineering, such as the airfoil designs in aerodynamics [39], automative
industry [1, 27], turbomachinery, structural design [27], and so on. These applications typically
concern minimizing a shape functional

J(Γ) =

∫
Ω
j(x, u(x))dx

for some shape density function j(·, u) subject to a constraint such that u is the solution of a PDE
problem in the domain Ω with boundary Γ. Both the shape density function j(·, u) and the PDE
problem depend on the applications. Due to their wide applications, PDE-constrained shape
optimization problems have generated much interest in developing both theoretical analysis
[27, 44, 28, 10] and efficient computational methods [1, 39, 26, 25].

The boundary parametrization of an elliptic shape optimization problem was considered in
[17], where error estimates for a finite element method (FEM) were obtained under the assump-
tion that the optimal domain is star-shaped and the infinite-dimensional shape optimization
problem admits a stable optimizer satisfying the second-order optimality condition. A two-
dimensional shape optimization problem with the portion of the boundary to be optimized
being the graph of a function was studied in [31], where second-order convergence of the nu-
merical approximations to a local solution of the optimization problem was proved under the
second-order sufficient optimality condition. The approach was extended to a Stokes shape opti-
mization problem in [20]. The analyses in these articles are based on the second-order optimality
condition and the computation of the shape Hessian, and are restricted to parametrization of
boundaries with special shapes. Abstract convergence of the finite element discrete optimal
shape to the optimal shape in the continuous shape optimization problem was proved in [7]
for an elliptic PDE-constrained shape optimization problem in two dimensions based on the
compactness argument.
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An alternative way to compute critical points of shape optimization problems without re-
quiring the second-order optimality condition is through shape gradient flow, which is a specific
type of shape gradient descent algorithm (representing a method for selecting the descent ve-
locity) and has been widely used in the shape gradient descent algorithms for PDE-constrained
shape optimization; see [5, 8]. In this approach, the boundary Γ(t) which evolves under the
shape gradient flow converges to a minimizer of the shape functional. Along with the evolu-
tion of Γ(t), the constraint PDE problem can be solved by FEMs on the evolving domain Ω(t)
enclosed by Γ(t). We refer to [11] for a variational framework of discrete shape gradient flow
for shape optimization problems. Many different FEMs have been proposed for solving PDEs
on evolving domains, including cut FEM [6], immersed FEM [24], isogeometric analysis [9, 46],
adaptive FEM [40], coupling of FEM and BEM [18], arbitrary Lagrangian–Eulerian FEM [19]
and evolving bulk FEMs with possibly curved triangles [14], just to name a few.

The convergence of finite element approximations to linear parabolic PDEs and Stokes equa-
tions on evolving domains (with evolving boundary or interface) has been studied in many
articles; see [23, 37] and [38, 3, 2, 14, 13, 21, 35, 41] for unfitted FEMs and fitted arbitrary
Lagrangian–Eulerian evolving bulk FEMs, respectively. In particular, optimal-order conver-
gence of evolving bulk FEMs has been proved in [14, 13, 36] for different isoparametric finite
elements. We also refer to [15, 16, 33] for evolving surface FEMs solving PDEs on evolving sur-
faces. However, to the best of our knowledge, the convergence of finite element approximations
to the boundary evolution (a general closed smooth boundary) under shape gradient flow is still
challenging and missing from the literature. This is addressed in the current article for a class
of shape gradient flows formulated below.

There are many different ways to choose the descent velocity w, most of which are based on
solving the following equation (cf. [1, 5])

Find w ∈ H : b(w, v) = −dJ(Γ(t); v) ∀v ∈ H
for an abstract inner product b(·, ·) : H ×H → R associated with some Hilbert space H. This
is referred to as the Hilbertian extension-regularization approach in [1, Sec. 5.2]. Different
choices of H correspond to different shape gradient flows. For example, H = L2(Γ)d gives L2

or Hadamard flow, H = H1(Γ)d leads to Laplace–Beltrami flow (cf. [42, 43]), and H = H
1
2 (Γ)d

yields Stefan-like flow. We refer to [5] for a comprehensive review of different shape gradient
flows. The L2 flow is generally irregular and makes sense only on the boundary Γ. The most
natural choice is H = Hm(Ω)d for some m > d

2 + 1 so that H ⊂ W 1,∞(Ω)d is well-defined for
the velocity field, which is however, computationally expensive and inconvenient.

In this article, we present formulation, algorithm and convergence analysis for a shape opti-
mization problem constrained by the Poisson equation with a given source function f , i.e.,

min
Γ

J(Γ) =

∫
Ω
j(x, u)dx subject to

{
−∆u = f in Ω ⊂ Rd, with d ∈ {2, 3},

u = 0 on Γ = ∂Ω,
(1.1)

with the shape densify function j(·, u) = 1
2 |∇u|

2 or j(·, u) = 1
2 |u − ud|

2, which correspond to
minimal energy dissipation and optimal shape reconstruction, respectively. For the stability
and convergence of the numerical approximations, we consider the H1 shape gradient flow of
the shape functional in (1.1), i.e., the evolution of boundary Γ(t) = ∂Ω(t), t ∈ [0, T ], with initial
position Γ0 = ∂Ω0, determined by the following coupled system of equations:

∂tφ = w ◦ φ in Ω0, φ(0) = id|Ω0 in Ω0, (1.2a)

−∆w + w = 0 in Ω(t), ∂νw = −J ′(Γ(t))ν on Γ(t), (1.2b)

−∆u = f in Ω(t), u = 0 on Γ(t), (1.2c)

−∆p = j′u(·, u) in Ω(t), p = 0 on Γ(t), (1.2d)

where φ(·, t) : Ω0 → Ω(t) is the flow map which generates the evolution of the boundary through
Γ(t) = φ(Γ0) under the velocity field w, j′u is the derivative of j(·, u) with respect to u. By using
the shape gradient J ′(Γ) = j(·, u) + ∂νp∂νu defined in (2.4), the rate of change of the shape
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functional J(Γ) satisfies the following relation:

dJ(Γ(t))

dt
=

∫
Γ(t)

J ′(Γ(t))w(t) · ν dΓ(t). (1.3)

Therefore, by testing (1.2b) with w and using relation (1.3), the following property can be
shown:

dJ(Γ(t))

dt
= −‖∇w(t)‖2L2(Ω(t)) − ‖w(t)‖2L2(Ω(t)) ≤ 0, (1.4)

i.e., the shape functional decreases as time grows. Correspondingly, the H1 shape gradient flow
evolves to a critical point of the PDE-constrained shape optimization problem.

Our analysis in this article shows that, although H = H1(Ω)d is not a subspace of W 1,∞(Ω)d,
the H1 gradient flow naturally fits the stability and convergence analysis of evolving finite
element approximations for a wide class of problems. The novelty and contribution of this
article include:

• An H1 shape gradient flow of PDEs on an evolving domain Ω(t), with a solution-driven
evolving boundary Γ(t) = ∂Ω(t), is formulated in a way that convergence of evolving
finite element approximations to the boundary evolution could be proved.

• The distributed Eulerian derivative of the shape functional on the bulk domain is used
for the convenience of computation and for proving the stability and convergence of
numerical approximations.

• A linearly semi-implicit evolving FEM is proposed for the nonlinear PDEs and the
solution-driven bulk and boundary evolution. The method only requires solving several
decoupled linear systems at every time level. First-order convergence in time and kth
order convergence in space for finite elements of degrees k > 2 are proved up to any
given time.

• The analysis could cover a general class of shape optimization problems for a class of
shape density functions including

j(·, u) =
1

2
|∇u|2 and j(·, u) =

1

2
|u− ud|2,

for constraints which include both the Poisson equation and the Stokes equations in two
and three dimensions.

• For certain shape optimization problems, the volume constraint is indispensable to en-
sure the existence of a solution; see [1, Sec. 5.3]. The stability and convergence analysis
in this article could be naturally extended to a velocity w determined by the following
weak formulation: Find (w, q) ∈ H1(Ω)× R such that∫

Ω
(∇w : ∇v + wv) dx−

∫
Ω
q∇ · v dx = −

∫
Γ
J ′(Γ)v · νdΓ ∀ v ∈ H1(Ω),∫

Ω
∇ · w η dx = 0 ∀ η ∈ R,

(1.5)

where the second equation is equivalent to requiring the velocity field w to be volume-
conserving, and q can be regarded as a Lagrange multiplier. The stability estimates for
this type of equations can be done similarly.

The rest of this article is organized as follows. In Section 2, we formulate (1.2) into a compu-
tationally convenient form in terms of the distributed Eulerian derivative of the shape functional
on the bulk domain, and propose a linearly semi-implicit evolving FEM for approximating the
evolution of Ω(t). Then we present the main theoretical result on the convergence of the evolving
finite element approximations. The proof of the main theoretical result is presented in Section
3. Numerical tests are presented in Section 4 to illustrate the convergence of the numerical ap-
proximations and the evolution of the domain under shape gradient flow. Concluding remarks
and extension to other shape density functions and constraints are discussed in Section 5.
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2. Notation and main results

In this section we present the notation and main results of this article, including the weak for-
mulation of the nonlinear PDEs with solution-driven bulk and boundary evolution, the evolving
finite element algorithm which tracks the bulk and boundary evolution, and the convergence of
the numerical approximations.

