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Abstract. In the perfect conductivity problem (i.e., the conductivity problem with per-
fectly conducting inclusions), the gradient of the electric field is often very large in a
narrow region between two inclusions and blows up as the distance between the in-
clusions tends to zero. The rigorous error analysis for the computation of such perfect
conductivity problems with close-to-touching inclusions of general geometry still remains
open in three dimensions. We address this problem by establishing new asymptotic es-
timates for the second-order partial derivatives of the solution with explicit dependence
on the distance ε between the inclusions, and use the asymptotic estimates to design a
class of graded meshes and finite element spaces to solve the perfect conductivity prob-
lem with possibly close-to-touching inclusions. In particular, we propose a special finite
element basis function which resolves the asymptotic singularity of the solution by mak-
ing the interpolation error bounded in W 1,∞ in a neighborhood of the close-to-touching
point, even though the solution itself is blowing up in W 1,∞. This is crucial in the
error analysis for the numerical approximations. We prove that the proposed method
yields optimal-order convergence in the H1 norm, uniformly with respect to the distance
ε between the inclusions, in both two and three dimensions for general convex smooth
inclusions which are possibly close-to-touching. Numerical experiments are presented to
support the theoretical analysis and to illustrate the convergence of the proposed method
for different shapes of inclusions in both two- and three-dimensional domains.

1. Introduction

This article is concerned with the problem of electric conduction in high-contrast fiber-
reinforced composite materials with embedded inclusions which may be close together and almost
touching. As the inclusions approach closely, the gradient of the solution of this problem tends
to blow-up in the narrow region between the inclusions, which brings many challenges to the
numerical computation.

To illustrate this problem in a simple setting, we consider a bounded domain D ⊂ Rn,
n ∈ {2, 3}, which contains two convex smooth inclusions D1 ⊂ D and D2 ⊂ D such that the
distance ε = dist(D1, D2) is possibly very small and D1 and D2 are far away from the piecewise
smooth boundary Γ := ∂D, as shown in Figure 1.1. We assume the C2,α-norm of ∂D1 and ∂D2

are bounded, and the curvature of ∂D1 and ∂D2 are bounded from below. The voltage potential

u in the conductivity problem with a given boundary value ϕ ∈ H
3
2 (Γ) can be described by the

partial differential equation (PDE){
∇ · (a(x)∇u) = 0 in D,

u = ϕ on Γ,
(1.1)
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Figure 1.1. The domain Ω = D\D1 ∪D2.

where H
3
2 (Γ) := {v|Γ : v ∈ H2(D)} and a(x) is a piecewise constant function defined by

a(x) =

{
k for x ∈ D1 ∪D2,

1 for x ∈ D\D1 ∪D2,

which represents the (renormalized) conductivity in the two different materials. Without loss of

generality, the boundary value ϕ ∈ H
3
2 (Γ) can be extended to ϕ ∈ H2(D) such that ϕ = 0 in a

neighborhood of the convex envelope of D1 ∪D2. Then equation (1.1) is equivalent to finding
the minimizer u ∈ ϕ+H1

0 (D) of the energy functional

Ek[u] :=
k

2

∫
D1∪D2

|∇u|2 +
1

2

∫
D\D1∪D2

|∇u|2.

When k is away from 0 and ∞, the gradient of the solution to the conductivity problem (1.1)
is bounded uniformly with respect to the distance ε. This has been proved in [3, 9, 16, 36]
under different conditions. However, when k = ∞ in (1.1), the situation is quite different.
The L∞-norm of the electric field ∇u is often very large in the narrow region between the
two inclusions and blows up as ε = dist(D1, D2) → 0. The analysis and computation of such
asymptotic behaviour of the electric field has attracted much attention from physicists and
applied/computational mathematicians; see [1, 2, 6, 8, 15, 24, 26, 27, 36, 39–42] and the references
therein.

The limiting case k → ∞ of this problem corresponds to the conductivity problem with
perfectly conducting inclusions (called the perfect conductivity problem), which characterizes
the asymptotic behaviour with respect to ε. By denoting Ω = D\D1 ∪D2 and Γj = ∂Dj ,
j = 1, 2, the perfect conductivity problem with boundary value ϕ can be described as finding
the minimizer u ∈ ϕ+ H̊1

c (Ω) of the following energy functional

E∞[u] :=
1

2

∫
Ω
|∇u|2,

where

H̊1
c (Ω) =

{
v ∈ H1

c (Ω) : v = 0 on Γ
}
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with H1
c (Ω) =

{
v ∈ H1(Ω) : ∃ c1, c2 ∈ R with v|Γi = ci for i = 1, 2

}
. This is equivalent to the

following PDE boundary value problem:
∆u = 0 in Ω,

u = cj on Γj , j = 1, 2,∫
Γj
∂nu = 0 j = 1, 2,

u = ϕ on Γ,

(1.2)

where c1 and c2 are free constants to be determined by the conditions
∫

Γ1
∂nu =

∫
Γ2
∂nu = 0.

For the perfect conductivity problems in (1.2), the gradient of the electric field is very large
in the narrow region between the two inclusions, and blows up as ε = dist(D1, D2) tends to
zero. The asymptotic estimates for the gradient of the solution to the perfect conductivity
problem have been established for circular inclusions in [24,25,33] and for general convex smooth
inclusions [30, 32]. In particular, by denoting x′ = (x1, · · · , xn−1), if the boundaries of the two
convex smooth inclusions can be described (locally in a neighborhood of the origin) by the
following two graphs:

∂Dj ∩
{
x : |x′| ≤ 1

2

}
= {x ∈ Rn : xn = φj(x

′)}, j = 1, 2, for |x′| ≤ 1

2
, (1.3)

with

φ1(0) = −φ2(0) =
ε

2
, ∇φ1(0) = ∇φ2(0) = 0 and ρ

(
∇2(φ1 − φ2)(0)

)
≥ λ0,

where ρ(A) denotes the smallest eigenvalue of a matrix A and λ0 is some fixed positive constant,
then the following asymptotic estimates have been proved for x = (x′, xn) ∈ Ω such that |x′| ≤ 1

2 :

|∇u| .


√
ε

ε+ |x1|2
+O(1) for n = 2,

1

| log ε|(ε+ |x1|2 + |x2|2)
+O(1) for n = 3.

(1.4)

As the distance ε = dist(D1, D2) between the two inclusions tends to zero, the gradient of the
solution in three dimensions is asymptotically O(ε−1/| log ε|) on the segment

Lε =
{
x ∈ Rn : |x′| = 0, |xn| ≤

ε

2

}
.

Such asymptotic singularities make the numerical computation of these problems challenging.
Here we would like to mention that the insulated conductivity problem for k = 0 is also an
interesting problem, see [17,37,47] for example.

Some integral equation methods and expansion methods have been shown successful in ap-
proximating the solution of such conductivity problems in composite materials under different
situations, including the fast-multipole integral equation methods [20], the fast-multipole it-
erative schemes [21, 22], the method of images [12, 13], and a hybrid basis scheme [14] which
addresses the challenge of close-to-touching inclusions for discs inclusions in two dimensions.
These methods mainly focus on the conductivity problem on the two-dimensional plane, with
mildly close inclusions of general geometry or close-to-touching discs inclusions. A spectral
Galerkin approximation of an integral equation formulation was proposed in [38] for spherical
inclusions in three dimensions. The method has spectral convergence for smooth solutions, while
the error analysis for close-to-touching inclusions (when the solution is asymptotically singular)
still remains open. In [24] the authors characterized explicitly the singular term of the solution
for two circular inclusions and showed that the characterization of the singular term can be used
efficiently for computation of the gradient in the presence close-to-touching inclusions based on
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the boundary integral method. The result could also be extended to perfect conductors of spher-
ical shape in three dimensions. Rigorous error estimates of the integral equation methods for
the asymptotical singular solutions of the perfect conductivity problem, with close-to-touching
inclusions of general geometry, still remain open in three dimensions.

The finite element methods are convenient for solving the perfect conductivity problem in
bounded domains with inclusions of general geometry. However, the existing finite element er-
ror analyses do not address the perfect conductivity problem with close-to-touching inclusions.
The finite element methods for the conductivity problem with bounded k and large gap between
the inclusions, using flat segments/faces to approximate the curved interfaces, have been well
studied in the literature. In particular, optimal-order L2 and H1 error estimates for the cor-
responding elliptic interface problems were established in [5, 11, 23, 45, 46]. The error estimates
of higher-order finite element methods with isoparametric finite elements for approximating the
smooth interfaces were presented in [35]. There are still no rigorous error estimates of any fi-
nite element methods uniform with respect to ε = dist(D1, D2) for such perfect conductivity
problems in composite materials with possibly close-to-touching inclusions. The development
of finite element methods and corresponding error analysis for such problems rely on the as-
ymptotic estimates of higher-order partial derivatives of the solution, which also have not been
established.

