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Optimal-order convergence in the H1 norm is proved for an arbitrary Lagrangian–Eulerian interface
tracking finite element method for the sharp interface model of two-phase Navier–Stokes flow without
surface tension, using high-order curved evolving mesh. In this method, the interfacial mesh points move
with the fluid’s velocity to track the sharp interface between two phases of the fluid, and the interior
mesh points move according to a harmonic extension of the interface velocity. The error of the semidis-
crete arbitrary Lagrangian–Eulerian interface tracking finite element method is shown to be O(hk) in the
L∞(0,T ;H1(Ω)) norm for the Taylor-Hood finite elements of degree k ⩾ 2. This high-order convergence
is achieved by utilizing the piecewise smoothness of the solution on each subdomain occupied by one
phase of the fluid, relying on a low global regularity on the entire moving domain. Numerical experi-
ments illustrate and complement the theoretical results.

Keywords: Two-phase Navier–Stokes flow, arbitrary Lagrangian–Eulerian, finite element method, con-
vergence, error estimates

1. Introduction

Immiscible fluids mixture separated by a moving interface appears widely in nature and engineering appli-
cations. Current models for two-phase or multiphase flow can generally be categorized into two main types:
diffuse interface models and sharp interface models. Diffuse interface models treat the interface as an ex-
tremely thin transition zone that separates the two fluids. In these models, physical quantities like density
and viscosity change rapidly but smoothly within this transition zone. On the other hand, sharp interface
models consider the interface as a surface without any thickness. In such models, physical quantities exhibit
discontinuities across this surface.

We consider the sharp interface model of two-phase Navier–Stokes (NS) flow [25] without surface tension
in a bounded domain Ω(t) = Ω+(t)∪Ω−(t)∪Γ (t) in Rd , with d ∈ {2,3}, where Γ (t) = Ω+(t)∩Ω−(t) is
a sharp interface which separates the two fluids occupying two subdomains Ω+(t) and Ω−(t), respectively,
see Figure 1. The fluid velocity u and pressure p are governed by NS equations in each subdomain Ω±(t)
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and satisfy certain jump conditions on the interface Γ (t), i.e.,

ρ±(∂tu+u ·∇u)−∇ ·σ = f in
⋃

t∈[0,T ]
Ω±(t)×{t},

∇ ·u = 0 in
⋃

t∈[0,T ]
Ω±(t)×{t},

[u]+− = 0 and [σν ]+− = 0 on
⋃

t∈[0,T ]
Γ (t)×{t},

u = 0 in ∂Ω × (0,T ],

u = u0 on Ω ×{0},

(1.1)

where ρ± are the densities of the fluids in Ω±(t), ν is the unit normal vector on Γ (t) pointing to Ω+(t);
σ = (2µ±D(u)− pI) is the stress tensor, in which D(u) = 1

2 (∇u+ (∇u)⊤) and I denote the deformation
matrix and identity matrix, respectively; µ± are the viscosities of the two fluids in Ω±(t), respectively;
[u]+− = u+− u− and [σν ]+− = σ+ν −σ−ν denote the jumps of the quantities u and σν across the interface,
respectively. The gravitational force is given by f = (0,−g)⊤ in two dimensions and f = (0,0,−g)⊤ in three
dimensions with g a constant (the gravitational acceleration). The interface Γ (t) moves along with the fluid

FIG. 1. Domain Ω in the case d = 2.

and therefore also has velocity u. If Γ 0 is the initial interface, through a flow map X : Γ 0 × [0,T ]→ Rd we
can describe the evolution of interface Γ (t) = {X(y, t) : y ∈ Γ 0} by the following equation:{

∂tX(ξ , t) = u(X(ξ , t), t) for (ξ , t) ∈ Γ
0 × (0,T ],

X(ξ ,0) = ξ for ξ ∈ Γ
0.

(1.2)

We do not take surface tension into account on the interface Γ (t), which differs from models that include
surface tension, where the appearance of curvature leads to a coupling between the geometric properties of
the interface and the fluid flow in the bulk. The fluid dynamics in (1.1)–(1.2) involve the movement of the
interface Γ (t) and two subdomains Ω±(t) over time, while the overall domain Ω = Ω(t) remains unchanged
in shape.

Numerical methods for (1.1) can generally be classified into three categories, i.e., the Eulerian approach,
the Lagrangian approach, and the arbitrary Lagrangian–Eulerian approach (ALE). The arbitrary Lagrangian–
Eulerian approach serves as a bridge between the Lagrangian and Eulerian approaches, by enabling the frame
to move with an “arbitrary” bulk velocity that fits the interface motion. At the discrete level, the mesh points
can be displaced independently of the flow. Utilizing the ALE technique allows for flexible movement of
the inner domain mesh, while the mesh on the interface can move alongside materials to precisely track the
interfaces of a multi-material system.

In an early investigation of ALE methods, the stability analysis of the ALE finite element method (FEM)
was firstly conducted by Formaggia and Nobile [20] for a linear parabolic equation. Subsequently, Gastaldi
[23] developed a priori error estimates in the L2 norm for ALE-FEM when solving parabolic equations. Many
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studies on the numerical analysis of ALE-FEMs for parabolic moving boundary/interface problems can be
found in works such as [4, 10, 19, 31, 32, 37]. Optimal-order error bounds of O(hk+1) in the L∞(0,T ;L2)
norm of ALE semidiscrete FEM with curved triangles/simplices for parabolic moving boundary problems
were established by Elliott and Ranner [16]. We also refer to [15] for an ALE method with harmonically
evolving mesh. Optimal-order H1 convergence of the ALE-FEM for PDEs coupling boundary evolution
arising from shape optimization problems was proved in [24]. These results were established for high-
order curved evolving mesh. Optimal convergence of O(hk+1) in the L∞(0,T ;L2) norm, with flat evolving
simplices in the interior and curved simplices exclusively on the boundary, was prove in [35] for the ALE
semidiscrete FEM utilizing a standard iso-parametric element of degree k in [34]. The ALE methods for
PDEs in bulk domains [24] are also closely related to the evolving FEMs for PDEs on evolving surfaces, for
which optimal-order convergence in the L2 and H1 norms were shown in [14, 17, 30]. The above-mentioned
research efforts have focused on diffusion equations.