2.1. Preliminaries of shape calculus

In this subsection, we introduce some basic ingredients of the velocity method for shape
calculus. We refer the readers to [10, 44] for more details on geometry, shape calculus, and
shape optimization.

Since we consider the evolution of a domain under shape gradient flow, we shall frequently
calculate the rate of change of integrals over the moving domain. This can be obtained by using
the following result.

Lemma 2.1 ([45, Lemma 5.7]). If the domain Ω moves with velocity v ∈W 1,∞(Ω), then

d

dt

∫
Ω
fdx =

∫
Ω

(∂•t f + f∇ · v)dx, (2.1)

where ∂•t f := ∂tf +∇f · v denotes the material derivative of f .

For any smooth vector field v : Rd → Rd we denote by F t[v] : Γ → Rd, t > 0, the flow map
determined by the velocity field v, defined by

d

dt
F t[v] = v ◦ F t[v] on Γ with initial condition F0[v] = id|Γ. (2.2)

The Eulerian derivative of J(Γ) at Γ in the direction v is defined as

dJ(Γ; v) :=
d

dt
J(F t[v](Γ))

∣∣∣
t=0

. (2.3)

It can be formulated as an integral on the boundary in terms of the shape gradient defined on
the boundary Γ (see [10, Chap. 9, Sec. 3.4]), i.e.,

dJ(Γ; v) =

∫
Γ
J ′(Γ)v · νdΓ. (2.4)

In fact, J ′(Γ) is defined as the function on Γ satisfying relation (2.4).
We shall focus on the shape gradient flow associated to the shape densify function j(·, u) =

1
2 |u − ud|2, where ud is a given smooth target function. The numerical approximation and

analysis for the shape gradient flow associated to the shape densify function j(·, u) = 1
2 |∇u|

2

could be analyzed similarly and therefore are only briefly discussed in the conclusion section.
For the shape densify function j(·, u) = 1

2 |u − ud|
2, the Eulerian derivative of the functional

J(Γ) can also be written in terms of integrals over the bulk domain Ω (called the distributed
Eulerian derivative), as shown in the following lemma.

Lemma 2.2 ([29, eq. (2.9)-(2.10)] and [22, eq. (2.6)]). Let u and p be the solutions of the
primal equation (1.2c) and the adjoint state equation (1.2d), respectively. Then the Eulerian
derivative of the functional J(Γ) with j(·, u) = 1

2 |u − ud|2 defined in (1.1) has the following
closed form:

dJ(Γ; v) = dJ(Γ, u, p; v) :=

∫
Ω
∇u · (∇v +∇v>)∇p− f∇p · vdx

+

∫
Ω

(
1

2
|u− ud|2 −∇u · ∇p)∇ · v − (u− ud)∇ud · vdx, (2.5)

where u and p are determined by Γ through the following equations:

−∆u = f in Ω, with u = 0 on Γ

−∆p = u− ud in Ω, with p = 0 on Γ.
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2.2. Weak formulation of the PDEs

For any flow map φ : Ω0× [0, T ]→ Rd, we denote by Ω[φ(·, t)] the image of Ω0 under the map
φ(·, t). Since the boundary type Eulerian derivative in (2.4) and the distributed type Eulerian
derivative in (2.5) are equivalent, (1.2b) can be equivalently written into the following weak
formulation by using integration by part: Find w ∈ H1(Ω)d such that∫

Ω

(
∇w : ∇v + w · v

)
dx =

∫
Γ
∂νw · vdΓ = −

∫
Γ
J ′(Γ)v · νdΓ

= −dJ(Γ; v) = −dJ(Γ, u, p; v) ∀ v ∈ H1(Ω)d, (2.6)

where the closed form of dJ(Γ, u, p; v) is given by (2.5). Then the moving boundary problem in
(1.2) can be written into the following weak formulation:

∂tφ = w ◦ φ, (2.7a)∫
Ω[φ(·,t)]

∇w : ∇χw + w · χwdx = −dJ(Γ(t), u, p;χw) ∀χw ∈ H1(Ω[φ(·, t)])d, (2.7b)∫
Ω[φ(·,t)]

∇u · ∇χudx =

∫
Ω[φ(·,t)]

fχudx ∀χu ∈ H1
0 (Ω[φ(·, t)]), (2.7c)∫

Ω[φ(·,t)]
∇p · ∇χpdx =

∫
Ω[φ(·,t)]

j′u(x, u)χpdx ∀χp ∈ H1
0 (Ω[φ(·, t)]), (2.7d)

under the initial condition φ(·, 0) = id|Ω0 , with Γ(t) = ∂Ω(t).

2.3. The evolving finite elements

Assume that the given smooth initial domain Ω0 ⊂ Rd, d ∈ {1, 2, 3}, is divided into a set
K 0
h of shape-regular and quasi-uniform simplices with mesh size h, using curved finite elements

of degree k > 2 to approximate the boundary Γ0 = ∂Ω0. In particular, every curved simplex
K ∈ K 0

h is the image of a unique polynomial of degree k defined on the reference simplex

K̂, denoted by FK : K̂ → K, called the parametrization of K; see [14, §8.6]. Moreover,
every boundary simplex K ∈ K 0

h (with one face or edge attached to Γ0) contains a possibly

curved face or edge to interpolate Γ0 with accuracy of O(hk+1). This can be obtained by using
Lenoir’s isoparametric finite elements [30] based on some parametrization of the boundary

Υ : ∂D̃ → ∂Ω0, where ∂D̃ denotes the flat boundary face in the flat simplex with the same
vertices as the curved boundary simplex K. In practice one can choose the parametrization
Υ to be the normal projection onto ∂Ω0, i.e., the unique point Υ(x) ∈ Γ such that (cf. [12,
Section 2.1])

x = Υ(x) + sign(x,Ω)|x−Υ(x)|n(Υ(x)),

where n(Υ(x)) is the unit outward normal vector and

sign(x,Ω) =

{
1 for x ∈ Rd\Ω(t),

− 1 for x ∈ Ω(t).

Thus the initial domain Ω0 is approximated by the triangulated domain Ω0
h =

⋃
K∈K 0

h
K.

Let x0 = (ξ1, · · · , ξN ) ∈ RdN be the vector that collects all the nodes ξj ∈ Rd, j = 1, . . . , N ,
(which define finite elements of degree k) in the triangulation K 0

h . We evolve the vector x0 in
time and denote its position at time t by

x(t) = (x1(t), · · · , xN (t)),

which determines the triangulation Kh[x(t)] and the domain Ωh[x(t)] =
⋃
K∈Kh[x(t)]K by piece-

wise polynomial interpolation on the reference simplex. Thus the edges or surfaces of the
simplices on both interior and boundary are curved, as in references [13, 14].

Similarly as the simplices on the initial domain, if K ∈ Kh[x(t)] is a simplex on the evolving

domain Ωh[x(t)] then we denote by FK : K̂ → K the parametrization of K, i.e., the unique

polynomial of degree k that maps the reference flat simplex K̂ onto the possibly curved simplex
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K. Correspondingly, the finite element space on the evolving domain Ωh[x(t)] is defined as

Skh[x(t)] = Skh(Ωh[x(t)]) := {vh ∈ H1(Ωh[x(t)]) : vh ◦ FK ∈ P k(K̂) for all K ∈ Kh[x(t)]}.
The approximate flow map is defined as the unique finite element function φh(·, t) ∈ Skh[x0]d

such that

φh(ξj , t) = xj(t) for j = 1, . . . , N.

It maps the initial domain Ω0
h onto the evolving domain Ωh[x(t)]. The velocity of the mesh

movement is the unique function wh(t) ∈ Skh[x(t)]d satisfying the following relation:

wh(t) ◦ φh(ξ, t) =
d

dt
φh(ξ, t) ∀ ξ ∈ Ω0

h.

If v(·, t) is a function defined on Ωh[x(t)] for t ∈ [0, T ], then its material derivative with respect
to the velocity field wh is defined as

∂•t,hv(x, t) =
d

dt
v(φh(ξ, t), t) at x = φh(ξ, t) ∈ Ωh[x(t)].

The finite element basis functions of Skh[x(t)] are denoted by φj [x(t)], j = 1, . . . , N , satisfying
the identities:

φj [x(t)](xi(t)) = δij , i, j = 1, . . . , N.

The pullback of φj [x(t)] from Ωh[x(t)] to Ω0
h is φj [x(t)] ◦ φh(·, t) = φj [x

0], which is simply
the finite element basis functions on Ωh[x0]. Therefore, the basis functions φj [x(t)] satisfy the
transport property:

∂•t,hφj [x(t)] = 0 on Ωh[x(t)], j = 1, . . . , N. (2.8)

By using the basis funtions φj [x(t)], the finite element space on the evolving domain Ωh[x(t)]
can be written as

Skh[x(t)] =
{ N∑
j=1

cjφj [x(t)] : cj ∈ R
}
,

S̊kh[x(t)] =
{
v ∈ Skh[x(t)] : v = 0 on ∂Ωh[x(t)]

}
.