In this article, we develop new asymptotic estimates and finite element methods, with rigorous
proof of convergence of the finite element solutions, for the perfect conductivity problem in (1.2),
with possibly close-to-touching perfectly conducting inclusions as shown in Figure 1.1. Namely,
(1.2) is the problem of interest that we consider in this article, while (1.1) is just for introduction
to the conductivity problem in a general context. The main contribution of this article includes
the following several aspects:

• Pointwise asymptotic estimates for the second-order partial derivatives of the solution
are established for the first time. This shows the specific asymptotic behaviour (blow-up
rate) of the second-order partial derivatives as ε→ 0.

• Based on the pointwise asymptotic estimates, we propose a new class of graded meshes
and finite element spaces, with a new finite element basis adapted to the asymptotic
behaviour of the solution in the close-to-touching case, in order to resolve the asymptotic
singularity of the solution at the segment Lε. In particular, we propose a special finite
element basis function in a neighborhood of the close-to-touching point (see Section 2.2,
Case 2). This special finite element basis function resolves the asymptotic singularity
of the gradient by making the interpolation error of the solution bounded in W 1,∞ in a
neighborhood of the close-to-touching point, even though the solution itself is blowing
up in W 1,∞; see Lemma 3.1. This is crucial in the error analysis for the numerical
approximations.

• Rigorous error estimates are established for the finite element solutions with optimal-
order convergence in the H1 norm uniform with respect to the distance ε = dist(D1, D2)
between the inclusions. Both the computational cost and convergence rate are indepen-
dent of ε = dist(D1, D2) and therefore can be applied to the case with close-to-touching
inclusions.

• Both two- and three-dimensional problems with possibly close-to-touching inclusions are
covered in a unified framework. The results hold for the perfect conductivity problem in
a bounded domain with general convex smooth inclusions (not only restricted to circles
or spheres).

• The methodology proposed in this article for obtaining the asymptotic estimates, the
graded mesh and the finite element spaces, and the error estimates, may also be extended
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to other related problems with possibly close-to-touching inclusions, such as the stress
concentration problem in high-contrast elastic composite materials.

• Benchmark examples with spherical and ellipsoidal close-to-touching inclusions are pre-
sented in both two- and three-dimensions.

For the simplicity of notation, we denote by C a generic positive constant which may be
different at each occurrence but is always independent of the distance parameter ε and the mesh
size h of the finite element method. We also denote by A . B the statement “A ≤ CB for some
constant C”, and denote by A ∼ B the statement “C−1B ≤ A ≤ CB for some constant C”.

2. Main results

In this section, we present the main theoretical results of this article, including the asymptotic
estimates for the second-order partial derivatives of the solution, the design of graded meshes
and finite element spaces for approximating the solution, and the error estimates for the finite
element method.

2.1. Estimates for the second-order partial derivatives

We prove the following asymptotic estimates for the second-order partial derivatives of the
solution to the perfect conductivity problem.

Theorem 2.1. Suppose that D is a bounded convex domain with piecewise smooth boundary

Γ, and ϕ ∈ H
3
2 (Γ), while D1 and D2 are convex and smooth. Moreover, the boundaries of the

two inclusions in the region {x ∈ Rn : |x′| ≤ 1
2 , |xn| ≤

1
2} can be described by the two graphs in

(1.3). Then the solution of (1.2) satisfies the following estimates for x = (x′, xn) ∈ Ω such that
|x′| ≤ 1

2 :

|∇2u| . 1

ε+ |x′|2
for n = 2, and |∇2u| . 1

| log ε|(ε+ |x′|2)
3
2

for n = 3.

This kind of estimates for the second-order partial derivatives obtained in Theorem 2.1 is
new, which is crucial for us to design a class of graded meshes and finite element spaces to
approximate the solution by resolving the asymptotic singularity at the segment Lε.

2.2. The design of graded mesh and finite element space

In order to obtain optimal-order convergence of the finite element solutions by resolving the
asymptotic singularity of the solution as ε→ 0, we divide the domain Ω into the following dyadic
subregions (Figure 2.1)

Ωj =
{
x ∈ Ω : φ1(x′) ≤ xn ≤ φ2(x′), 2−j−1 ≤ |x′| < 2−j

}
, (2.1)

Ω∗ =
{
x ∈ Ω : φ1(x′) ≤ xn ≤ φ2(x′), |x′| < 2−J−1

}
, (2.2)

Ωc
∗ = Ω\Ω∗, (2.3)

Ω0 = Ω\
(
Ω∗ ∪ ∪Jj=1Ωj

)
, (2.4)

and design a class of graded meshes of maximal mesh size h > 0 subject to the partition of the
domain in (2.1)–(2.4).

We consider the following two cases separately. Case 1: For a given maximal mesh size h, the
elements generated by a graded mesh are small enough to fill in the close-to-touching zone. Case
2: The elements are not small enough to fill in the close-to-touching zone, and we construct a
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Figure 2.1. Illustration of the dyadic subregions Ωj and Ω∗.

special element for the close-to-touching zone. Accordingly, the graded meshes will be generated
based on the two parameters: A parameter κ ≥ 1 which helps us to divide the problem into
the above-mentioned two cases, and a parameter α ∈ (n−1

2 , 1 + 1
n) which represents the rate of

mesh refinement towards the segment Lε, i.e., the local mesh size h(x) = O(h|x′|α) is chosen,
where the lower bound of α guaranties the resolution of the singularity and the upper bound of
α guaranties that the number of elements is O(h−n) (so the computational cost is equivalent to
using quasi-uniform triangulation of mesh size h). Both parameters κ and α should be chosen a
priori and fixed, independent of ε and h. Then the mesh could be generated by considering the
following two different cases (for various different values of ε and h):

(1) Case 1: ε ≥ (κh)
1

1−α/2 . In this case, for the given ε and h, we choose J to satisfy

2−J ∼ ε
1
2 and consider a locally quasi-uniform triangulation of the domain Ω in such a

way that the diameters of the triangles/tetrahedra in each Ω0, Ωj and Ω∗ are equivalent,
denoted by h, hj and h∗, respectively, satisfying the following conditions:

hj ∼ |x′|αh ∼ 2−αjh and h∗ ∼ 2−αJh.

Moreover, the triangulation approximates the smooth boundary Γ and Γj , j = 1, 2, with
piecewise flat lines (in 2D) or triangles (in 3D).
(i) We denote by Kh the set of closed triangles/tetrahedra in the triangulation of Ω,

and denote by Ωh =
(⋃

K∈Kh K
)◦

the corresponding open polygonal/polyhedral
approximation of Ω, where B◦ denotes the interior of a set B ⊂ Rn. Let Γh, Γ1,h

and Γ2,h be the corresponding polygonal/polyhedral approximations of Γ, Γ1 and
Γ2, respectively.

(ii) The condition ε ≥ (κh)
1

1−α/2 guarantees that |x′|αh ≤ κ−1|x′|2 for |x′| ≥ ε
1
2 . This

means that hj ≤ κ−1(ε+ |x′|2) for x ∈ Ωj so that the region between Γ1,h and Γ2,h

can be filled in with triangles (by choosing a sufficiently large fixed constant κ which
is independent of ε and h).

(iii) For |x′| ≤ ε
1
2 the diameters of the triangles/tetrahedra are equivalent to h∗, which

satisfies h∗ ∼ ε
α
2 h ≤ κ−1ε as a result of ε ≥ (κh)

1
1−α/2 . Therefore, by choosing a

sufficiently large constant κ (independent of ε and h), the region between Γ1,h and
Γ2,h can be filled in with triangles/tetrahedra.
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(iv) We define the following finite element spaces:

Sh(Ωh) = {v ∈ H1(Ωh) : v|K ∈ P1(K)},
Sh,c(Ωh) = {v ∈ Sh(Ωh) : v = constants on Γ1,h and Γ2,h},

S̊h,c(Ωh) = {v ∈ Sh,c(Ωh) : v = 0 on Γh}.

Hence, the finite element space is conforming in Case 1.

(a) Mesh in Case 1 (b) Mesh in Case 2

Figure 2.2. Graded mesh in the two cases ε ≥ (κh)
1

1−α/2 and ε ≤ (κh)
1

1−α/2

Remark 2.1. The conditions hj ∼ |x′|αh ∼ 2−αjh and h∗ ∼ 2−αJh for the mesh
sizes could be satisfied by choosing, for example,

1

20
|x′|αh ≤ hj ≤

1

5
|x′|αh and

1

20
2−αJh ≤ h∗ ≤

1

5
2−αJh.