The numerical analysis of ALE methods for the Stokes and Navier–Stokes equations has also noteworthy
results but remained suboptimal. Legendre and Takahashi [33] established an L2 error estimate of O(τ +

h
1
2 ) for the method of characteristics combined with a P1b −P1 finite element approximation to the ALE

formulation of 2D Navier–Stokes equations. In [39], by using the Taylor-Hood P2-P1 element, the error
estimates of O(h2| logh|) and O(τ + h2 + h2/τ) were proved for the semi-discrete and fully discrete ALE-
FEM for the Stokes equations in a time-dependent domain, respectively. The error of ALE finite element
solutions to the Stokes equations on a time-varying domain, with BDF-r in time (for 1 ⩽ r ⩽ 5) and the
Taylor-Hood Pk–Pk−1 elements in space (with degree k ⩾ 2), was proved to be O(τr + hk) in the L2 norm
in [36]. Optimal-order error bounds of O(hk+1) and O(τ2 + hk+1) of the semidiscrete and fully discrete
ALE-FEMs in the L2 norm for the Stokes equations were proved recently in [38].

Many efforts have also been made in developing efficient ALE-FEMs for two-phase NS flow problems,
primarily for models with surface tension. For example, Anjos et al. [3] introduced a 3D ALE-FEM scheme
with adaptive mesh to achieve good control of the mesh quality by using repeated interpolations of the
velocity. Barrett et al. [7] also considered surface tension and designed a stable ALE-FEM in which the
mesh points used to describe the interface are not mesh points of the underlying bulk finite element mesh.
An implicit tangential velocity of the interface nodes is introduced in [7] to acquire good mesh quality of the
interface. Barrett, Garcke and Nürnberg introduced a novel weak formulation [9], which is referred to as the
BGN formulation from now on. The BGN formulation allows for tangential degrees of freedom to improve
the mesh quality. This formulation was employed for two-phase Stokes flow [6] and two-phase NS flow [8],
both with surface tension and with unfitted finite element approximations, which leads to an unconditional
stability bound. Moreover, the applications of BGN formulation to the two-phase NS flow with surface
tension with moving fitted finite element methods were also investigated in [1] in both Eulerian and ALE
approaches, but no stability bound was available. Fu [21] proposed an ALE-HDG FEM for two-phase NS
flow with surface tension with an implicit tangential velocity to acquire good mesh quality of the interface,
by using HDG to produce an exactly divergence-free velocity approximation. Recently, Duan et al. [12]
proposed an energy-diminishing ALE scheme with surface tension by using Stokes extension of the velocity
from the interface to the bulk domain, in order to produce an exactly divergence-free mesh velocity. Energy
stability of the ALE-FEMs with surface tension was discussed in [6–8, 12, 21]. We also refer to [22] for the
structure-preserving ALE-FEMs for the two-phase NS flow with surface tension in both the conservative and
non-conservative forms. The methods introduced in [22] were shown to satisfy unconditional stability and
exact volume preservation on the fully discrete level. The numerical investigation of convergence behavior
(without error analysis) with surface tension, can be found in [12, 21] . As far as we know, there is no error
analysis of ALE-FEMs for the sharp interface model of two-phase NS flow problems with surface tension.
In this work, we focus on a simplified model of two-phase NS flow without surface tension. Two major
difficulties are discussed below.

First, the error analysis of ALE-FEMs for parabolic and Stokes/NS equations in the above-mentioned
articles all require the triangulation of the domain to fit the moving boundary or interface exactly, i.e., the
triangulated domain Ωh(t) for computation that interpolates the exact domain Ω(t). This is the case when the



4 of 30 B. LI, S. MA & W. QIU

boundary or interface of domain Ω(t) is given, determined either by a given flow map or by a given velocity
field. However, this is the not the case in two-phase NS flow where the velocity of the interface is unknown
(determined by the solution of the PDE problem). Thus the location of the exact interface is unknown
and needs to be approximated based on the numerical solution of the two-phase NS flow. As a result, the
numerically computed interface at t > 0 generally has a distance from (therefore is not an interpolation of)
the exact interface, and the triangulated subdomains Ωh,±(t) are not interpolations of the exact subdomains
Ω±(t) at t > 0. Consequently, the error analysis of ALE-FEMs in the pre-existing articles for parabolic and
Stokes/NS equations with a given moving boundary/interface cannot be applied to the two-phase NS flow
without surface tension.

Second, the error analysis of ALE-FEMs for parabolic and Stokes/NS equations in the above-mentioned
articles all require the solution to be sufficiently smooth in the whole domain, while the solution of the two-
phase NS equation in (1.1) is generally not smooth in the whole domain due to the existence of the free
interface which separates the two phases of the fluid, e.g., ∇u is generally discontinuous across the interface
Γ (t). Since the numerical interface and the exact interface differ from each other by a certain distance at
t > 0, the triangles of the mesh (which fit the numerical interface) generally do not fit the exact interface
Γ (t). Thus the exact solution u may be nonsmooth inside a triangle of the mesh. This situation renders it
difficult to prove high-order convergence using standard interpolation onto the mesh.