2.4. The numerical method and its convergence

The semidiscrete evolving FEM for (2.7) reads: Find φh(·, t) ∈ Skh[x0]d ⊂ H1(Ω0
h)d and

x(t) = φh(x0, t), along with wh(t) ∈ Skh[x(t)]d ⊂ H1(Ωh[x(t)])d and uh(t), ph(t) ∈ S̊kh[x(t)] ⊂
H1

0 (Ωh[x(t)]), satisfying the following weak formulation:

∂tφh = wh ◦ φh (2.9a)∫
Ωh[x(t)]

∇wh : ∇χw + wh · χwdx = −dJ(Γh[x(t)], uh, ph;χw) ∀χw ∈ Skh[x(t)]d (2.9b)∫
Ωh[x(t)]

∇uh · ∇χudx =

∫
Ωh[x(t)]

fχudx ∀χu ∈ S̊kh[x(t)] (2.9c)∫
Ωh[x(t)]

∇ph · ∇χpdx =

∫
Ωh[x(t)]

j′u(x, uh)χpdx ∀χp ∈ S̊kh[x(t)] (2.9d)

under the initial condition φh(0) = φ0
h := id|Ω0

h
.

We consider the following time discretization of (2.9) with a linearly semi-implicit Euler
method: For given φnh ∈ Skh[x0]d and xn = φnh(x0), find φn+1

h ∈ Skh[x0]d, wnh ∈ Skh[xn]d and

unh, p
n
h ∈ S̊kh[xn] such that

φn+1
h − φnh

τ
= wnh ◦ φnh (2.10a)∫

Ωh[xn]
∇wnh : ∇χw + wnh · χwdx = −dJ(Γh[xn], unh, p

n
h;χw) ∀χw ∈ Skh[xn]d (2.10b)
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Ωh[xn]

∇unh · ∇χudx =

∫
Ωh[xn]

fχudx ∀χu ∈ S̊kh[xn] (2.10c)∫
Ωh[xn]

∇pnh · ∇χpdx =

∫
Ωh[xn]

j′u(x, unh)χpdx ∀χp ∈ S̊kh[xn] (2.10d)

and then set xn+1 = φn+1
h (x0). The algorithm only requires solving several decoupled linear

systems at every time level. In practice, unh and pnh can be first solved from (2.10c)–(2.10d) and

substituted into (2.10b) to yield wnh . The latter is used to defined φn+1
h through (2.10a).

For the practical computation and numerical analysis it is convenient to use matrix-vector
formulation to represent the system of equations in (2.10). For this purpose, we express the
unknown solutions in terms of the finite element basis functions φj [x

n], j = 1, . . . , N on domain
Ωh[xn], i.e.,

unh =

N∑
j=1

unj φj [x
n], with unj = unh(xnj ) ∈ R,

pnh =
N∑
j=1

pnj φj [x
n], with pnj = pnh(xnj ) ∈ R,

wnh =
N∑
j=1

wnj φj [x
n], with wnj = wnh(xnj ) ∈ Rd,

and collect the nodal values in column vectors

un = (unj ) ∈ RN , pn = (pnj ) ∈ RN and wn = (wnj ) ∈ RdN .
We define the domain-dependent mass matrix M(xn) and stiffness matrix A(xn) on the

domain Ωh[xn] determined by the nodal vector xn, i.e.,

M(xn)|jk =

∫
Ωh[xn]

φj [x
n]φk[x

n]dx

A(xn)|jk =

∫
Ωh[xn]

∇φj [xn] · ∇φk[xn]dx for j, k = 1, · · · , N.

With identity matrix Id ∈ Rd×d, we define K(xn)d as the Kronecker product of Id and K(xn) :=
M(xn) + A(xn),

K(xn)d := Id ⊗ (M(xn) + A(xn)).

To simplify the notation, we will use K(xn) to represent K(xn)d when the dimension of the
matrix is clear and therefore no confusion arises. With the matrices defined above, the L2 and
H1 norm of finite element functions can be expressed as quadratic forms:

‖un‖2M(xn) := (un)>M(xn)un = ‖unh‖2L2(Ωh[xn]),

‖un‖2A(xn) := (un)>A(xn)un = ‖∇unh‖2L2(Ωh[xn]),

‖wn‖2K(xn) := (wn)>K(xn)wn = ‖wnh‖2H1(Ωh[xn]).

The right-hand side vectors f(xn),J′u(xn,un) ∈ RN and dJ(xn,un,pn) ∈ RdN are given by

f(xn)|j =

∫
Ωh[xn]

fφj [x
n]dx,

J′u(xn,un)|j =

∫
Ωh[xn]

j′u(x, unh)φj [x
n]dx,

dJ(xn,un,pn)|d(j−1)+l =

∫
Ωh[xn]

(
∇φj [xn] · ∇unh − fφj [xn]

)
(∇pnh)l +∇φj [xn] · ∇pnh(∇unh)l

+
(
j(x, unh)−∇unh · ∇pnh

)
(∇φj [xn])l − j′u(x, unh)(∇ud)lφj [xn]dx,

for j = 1, · · · , N and 1 6 l 6 d.
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Using the nodal values vectors x, w, u and p and the matrices and right-hand side vectors
defined above, the fully discrete algorithm in (2.10) can be written into the following matrix-
vector form:

xn+1 − xn = τwn, (2.11a)

K(xn)wn = −dJ(xn,un,pn), (2.11b)

A(xn)un = f(xn), (2.11c)

A(xn)pn = J′u(xn,un). (2.11d)

We are now in the position to state the main result of this article, i.e., the convergence of the
fully discrete evolving FEM in (2.10). To this end, we denote by xn∗ = x∗(tn) = φ(x0, tn) the
image of the nodes of Ω0

h under the exact flow map. Correspondingly, K [xn∗ ] is a triangulation

of the domain Ω[φ(·, tn)] based on interpolation at the nodes in the vector xn∗ , and Skh[xn∗ ] is the
finite element space on the triangulated domain Ωh[xn∗ ] =

⋃
K∈K [xn∗ ]K. At the initial moment,

we have Ωh[x0
∗] = Ωh[x0] = Ω0

h. The Lagrangian interpolation of the exact solution, denoted

by φ̂nh ∈ Skh[x0]d and ŵnh ∈ Skh[xn∗ ]
d and ûnh, p̂

n
h ∈ S̊kh[xn∗ ], can be compared with the numerical

solution after both being pulled back to the initial domain Ω0
h. This is presented in the following

theorem.

Theorem 2.3 (Convergence of the evolving finite element approximations). Suppose that the
solution of (2.7), the flow map φ : Ω0 × [0, T ] → Rd and its inverse φ(·, t)−1 : Ω[φ(·, t)] →
Ω0, and the domain Ω[φ(·, t)] are all sufficiently smooth, and assume that the triangulations
K [x∗(t)] keep shape-regular and quasi-uniform (see Remark 2.5). Then there exist positive

constants τ0 and h0 such that for τ 6 τ0 and h 6 h0 together with the restriction τ = o(h
d
2 ),

the following error estimates hold:

‖φnh − φ̂nh‖H1(Ω0
h) + ‖wnh ◦ φnh − ŵnh ◦ φ̂nh‖H1(Ω0

h) + ‖unh ◦ φnh − ûnh ◦ φ̂nh‖H1(Ω0
h)

+ ‖pnh ◦ φnh − p̂nh ◦ φ̂nh‖H1(Ω0
h) 6 C(τ + hk),

(2.12)

where φ̂nh ∈ Skh[x0]d and ŵnh ∈ Skh[xn∗ ]
d and ûnh, p̂

n
h ∈ S̊kh[xn∗ ] are the Lagrangian interpolations of

the exact solutions.

Remark 2.4. If the domain Ω[φn] is smooth and the triangulation K [xn∗ ] is shape-regular and
quasi-uniform, and the exact solutions w(·, tn), u(·, tn) and p(·, tn) are sufficiently smooth, then
the following errors estimates of the Lagrangian interpolation are known (see [4]):

‖w̃n − ŵnh‖W 1,∞(Ωh[xn∗ ]) + ‖ũn − ûnh‖W 1,∞(Ωh[xn∗ ]) + ‖p̃n − p̂nh‖W 1,∞(Ωh[xn∗ ]) 6 Ch
k, (2.13a)

‖w̃n − ŵnh‖L∞(Ωh[xn∗ ]) + ‖ũn − ûnh‖L∞(Ωh[xn∗ ]) + ‖p̃n − p̂nh‖L∞(Ωh[xn∗ ]) 6 Ch
k+1, (2.13b)

where w̃n = w̃(·, tn), ũn = ũ(·, tn) and p̃n = p̃(·, tn) are the smooth extensions of w(·, tn), u(·, tn)
and p(·, tn) onto Rd.