Then hj ≤ 1
5κ
−1(ε + |x′|2) for x ∈ Ωj in the case ε ≥ (κh)

1
1−α/2 , which guarantees that

|x′|αh ≤ κ−1|x′|2 for |x′| ≥ ε
1
2 . In addition, we could choose J sufficiently large so that

1
2ε

1
2 ≤ 2−J ≤ ε

1
2 . Then h∗ ≤ 1

52−αJh ≤ 1
5ε

α
2 h. Thus the conditions hj ≤ 1

5κ
−1(ε+ |x′|2)

for x ∈ Ωj and h∗ ≤ 1
5κ
−1ε for |x′| ≤ ε

1
2 are both satisfied. The choice of the constants

1
20 and 1

5 in determining the mesh sizes hj and h∗ are not unique and could be adjusted
in practical computation.

(2) Case 2: ε ≤ (κh)
1

1−α/2 . In this case, we choose J to satisfy 2−J−1 ∼ (κh)
1

2−α so that

Ω∗ = {x ∈ Ω : |x′| < 2−J−1 ∼ (κh)
1

2−α }.

Let Ωc
∗ = Ω\Ω∗ and denote by Γ∗ = ∂Ωc

∗ ∩ ∂Ω∗ the interface between the two subregions
Ωc
∗ and Ω∗. We triangulate the subregion Ωc

∗ with the triangulation fitting the edges (or
points in two dimensions) at ∂Dj∩Γ∗, j = 1, 2, and denote the triangulated approximate
domain by Ωc

∗,h. The region Ω∗ is not triangulated.
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In the region Ωc
∗ it holds that |x′|αh ≤ κ−1|x′|2 and therefore hj . κ−1|x′|2. On the

interface Γ∗ = ∂Ωc
∗ ∩ ∂Ω∗ it holds that |x′|αh ∼ κ−1|x′|2 with |x′| ∼ 2−J , and therefore

h∗ ∼ 2−αJh ∼ |x′|αh ∼ κ−1|x′|2 ∼ κ−1(ε+ |x′|2) for x ∈ Γ∗. (2.5)

(i) We denote by Kh the set of triangles/tetrahedra in Ωc
∗,h. Let Γh, Γ1,h and Γ2,h be

the corresponding approximations of Γ, Γ1 and Γ2, respectively, where Γ1,h and Γ2,h

are curved in the region |x′| ≤ (κh)
1

2−α . Namely, Γ1,h = Γ1 and Γ2,h = Γ2 in the

region corresponding to |x′| ≤ (κh)
1

2−α .

(ii) In the region Ωc
∗ it holds that |x′| & (κh)

1
2−α , which guarantees

hj ≤ κ−1|x′|2 ≤ κ−1(ε+ |x′|2)

for x ∈ Ωj so that (for sufficiently large κ ≥ 1 that is independent of ε) the region
between Γ1,h and Γ2,h can be filled in with triangles.

(iii) We define the following finite element spaces on Ωc
∗,h:

Sh(Ωc
∗,h) = {vh ∈ H1(Ωc

∗,h) : vh|K ∈ P1(K) for every tetrahedron K ⊂ Ωc
∗,h}

and define Sh,c(Ω
c
∗,h) as the subspace of Sh(Ωc

∗,h) consisting of functions vh which
are constants on Γj,h and

vh(x′, xn) = vh|Γ1,h

xn − φ2(x′)

φ1(x′)− φ2(x′)
+ vh|Γ2,h

φ1(x′)− xn
φ1(x′)− φ2(x′)

at the nodes on Γ∗.

Let S̊h,c(Ω
c
∗,h) = {v ∈ Sh,c(Ωc

∗,h) : v = 0 on Γh}. For any vh ∈ Sh,c(Ωc
∗,h) we define

v∗h ∈ H1(Ω∗) as

v∗h(x′, xn) = vh|Γ1,h

xn − φ2(x′)

φ1(x′)− φ2(x′)
+ vh|Γ2,h

φ1(x′)− xn
φ1(x′)− φ2(x′)

for x ∈ Ω∗. (2.6)

In particular, a finite element function vh ∈ Sh,c(Ωc
∗,h) is piecewise linear on Ωc

∗,h
and matches the values of v∗h at the nodes on the interface Γ∗.

An example of graded mesh in the two cases ε ≥ (κh)
1

1−α/2 and ε ≤ (κh)
1

1−α/2 is presented in
Figure 2.2. The role of the graded mesh defined above will become clear in the error estimation

for the finite element method. In particular, in the second case ε ≤ (κh)
1

1−α/2 , the modification
of the finite element space in the region Ω∗ is of essential help to obtain an error estimate
independent of ε.

Remark 2.2. The expression in (2.6) can be written as

vh(x′, xn) = (b1 − b2)v̄1 + b2 with v̄1(x′, xn) =
xn − φ2(x′)

φ1(x′)− φ2(x′)
.

In Section 4, inequalities (4.15) and (4.16), we will see that the solution u of (1.2) has the
following decomposition:

∇u = ∇[(c1 − c2)v̄1 + c2] +∇R in Ω∗,

with c1 and c2 being the constant values of u on Γ1 and Γ2, respectively, and R is a function
satisfying the following estimate:

‖∇R‖L∞(Ω∗) . 1.

This is why we add a basis function in the form of (2.6) to the finite element space, as it
resolves the asymptotic singularity of the solution. Namely, finite element functions in the form
of (b1 − b2)v̄1 + b2, with b1, b2 ∈ R, could approximate u with a remainder uniformly bounded
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with respect to ε in W 1,∞(Ω∗), while the solution u itself is not uniformly bounded with respect
to ε in W 1,∞(Ω∗) in view of the estimate in (1.4).

In Section 4, inequalities (4.3) and (4.6), we will see that for δ(x′) ∼ ε + |x′|2 the following
estimate holds:

|∇2[(c1 − c2)v̄1 + c2]| . |c1 − c2|
( 1

δ(x′)2
+
|x′|
δ(x′)2

)

.


1

ε+ |x′|2
for n = 2

1

| log ε|(ε+ |x′|2)
3
2

for n = 3.

Thus the singular behaviour of ∇2[(c1 − c2)v̄1 + c2] is the same as that of ∇2u in Theorem 2.1.

Remark 2.3. In both Case 1 and Case 2, the following inequality holds when h is sufficiently
small (smaller than some constant which is independent of ε):

hj ≤
2−j

10
, (2.7)

which implies that the set of triangles/tetrahedra which intersect Ωj is contained in Ω′j :=

Ωj−1 ∪ Ωj ∪ Ωj+1. Relation (2.7) is equivalent to 2−αjh . 2−j

10 , which can be satisfied if

h . o(1)2−(1−α)J .

where o(1) denotes a quantity which tends to zero as h→ 0. Since h . o(1)(κh)
1−α
2−α , it suffices

to prove that

(κh)
1−α
2−α . 2−(1−α)J . (2.8)

In Case 1, we have 2−J ∼ ε
1
2 and ε ≥ (κh)

1
1−α/2 , which imply (2.8). In Case 2, we have

2−J−1 ∼ (κh)
1

2−α , which also implies (2.8). This proves that (2.7) holds when h is sufficiently
small (smaller than some constant which is independent of ε).

2.3. The interpolation operator and its local error estimates

In Case 1, ε ≥ (κh)
1

1−α/2 , the whole domain Ω is triangulated to Ωh, and we denote by
Ih : C(Ω) ∩H1

c (Ω)→ Sh,c(Ωh) the standard Lagrange interpolation operator such that

Ihv = v at all finite element nodes of Ωh, ∀ v ∈ C(Ω).

This standard Lagrange interpolation operator satisfies the following standard estimates:

‖v − Ihv‖L∞(Ωj) . ‖v‖Wk,∞(Ωj)h
k
j for k = 1, 2.

In Case 2, ε ≤ (κh)
1

1−α/2 , only the subdomain Ωc
∗ is triangulated to Ωc

∗,h. For v ∈ H1
c (Ω) ∩

C(Ω), we define

(I∗hv)(x′, xn) = v|Γ1

xn − φ2(x′)

φ1(x′)− φ2(x′)
+ v|Γ2

φ1(x′)− xn
φ1(x′)− φ2(x′)

for x ∈ Ω∗, (2.9)

and define Ihv ∈ Sh(Ωc
∗,h) by requiring Ihv = v at all finite element nodes of Ωc

∗,h\Γ∗ and

Ihv = I∗hv at the finite element nodes of Γ∗ (thus Ihv and I∗hv match each other at the nodes on

the interface Γ∗). This defines a Lagrange interpolation operator Ih : H1
c (Ω)∩C(Ω)→ Sh,c(Ω

c
∗,h).
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This interpolation can also be restricted to the subspace with zero boundary condition on Γ,
i.e., Ih : H̊1

c (Ω) ∩ C(Ω)→ S̊h,c(Ω
c
∗,h).