The aim of this article is to establish an optimal-order error bound in the L∞(0,T ;H1(Ω)) norm for the
semidiscrete ALE-FEM for the two-phase NS flow problem without surface tension in (1.1) using high-order
curved evolving mesh, where the mesh points on the numerical interface move with the fluid’s velocity and
is harmonically extended to the bulk subdomains. We address the two major difficulties mentioned above
by using the matrix-vector formulations of the ALE-FEM and the error equations. Such techniques were
originally introduced in [30] for analyzing solution-driven surface evolutions. It was later developed for an-
alyzing the convergence of evolving FEMs for surface evolution under geometric flows [5, 26, 28, 29] and
domain evolution under shape gradient flows [24]. We adapt such matrix-vector formulation techniques here
to address the mismatch between the numerical interface and the exact interface, using an intermediate aux-
iliary triangulated domain, as well as the missing of global regularity of the solution by using lift operations
which map the numerical subdomains to the exact subdomains. This approach only requires using piece-
wise smoothness of the solution u on the subdomains Ω±(t) instead of its global smoothness of u on the
whole domain Ω(t). For a smoothly evolving sharp interface Γ (t) without topological changes, and a solu-
tion (u, p) ∈ C([0,T ];H1(Ω)d)×L2(0,T ;L2(Ω)) which is piecewise smooth in the subdomains Ω±(t) for
t ∈ [0,T ], we prove optimal-order error bound of O(hk) in the C([0,T ];H1(Ω)d)×L2(0,T ;L2(Ω)) norm for
the semi-discrete ALE-FEMs scheme with Taylor-Hood Pk–Pk−1 elements of degree k ⩾ 2; see Theorem 4.1.

The rest of this article is organized as follows. Section 2 introduces the ALE reformulation of (1.1) and
the ALE weak formulation on the evolving domain. In Section 3 we introduce the ALE weak formulation and
ALE evolving FEM on the interpolated evolving domain and provide a consistency analysis. In Section 3 we
formulate the consistency error estimates based on interpolated evolving mesh and matrix-vector formulation,
which serve not only for implementation purposes but also play a key role in the subsequent convergence
analysis. In Section 4 we prove optimal-order convergence of the ALE evolving FEM considered in this
article. Numerical experiments are presented in Section 5 to illustrate the convergence of the ALE evolving
FEM and its performance on a benchmark example.

2. The ALE evolving finite element method

2.1 The ALE reformulation of PDE

Let w(·, t) : Ω(t) → Rd be the harmonic extension of fluid’s velocity u from the interface Γ (t) to the bulk
subdomains Ω±(t), i.e.,

−∆w = 0 in Ω±(t) with w = u on Γ (t) and w = 0 on ∂Ω(t). (2.1)
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Harmonic extension is a common method for generating mesh velocity w in the bulk subdomains; see [10,
15, 21]. Since w = u on Γ (t), it follows that w and u generate the same evolution of interface Γ (t) and
subdomains Ω±(t).

Denote the initial domain by Ω 0 = Ω(0) and the initial subdomains by Ω 0
± = Ω±(0). Let φ : Ω 0 ×

[0,T ]→ Rd be the flow map generated by the velocity field w. Then φ maps Ω 0
± to Ω±(t) and Γ 0 to Γ (t),

respectively, with

Ω(t) = {φ(ξ , t) : ξ ∈ Ω
0} with φ(ξ ,0) = ξ for ξ ∈ Ω

0,

and satisfies the following ordinary differential equation (ODE):

∂tφ(ξ , t) = w(φ(ξ , t), t) with φ(ξ ,0) = ξ for ξ ∈ Ω
0. (2.2)

We consider an ALE moving frame associated with the flow map φ , with frame velocity w. Then the original
problem in (1.1) can be written as{

ρ±∂
•
t u+ρ±((u−w) ·∇u)−∇ ·σ = 0 in Ω±(t),

∇ ·u = 0 in Ω±(t),
(2.3)

where ∂ •
t u = ∂tu+w ·∇u is the material derivative with respect to the frame velocity w. The subdomains

Ω±(t) evolve with velocity w.
We assume that problem (1.1), or equivalently (2.3), has a solution

(u, p) ∈C([0,T ];H1
0 (Ω)d)×C([0,T ];L2

0(Ω)),

which is piecewise smooth in subdomains Ω±(t) for t ∈ (0,T ], where

H1
0 (Ω)d = {v ∈ H1(Ω)d : v = 0 on ∂Ω} and L2

0(Ω) = {q ∈ L2(Ω) and
∫

Ω

qdx = 0}.

By piecewise smooth we mean that ∑
2
j=0 ∥(∂ •

t )
ju∥Hk+1(Ω±(t))+∑

1
j=0 ∥(∂ •

t )
j p∥Hk(Ω±(t)) is bounded uniformly

with respect to t ∈ [0,T ].
We assume that the flow map φ(·, t) ∈ Ck(Ω̄ 0

±) is piecewise smooth in the subdomains Ω 0
±. By pulling

back to the initial domain Ω 0 after composition with φ(·, t) and utilizing the regularity estimate of the elliptic
equation [18, Theorem 5, Section 6.3] on the fixed domain Ω 0, the frame velocity w defined in (2.1) satisfies

∥w(t)∥Hk(Ω±(t)) ⩽C∥u(t)∥Hk(Ω±(t)),

which is also piecewise smooth. Then, by using notations

(u,v) =
∫

Ω+(t)
uvdx+

∫
Ω−(t)

uvdx, ρ =

{
ρ+ in Ω+(t),

ρ− in Ω−(t),
and µ =

{
µ+ in Ω+(t),

µ− in Ω−(t),

testing (2.3) by v and using the interface and boundary conditions in (1.1), we obtain the following weak
reformulation.

ALE weak formulation: Find (u, p)∈C([0,T ];H1
0 (Ω)d)×C([0,T ];L2

0(Ω)) with ∂ •
t u∈C([0,T ];L2(Ω)d),

w ∈C([0,T ];H1(Ω±)
d), and Ω±(t) = φ(Ω 0

±, t), such that

(ρ∂
•
t u,v)+(ρ(u−w) ·∇u,v)+2(µD(u),D(v))− (p,∇ · v) = ( f ,v) ∀ v ∈ H1

0 (Ω)d

(∇ ·u,q) = 0 ∀ q ∈ L2
0(Ω),

(∇w,∇χ) = 0 ∀ χ ∈ H1
0 (Ω±)

d and w = u on Γ (t),

∂tφ = w◦φ on Ω
0,

(2.4)

with initial conditions φ(0) = id|Ω 0 and u(0) = u0.