Remark 2.5. The constants τ0, h0 and C depend on ‖∇φ‖L∞(Ω), which represents the defor-
mation of the domain. Therefore, the larger the deformation, the smaller stepsize and mesh
size are required. Moreover, if the initial triangulation is shape-regular and quasi-uniform,
then the triangulations K [x∗(t)] will keep shape-regular and quasi-uniform when ‖∇φ‖L∞(Ω)

and ‖∇φ−1‖L∞(Ω(t)) are bounded. In practice, we could divide the time interval [0, T ] into
several sufficiently small subintervals [Tj−1, Tj ], j = 1, . . . ,m, with T0 = 0, Tm = T and
Tj−Tj−1 = O(1), such that on each subinterval [Tj−1, Tj ] the deformation is not large, and then
re-initialize the mesh at the time levels Tj , j = 1, . . . ,m−1. This would keep the triangulations
shape-regular and quasi-uniform and avoid requiring too small stepsize and mesh size, compared
to evolving the mesh over the entire time interval [0, T ].

3. Convergence of the numerical approximations
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The proof of convergence consists of consistency and stability analysis. In the stability
analysis we need to compare two different triangulated domains, i.e, the triangulated domain
Ωh[xn∗ ] obtained from interpolating the exact domain Ω[φ(·, tn)], and the triangulated domain
Ωh[xn] determined by the numerical solution. In the spirit of the techniques in [32, 13], using
bulk domains instead of surfaces, we can obtain a similar sequence of results employing shape
derivatives by constructing a homotopy map between the Ωh[xn∗ ] and Ωh[xn]. The corresponding
results are listed in the following subsection and will be used in the stability analysis in Section
3.3.

3.1. Comparison of norms and integrals on two different domains

Let y, z ∈ RdN be the two nodal vectors which define the discrete finite element domains
Ωh[y] and Ωh[z], respectively. Let e = (ej) := y − z ∈ RdN . By means of a linear homolopy,

the intermediate domain Ωθ
h := Ωh[z + θe] changes continuously from Ωh[z] to Ωh[y] when the

parameter θ takes values in [0, 1]. For a vector u = (uj) ∈ RN we denote by uθh ∈ Skh[z + θe]
the finite element function on Ωh[z + θe] defined by

uθh =
N∑
j=1

ujφj [z + θe].

Similarly to the definition of the scalar-valued function uθh by using a N -dimensional vector u,

we can define a d-dimensional vector-valued function eθh by using the dN -dimensional vector e.
In combination with the fundamental theorem of calculus, Lemma 2.1 and the transport

property (2.8), the following lemma was proved in [13, Lemma 5.1].

Lemma 3.1. In the above setting the following identities hold:

u>(M(y)−M(z))v =

∫ 1

0

∫
Ωθh

uθh(∇ · eθh)vθhdxdθ, (3.1)

u>(A(y)−A(z))v =

∫ 1

0

∫
Ωθh

∇uθh · (DΩθh
eθh)∇vθhdxdθ, (3.2)

with DΩθh
eθh = trace(E)Id − (E + E>) for E = ∇eθh ∈ L2(Ωθ

h)d×d.

The two formulae in above lemma directly show that if ∇eθh is small, the norms of finite
element functions on the two finite element domains Ωh[z] and Ωh[y] with same nodal vectors
are equivalent. The following lemma was proved in [13, Lemma 5.2].

Lemma 3.2. If ‖∇ · eθh‖L∞(Ωθh) 6 µ for 0 6 θ 6 1, then

‖v‖M(z+θe) 6 e
µθ/2‖v‖M(z).

If ‖DΩθh
eθh‖L∞(Ωθh) 6 η for 0 6 θ 6 1, then

‖v‖A(z+θe) 6 e
ηθ/2‖v‖A(z).

The following lemma was proved in [13, Lemma 5.3], which says that the condition in Lemma
3.2 can be reduced to θ = 0.

Lemma 3.3. If ‖∇e0
h‖L∞(Ω0

h) 6
1
2 then the finite element function vθh on Ωθ

h, with 0 6 θ 6 1,

satisfies the following estimate:

‖∇Ωθhv
θ
h‖Lp(Ωθh) 6 cp‖∇Ω0

h
v0
h‖Lp(Ω0

h) for 1 6 p 6∞, (3.3)

where cp depends only on p.

In Lenoir’s isoparametric finite element approximation to Ω0, there exists a lift map Ψ :
Ω0
h → Ω0 satisfying the following estimates (cf. [30]):

|Ψ(x)− x| 6 Chk+1 for x ∈ Ω0
h and ‖∇Ψ− I‖L∞(Ω0

h) 6 Ch
k.
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Let φ : Ω0 × [0, T ] → Rd be the flow map which determines the domain Ω(t) = φ(Ω0, t),
and let φ∗h = Ihφ : Ω0

h × [0, T ] → Rd be the Lagrangian interpolation of the flow map. Let
x∗(t) be the image of x0 under the flow map φ. Thus Ωh[x∗(t)] is the triangulated domain
which approximates Ω(t) based on the nodes in x∗(t). Then Φ(·, t) = φ(·, t) ◦ Ψ ◦ φ∗h(·, t)−1 :
Ωh[x∗(t)]→ Ω(t) is a lift map at time t such that

|Φ(x, t)− x| 6 Chk+1 for x ∈ Ωh[x∗(t)] and ‖∇Φ(·, t)− I‖L∞(Ωh[x∗(t)]) 6 Ch
k.

Correspondingly, for a finite element function χh ∈ Skh[x∗(t)] defined on Ωh[x∗(t)], we can define
its lift onto Ω(t) by

χ̃h = χh ◦ Φ(·, t)−1.

Then the following lemma is a generalization of the geometric estimates in [32] and is used in
the proof of the consistency estimates in Lemma 3.5.

Lemma 3.4. The following estimates hold for χ, ψ ∈ Skh[x∗(t)] and g ∈W 1,∞(Rd):∣∣∣ ∫
Ωh[x∗(t)]

χψdx−
∫
Ω(t)

χ̃ψ̃dx
∣∣∣ 6 Chk‖χ‖L2(Ωh[x∗(t)])‖ψ‖L2(Ωh[x∗(t)]),∣∣∣ ∫

Ωh[x∗(t)]
∇χ · ∇ψdx−

∫
Ω(t)
∇χ̃ · ∇ψ̃dx

∣∣∣ 6 Chk‖χ‖H1(Ωh[x∗(t)])‖ψ‖H1(Ωh[x∗(t)]),∣∣∣ ∫
Ωh[x∗(t)]

gχdx−
∫
Ω(t)

gχ̃dx
∣∣∣ 6 Chk‖χ‖L2(Ωh[x∗(t)])‖g‖W 1,∞(Rd),∣∣∣ ∫

Ωh[x∗(t)]
g∇χdx−

∫
Ω(t)

g∇χ̃dx
∣∣∣ 6 Chk‖χ‖H1(Ωh[x∗(t)])‖g‖W 1,∞(Rd).

3.2. Error equations and consistency estimates

We compare the Lagrangian interpolations of the exact solution, denoted by φ̂nh ∈ Skh[x0]d

and ŵnh ∈ Skh[xn∗ ]
d and ûnh, p̂

n
h ∈ S̊kh[xn∗ ], with the numerical solutions φnh, wnh , unh and pnh, after

pulling these functions back to the initial domain Ω0
h.

The finite element functions φ̂nh ∈ Skh[x0
∗]
d, ŵnh ∈ Skh[xn∗ ]

d and ûnh, p̂
n
h ∈ S̊kh[xn∗ ] satisfy the weak

formulations up to some defects:

φ̂n+1
h − φ̂nh

τ
= ŵnh ◦ φ̂nh + dnφ, (3.4a)∫

Ωh[xn∗ ]
∇ŵnh : ∇χw + ŵnh · χwdx = −dJ(Γh[xn∗ ], û

n
h, p̂

n
h;χw) +

∫
Ωh[xn∗ ]

dnw · χwdx, (3.4b)

∫
Ωh[xn∗ ]

∇ûnh · ∇χudx =

∫
Ωh[xn∗ ]

fχudx+

∫
Ωh[xn∗ ]

dnuχudx, (3.4c)∫
Ωh[xn∗ ]

∇p̂nh · ∇χpdx =

∫
Ωh[xn∗ ]

j′u(x, ûnh)χpdx+

∫
Ωh[xn∗ ]

dnpχpdx, (3.4d)

for test functions χw ∈ Skh[xn∗ ]
d and χu, χp ∈ S̊kh[xn∗ ], where dnφ ∈ Skh[x0

∗]
d, dnw ∈ Skh[xn∗ ]

d and

dnu, d
n
p ∈ Skh[xn∗ ] are defects (consistency errors).