2.4. The deformed finite element space and interpolation operator

In Case 1, ε ≥ (κh)
1

1−α/2 , the whole domain Ω is triangulated and there exists a one-to-one
Lipschitz continuous map Φh : Ωh → Ω such that

‖Φh − id‖L∞(Ωh) . h
2, ‖∇Φh − I‖L∞(Ωh) . h, (2.10)

where id denotes the identity function such that id(x) = x for all x ∈ Rd, and I = ∇id denotes
the d × d identity matrix; see [28] for the existence of the map Φh : Ωh → Ω satisfying the
estimate in (2.10). In particular, since the error Φh − id is only from approximating the curved
boundary by flat lines (in 2D) or flat triangles (in 3D), it only depends on h and is independent

of ε. For a finite element function vh ∈ S̊h,c(Ωh), we define v∗h := vh ◦ Φ−1
h on Ω.

In Case 2, ε ≤ (κh)
1

1−α/2 , only the subdomain Ωc
∗ is triangulated, and there exists a one-to-one

Lipschitz continuous map Φh : Ωc
∗,h → Ωc

∗ such that

‖Φh − id‖L∞(Ωc∗,h)n . h
2, ‖∇Φh − I‖L∞(Ωc∗,h)n . h. (2.11)

For a finite element function vh ∈ S̊h,c(Ωc
∗,h), we define v∗h ∈ L2(Ω) by

v∗h =


vh ◦ Φ−1

h in Ωc
∗

vh|Γ1,h

xn − φ2(x′)

φ1(x′)− φ2(x′)
+ vh|Γ2,h

φ1(x′)− xn
φ1(x′)− φ2(x′)

for x ∈ Ω∗.
(2.12)

By using the one-to-one correspondence between v∗h and vh, defined in text between (2.10)
and (2.12), we can define the following deformed finite element spaces on Ω:

S∗h,c =

{
{v∗h ∈ L2(Ω) : vh ∈ Sh,c(Ωh)} in Case 1

{v∗h ∈ L2(Ω) : vh ∈ Sh,c(Ωc
∗,h)} in Case 2,

S̊∗h,c = {v∗h ∈ S∗h,c : v∗h = 0 on Γ}.

In Case 1, i.e., ε ≥ (κh)
1

1−α/2 , the Lagrange interpolation I∗h : H1
c (Ω) ∩ C(Ω) → S∗h,c can be

defined by I∗hv = Ihv ◦ Φ−1
h on Ω. In Case 2, i.e., ε ≤ (κh)

1
1−α/2 , the Lagrange interpolation

I∗h : H1
c (Ω) ∩ C(Ω)→ S∗h,c can be defined by

I∗hv =


Ihv ◦ Φ−1

h on Ωc
∗,

v|Γ1

xn − φ2(x′)

φ1(x′)− φ2(x′)
+ v|Γ2

φ1(x′)− xn
φ1(x′)− φ2(x′)

on Ω∗.

By restricting I∗h to the functions which are zero on Γ, we have I∗h : H̊1
c (Ω) ∩ C(Ω)→ S̊∗h,c. The

local error estimates of the Lagrange interpolation operator can be written as

‖v − I∗hv‖L∞(Ωj) . ‖v‖Wk,∞(Ω′j)
hkj for k = 1, 2 and j = 0, 1, . . . , J,

‖v − I∗hv‖W 1,∞(Ωj) . ‖v‖Wk,∞(Ω′j)
hk−1
j for k = 1, 2.

(2.13)

The finite element space S̊∗h,c and the interpolation operator I∗h are not available in the practical
computation, but exist and can be used for analyzing the errors of the finite element solutions.
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Remark 2.4. In Case 2 (ε ≤ (κh)
1

1−α/2 ) and two dimensions (i.e., n = 2), since the function
defined in (2.6) is linear on the interface ∂Ω∗ ∩ ∂Ωc

∗, the deformed finite element function v∗h ∈
Sh(Ωc

∗) and the corresponding v∗h ∈ H1(Ω∗) are equal on the interface Γ∗ = ∂Ωc
∗,h ∩ ∂Ω∗ and

therefore defines a function in H1(Ω). In three dimensions, however, the function v∗h ∈ Sh(Ωc
∗)

and the corresponding v∗h ∈ H1(Ω∗) are not equal on the interface Γ∗ = ∂Ωc
∗∩∂Ω∗ and therefore

do not define a function in H1(Ω).

2.5. The finite element method and its convergence

If v ∈ L2(Ω)∩H1(Ωc
∗)∩H1(Ω∗) and v = 0 on Γ, then the solution of the perfect conductivity

problem in (1.2) satisfies the following relation:∫
Ωc∗

∇u · ∇vdx+

∫
Ω∗

∇u · ∇vdx =

∫
Γ∗

∂nu[v]dΓ∗, (2.14)

where [v] denotes the jump of v (from Ω∗ to Ωc
∗) on the interface Γ∗ = ∂Ωc

∗ ∩ ∂Ω∗, and ∂nu
denotes the normal derivative of u on Γ∗ (with n pointing to Ω∗). If v has some kind of continuity
on the interface Γ∗ then the right-hand side of (2.14) would be a small remainder.

Accordingly, we consider the following finite element method for (2.14): In Case 1, ε ≥
(κh)

1
1−α/2 , find uh ∈ Ihϕ+ S̊h,c(Ωh) ⊂ Sh,c(Ωh) satisfying the weak formulation∫

Ωh

∇uh · ∇vhdx = 0 ∀ vh ∈ S̊h,c(Ωh). (2.15)

In Case 2, ε ≤ (κh)
1

1−α/2 , find uh ∈ Ihϕ+ S̊h,c(Ω
c
∗,h) ⊂ Sh,c(Ωc

∗,h) satisfying the weak formulation∫
Ωc∗,h

∇uh · ∇vhdx+

∫
Ω∗

∇u∗h · ∇v∗hdx = 0 ∀ vh ∈ S̊h,c(Ωc
∗,h), (2.16)

where v∗h is defined by (2.6) for any vh ∈ Sh,c(Ω
c
∗,h). Since a finite element function vh ∈

S̊h,c(Ω
c
∗,h) matches v∗h at the nodes on the interface Γ∗, we drop the jump term in the weak

formulation of the FEM in (2.16).
For the finite element solution uh determined by (2.16), the corresponding function u∗h is

well defined on Ω, as mentioned in the text between (2.10) and (2.12). Therefore, u∗h can be
compared with the solution u of the PDE problem. By choosing the graded mesh and finite
element space defined in Section 2.2, we are able to prove optimal-order convergence of the finite
element solutions uniformly with respect to ε, as shown in the following theorem.

Theorem 2.2. For the graded mesh and finite element space defined in Section 2.2, with a
pair of fixed parameters κ ≥ 1 and α ∈ (n−1

2 , 1 + 1
n) that are independent of ε and h, the total

number of degrees of freedom for the finite element method in (2.16) is O(h−n). Moreover, under
the assumptions of Theorem 2.1, the finite element solutions have the following error bounds in
approximating the solution of (1.2):

‖u− u∗h‖L2(Ω) + ‖∇(u− u∗h)‖L2(Ω) ≤ Ch,

where u∗h is defined by (2.12) and the constant C is independent of ε ∈ (0, 1
2).

Remark 2.5. In Case 1, the gradient in the error bound is well defined as u∗h ∈ H1(Ω). In
Case 2, the gradient in the error bound is piecewisely defined in Ω∗ and Ωc

∗.
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3. Proof of Theorem 2.2

In this section, we prove Theorem 2.2 based on the results in Theorem 2.1. The proof of
Theorem 2.1 is presented in the next section.

Number of degrees of freedom: Since the volume of Ω0 is O(1) and the volume of trian-
gles/tetrahedra in Ω0 is equivalent to hn, it follows that the total number of triangles/tetrahedra
in Ω0 is O(h−n).

Since φ1(0) = −φ2(0) = ε
2 and ∇φ1(0) = ∇φ2(0) = 0, it follows that φ1(x) = O(ε+ |x′|2) and

φ2(x) = −O(ε+ |x′|2). Since Ωj is a horizontally circular region between the two inclusions D1

and D2, it follows that the volume of Ωj is

|Ωj | ∼
∫
|x′|∼2−j

dx′
∫ φ1(x′)

φ2(x′)
1dxn ∼ (ε+ 2−2j)2−(n−1)j .