6 of 30 B. LI, S. MA & W. QIU

2.2 The ALE mapping and ALE evolving FEM

Assume that the given smooth initial domain Ω 0 ⊂ Rd , d ∈ {2,3}, is divided into a set K 0
h of shape-regular

and quasi-uniform simplices with mesh size h, using curved finite elements of degree k, and fitting the
interface Γ 0 = Γ (0). Every possibly curved closed simplex K ∈ K 0

h is the image of a unique polynomial
of degree k defined on the reference simplex K̂, denoted by FK : K̂ → K, called the parametrization of K;
see [16, §8.6]. Every boundary simplex K ∈ K 0

h (with one face or edge attached to Γ 0) contains a possibly
curved face or edge to interpolate Γ 0 with accuracy of O(hk+1). This can be obtained by using Lenoir’s
isoparametric finite elements [34]. Thus the initial domain Ω 0 is approximated by the triangulated domain

Ω
0
h =

( ⋃
K∈K 0

h

K
)∖

∂Ω
0
h = Ω

0
h,+∪Ω

0
h,−∪Γ

0
h .

Let x0 = (ξ1, · · · ,ξM)∈RdM be the vector that collects all the nodes ξ j ∈Rd , j = 1, . . . ,M, (which define
finite elements of degree k) in the triangulation K 0

h . We evolve the vector x0 in time and denote its position
at time t by

x(t) = (x1(t), · · · ,xM(t)),

which determines the triangulation Kh[x(t)] and domain Ωh[x(t)], as well as subdomains Ωh,±[x(t)] and
interface Γh[x(t)] such that

Ωh[x(t)] =
( ⋃

K∈Kh[x(t)]
K
)∖

∂Ωh[x(t)] = Ωh,+[x(t)]∪Ωh,−[x(t)]∪Γh[x(t)].

Similarly as the simplices on the initial domain, if K ∈Kh[x(t)] is a simplex on the evolving domain Ωh[x(t)],
then we denote by FK : K̂ → K the parametrization of K. For the simplicity of notation, we denote

Ωh(t) = Ωh[x(t)], Ωh,±(t) = Ωh,±[x(t)] and Γh(t) = Γh[x(t)].
Correspondingly, the scalar-valued finite element space on the evolving domain Ωh(t) is defined as

Sk
h[x(t)] :={vh ∈ H1(Ωh(t)) : vh ◦FK ∈ Pk(K̂) for all K ∈ Kh[x(t)]}

Sk−1
h,dc[x(t)] :={vh ∈ H1(Ωh,±(t)) : vh ◦FK ∈ Pk−1(K̂) for all K ∈ Kh[x(t)]}.

The ALE mapping φh(·, t) is defined as the unique finite element function φh(·, t) ∈ Sk
h[x

0]d such that

φh(ξ j, t) = x j(t) for j = 1, . . . ,M,

which maps the initial domain Ω 0
h,± onto the evolving domain Ωh,±(t), and the initial interface Γ 0

h onto the
evolving interface Γh(t), i.e.,

Ωh,±(t) = φh(Ω
0
h,±, t) and Γh(t) = φh(Γ

0
h , t) for t ∈ [0,T ].

The ALE mapping φh(·, t) is the flow map generated by a mesh velocity wh(·, t) and satisfies the following
relation:

d
dt

φh(ξ , t) = wh(t)◦φh(ξ , t) for ξ ∈ Ω
0
h . (2.5)

Based on the ALE mapping φh(·, t) and the mesh velocity wh(·, t), if v(·, t) is a function defined on Ωh(t), its
discrete material derivative is defined as

∂
•
t,hv(x, t) =

d
dt

v(φh(ξ , t), t) for x = φh(ξ , t) ∈ Ωh(t) for ξ ∈ Ω
0
h .

Let Xh[x(t)]×Mh[x(t)]⊂H1
0 (Ωh(t))d ×L2

0(Ωh(t)) denote the Taylor–Hood finite element space of degree
k ⩾ 2 subject to the triangulation Kh[x(t)] of evolving domain Ωh(t), i.e.,

Xh[x(t)] = Sk
h[x(t)]

d ∩H1
0 (Ωh(t))d and Mh[x(t)] = Sk−1

h,dc[x(t)]∩L2
0(Ωh(t)).

We also denote by X̊h[x(t)] the subspace of Xh[x(t)] with zero interface and boundary conditions, i.e.,

X̊h[x(t)] = {vh ∈ Xh[x(t)] : vh = 0 on Γh(t) = Γh[x(t)] and on ∂Ωh(t) = ∂Ωh[x(t)]}.
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It is known that the Taylor–Hood finite element space satisfies the discrete inf-sup condition (see [11, §8.5.3]
on the domain decomposition techniques), i.e., there exists positive constant κ independent of h such that

κ∥qh∥L2(Ωh(t)) ⩽ sup
0 ̸=vh∈Xh[x(t)]

(qh,∇ · vh)Ωh

∥vh∥H1(Ωh(t))
∀qh ∈ Mh[x(t)], (2.6)

where

(uh,vh)Ωh :=
∫

Ωh,+(t)
uhvh dx+

∫
Ωh,−(t)

uhvh dx.

Since the mesh velocity wh should be an approximation of w defined in Section 2.1, we define wh(·, t)
to be a discrete harmonic finite element function in the numerically computed subdomains Ωh,±(t) with
boundary condition matching the velocity of the fluid on the boundary ∂Ωh(t) and the numerically computed
interface Γh(t). This is equivalent to finding wh ∈ uh + X̊h[x(t)] such that∫

Ωh(t)
∇wh ·∇χh dx = 0 for χh ∈ X̊h[x(t)]. (2.7)

We denote by ρh and µh the piecewise constant functions in Ωh(t), defined by

ρh =

{
ρ+ in Ωh,+(t)

ρ− in Ωh,−(t)
and µh =

{
µ+ in Ωh,+(t)

µ− in Ωh,−(t).