In the computation and analysis it is more convenient to write the above linear systems
into the matrix-vector form. To this end, we denote by wn

∗ , un∗ , pn∗ dnx, dnw dnu and dnp the
column vectors that collect the nodal values of ŵnh , ûnh, p̂nh d

n
φ, dnw, dnu and dnp , respectively. The

right-hand side vectors f(xn∗ ), J′u(xn∗ ,u
n
∗ ) and −dJ(xn∗ ,u

n
∗ ,p

n
∗ ) are defined by

f(xn∗ )|j =

∫
Ωh[xn∗ ]

fφj [x
n
∗ ]dx,

J′u(xn∗ ,u
n
∗ ) =

∫
Ωh[xn∗ ]

j′u(x, ûnh)φj [x
n
∗ ]dx,
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dJ(xn∗ ,u
n
∗ ,p

n
∗ )|j+N(l−1) =

∫
Ωh[xn∗ ]

(
∇φj [xn∗ ] · ∇ûnh − fφj [xn∗ ]

)
(∇p̂nh)l +∇φj [xn∗ ] · ∇p̂nh(∇ûnh)l

+ (j(x, ûnh)−∇ûnh · ∇p̂nh)(∇φj [xn∗ ])l − j′u(x, ûnh)(∇ud)lφj [xn∗ ]dx,
for j = 1, · · · , N and 1 6 l 6 d. Then (3.4) can be written into the following matrix-vector
form:

xn+1
∗ − xn∗ = τwn

∗ + τdnx, (3.5a)

K(xn∗ )w
n
∗ = −dJ(xn∗ ,u

n
∗ ,p

n
∗ ) + M[d](xn∗ )d

n
w, (3.5b)

A(xn∗ )u
n
∗ = f(xn∗ ) + M(xn∗ )d

n
u, (3.5c)

A(xn∗ )p
n
∗ = J′u(xn∗ ,u

n
∗ ) + M(xn∗ )d

n
p, (3.5d)

with M[d](xn∗ ) = Id ⊗M(xn∗ ). When no confusion arises, we simply write M(xn∗ ) for M[d](xn∗ )
and ‖ · ‖H1(Ω) for ‖ · ‖H1(Ω)d throughout.

The H−1 norm of the defect dnw will be used in stability analysis. It has the following
expression:

‖dnw‖H−1
h (Ωh[xn∗ ]) := sup

06=ψh∈Skh[xn∗ ]d
‖ψh‖−1

H1(Ωh[xn∗ ])

∫
Ωh[xn∗ ]

dnw · ψhdx

= sup
06=z∈RdN

(dnw)>M(xn∗ )z

(z>K(xn∗ )z)
1
2

= sup
06=z∈RdN

(dnw)>M(xn∗ )K(xn∗ )
− 1

2 K(xn∗ )
1
2 z

(z>K(xn∗ )z)
1
2

=
∥∥K(xn∗ )

− 1
2 M(xn∗ )d

n
w

∥∥
2

=
(

(dnw)>M(xn∗ )K(xn∗ )
−1M(xn∗ )d

n
w

) 1
2
.

Correspondingly, in the matrix-vector notation, we denote the discrete dual norm of dnw by

‖dnw‖2?,xn∗ := (dnw)>M(xn∗ )K(xn∗ )
−1M(xn∗ )d

n
w.

Similarly, we denote the discrete dual norms of dnu,d
n
p ∈ RN by

‖dnu‖2?,xn∗ := (dnu)>M(xn∗ )K(xn∗ )
−1M(xn∗ )d

n
u = ‖dnu‖2H−1

h (Ωh[xn∗ ])
,

‖dnp‖2?,xn∗ := (dnp)>M(xn∗ )K(xn∗ )
−1M(xn∗ )d

n
p = ‖dnp‖2H−1

h (Ωh[xn∗ ])
.

The stability estimates will be established by comparing the matrix-vector formulations (2.11)
and (3.5). By subtracting (3.5) from (2.11), we obtain the following equations for the errors
enx = xn − xn∗ , enw = wn −wn

∗ , enu = un − un∗ and enp = pn − pn∗ :

en+1
x =enx + τenw − τdnx, (3.6a)

K(xn∗ )e
n
w =− (K(xn)−K(xn∗ ))e

n
w − (K(xn)−K(xn∗ ))w

n
∗ (3.6b)

− (dJ(xn,un,pn)− dJ(xn∗ ,u
n
∗ ,p

n
∗ ))−M(xn∗ )d

n
w,

A(xn∗ )e
n
u =− (A(xn)−A(xn∗ ))e

n
u − (A(xn)−A(xn∗ ))u

n
∗ (3.6c)

+ (f(xn)− f(xn∗ ))−M(xn∗ )d
n
u,

A(xn∗ )e
n
p =− (A(xn)−A(xn∗ ))e

n
p − (A(xn)−A(xn∗ ))p

n
∗ (3.6d)

+ (J′u(xn,un)− J′u(xn∗ ,u
n
∗ ))−M(xn∗ )d

n
p.

The error estimates depend on the estimates for the defect terms dnx, dnw, dnu and dnp (the
consistency errors), which are presented in the following lemma. The proof of this lemma is
omitted as it basically follows from the approximation properties of the Lagrangian interpola-
tion, Taylor’s formula and Lemma 3.4.

Lemma 3.5 (Consistency estimates). Under the assumptions of Theorem 2.3, there exist pos-
itive constants τ0 and h0 such that for τ 6 τ0 and h 6 h0, the following consistency error
estimates hold:

sup
16n6[T/τ ]

‖dnx‖K(xn∗ ) 6 Cτ, (3.7a)
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sup
16n6[T/τ ]

(
‖dnw‖?,xn∗ + ‖dnu‖?,xn∗ + ‖dnp‖?,xn∗

)
6 Chk. (3.7b)

3.3. Stability estimates

From the error equations in (3.6) and the consistency estimates in Lemma 3.5, we can derive
the following stability estimates.

Proposition 3.6 (Stability estimates). Under the assumptions of Theorem 2.3, there exists a

positive constant h0 such that for τ = o(h
d
2 ) and h 6 h0 the following stability estimate holds:

sup
06n6[T/τ ]

(
‖enx‖K(xn∗ ) + ‖enw‖K(xn∗ ) + ‖enu‖K(xn∗ ) + ‖enp‖K(xn∗ )

)
6 C sup

06n6[T/τ ]
(‖dnx‖K(xn∗ ) + ‖dnw‖?,xn∗ + ‖dnu‖?,xn∗ + ‖dnp‖?,xn∗ ), (3.8)

where C is independent of τ , h and n (but may depend on T ).

Proof. Let enx ∈ Skh[xn∗ ]
d, enw ∈ Skh[xn∗ ]

d and enu, e
n
p ∈ S̊kh[xn∗ ] be the finite element error functions

on Ωh[xn∗ ] with nodal vectors enx, enw, enu and enp, respectively. We make the following math-
ematical induction on the boundedness of the errors: We assume that there exists an integer
1 6 m 6 [T/τ ] such that the following inequalities hold for all 0 6 n 6 m− 1,

‖enx‖W 1,∞(Ωh[xn∗ ]) 6h
− d

4 (τ
1
2 + h

k
2 ), (3.9a)

‖enu‖W 1,∞(Ωh[xn∗ ]) 61, (3.9b)

‖enp‖W 1,∞(Ωh[xn∗ ]) 61. (3.9c)

In fact, the inequalities above hold at least for m = 1 because of the following two reasons:
(i) Since x0

∗ = x0, it follows that e0
x = 0.

(ii) Testing (3.6c) and (3.6d) with e0
u and e0

p, respectively, yields the following relations:

(e0
u)>A(x0

∗)e
0
u =− (e0

u)>M(x0
∗)d

0
u,

(e0
p)>A(x0

∗)e
0
p =(e0

p)>(J′u(x0,u0)− J′u(x0
∗,u

0
∗))− (e0

p)>M(x0
∗)d

0
p.

By Poincaré’s inequality, ‖ · ‖A(xn∗ ) and ‖ · ‖K(xn∗ ) are equivalent for functions in H1
0 (Ωh[xn∗ ]),

and the equivalence is independent of h since there is a one-to-one W 1,∞-uniformly bounded lift
map from Ωh[xn∗ ] onto Ω[x(tn)]. Therefore, the relations above together with Cauchy-Schwarz
inequality imply that

‖e0
u‖K(x0

∗)
6 C‖d0

u‖?,x0
∗
6 Chk

(e0
p)>(J′u(x0,u0)− J′u(x0

∗,u
0
∗)) =

∫
Ω0
h

e0
p(u

0
h − û0

h)dx 6 Chk+1‖e0
p‖M(x0

∗)
,

and therefore

‖e0
p‖K(x0

∗)
6 Chk.

By the inverse inequality of finite element functions, we have

‖e0
u‖W 1,∞(Ωh[x0

∗])
6Ch−

d
2 ‖e0

u‖K(x0
∗)
6 Chk−

d
2 ,

‖e0
p‖W 1,∞(Ωh[x0

∗])
6Ch−

d
2 ‖e0

p‖K(x0
∗)
6 Chk−

d
2 .

Therefore, in the case k > 2 > d/2, assumptions (3.9b)–(3.9c) hold for n = 0 when h is
sufficiently small.

Now we prove that the stated error bounds (3.8) hold for all time levels 0 6 n 6 m under
the induction assumption. The mathematical induction will be completed by proving that (3.9)
also holds for n = m.

(A) Estimates for enx : First, multiplying (3.6a) by matrix K(xn∗ ), we have

K(xn∗ )e
n
x = K(xn∗ )e

n−1
x + τK(xn∗ )e

n−1
w − τK(xn∗ )d

n−1
x , for 1 6 n 6 m.
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Then, testing the equation above by enx, the following relation is derived:

‖enx‖2K(xn∗ ) = (enx)>K(xn∗ )e
n−1
x + τ(enx)>K(xn∗ )e

n−1
w − τ(enx)>K(xn∗ )d

n−1
x

6 ‖enx‖K(xn∗ )‖en−1
x ‖K(xn∗ ) + τ‖enx‖K(xn∗ )

(
‖en−1

w ‖K(xn∗ ) + ‖dn−1
x ‖K(xn∗ )

)
.