In the case ε ≥ (κh)
1

1−α/2 the integer J is defined in such a way that 2−J ∼ ε
1
2 , while in the

case ε ≤ (κh)
1

1−α/2 the integer J is defined such that 2−J ∼ (κh)
1

2−α ≥ ε
1
2 . In both cases,

2−j ≥ ε
1
2 for 1 ≤ j ≤ J and therefore ε + 2−2j ∼ 2−2j in Ωj . As a result, the total number of

triangles/tetrahedra in Ωj is

O((ε+ 2−2j)2−(n−1)jh−nj ) = O(2(αn−n−1)jh−n).

In the case ε ≥ (κh)
1

1−α/2 the volume of Ω∗ is O(ε
n+1
2 ) and the diameter of triangles/tetrahedra

in Ω∗ is O(hn∗ ) = O(ε
nα
2 hn), it follows that the total number of triangles/tetrahedra in Ω∗ is

ε
n+1
2
−nα

2 h−n = O(h−n) as n+1
2 −

nα
2 > 0 for α ∈ (n−1

2 , 1 + 1
n).

In the case ε ≤ (κh)
1

1−α/2 there are no degrees of freedom in Ω∗.
Overall, since αn−n− 1 < 0 for α ∈ (n−1

2 , 1 + 1
n) and n ∈ {2, 3}, the total number of degrees

of freedom (number of triangles/tetrahedra) in the finite element space is equivalent to

h−n + h−n +
J∑
j=1

2(αn−n−1)jh−n = O(h−n) for α ∈ (n−1
2 , 1 + 1

n).

Error estimates: In Case 1, by transforming uh to u∗h, the finite element method in (2.15) can

be equivalently written as: Find u∗h ∈ I∗hϕ+ S̊∗h,c∫
Ω
Ah∇u∗h · ∇v∗hdx = 0 ∀ v∗h ∈ S̊∗h,c, (3.1)

where Ah = (∇Φh(∇Φh)> det(∇Φh)−1) ◦ Φ−1
h ∈ L

∞(Ω)d×d satisfies the following estimate:

‖Ah − I‖L∞(Ω) . h.

In Case 2, by transforming uh to u∗h, the finite element method in (2.16) can be equivalently

written as: Find u∗h ∈ I∗hϕ+ S̊∗h,c∫
Ωc∗

Ah∇u∗h · ∇v∗hdx+

∫
Ω∗

∇u∗h · ∇v∗hdx = 0 ∀ v∗h ∈ S̊∗h,c, (3.2)

where Ah = (∇Φh(∇Φh)> det(∇Φh)−1) ◦ Φ−1
h ∈ L

∞(Ωc
∗)
d×d satisfies the following estimate:

‖Ah − I‖L∞(Ωc∗)
. h.
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For the simplicity of notation, we define Ah = I on Ω∗ in Case 2. Then, in both Case 1 and
Case 2, the FEM in (3.1) and (3.2) can be written as∫

Ω
Ah∇u∗h · ∇v∗hdx = 0 ∀ v∗h ∈ S̊∗h,c, (3.3)

with a matrix Ah ∈ L∞(Ω)d×d satisfying the estimate ‖Ah − I‖L∞(Ω) . h, where ∇u∗h and

∇v∗h are the piecewise gradients. The matrix Ah, the finite element space S̊∗h,c, and the weak

formulation in (3.3) are not available in the practical computation, but implicitly exist and can
be used for analysis of the errors of the finite element solution given by (2.16).

Note that the finite element functions v∗h ∈ S̊∗h,c satisfy that v∗h ∈ L2(Ω) ∩H1(Ωc
∗) ∩H1(Ω∗)

and v∗h = 0 on Γ. The difference between (3.3) and (2.14), with v = v∗h in (2.14), can be written
as ∫

Ω
Ah∇(u∗h − I∗hu) · ∇v∗hdx

=

∫
Ω

(I −Ah)∇u · ∇v∗hdx+

∫
Ω
Ah∇(u− I∗hu) · ∇v∗hdx−

∫
Γ∗

∂nu[v∗h]dΓ∗ ∀ v∗h ∈ S̊∗h,c. (3.4)

Since u∗h − I∗hu ∈ S̊∗h,c, substituting v∗h = u∗h − I∗hu into (3.4) leads to

‖∇(u∗h − I∗hu)‖2L2(Ω) . (‖(I −Ah)∇u‖L2(Ω) + ‖∇(u− I∗hu)‖L2(Ω))‖∇(u∗h − I∗hu)‖L2(Ω)

+ ‖∂nu‖L2(Γ∗)‖[v
∗
h]|L2(Γ∗)

. (h‖u‖H1(Ω) + ‖∇(u− I∗hu)‖L2(Ω))‖∇(u∗h − I∗hu)‖L2(Ω)

+ ‖∂nu‖L2(Γ∗)‖v
∗
h − I∗hv∗h‖L2(Γ∗), (3.5)

where, in the last term on the right-hand side of (3.5), we denote by v∗h the expression

v∗h|Γ1

xn − φ2(x′)

φ1(x′)− φ2(x′)
+ v∗h|Γ2

φ1(x′)− xn
φ1(x′)− φ2(x′)

.

Note that the area of the interface Γ∗ can be estimated by

|Γ∗| ≤

(ε+ |κh|
2

2−α ) in two dimensions

(ε+ |κh|
2

2−α )|κh|
1

2−α in three dimensions

≤ (ε+ |κh|
2

2−α )
n
2 in n dimensions.

The last term on the right-hand side of (3.5) can be estimated as follows:

‖∂nu‖L2(Γ∗) . ‖∂nu‖L∞(Γ∗)|Γ∗|
1
2 . (ε+ |κh|

2
2−α )−

n
2

+ 1
2 (ε+ |κh|

2
2−α )

n
4 . (ε+ |κh|

2
2−α )−

n
4

+ 1
2

and

‖v∗h − I∗hv∗h‖L2(Γ∗) . h
2
∗‖∇2v∗h‖L2(Γ∗)

. h∗‖∇2v∗h‖L∞(Γ∗)(ε+ |κh|
2

2−α )
n
2

. h∗|v∗h|Γ1 − v∗h|Γ2 |(ε+ |κh|
2

2−α )−
n
2 (ε+ |κh|

2
2−α )

n
2

. h∗|v∗h|Γ1 − v∗h|Γ2 |

. h∗‖∇v∗h‖L1(Ω)

. h∗‖∇v∗h‖L2(Ω).
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Therefore,

‖∂nu‖L2(Γ∗)‖v
∗
h − I∗hv∗h‖L2(Γ∗) . |κh|

1−n2
2−α h∗‖∇v∗h‖L2(Ω)

. |κh|
α+1−n2

2−α h‖∇v∗h‖L2(Ω)

. h‖∇v∗h‖L2(Ω) (since α+ 1− n
2 > 0 for n = 2, 3) (3.6)

Then, combining the estimates in (3.5) and (3.6), we have the following estimate for the piecewise
gradient of the error:

‖∇(u∗h − I∗hu)‖2L2(Ω) . h
2 + ‖∇(u− I∗hu)‖2L2(Ω)

. h2 + ‖∇(u− I∗hu)‖2L2(Ω0)

+ ‖∇(u− I∗hu)‖2L2(Ω∗)
+

J∑
j=1

‖∇(u− I∗hu)‖2L2(Ωj)
. (3.7)

Let

Ω′j = {x ∈ Ω : 2−j−2 < |x′| ≤ 2−j+1},

Ω′∗ = {x ∈ Ω : |x′| ≤ 2−J}, Ω′0 = {x ∈ Ω : |x′| > 2−2}.

Then

‖∇(u− I∗hu)‖2L2(Ω0) . h
2‖u‖2H2(Ω′0) . h

2,

J∑
j=1

‖∇(u− I∗hu)‖2L2(Ωj)
.

J∑
j=1

h2
j‖u‖2H2(Ω′j)

.
J∑
j=1

∫
2−j−2≤|x′|≤2−j+1

∫ φ1(x′)

φ2(x′)

|x′|2αh2

(ε+ |x′|2)n
dxndx′

.
J∑
j=1

∫
2−j−2≤|x′|≤2−j+1

|x′|2αh2

(ε+ |x′|2)n−1
dx′

.
J∑
j=1

∫
2−j−2≤|x′|≤2−j+1

|x′|2α−2n+2h2dx′

.
J∑
j=1

2−2[α−(n−1)/2]jh2

. h2 for α ∈ (n−1
2 , 1 + 1

n).