The ALE evolving FEM for (2.4) is defined as follows.
ALE evolving FEM: Find a flow map φh(·, t) ∈ Sk

h[x
0]d which determines nodal vector x(t) = φh(x0, t)

and corresponding subdomains Ωh,±(t) = Ωh,±[x(t)], as well as (uh(·, t), ph(·, t)) ∈ Xh[x(t)]×Mh[x(t)] and
wh(·, t) ∈ uh(·, t)+ X̊h[x(t)] such that

(ρh∂
•
t,huh,vh)Ωh +2(µhD(uh),D(vh))Ωh − (ph,∇ · vh)Ωh

+(ρh(uh −wh) ·∇uh,vh)Ωh = ( fh,vh)Ωh ∀vh ∈ Xh[x(t)],

(∇ ·uh,qh)Ωh = 0 ∀qh ∈ Mh[x(t)],

(∇wh,∇χh)Ωh = 0 ∀χh ∈ X̊h[x(t)],
∂tφh = wh ◦φh,

(2.8)

with initial conditions φh(0) = id|
Ω 0

h
and uh(0) = u0

h, where u0
h is the Lagrange interpolation of u0 and fh is

the Lagrange interpolation of f on Ωh(t).

REMARK 2.1 The finite element basis functions of Sk
h[x(t)] are denoted by ϕ j[x(t)] : Ωh(t) → R for j =

1, . . . ,M, which have the property that on every triangle their pullback to the reference triangle is polynomial
of degree k, satisfying the identities

ϕ j[x(t)](xi(t)) = δi j for all i, j = 1, . . . ,M.

The pullback of ϕ j[x(t)] from Ωh(t) to Ω 0
h is ϕ j[x(t)] ◦φh(·, t) = ϕ j[x0], which is simply the finite element

basis functions on Ω 0
h . Therefore, the basis functions ϕ j[x(t)] satisfies the transport property [14]:

∂
•
t,hϕ j[x(t)](x) = 0 for x ∈ Ωh(t), j = 1, . . . ,M. (2.9)

By using the basis functions ϕ j[x(t)], the finite element space Sk
h[x(t)] and the discrete material derivative of

the finite element solutions vh(·, t) ∈ Sk
h[x(t)] can be written as

Sk
h[x(t)] =

{ M

∑
j=1

c jϕ j[x(t)] : c j ∈ R
}
,

∂
•
t,hvh(x, t) =

M

∑
j=1

v̇ j(t)ϕ j[x(t)](x) with vh(x, t) =
M

∑
j=1

v j(t)ϕ j[x(t)](x) for x ∈ Ωh(t),
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where the dot denotes the time derivative with respect to t.

REMARK 2.2 Due to the use of higher-order isoparametric elements, the integrals in (2.8) cannot be evaluated
exactly in practice and are instead approximated using numerical quadrature. The quadrature rules are chosen
based on the geometry and polynomial order of the elements to ensure high accuracy. In our analysis,
quadrature errors are not considered, as they are typically negligible compared to the discretization error.

3. Interpolated evolving mesh and consistency analysis

In the error analysis, we need to compare functions on two different domains, i.e., the exact domain Ω(t), and
the triangulated domain Ωh(t) determined by the numerical solution. The consistency error is the defect upon
inserting the Lagrange interpolation of the exact solution u and the interpolated interface into the discretized
equations. To this end, we define the interpolated ALE mapping and interpolated evolving mesh below.

3.1 Interpolated ALE mapping and interpolated evolving mesh

We evolve the vector x0 = (ξ1, · · · ,ξM) in time and denote x∗(t) = (x∗1(t), . . . ,x
∗
M(t)) the nodal vector which

collects the points x∗j(t) = φ(ξ j, t) on the exact domain Ω(t), which determines triangulation Kh[x∗(t)] and
interpolated domain Ω ∗

h (t). Since the initial triangulation is shape-regular and quasi-uniform, the interpolated
triangulations Kh[x∗(t)] will keep shape-regular and quasi-uniform for t ∈ [0,T ] when the flow map φ(·, t) :
Ω±(0)→ Ω±(t) and its inverse are piecewise smooth on Ω±(0) and Ω±(t) for t ∈ [0,T ], respectively.

Subject to the triangulation Kh[x∗(t)] of domain Ω ∗
h (t), the space of scalar-valued finite element functions

on Ω ∗
h (t) is defined as

Sk
h[x

∗(t)] := {vh ∈ H1(Ω ∗
h (t)) : vh ◦FK ∈ Pk(K̂) for all K ∈ Kh[x∗(t)]}.

We define the interpolated ALE mapping φ ∗
h (·, t) : Ω 0

h → Ω ∗
h (t) to be the Lagrange interpolation of flow

map φ(·, t) : Ω(0)→ Ω(t), which has the following properties:

φ
∗
h (ξ j, t) = x∗j(t) = φ(ξ j, t) for j = 1, . . . ,M,

and
Ω

∗
h,±(t) = φ

∗
h (Ω

0
h,±, t) and Γ

∗
h (t) = φ

∗
h (Γ

0
h , t).

If we denote by w∗
h(·, t) = I∗h (t)w(·, t) the Lagrange interpolations of the exact velocity w(·, t), then the fol-

lowing relation holds:
d
dt

φ
∗
h (ξ , t) = w∗

h(φ
∗
h (ξ , t), t) for ξ ∈ Ω

0
h . (3.1)

This equality holds because both sides are finite element functions on Ω 0
h and they are equal on the nodes.

Let u∗h be the Lagrange interpolation of the exact solution u, and denote by w∗
h,± and u∗h,± the restriction of

w∗
h and u∗h to subdomains Ω ∗

h,±(t). Then the interpolated mesh velocity satisfies w∗
h = u∗h on the interpolated

interface Γ ∗
h (t). Thus w∗

h,±−u∗h,± ∈ X̊h,±[x∗(t)].
For a function v(·, t) defined on Ω ∗

h (t), we can define the discrete material derivative ∂ •
t,∗ by using the

interpolated ALE mapping φ ∗
h (·, t) and the interpolated mesh velocity w∗

h(·, t) as

∂
•
t,∗v(x, t) =

d
dt

v(φ ∗
h (ξ , t), t) at point x = φ

∗
h (ξ , t) ∈ Ω

∗
h (t). (3.2)

3.2 Lifting operator

The transition between the interpolated domain Ω ∗
h (t) and the exact domain Ωh(t) is done by a lift operator.