Next, by dividing both sides by ‖enx‖K(xn∗ ), we obtain

‖enx‖K(xn∗ ) 6 ‖en−1
x ‖K(xn∗ ) + τ‖en−1

w ‖K(xn∗ ) + τ‖dn−1
x ‖K(xn∗ ). (3.10)

In order to iterate the inequality above with respect to n, we need to convert ‖en−1
x ‖K(xn∗ ) to

‖en−1
x ‖K(xn−1

∗ ) on the right-hand side by utilizing Lemmas 3.1–3.3, which imply the following

result:

‖en−1
x ‖2K(xn∗ ) − ‖e

n−1
x ‖2

K(xn−1
∗ )
6 Cτ‖en−1

x ‖2
K(xn−1

∗ )
. (3.11)

Now, we can substitute (3.11) into (3.10) and sum up the result with respect to n. This yields
the following estimate:

‖enx‖K(xn∗ ) 6 Cτ
n∑
l=1

(
‖el−1

w ‖K(xl−1
∗ ) + ‖dl−1

x ‖K(xl−1
∗ )

)
+ Cτ

n∑
l=1

‖el−1
x ‖K(xl−1

∗ )

for 1 6 n 6 m.

(3.12)

Similarly, testing equations (3.6b), (3.6c) and (3.6d) with enw, enu and enp, respectively, we
obtain

‖enw‖2K(xn∗ ) =− (enw)>(K(xn)−K(xn∗ ))e
n
w − (enw)>(K(xn)−K(xn∗ ))w

n
∗ (3.13a)

− (enw)>(dJ(xn,un,pn)− dJ(xn∗ ,u
n
∗ ,p

n
∗ ))− (enw)>M(xn∗ )d

n
w,

‖enu‖2A(xn∗ ) =− (enu)>(A(xn)−A(xn∗ ))e
n
u − (enu)>(A(xn)−A(xn∗ ))u

n
∗ (3.13b)

+ (enu)>(f(xn)− f(xn∗ ))− (enu)>M(xn∗ )d
n
u,

‖enp‖2A(xn∗ ) =− (enp)>(A(xn)−A(xn∗ ))e
n
p − (enp)>(A(xn)−A(xn∗ ))p

n
∗ (3.13c)

+ (enp)>(J′u(xn,un)− J′u(xn∗ ,u
n
∗ ))− (enp)>M(xn∗ )d

n
p.

In the following, we present estimates for enu, enp and enw by using the equations in (3.13).

(B) Estimates for enu under assumption (3.9a): We estimate the four terms on the right-hand
side of (3.13b) separately by using Lemmas 3.1–3.3. For θ ∈ [0, 1], we denote by enx,θ, e

n
u,θ, û

n
h,θ

the finite element functions on the intermediate domain Ωh[xnθ ] for xnθ = xn∗ + θenx with nodal
vectors enx, e

n
u,u

n
∗ , respectively.

The first term on the right hand side of (3.13b) can be estimated by using Lemma 3.1 and
Hölder’s inequality, i.e.,

(enu)>(A(xn)−A(xn∗ ))e
n
u =

∫ 1

0

∫
Ωh[xnθ ]

∇enu,θ · (DΩh[xnθ ]e
n
x,θ)∇enu,θdxdθ

6
∫ 1

0
‖∇enu,θ‖2L2(Ωh[xnθ ])‖DΩh[xnθ ]e

n
x,θ‖L∞(Ωh[xnθ ])dθ.

Under the induction assumption in (3.9a) we obtain from Lemma 3.3 that

(enu)>(A(xn)−A(xn∗ ))e
n
u 6 Ch

− d
4 (τ

1
2 + h

k
2 )‖enu‖2A(xn∗ ) for 0 6 n 6 m− 1.

The second term on the right hand side of (3.13b) can be estimated similarly, i.e.,

(enu)>(A(xn)−A(xn∗ ))u
n
∗ 6

∫ 1

0
‖∇enu,θ‖L2(Ωh[xnθ ])‖∇enx,θ‖L2(Ωh[xnθ ])‖∇ûnh,θ‖L∞(Ωh[xnθ ])dθ

6C‖∇enu‖L2(Ωh[xn∗ ])‖∇enx‖L2(Ωh[xn∗ ])‖ûnh‖W 1,∞(Ωh[xn∗ ])

6C‖enu‖A(xn∗ )‖enx‖A(xn∗ ),

where the second to last inequality follows from Lemma 3.3.
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The third term on the right hand side of (3.13b) can be written as

(enu)>(f(xn)− f(xn∗ )) =

∫
Ωh[xn1 ]

fenu,1dx−
∫
Ωh[xn0 ]

fenu,0dx

=

∫ 1

0

d

dθ

∫
Ωh[xnθ ]

fenu,θdxdθ

=

∫ 1

0

∫
Ωh[xnθ ]

(∂•θ (fenu,θ) + fenu,θ∇ · enx,θ)dxdθ,

where ∂•θ denotes the material derivative with respect to θ. By using the transport property
∂•θe

n
u,θ = 0 we have ∂•θ (fenu,θ) = enu,θ∂

•
θf . Since f is a function of only x, it follows that

∂•θf = ∇f · enx,θ. This gives the expression ∂•θ (fenu,θ) = enu,θ∇f · enx,θ. Therefore, by using
Hölder’s inequality, we obtain

(enu)>(f(xn)− f(xn∗ )) =

∫ 1

0

∫
Ωh[xnθ ]

(enu,θ∇f · enx,θ + fenu,θ∇ · enx,θ)dxdθ

6
∫ 1

0
‖enu,θ‖L2(Ωh[xnθ ])‖∇f‖L∞(Ωh[xnθ ])‖enx,θ‖L2(Ωh[xnθ ])dθ

+

∫ 1

0
‖f‖L∞(Ωh[xnθ ])‖enu,θ‖L2(Ωh[xnθ ])‖∇ · enx,θ‖L2(Ωh[xnθ ])dθ.

In view of Lemmas 3.2 and 3.3, we have

(enu)>(f(xn)− f(xn∗ )) 6C‖enu‖M(xn∗ )‖enx‖K(xn∗ ).

The fourth term on the right hand side of (3.13b) can be estimated directly as follows:

(enu)>M(xn∗ )d
n
u 6 ‖enu‖K(xn∗ )‖dnu‖?,xn∗ .

Combining the four estimates above, we derive that

‖enu‖2A(xn∗ ) 6 Ch
− d

4 (τ
1
2 + h

k
2 )‖enu‖2A(xn∗ ) + C‖enu‖K(xn∗ )‖enx‖K(xn∗ ) + ‖enu‖K(xn∗ )‖dnu‖?,xn∗ .

Since ‖ · ‖A(xn∗ ) and ‖ · ‖K(xn∗ ) are equivalent for functions in S̊kh[xn∗ ], when τ = o(h
d
2 ) and h is

sufficiently small so that Ch−
d
2 (τ + hk) 6 1

4 , we have

‖enu‖K(xn∗ ) 6 C‖enx‖K(xn∗ ) + C‖dnu‖?,xn∗ for 0 6 n 6 m− 1. (3.14)

(C) Estimates for enp under assumption (3.9a): The estimation of the first, second and fourth
term on the right-hand side of (3.13c) are similar as that in part (B) of this proof and therefore
omitted. We focus on the estimation of (enp)>(J′u(xn,un)−J′u(xn∗ ,u

n
∗ )). Let enp,θ and unh,θ be the

finite element functions in S̊kh[xnθ ] with nodal vectors enp and un∗ + θenu, i.e., unh,θ = ûnh,θ + θenu,θ.
Then

(enp)>(J′u(xn,un)− J′u(xn∗ ,u
n
∗ ))

=

∫ 1

0

d

dθ

∫
Ωh[xnθ ]

j′u(x, unh,θ)e
n
p,θdxdθ

=

∫ 1

0

∫
Ωh[xnθ ]

(enu,θ −∇ud · enx,θ)enp,θ + (unh,θ − ud)enp,θ∇ · enx,θdxdθ.

By Lemma 3.3 and Hölder’s inequality, and induction assumption (3.9a), we have

(enp)>(J′u(xn,un)− J′u(xn∗ ,u
n
∗ ))

6 C(‖enu‖M(xn∗ ) + ‖enx‖M(xn∗ ))‖enp‖M(xn∗ ) + C‖enp‖M(xn∗ )‖enx‖A(xn∗ )

+ C‖enu‖M(xn∗ )‖enp‖M(xn∗ )‖enx‖W 1,∞(Ωh[xn∗ ]).