In the case ε ≥ (κh)
1

1−α/2 , we have

‖∇(u− I∗hu)‖2L2(Ω∗)
. h2

∗‖u‖2H2(Ω′∗)

.
∫
|x′|≤ε

1
2

∫ φ1(x′)

φ2(x′)

|x′|2αh2

(ε+ |x′|2)n
dxndx′

.
∫
|x′|≤ε

1
2

|x′|2αh2

(ε+ |x′|2)n−1
dx′
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.
∫
|x′|≤ε

1
2

εαh2

εn−1
dx′

. εα−(n−1)/2h2

. h2 for α ∈ (n−1
2 , 1 + 1

n).

In the case ε ≤ (κh)
1

1−α/2 , the function I∗hu in Ω∗ is the vertically linear interpolation of u for
every fixed x′. We will prove the following result in the next section (by utilizing the notations
in the proof of the regularity results).

Lemma 3.1. Under the assumptions of Theorem 2.1, the following result holds:

‖∇(u− I∗hu)‖L∞(Ω∗) . 1. (3.8)

This result plays a crucial role in the following estimate:

‖∇(u− I∗hu)‖2L2(Ω∗)
.
∫
|x′|≤(κh)

1
2−α

∫ φ1(x′)

φ2(x′)
dxndx′

.
∫
|x′|≤(κh)

1
2−α

(ε+ |x′|2)dx′

. ε(κh)
n−1
2−α + (κh)

n+1
2−α

. (κh)
n+1
2−α

(
since ε ≤ (κh)

2
2−α
)

. h2 for α ∈ [3−n
2 , 2) ⊃ (n−1

2 , 1 + 1
n) for n = 2, 3.

By substituting the estimates of ‖∇(u − I∗hu)‖2L2(Ωj)
and ‖∇(u − I∗hu)‖2L2(Ω∗)

into (3.7), we

obtain

‖∇(u∗h − I∗hu)‖2L2(Ω) . h
2.

By using an additional triangle inequality and using the estimates of ‖∇(u − I∗hu)‖2L2(Ωj)
and

‖∇(u− I∗hu)‖2L2(Ω∗)
again, we obtain

‖∇(u∗h − u)‖2L2(Ω) . h
2. (3.9)

For x = (x′, xn) in the domain R0 = Ωc
∗ ∩{x : |x′| ≤ 1

2} the following relation holds according
to the Newton–Leibniz formula:

u(x′, xn) = c1 +

∫ xn

φ1(x′)
∂ynu(x′, yn)dyn, (3.10)

u∗h(x′, xn) = c1,h +

∫ xn

φ1(x′)
∂ynu

∗
h(x′, yn)dyn, (3.11)

where c1 and c1,h are the constant values of u and u∗h on Γ1, respectively. Since the supports of
ϕ and I∗hϕ do not intersect D1, it follows that both u∗h − I∗hϕ and u− ϕ have constant values c1

and c1,h on Γ1. Therefore, by considering the difference between the constant value on Γ1 and
the function value on Γ in the subregion Ω0, it is easy to show that

|c1 − c1,h| . ‖∇([u∗h − I∗hϕ]− [u− ϕ])‖L2(Ω0) . h,

where the last inequality follows from (3.9). Therefore, by comparing the two expressions in
(3.10) and (3.11), and then integrating the square of the result over R0, we have

‖u− u∗h‖2L2(R0)
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. |c1 − c1,h|2 +

∫
|x′|≤ 1

2

∫ φ1(x′)

φ2(x′)
|φ1(x′)− φ2(x′)|

∫ φ1(x′)

φ2(x′)
|∂yn(u(x′, yn)− u∗h(x′, yn))|2dyndxndx′

. |c1 − c1,h|2 + ‖∂yn(u− u∗h)‖2L2(R0)

. h2, (3.12)

where the last inequality follows from (3.9). The estimate of ‖u−u∗h‖L2(Ω\R0) can be established
by using the standard Poincare inequality and is therefore omitted.

This proves the first error bound in Theorem 2.2. Note that all the constants that appear in
the error estimation are independent of ε. �

4. Proof of Theorem 2.1 and Lemma 3.1

The proof of Theorem 2.2 in the previous section is based on the results in Theorem 2.1 and
Lemma 3.1, i.e., the pointwise asymptotic estimates for the second-order partial derivatives of
the solution, and the interpolation error estimate in Ω∗. In this section we prove these results.

The asymptotic expansion of the first-order partial derivatives in the narrow region has been
obtained in [24, 25, 30, 32]. We adopt the notations in [30] in the following to further derive the
estimates for the second-order partial derivatives.

Proof of Theorem 2.1. In [30] it is shown that the gradient of the solution can be decomposed
in the following two parts:

∇u = (c1 − c2)∇v1 +∇vb, (4.1)

where v1 and vb are the solution of the following two problems, respectively:
∆v1 = 0, in Ω,

v1 = 1, on Γ1,

v1 = 0, on Γ2 ∪ Γ,

and


∆vb = 0, in Ω,

vb = c2, on Γ1 ∪ Γ2,

vb = ϕ, on Γ,

(4.2)

and as mentioned before the constants c1 and c2 are uniquely determined by the additional
constraints ∫

Γi

∂u

∂ν
= 0, i = 1, 2.

In [7, 30] it has been shown that

|c1 − c2| =
|B0[ϕ]|

det(∇2(φ1 − φ2)(0′))
ρn(ε)

(
1 +O(ρn(ε))

)
(4.3)

where ρn(ε) :=

{√
ε, if n = 2,
1

| log ε| , if n = 3,
and B0[ϕ] = −

∫
∂D0

1

∂u0
∂ν− is bounded linear functional of ϕ

with u0 being the solution of the touching problem
∆u0 = 0 in Ω0 := D\D0

1 ∪D0
2,

u0 = c0 on D0
1 ∪D0

2,∫
∂D0

1

∂u0
∂ν− +

∫
∂D0

2

∂u0
∂ν− = 0

u0 = ϕ on ∂D.

Since vb = c2 on both ∂D1 and ∂D2, i.e., there is no difference of potential between the
inclusions, it follows from [31, Theorem 1.1] that

‖∇2vb‖L∞(Ω 1
2

) ≤ C where Ω 1
2

= {x ∈ Ω : |x′| < 1/2}. (4.4)
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Figure 4.1. An illustration of the regions R(z′) and Qr.

In view of this result and (4.1), it suffices to establish pointwise estimates for ∇2v1. To this end,
we rewrite it as

∇2v1 = ∇2v̄1 +∇2(v1 − v̄1),

where v̄1 is a C2,α auxiliary function satisfying v̄1 = 1 on ∂D1 and v̄1 = 0 on ∂D2 ∪ ∂D, defined
by

v̄1(x′, xn) :=
xn − φ2(x′)

φ1(x′)− φ2(x′)
. (4.5)

Let δ(x′) = φ1(x′) − φ2(x′) = ε + O(|x′|2). We consider the function w := v1 − v̄1, which is
the solution of {

∆w = −∆v̄1 in Ω,

w = 0 on ∂Ω,

and estimate the second-order partial derivatives of w in the following small region (Figure 4.1):

R(z′) :=
{

(x′, xn) ∈ Ω 1
2

: φ2(x′) < xn < φ1(x′), |x′ − z′| < δ(z′)
}

for |z′| < 1
2 .

By straightforward calculations, one can obtain the following pointwise estimates for the func-
tion v̄1 defined in (4.5):

|∇2
x′ v̄1| .

∣∣∣∇x′ ∇x′φ2(x′)

φ1(x′)− φ2(x′)

∣∣∣+
∣∣∣∇x′ (xn − φ2(x′))(∇x′(φ1(x′)− φ2(x′)))

(φ1(x′)− φ2(x′))2

∣∣∣ . 1

δ(x′)
,

|∂xn∇x′ v̄1| =
∣∣∣∇x′( 1

φ1(x′)− φ2(x′)
)
∣∣∣ . |x′|

δ2(x′)
and ∂xnxn v̄1 = 0 in Ω 1

2
, (4.6)

and

|∆v̄1| .
1

δ(z′)
, |∇∆v̄1| .

1

δ2(z′)
in R(z′).