In Lenoir’s isoparametric finite element approximation to Ω 0, there exists a map Φ : Ω 0
h → Ω 0 such that

(cf. [34]):

∥Φ(·)− id∥L∞(Ω 0
h )
+h∥Φ(·)− id∥W 1,∞(Ω 0

h )
⩽Chk+1 in Ω

0
h .
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For the triangulation Kh[x∗(t)] which fits the interface Γ (t), there exists a continuous mapping Φ∗
h (·, t) :

Ω ∗
h (t)→ Ω(t) given by

Φ
∗
h (·, t) = φ(·, t)◦Φ ◦φ

∗
h (·, t)−1 in Ω

∗
h (t), (3.3)

that maps Γ ∗
h (t) to Γ (t) and satisfies the following estimates

∥Φ
∗
h (·, t)− id∥L∞(Ω∗

h (t))
+h∥Φ

∗
h (·, t)− id∥L∞(Ω∗

h (t))
⩽Chk+1 in Ω

∗
h (t). (3.4)

Correspondingly, for vh : Ω ∗
h (t)→ R, we denote its lift by vℓh given by

vℓh = vh ◦Φ
∗
h (·, t)−1 in Ω(t). (3.5)

• (Lagrange interpolation) Define Îh,K̂ be the Lagrange interpolation on the reference simplex K̂, then the
following relation hold:

(I∗h (t)v)◦FK = Îh,K̂

(
v◦Φ

∗
h (·, t)◦FK

)
. (3.6)

• (Commutation of material derivative and lift) (cf. [16, Lemma 3.5]):

∂
•
t (v

ℓ
h) =

(
∂
•
t,∗vh

)ℓ for vh : Ω
∗
h (t)→ R. (3.7)

• (Transport property of the lifted basis functions ϕ j[x∗]ℓ) (cf. [13, Lemma 4.1]):

∂
•
t (ϕ j[x∗(t)]ℓ) =

(
∂
•
t,∗ϕ j[x∗(t)]

)ℓ
= 0, j = 1, . . . ,M. (3.8)

• (Commutation of material derivative of Lagrange interpolation): Utilizing the transport property of the
lifted basis functions, we have

∂
•
t,∗I∗h (t)v = I∗h (t)∂

•
t v. (3.9)

Define I ∗
h u := (I∗h u)ℓ : Ω(t)→ R. It follows from (3.8) and (3.7) that

∂
•
t I ∗

h u = I ∗
h ∂

•
t u. (3.10)

It plays a crucial role in proving the optimal-order in consistency error.

• (Approximation properties for the Lagrange interpolation) There exists a constant C > 0 independent of
h ⩽ h0, with a sufficiently small h0 > 0, and t such that for u(·, t) ∈ Hk+1(Ω±(t)), for 0 ⩽ t ⩽ T (cf. [30,
Lemma 7.5]):

∥u−I ∗
h (t)u∥L2(Ω±(t))+h∥∇u−∇I ∗

h (t)u∥L2(Ω±(t)) ⩽Chk+1∥u∥Hk+1(Ω±(t)). (3.11)

• (Equivalence of norms) The Lp and W 1,p norms on the discrete and continuous domains are equivalent for
1⩽ p⩽∞, uniformly in the mesh size h⩽ h0 (with sufficiently small h0 > 0) and in t ∈ [0,T ]. In particular,
for vh : Ω ∗

h (t)→ R with lift vℓh : Ω(t)→ R, there is a constant C such that for h ⩽ h0 and 0 ⩽ t ⩽ T ,

C−1∥vh∥L2(Ω∗
h (t))

⩽ ∥vℓh∥L2(Ω(t)) ⩽C∥vh∥L2(Ω∗
h (t))

, (3.12)

C−1∥vh∥H1(Ω∗
h (t))

⩽ ∥vℓh∥H1(Ω(t)) ⩽C∥vh∥H1(Ω∗
h (t))

. (3.13)

The lift operator ℓ maps a function on the interpolated domain Ω ∗
h (t) to a function on the exact domain

Ω(t), provided that Ω ∗
h (t) is sufficiently close to Ω(t).

In the following we drop the argument t when it is not essential.

3.3 Weak formulation on the interpolated evolving mesh

For the simplicity of notation, we denote by ρ∗
h and µ∗

h the piecewise constant functions in Ω ∗
h (t) defined by

ρ
∗
h =

{
ρ+ in Ω

∗
h,+(t),

ρ− in Ω
∗
h,−(t),

and µ
∗
h =

{
µ+ in Ω

∗
h,+(t),

µ− in Ω
∗
h,−(t),

(3.14)
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and define the following inner product:

(uh,vh)Ω∗
h
=

∫
Ω∗

h,+(t)
uhvh dx+

∫
Ω∗

h,−(t)
uhvh dx. (3.15)

After replacing the solution by its finite element interpolation in weak formulation (2.4), and replacing do-
mains Ω(t) and Ω±(t) by the interpolated domains Ω ∗

h (t) and Ω ∗
h,±(t), respectively, we obtain the following

weak formulation satisfied by the interpolated functions u∗h, p∗h, w∗
h and φ ∗

h :

(ρ∗
h ∂

•
t,∗u∗h,vh)Ω∗

h
+2(µ∗

hD(u∗h),D(vh))Ω∗
h
− (p∗h,∇ · vh)Ω∗

h

+(ρ∗
h (u

∗
h −w∗

h) ·∇u∗h,vh)Ω∗
h
− ( f ∗h ,vh)Ω∗

h
= Eu1(t,vh) ∀ vh ∈ Xh[x∗(t)],

(∇ ·u∗h,qh)Ω∗
h
= Eu2(t,qh) ∀ qh ∈ Mh[x∗(t)],

(∇w∗
h,∇χh)Ω∗

h
= Ew(t,χh) ∀ χh ∈ X̊h[x∗(t)],

∂tφ
∗
h = w∗

h ◦φ
∗
h ,

(3.16)

with initial conditions φ ∗
h (0) = id|

Ω 0
h

and u∗h(0) = u0
h, and f ∗h is the Lagrange interpolation of f on Ω ∗

h (t).
where Eu1(t,vh), Eu2(t,qh) and Ew(t,χh) are consistency errors arising from finite element approximations to
the solution and domain. For example,