Similarly as the estimation of enu, by Cauchy-Schwartz inequality, we obtain that

‖enp‖K(xn∗ ) 6 C‖enu‖K(xn∗ ) + C‖enx‖K(xn∗ ) + C‖dnp‖?,xn∗ for 0 6 n 6 m− 1. (3.15)
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(D) Estimates for enw under assumption (3.9): The first, second and fourth terms on the right-
hand side of (3.13a) can be estimated similarly. The third term need to be estimated by using
the expressions of dJ(xn,un,pn) and dJ(xn∗ ,u

n
∗ ,p

n
∗ ) and therefore more complicated. To this

end, we denote pnh,θ = p̂nh,θ + θenp,θ and use Lemma 2.2, which gives us the following expression:

(enw)>(dJ(xn,un,pn)− dJ(xn∗ ,u
n
∗ ,p

n
∗ ))

=

∫ 1

0

d

dθ

∫
Ωh[xnθ ]

∇unh,θ · (∇enw,θ + (∇enw,θ)>)∇pnh,θ − fenw,θ · ∇pnh,θ − j′u(x, unh,θ)∇ud · enw,θ

+ (j(x, unh,θ)−∇unh,θ · ∇pnh,θ)∇ · enw,θdxdθ.

Then

∂•θ
(
∇unh,θ · (∇enw,θ + (∇enw,θ)>)∇pnh,θ

)
=∂•θ (∇unh,θ) · (∇enw,θ + (∇enw,θ)>)∇pnh,θ +∇unh,θ · ∂•θ (∇enw,θ + (∇enw,θ)>)∇pnh,θ

+∇unh,θ · (∇enw,θ + (∇enw,θ)>)∂•θ (∇pnh,θ).
The material derivatives of ∇unh,θ, ∇pnh,θ, ∇enw,θ and ∇ · enw,θ are given by

∂•θ (∇unh,θ) =∇enu,θ − (∇enx,θ)>∇unh,θ,
∂•θ (∇pnh,θ) =∇enp,θ − (∇enx,θ)>∇pnh,θ,
∂•θ (∇enw,θ) =− (∇enx,θ)>∇enw,θ,

∂•θ (∇ · enw,θ) =− tr[(∇enx,θ)>∇enw,θ].
Therefore,

(enw)>(dJ(xn,un,pn)− dJ(xn∗ ,u
n
∗ ,p

n
∗ ))

=

∫ 1

0

∫
Ωh[xnθ ]

[
∇unh,θ · (∇enw,θ + (∇enw,θ)>)(∇pnh,θ)− enw,θ · (∇pnh,θ)f

]
∇ · enx,θdxdθ

+

∫ 1

0

∫
Ωh[xnθ ]

[(
j(x, unh,θ)− (∇unh,θ) · (∇pnh,θ)

)
∇ · enw,θ

]
∇ · enx,θdxdθ

−
∫ 1

0

∫
Ωh[xnθ ]

j′u(x, unh,θ)(∇ud · enw,θ)∇ · enx,θdxdθ

+

∫ 1

0

∫
Ωh[xnθ ]

(
∇enu,θ − (∇enx,θ)>(∇unh,θ)

)
· (∇enw,θ + (∇enw,θ)>)(∇pnh,θ)dxdθ

+

∫ 1

0

∫
Ωh[xnθ ]

(
∇enp,θ − (∇enx,θ)>(∇pnh,θ)

)
· (∇enw,θ + (∇enw,θ)>)(∇unh,θ)dxdθ

−
∫ 1

0

∫
Ωh[xnθ ]

(∇unh,θ) · (∇enw,θ∇enx,θ + (∇enw,θ∇enx,θ)>)(∇pnh,θ)dxdθ

−
∫ 1

0

∫
Ωh[xnθ ]

(∇f · enx,θ)(enw,θ · ∇pnh,θ) + fenw,θ ·
(
∇enp,θ − (∇enx,θ)>(∇pnh,θ)

)
dxdθ

−
∫ 1

0

∫
Ωh[xnθ ]

(enu,θ −∇ud · enx,θ)∇ud · enw,θ + (unh,θ − ud)(enx,θ)>(∇2ud)
>enw,θdxdθ

+

∫ 1

0

∫
Ωh[xnθ ]

(unh,θ − ud)(enu,θ −∇ud · enx,θ)(∇ · enw,θ)dxdθ

−
∫ 1

0

∫
Ωh[xnθ ]

(∇enu,θ − (∇ex,θ)>∇unh,θ) · ∇pnh,θ(∇ · enw,θ)dxdθ
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−
∫ 1

0

∫
Ωh[xnθ ]

∇unh,θ · (∇enp,θ − (∇enx,θ)>∇pnh,θ)(∇ · enw,θ)dxdθ

−
∫ 1

0

∫
Ωh[xnθ ]

(j(x, unh,θ)−∇unh,θ · ∇pnh,θ)
d∑
l=1

∇[(enw,θ)l] · ∂xle
n
x,θdxdθ.

By Lemmas 3.2 and 3.3 we obtain the following estimates of this term under the induction
assumption in (3.9):

(enw)>(dJ(xn,un,pn)− dJ(xn∗ ,u
n
∗ ,p

n
∗ ))

6 C‖enw‖K(xn∗ )(‖enp‖K(xn∗ ) + ‖enx‖K(xn∗ ) + ‖enu‖K(xn∗ ))(1 + ‖enp‖W 1,∞)(1 + ‖enx‖W 1,∞)

+ C‖enw‖K(xn∗ )(‖enx‖K(xn∗ ) + ‖enu‖K(xn∗ ) + ‖enp‖K(xn∗ ))(1 + ‖enu‖W 1,∞)(1 + ‖enx‖W 1,∞)

6 C‖enw‖K(xn∗ )(‖enp‖K(xn∗ ) + ‖enx‖K(xn∗ ) + ‖enu‖K(xn∗ )),

where the W 1,∞ norm is taken on the domain Ωh[xn∗ ]. Combining this estimate with the other
three terms on the right-hand side of (3.13a), for which the estimates are omitted due to the
similarity as Part (B) of the proof, we have

‖enw‖K(xn∗ ) 6 C(‖enx‖K(xn∗ ) + ‖enu‖K(xn∗ ) + ‖enp‖K(xn∗ ) + ‖dnw‖?,xn∗ ). (3.16)

(E) Combination of estimates for ‖enx‖K(xn∗ ), ‖enu‖K(xn∗ ), ‖enp‖K(xn∗ ) and ‖enw‖K(xn∗ ): Finally,
combining the estimates in (3.12), (3.14), (3.15) and (3.16), we have

‖enx‖K(xn∗ ) 6Cτ
n∑
l=1

(
‖dl−1

x ‖K(xl−1
∗ ) + ‖dl−1

u ‖?,xl−1
∗

+ ‖dl−1
p ‖?,xl−1

∗
+ ‖dl−1

w ‖?,xl−1
∗

)
+ Cτ

n∑
l=1

‖el−1
x ‖K(xl−1

∗ ) for 1 6 n 6 m.

By applying the discrete Grönwall’s inequality we obtain

‖enx‖K(xn∗ ) 6 C sup
16l6n

(
‖dl−1

x ‖K(xl−1
∗ ) + ‖dl−1

u ‖?,xl−1
∗

+ ‖dl−1
p ‖?,xl−1

∗
+ ‖dl−1

w ‖?,xl−1
∗

)
for 1 6 n 6 m. (3.17)

Furthermore, under the assumptions of Proposition 3.6, the inequality above implies the
following result:

‖enx‖K(xn∗ ) 6 C(τ + hk) for 1 6 n 6 m.

With this result, estimates (3.14) and (3.15) also hold for 1 6 n 6 m. This leads to

‖enu‖K(xn∗ ) 6 C(τ + hk) and ‖enp‖K(xn∗ ) 6 C(τ + hk) for 1 6 n 6 m,

which further imply (3.9) for 1 6 n 6 m when τ = o(h
d
2 ) and h is sufficiently small. This

completes the mathematical induction.
Accordingly, estimates (3.14), (3.15), (3.16) and (3.17) hold for all 1 6 n 6 [T/τ ]. Substitut-

ing (3.17) into the other three estimates yields the desired result in Proposition 3.6. �

3.4. Proof of Theorem 2.3

Theorem 2.3 is an immediate consequence of the consistency estimates in Lemma 3.5 and the
stability estimates in Proposition 3.6. �

4. Numerical examples

In this section, we present numerical examples to support the theoretical analysis in this
article by illustrating the convergence of the proposed method and the effectiveness of the
method in simulating boundary evolution under shape gradient flow in three-dimensional space.
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The computations are performed by the finite element software package NGSolve; see https:
//ngsolve.org/.

Example 4.1 (Convergence of the evolving FEM). We consider the shape gradient flow gov-
erned by the following moving-boundary PDEs:

∂tφ = w ◦ φ in Ω0, φ(0) = id|Ω0 in Ω0, (4.1a)

−∆w + w = 0 in Ω(t), ∂νw = −J ′(Γ(t))ν on Γ(t), (4.1b)

−∆u+ u = f in Ω(t), u = 0 on Γ(t), (4.1c)

−∆p+ p = j′u(·, u) in Ω(t), p = 0 on Γ(t), (4.1d)

with the following initial condition, source functions and shape density:

Ω0 = {(x1, x2) :
x2

1

0.852
+

x2
2

0.452
6 1}, f = 5− x2

1 − x2
2,

j(·, u) =
1

2
|u− ud|2 with ud = 1− x2

1 − x2
2.