Similarly as [30, Step 2 in the proof of Proposition 1.7], we use the same translation of variables{
x′ − z′ = δ(z′)y′,

xn = δ(z′)yn,

which transforms R(z′) to a cylinder Q1 of unit size (Figure 4.1), where

Qr :=

{
(y′, yn) ∈ Rn | 1

δ(z′)
φ2(z′ + δ(z′)y′) < yn <

1

δ(z′)
φ1(z′ + δ(z′)y′), |y′| < r

}
,
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with top and bottom boundaries

Γ̃r1 =

{
(y′, yn) ∈ Rn : yn = φ̃1(y′) :=

1

δ(z′)
φ1(z′ + δ(z′)y′)

}
,

and

Γ̃r2 =

{
(y′, yn) ∈ Rn : yn = φ̃2(y′) :=

1

δ(z′)
φ2(z′ + δ(z′)y′)

}
.

Since y′ = 0′ and the height of Qr is equal to φ1(z′)−φ2(z′)
δ(z′) = 1 (which is independent of ε), it

follows that Q1 is essentially a unit square in two dimensions or B′1(0′) × (−1/2, 1/2) in three
dimensions as far as applications of Sobolev embedding theorems and classical Lp estimates for
elliptic systems are concerned.

For simplicity, we denote

W (y′, yn) = w(z′ + δ(z′)y′, δ(z′)yn), and V̄ (y′, yn) = v̄1(z′ + δ(z′)y′, δ(z′)yn),

Since φ̃1 and φ̃2 are smooth, and W = 0 on Γ̃1
2, after a local smooth diffeomorphism which

straightens Γ̃1
2 to a flat boundary, similarly as [19, Proof of Theorem 9.13], we can differentiate the

equation and employ the W k,p estimates for elliptic equations with partially vanishing boundary
value to obtain the following estimates:

‖W‖W 3,p(Q1/2) . ‖∇W‖Lp(Q2/3) + ‖∇∆V̄ ‖L∞(Q1), (4.7)

and
‖W‖W 2,2(Q2/3) . ‖W‖L2(Q1) + ‖∆V̄ ‖L∞(Q1). (4.8)

Then, by using the Sobolev embeddingW 2,2(Q2/3) ↪→W 1,p(Q2/3) andW 3,p(Q1/2) ↪→W 2,∞(Q1/2)
for some p > n, as well as the Poincaré inequality, from (4.7) and (4.8) we further derive the
following estimate:

‖∇2W‖L∞(Q1/2) . ‖W‖W 3,p(Q1/2) . ‖∇W‖L2(Q1) + ‖∆V̄ ‖L∞(Q1) + ‖∇∆V̄ ‖L∞(Q1). (4.9)

Rescaling the functions from Q1/2 back to R(z′) and using the following relations

∇2
yW (y) = δ2(z′)∇2

xw(x), ∇2
yV̄ (y) = δ2(z′)∇2

xv̄1(x), ∇3
yV̄ (y) = δ3(z′)∇3

xv̄1(x),

inequality (4.9) reduces to the following result:

‖∇2w‖L∞(R(z′)) .
1

δ2(z′)

( 1

δ(n−2)/2(z′)
‖∇w‖L2(R(z′))

+ δ2(z′)‖∆v̄1‖L∞(R(z′)) + δ3(z′)‖∇∆v̄1‖L∞(R(z′))

)
. (4.10)

Then, combining (4.10) with the energy estimate ‖∇w‖L2(R(z′)) . δn/2(z′), which was proved
in [30, estimate (2.8)], we obtain

‖∇2w‖L∞(R(z′)) .
1

δ(z′)
. (4.11)

This estimate of w = v1 − v̄1 can be combined with the estimate of ∇2v̄1 in (4.6), using the
triangle inequality |∇2v1| ≤ |∇2w|+ |∇2v̄1|, to yield the following result:

|∇2v1(x′, xn)| ≤ |∇2v̄1(x′, xn)|+ |∇2w(x′, xn)| . |x′|
δ2(x′)

+
1

δ(x′)
in Ω 1

2
. (4.12)

In the two-dimensional case (i.e., n = 2), substituting (4.12) into (4.1) and using (4.3) yields
the following pointwise estimate:

|∇2u(x′, xn)| ≤ |c1 − c2||∇2v1(x′, xn)|+ |∇2vb(x
′, xn)|
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.

√
ε|x′|

δ2(x′)
+

√
ε

δ(x′)
+ 1 .

1

δ(x′)
in Ω 1

2
, (4.13)

In the three-dimensional case (i.e., n = 3), substituting (4.12) into (4.1) and using (4.3) yields
the following pointwise estimate:

|∇2u(x′, xn)| ≤ |c1 − c2||∇2v1(x′, xn)|+ |∇2vb(x
′, xn)|

.
1

| log ε|

( |x′|
δ2(x′)

+
1

δ(x′)

)
in Ω 1

2
. (4.14)

This completes the proof of Theorem 2.1. �

Proof of Lemma 3.1. By using the relations v1 = v̄1 + (v1 − v̄1) and vb = I∗hvb + (vb − I∗hvb),
we can rewrite (4.1) as

∇u = ∇[(c1 − c2)v̄1 + I∗hvb] +∇R,
with R = (c1 − c2)(v1 − v̄1) + (vb − I∗hvb). According to the definitions of v1 and vb in (4.2), the
function (c1 − c2)v̄1 + I∗hvb is linear in the xn variable and equal to c1 and c2 and Γ1 and Γ2,
respectively. This agrees with the definition of I∗hu in Ω∗, i.e.,

I∗hu = (c1 − c2)v̄1 + I∗hvb in Ω∗.

Similarly, I∗hvb is linear in the xn variable and equal to c2 on both Γ1 and Γ2, and therefore
I∗hvb ≡ c2 in Ω∗. Therefore,

∇u = ∇I∗hu+∇R in Ω∗ (4.15)

and ∇R = ∇[(c1− c2)(v1− v̄1) +vb] in Ω∗. By substituting these relations into (4.15), we obtain

‖∇(u− I∗hu)‖L∞(Ω∗) = ‖∇R‖L∞(Ω∗)

= ‖(c1 − c2)∇(v1 − v̄1) +∇vb‖L∞(Ω∗)

. ‖∇(v1 − v̄1)‖L∞(Ω∗) + ‖∇vb‖L∞(Ω∗)

. 1, (4.16)

where the second to last inequality is due to |c1−c2| . 1, as shown in (4.3), and the last inequality
follows from (4.4) and ‖∇(v1−v̄1)‖L∞(Ω∗) . 1. The latter was proved in [30, Proposition 1.7]. �

5. Numerical experiments

In this section we present numerical experiments to support the theoretical analysis, by testing
the convergence order of the method in both two- and three-dimensional spaces for both spherical
and ellipsoidal close-to-touching inclusions, as well as simulating the contour and gradient of the
voltage potential. The finite element meshes are generated by Gmsh [18] and visualized by
Paraview [4], and the computations are performed by Firedrake [43].

In the numerical results below, the relative piecewise H1-norm error with respect to the
reference solution uref is defined by

Relative error =
‖Irefuh − uref‖H1

‖uref‖H1

,

where the reference solutions are obtained by using the proposed method with a sufficiently
small mesh size, i.e., with h = 1/256 and h = 1/128 in two and three dimensions, respectively,
and Iref denotes the interpolation onto the reference solution’s mesh. In Case 2, the H1 norm
above should be understood as the piecewise H1 norm subject to the reference solution’s mesh.
We have chosen the following parameters for the graded mesh refinement: (1) κ = 1 and α = 1
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in two dimensions; (2) κ = 1 and α = 1.2 in three dimensions. These choices are consistent with
the condition α ∈ (n−1

2 , 1 + 1
n) required in the proof of Theorem 2.2.

Example 5.1 (Circular inclusions in 2D). In the first example, we consider the perfect con-
ductivity problem in the two-dimensional rectangular domain Ω = (−2, 2) × (−3, 3) with two
circular inclusions of radius 1 centered at (0, 1 + ε/2) and (0,−1 − ε/2), respectively. The
boundary potential is given by ϕ(x, y) = y − x.

The graded meshes in the two cases ε = 0.1 and ε = 10−5, which correspond to Case 1 and
Case 2 in Section 2.2, are shown in Figure 5.1. The errors of the numerical solutions given by
the proposed method are presented in Figure 5.2 for the two cases. From Figure 5.2 we see
that the numerical solutions in both Case 1 and Case 2 have first-order convergence in the H1

norm, with errors almost independent of ε. This is consistent with the theoretical result proved
in Theorem 2.2.

For comparison, we also present in Figure 5.2 the errors of the numerical solutions given by
the standard FEM with a quasi-uniform triangulation of mesh size h, where the triangles near
the origin are thin in the vertical direction in order to fit the geometry of the domain. It turns
out that, for ε = 10−5, the errors of the numerical solutions given by the standard FEM are
much larger than the errors of the numerical solutions given by the proposed method.