Eu1(t,vh) :=(ρ∗
h ∂

•
t,∗u∗h,vh)Ω∗

h
− (ρ∂

•
t u,vℓh)

+2(µ∗
hD(u∗h),D(vh))Ω∗

h
−2(µD(u),D(vℓh))

+(ρ∗
h (u

∗
h −w∗

h) ·∇u∗h,vh)Ω∗
h
− (ρ(u−w) ·∇u,vℓh)

− (p∗h,∇ · vh)Ω∗
h
+(p,∇ · vℓh)− ( f ∗h ,vh)Ω∗

h
+( f ,vl

h),

which contains errors arising from approximating domain Ω±(t) by Ω ∗
h,±(t). This can be controlled by using

the following estimates for the error caused by domain perturbation (see [30]):∣∣∣∫
Ω∗

h,±(t)
gχhdx−

∫
Ω±(t)

gℓχℓ
hdx

∣∣∣⩽Chk∥χh∥L2(Ω∗
h,±(t))

∥g∥L2(Ω∗
h,±(t))

,∣∣∣∫
Ω∗

h,±(t)
g∇χhdx−

∫
Ω±(t)

gℓ∇χ
ℓ
hdx

∣∣∣⩽Chk∥χh∥H1(Ω∗
h,±(t))

∥g∥L2(Ω∗
h,±(t))

,∣∣∣∫
Ω∗

h,±(t)
∇χh ·∇ψhdx−

∫
Ω±(t)

∇χ
ℓ
h ·∇ψ

ℓ
hdx

∣∣∣⩽Chk∥χh∥H1(Ω∗
h,±(t))

∥ψh∥H1(Ω∗
h,±(t))

,

where χh,ψh ∈ Sk
h[x

∗(t)] and g ∈ L2(Ω ∗
h (t)). By using this result and the estimates of the interpolation error

shown in (3.11), the following estimates of the consistency errors can be derived when the domain Ω(t) and
interface Γ (t) are smooth, and the solution is piecewise smooth in each subdomain Ω±(t):∣∣Eu1(t,vh)

∣∣⩽Chk∥vh∥H1(Ω∗
h (t))

and
∣∣Eu2(t,qh)

∣∣⩽Chk∥qh∥L2(Ω∗
h (t))

, (3.17)∣∣Ew(t,χh)
∣∣⩽Chk∥χh∥H1(Ω∗

h (t))
, (3.18)

for vh ∈ Xh[x∗(t)], qh ∈ Mh[x∗(t)] and χh ∈ X̊h[x∗(t)]. In the case ∂ •
t,∗vh = 0 and ∂ •

t,∗qh = 0 on Ω ∗
h (t), the

derivatives of these consistency errors also satisfy similar estimates, i.e.,∣∣∣ d
dt

Eu1(t,vh)
∣∣∣⩽Chk∥vh∥H1(Ω∗

h (t))
and

∣∣∣ d
dt

Eu2(t,qh)
∣∣∣⩽Chk∥qh∥L2(Ω∗

h (t))
. (3.19)

REMARK 3.1 From the expression of Eu1(t,vh) we can see that the first consistency estimate in (3.19) re-
quires not only ∥u∥Hk+1(Ω±(t)) and ∥∂ •

t u∥Hk+1(Ω±(t)) but also ∥∂ •
t ∂ •

t u∥Hk+1(Ω±(t)) to be bounded. This is the
strongest regularity required for the consistency estimates, and is assumed in Proposition 3.1 for consistency
estimates and Theorem 4.1 for error estimates.
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3.4 Matrix-vector form of the weak formulation

For both computation and error analysis it is convenient to use the matrix-vector form of the finite element
weak formulation in (2.8). Through the utilization of finite element basis functions ϕ j[x(t)] on the domain
Ωh(t), the numerical solution uh(t) can be expressed as a column vector u = (u1(t), . . . ,uM(t)), where

uh(t) =
M

∑
j=1

u j(t)ϕ j[x(t)] for u j(t) ∈ Rd .

Similarly, the solutions ph(t) and wh(t) on Ωh(t) can also be represented as column vector p and w,
respectively. Then x(t) = (x1(t), . . . ,xM(t)) = φh(x0, t) is the vector of positions of all finite element nodes
at t, satisfying

dx(t)
dt

= w(t) with x(0) = x0, (3.20)

where the initial value x0 is given by the triangulation of the domain Ω at time t = 0.
We introduce domain-dependent mass matrix M(x), the stiffness matrix A(x), and the matrix Mρρρ(x) and

Aµµµ(x) on the domain Ωh(t) as follows:

v⊤M(x)u = ∑
K∈Kh[x]

∫
K

uh · vh dx, v⊤Mρρρ(x)u = ∑
K∈Kh[x]

ρK

∫
K

uh · vh dx,

v⊤A(x)u = ∑
K∈Kh[x]

∫
K

∇uh ·∇vh dx, v⊤Aµµµ(x)u = ∑
K∈Kh[x]

2µK

∫
K
D(uh) ·D(vh)dx.

With identity matrix Id ∈Rd×d , we define K(xn)d as the Kronecker product of Id and K(xn) := M(xn)+
A(xn), i.e.,

K(xn)d := Id ⊗ (M(xn)+A(xn)).

To simplify the notation, we will use K(xn) to represent K(xn)d when the dimension of the matrix is clear
and therefore no confusion arises. With the matrices defined above, the L2 and H1 norm of finite element
functions can be expressed as quadratic forms:

∥u∥2
M(x) := u⊤M(x)u = ∥uh∥2

L2(Ωh(t))
, (3.21)

∥u∥2
A(x) := u⊤A(x)u = ∥∇uh∥2

L2(Ωh(t))
, (3.22)

∥u∥2
K(x) := u⊤K(x)u = ∥uh∥2

H1(Ωh(t))
. (3.23)

In the same way, we can define the matrices Bρρρ(x,u) and C(x) such that

v⊤Bρρρ(x,u)χχχ = ∑
K∈Kh[x]

ρK

∫
K
(uh ·∇χh) · vh dx,

q⊤C(x)v = ∑
K∈Kh[x]

∫
K
(∇ · vh)qh dx = v⊤C(x)⊤q.