As t → ∞, the boundary Γ(t) converges to the optimal boundary Γ∞ which minimizes the
energy functional J(Γ) =

∫
Ω j(x, u)dx under the constraint −∆u + u = f , i.e., the unit circle

Γ∞ = {(x1, x2) : x2
1 + x2

2 = 1}.
We test the convergence in space at time T = 10 by choosing a sufficiently small time

stepsize such that the errors from the time discretization are negligibly small. The errors of
the numerical solutions are presented in Figure 1 (a)–(d) for several different spatial mesh sizes
h = 1/24, 1/36, 1/54, 1/81, for finite elements of degree k = 1, 2, 3. The numerical results
indicate that the numerical solutions have kth-order convergence in space. This is consistent
with the theoretical result proved in Theorem 2.3 in the case k = 2, 3. The analysis of stability
and convergence of numerical approximations in the case k = 1 is still challenging.

In addition to spatial discretization, we also test the convergence of time discretizations by
backward differentiation formula (BDF) of order 1, 2, 3, which we refer to as BDF-1, BDF-2
and BDF-3, respectively. In the BDF methods, we replace wnh by wn+1

h in equation (2.10a).
Accordingly, (2.10) becomes a nonlinearly coupled system which needs to be solved by using
fixed point iterations. The errors of the time discretizations are presented in Figure 1 (e)–(h),
which indicate that the numerical solutions given by BDF-k have kth-order convergence in time.
For BDF-1, this is consistent with the theoretical result proved in Theorem 2.3.

The shape and mesh of the evolving domain at time t = 0, t = 5 and t = 30 are presented
in Figure 2 with meshsize h = 0.06 and time stepsize τ = 0.1, where we can observe that the
shape of the boundary at t = 30 is already almost the same as the optimal boundary Γ∞.

Example 4.2 (Dumbbell shape in three dimensions). We consider problem (4.1) with the
following initial condition, shape density and source functions:

Ω0 = {(x1, x2, x3) :
x2

1

0.852
+

x2
2

0.452
+

x2
3

0.452
6 1}

j(·, u) =
1

2
|u− ud|2 with ud = x2

1 +
x2

2 + x2
3

(0.7x2
1 + 0.3)2

− 1

f = −∆ud + ud.

As t→∞, the boundary Γ(t) converges to a three-dimensional dumbbell-shape optimal bound-
ary Γ∞, as shown in Figure 3 (d). The shape and mesh of the evolving 3D domain at time
t = 0, t = 10 and t = 100 are presented in Figure 3 (a)-(c) with meshsize h = 0.06 and time
stepsize τ = 0.1, where we can observe that the shape of the boundary at t = 100 is almost the
same as the optimal boundary Γ∞.

Example 4.3 (Drag minimization under Stokes flow in three dimensions).
We consider an example from drag minimization on the exterior of a three-dimensional obstacle
surrounded by viscous incompressible Stokes flow (see [22, Fig. 3.2]), which has many applica-
tions in airfoil design and obstacle problems. The analysis in this article could be extended to
this example; see the discussions in Section 5.

https://ngsolve.org/
https://ngsolve.org/
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Figure 1. Errors of the numerical solutions at time T = 10 (Example 4.1)
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(a) The domain and mesh at t = 0 (b) The domain and mesh at t = 5

(c) The domain and mesh at t = 30 (d) The optimal boundary Γ∞

Figure 2. Evolution of the 2D domain in Example 4.1.

(a) The domain and mesh at t = 0 (b) The domain and mesh at t = 10

(c) The domain and mesh at t = 100 (d) The optimal boundary Γ∞

Figure 3. Evolution of the 3D domain in Example 4.2.
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The velocity of the fluid which surrounds the obstacle is governed by the following Stokes
equation:


−∇ · (2µD(u)− pI) = f in D\Ω,
∇ · u = 0 in D\Ω,
u = 0 on Γ ∪ Γw,
u = uin on Γin,
(2µD(u)− pI)ν = 0 on Γout,

(4.2)

where µ = 0.1 denotes the viscosity of the fluid and ν is the unit outward normal vector on
the boundary of domain D = (−1, 1) × (−0.5, 0.5) × (−0.5, 0.5) excluding the obstacle Ω, and
D(u) = 1

2(∇u+∇u>) is the deformation tensor. The inflow and outflow parts of the boundary
are denoted by Γin and Γout, which are the left and right sides of the cube, respectively. The
no-slip boundary condition is imposed on the other parts Γw of the boundary and the boundary
Γ of the obstacle. In our numerical test we set f = 0 and uin = (1, 0, 0)>.

The drag minimization problem seeks a boundary Γ which minimizes the energy dissipation
of fluids, i.e.,

min
∂Ω=Γ

Vol(Ω)=const

J(Γ) = µ

∫
D\Ω
|Du|2dx.

The distributed Eulerian derivative of the energy functional J(Γ) has the following expression
(see [47, (36)]):

dJ(Γ; v) =

∫
D\Ω

[
µ
(
|Du|2∇ · v − Du : (∇u∇v> +∇v∇u>)

)
+ p∇u : ∇v>

]
dx.

By applying our method to the drag minimization under Stokes flow, we evolve the domain
under the H1 shape gradient flow associated to the energy functional J(Γ), where the initial
shape of the domain is a sphere centered at (−0.4, 0, 0) with radius 0.2. In order to maintain
the volume constraint of Ω in the evolution, we choose a divergence-free descent velocity w from
the solution of the following equation (in the weak formulation):∫

D\Ω
∇w : ∇v dx−

∫
D\Ω

q∇ · v dx = −dJ(Γ; v),

∫
D\Ω
∇ · w η dx = 0,

(4.3)

for any test functions η ∈ R and v ∈ H1(D\Ω) with no-slip boundary condition on Γw∪Γin∪Γout

in the finite element discretization.
The evolution of shape and mesh of the three-dimensional domain at time t = 0, t = 0.01, t =

0.04 and t = 0.05 are presented in Figure 4 (a)-(d) with time stepsize τ = 0.001, maximal mesh
size h = 0.06 in Ω, and local mesh size h = 0.02 near the obstacle. Our numerical simulation
shows that the shape of the domain is close to stationary at t = 0.05. The corresponding
optimal shape of the obstacle under volume constraint dragged by the viscous incompressible
Stokes flow is presented in Figure 4(d).
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(a) The domain and mesh at t = 0 (b) The domain and mesh at t = 0.01

(c) The domain and mesh at t = 0.04 (d) The domain and mesh at t = 0.05

Figure 4. Evolution of the shape of the obstacle in Example 4.3.

5. Conclusions and extensions

We have formulated the shape optimization problem with shape density function j(·, u) =
1
2 |u− ud|

2, constrained by the Poisson equation, into a gradient flow system of nonlinear PDEs
on an evolving domain with a solution-driven evolving boundary that tends to the optimal
shape. The formulation is intended to make the evolving finite element approximations to the
boundary evolution have stability and convergence with optimal-order accuracy up to a given
time through utilizing the H1 shape gradient flow and distributed Eulerian derivative. The main
advantage of using the distributed Eulerian shape derivative lies in the convenience it offers for
proving the stability estimates. If we were to use formula (2.4), it would necessitate computing
the material derivative ∂•θ of the normal vector of the boundary Γθh. However, this approach
would lead to several difficulties. First, we would need to estimate the errors associated with
the normal vector, which can be a complex task. Additionally, the usage of Sobolev spaces
on the boundary becomes necessary, introducing further intricacies in the analysis. Moreover,
the computation of the material derivative of the normal vector is not as clear-cut as with the
distributed Eulerian derivative. The lack of clarity in this process adds to the overall complexity
and makes the stability analysis more challenging.

We have proved the stability and convergence of the numerical approximations to the bound-
ary evolution under shape gradient flow by using the evolving bulk finite elements systematically
studied in [14] and the geometric estimates developed in [32, 13]. The latter is used to compare
the error between two functions defined on different domains. We have illustrated the conver-
gence and performance of the proposed method through numerical examples in both two and
three dimensions.

The formulation, algorithm and analysis in this article could be extended to other shape
density functions, such as j(·, u) = 1

2 |∇u|
2. For example, for the shape density function j(·, u) =

1
2 |∇u|

2 we have p = u and the following expression of the distributed Eulerian derivative:

dJ(Γ, u; v) =
1

2

∫
Ω

(
∇u · (∇v +∇v>)∇u− |∇u|2∇ · v

)
dx−

∫
Ω
fv · ∇udx.
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The nonlinear structure in this expression is similar as the distributed Eulerian derivative for
j(·, u) = 1

2 |u − ud|2, and therefore the analysis in this article could be trivially extended to

the case j(·, u) = 1
2 |∇u|

2. Similarly, the analysis in this article could be equally extended to
constraints with the Stokes equations and additional constraint on the volume conservation
enclosed by the boundary. Therefore, the numerical analysis is also applicable to the drag
minimization problem in Example 4.3.

The improvement of the formulation, algorithm and analysis to contain artificial tangential
motions which can improve the mesh quality in approximating the evolving boundary of general
closed surfaces in the three-dimensional space is interesting and nontrivial.
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