The contour and gradient of the numerical solution in the case ε = 10−5 are presented in
Figure 5.3, where we can observe that |∇uh| is about 103 near the close-to-touching point based
on the computation with mesh size h = 1/256. The relative error of the computation is below
0.4%, according to error in Figure 5.2 corresponding to the finest mesh.

0.6 0.4 0.2 0.0 0.2 0.4 0.6
0.1

0.0

0.1

(a) ε = 0.1

0.6 0.4 0.2 0.0 0.2 0.4 0.6
0.1

0.0

0.1

(b) ε = 1× 10−5

Figure 5.1. Mesh near the close-to-touching point (with h = 1/32).
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Figure 5.2. Relative errors in Example 5.1.
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(a) Contour (b) |∇uh(x1, x2)|

Figure 5.3. Gradient of the solution in in Example 5.1 with ε = 10−5.

Example 5.2 (Multiple inclusions in 2D). We consider nine inclusions in the domain Ω =
[−1, 1]2, labeled as cij and centered at ((i− 2)(2a+ ε), (j − 2)(2a+ ε)) for i, j ∈ {1, 2, 3}. Each
inclusion is a disk of radius a = 1/4, as shown in Figure 5.4. The minimum separation distance
between these disks is ε. This example was tested in [13] with a large conductivity k inside the
nine inclusions. Here we test the performance of the proposed method in the case k = ∞ (as
considered in the current paper).

c11 c21 c31

c12 c22 c32

c13 c23 c33

-1
-1 1

1

x

y

Figure 5.4. Domain and inclusions in Example 5.2.

We solve the perfect conductivity problem by the proposed method under the periodic bound-
ary conditions, i.e., {

u(x,−1) = u(x, 1), for all x ∈ [−1, 1],

u(−1, y) = u(1, y)− 2, for all y ∈ [−1, 1].
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In Figure 5.5 we present the contour and gradient of the numerical solution in the case ε = 10−5,
where we can observe that |∇uh| is about 440 near the close-to-touching point. These results
are consistent with the numerical simulations in [13].

(a) Contour (b) |∇uh(x1, x2)|

Figure 5.5. Gradient of the solution in Example 5.2, with ε = 1× 10−5.
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Figure 5.6. Relative errors in Example 5.2.

To test the convergence rates of the numerical solutions, we choose a reference solution com-
puted from using a sufficiently small mesh size h = 1/512. The errors of the numerical solutions
are shown in Figure 5.6 for both ε = 0.1 and ε = 10−5, where first-order convergence in the H1

norm is observed for both cases. The numerical results indicate that the proposed method and
the theoretical result are also applicable to problems with multiple close-to-touching inclusions.
In particular, the relative error of the numerical solution with mesh size h = 1/128 is below 1%.

Example 5.3 (Spherical inclusions in 3D). In the second example, we consider the perfect
conductivity problem in a three-dimensional domain Ω = [−2R, 2R]×[−2R, 2R]×[−3R, 3R] with
R = 1/2, with two spherical inclusions of radius R centered at (0, 0, R+ε/2) and (0, 0,−R−ε/2),
respectively. The boundary potential is given by ϕ(x, y, z) = z − x− y.

The graded meshes in the case ε = 10−5 is shown in Figure 5.7, which corresponds to Case 2
in Section 2.2. The two subfigures on the right side of Figure 5.7 show a local enlargement of the
mesh near the region Ω∗. The blank portion at the center of the subfigures correspond to the
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region Ω∗. The errors of the numerical solutions given by the proposed method are presented
in Figure 5.8 for both ε = 0.1 and ε = 10−5, where we see that the numerical solutions have
first-order convergence in the piecewise H1 norm with errors almost independent of ε. This is
consistent with the theoretical result proved in Theorem 2.2.

The contour and gradient of the numerical solution in the case ε = 10−5 are presented in
Figure 5.9, where we can observe that |∇uh| is about 2× 104 near the close-to-touching point.
The relative error of the computation is below 3%, according to error in Figure 5.8 corresponding
to the finest mesh.

Figure 5.7. Mesh in Example 5.3 in the case ε = 10−5 (with h = 1/16).
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Figure 5.8. Relative errors in Example 5.3

Example 5.4 (Ellipsoidal inclusions in 3D). In the last example, we consider the perfect con-
ductivity problem in a three-dimensional domain Ω = [−2Ra, 2Ra]× [−2Ra, 2Ra]× [−3Rb, 3Rb]
with two ellipsoidal inclusions of radii 1/2, 1/2 and

√
2/4 in the three directions, respectively,

centered at (0, 0, Rb + ε/2) and (0, 0,−Rb − ε/2), respectively. The boundary potential is given
by ϕ(x, y, z) = z − x− y.
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(a) Contour (b) |∇uh(x1, x2, 0)|

Figure 5.9. Gradient of the solution in Example 5.3 with ε = 10−5.

The graded meshes in the case ε = 10−5 is shown in Figure 5.10. The errors of the numerical
solutions given by the proposed method are presented in Figure 5.11 for both ε = 0.1 and
ε = 10−5, where we see that the numerical solutions have first-order convergence in the H1

norm with errors almost independent of ε. This is consistent with the theoretical result proved
in Theorem 2.2.

The contour and gradient of the numerical solution in the case ε = 10−5 are presented in
Figure 5.12, where we can observe that |∇uh| is about 104 near the close-to-touching point. The
relative error of the computation is below 3%, according to error in Figure 5.11 corresponding
to the finest mesh.

Figure 5.10. Mesh in Example 5.4 in the case ε = 10−5 (with h = 1/16).
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Figure 5.11. Relative errors in Example 5.4.

(a) Contour (b) |∇uh(x1, x2, 0)|

Figure 5.12. Gradient of the solution in Example 5.4 with ε = 10−5.

Example 5.5. In the last example, we present the total number of triangles/tetrahedra in
the triangulations of Examples 5.1–5.4 in Figure 5.13, which clearly shows that the number of
triangles/tetrahedra is proposal to O(h−n) independent of ε. This is consistent with our estimate
of the total number of degrees of freedom at the beginning of Section 3.
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(c) Example 5.4

Figure 5.13. Total number of triangles/tetrahedra in Examples 5.1–5.4.
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6. Conclusion

We have established new asymptotic estimates for the second-order partial derivatives of the
solution to the perfect conductivity problem in a bounded smooth domain with two possibly
close-to-touching convex smooth inclusions. We have used the asymptotic estimates to design
a class of graded mesh and finite element spaces tailored to the asymptotic behaviour of the
solution. In our construction, the mesh is refined towards the asymptotic singularity on the
segment

Lε =
{
x ∈ Rn : |x′| = 0, |xn| ≤

ε

2

}
,

using a local mesh size hj ∼ |x′|αh in Ωj , with a parameter α ∈ (n−1
2 , 1 + 1

n) representing the
rate of mesh refinement. This is different from the classical graded mesh towards a re-entrant
corner x0 with local mesh size hj ∼ |x− x0|γh and parameter γ ∈ (1− π/ω, 1), where ω denotes
the interior angle at the re-entrant corner x0. The difference between the 2D and 3D cases in
the meshes generation lies in the range of the parameter α which characterizes the rate of mesh
refinement. The range α ∈ (n−1

2 , 1 + 1
n) is different for n = 2 and n = 3 due to the different

asymptotic estimates in Theorem 2.1 for the 2D and 3D cases.
In practice, graded mesh generators often use a density function to indicate the approximated

size of elements locally. For the analysis we have used dyadically decomposed subregions Ωj

and local mesh size hj ∼ |x′|αh in each subregion Ωj . This follows the tradition of notations
in [10, 29, 34, 44] for local error analysis based on dyadic decompositions and local regularity
estimates. Alternatively, one can choose the local mesh h(x) to satisfy h(x) = O(h|x′|α) and
then change discrete summations into integrals.

Rigorous error estimates have been established for the finite element solutions with first-order
convergence in the H1 norm uniform with respect to the distance ε = dist(D1, D2) between
the inclusions. Both the computational cost and convergence rate are independent of ε =
dist(D1, D2) and therefore can be applied to the case with close-to-touching inclusions. Both
two- and three-dimensional problems with possibly close-to-touching inclusions are covered in a
unified framework. We have presented several numerical examples to illustrate the convergence
of the method. In all the examples, including 2D circular inclusions, 3D spherical inclusions
and 3D ellipsoidal inclusions, the numerical results agree well with the theoretical analysis. The
development of higher-order approximations to the asymptotically singular solutions, as well as
the extension to other related problems with possibly close-to-touching inclusions (such as the
stress concentration problem in high-contrast elastic composite materials), are still challenging
and remain open.
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