In situations where there is no ambiguity in the context, we omit the time dependency and rewrite the
weak formulation (2.8) into the following matrix-vector form:

Mρρρ(x)u̇+Bρρρ(x,u−w)u+Aµµµ(x)u−C(x)⊤p−M(x)f = 0,

C(x)u = 0,

χχχ
⊤A(x)w = 0 for nodal vectors χχχ associated to χh ∈ X̊h[x(t)],

ẋ = w,

(3.24a)

(3.24b)

(3.24c)

(3.24d)

where the column vector f collects the nodal values of fh. In the same way, we can define the corresponding
matrices and vectors over the interpolated domain Ω ∗

h (t). The matrices and vectors denoted with a superscript
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∗ collect the nodal values of the interpolation of the exact solutions. For example, the vector v∗ collects the
nodal values of v∗h. With this convention, we can rewrite the weak formulation (3.16) in the following form:

Mρρρ(x∗)u̇∗+Bρρρ(x∗,u∗−w∗)u∗+Aµµµ(x∗)u∗−C(x∗)⊤p∗−M(x∗)f∗ = E u1,

C(x∗)u∗ = E u2,

χχχ
⊤A(x∗)w∗ = χχχ

⊤E w for nodal vectors χχχ associated to χh ∈ X̊h[x∗(t)],

ẋ∗ = w∗,

(3.25a)

(3.25b)

(3.25c)

(3.25d)

where E u1, E u2, E w denote the vectorized forms of the defect terms Eu1(t, ·), Eu2(t, ·), and Ew(t, ·), which
satisfy the following relations:

v⊤E u1 = Eu1(t,v∗h), q⊤E u2 = Eu2(t,q∗h), χχχ
⊤E w = Ew(t,χ∗

h ) (3.26)

for v∗h ∈ Xh[x∗(t)], q∗h ∈ Mh[x∗(t)], χ∗
h ∈ X̊h[x∗(t)] and the associated nodal vectors v, q, χχχ .

Convergence of the ALE evolving FEM is established in this article by comparing the matrix-vector
formulations in (3.24) and (3.25). By subtracting (3.25) from (3.24), we obtain the following equations for
the errors ew = w−w∗, eu = u−u∗, ep = p−p∗, and ex = x−x∗:

Mρρρ(x)ėu +Aµµµ(x∗)eu −C(x)⊤ep =−(Mρρρ(x)−Mρρρ(x∗))u̇∗

− (Aµµµ(x)−Aµµµ(x∗))eu

− (Aµµµ(x)−Aµµµ(x∗))u∗

−
(
Bρρρ(x,u−w)u−Bρρρ(x∗,u∗−w∗)u∗)

+(C(x)⊤−C(x∗)⊤)p∗+(M(x)f−M(x∗)f∗)− E u1,

C(x)eu =−(C(x)−C(x∗))u∗−E u2,

χχχ
⊤A(x)ew =−χχχ

⊤[A(x)−A(x∗)]w∗−χχχ
⊤E w,

ėx = ew,

(3.27a)

(3.27b)

(3.27c)

(3.27d)

for all χχχ associated to some χh ∈ X̊h[x∗(t)].
The estimates of the consistency errors in (3.17)–(3.19) can also be written into the matrix-vector form,

as shown in the following proposition. This proposition generalizes the consistency estimates found in [30,
Lemma 8.1], as it directly follows from the estimates for the error caused by domain perturbation and the
approximation properties of Lagrangian interpolation.

PROPOSITION 3.1 (Consistency estimates) We assume that the flow map φ : Ω±(0)× [0,T ] → Rd and its
inverse φ(·, t)−1 : Ω±(t)→ Ω±(0) are both sufficiently smooth so that the subdomains Ω±(t) are sufficiently
smooth and the interpolated triangulations Kh[x∗(t)] are shape-regular and quasi-uniform for t ∈ [0,T ], and
assume that the solution of (1.1) is piecewise smooth on these subdomains in the sense that

max
t∈[0,T ]

2

∑
j=0

∥(∂ •
t )

ju∥Hk+1(Ω±(t)) ⩽C0 for some constant C0 > 0.

Then there exist positive constants h0 such that for h ⩽ h0, the following consistency estimates hold:∣∣v⊤E u1
∣∣⩽Chk∥v∥K(x∗) and

∣∣q⊤E u2
∣∣⩽Chk∥q∥M(x∗), (3.28)∣∣χχχ⊤E w

∣∣⩽Chk∥χχχ∥K(x∗) for χχχ associated to some χh ∈ X̊h[x∗(t)]. (3.29)

Moreover, the derivatives of these defect terms satisfy similar estimates:∣∣∣v⊤ d
dt

E u1

∣∣∣⩽Chk∥v∥K(x∗) and
∣∣∣q⊤ d

dt
E u2

∣∣∣⩽Chk∥q∥M(x∗). (3.30)
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4. Convergence of the ALE evolving FEM

We are now in the position to formulate the main result of this paper, which yields optimal-order convergence
in the H1 norm for the Taylor–Hood finite element semidiscretization of problem (3.24).

Theorem 4.1 (Convergence of the ALE evolving FEM) We assume that the solution of (1.1) satisfies the
following global regularity

(u, p) ∈C([0,T ];H1(Ω)d)×L2(0,T ;L2(Ω)),

and is piecewise smooth in the sense that

max
t∈[0,T ]

(
∥u∥Hk+1(Ω±(t))+∥∂

•
t u∥Hk+1(Ω±(t))+∥∂

•
t ∂

•
t u∥Hk+1(Ω±(t))

)
⩽C0 (4.1)

max
t∈[0,T ]

(∥p∥Hk(Ω±(t))+∥∂
•
t p∥Hk(Ω±(t)))⩽C0 for some constant C0 > 0, (4.2)

and assume that flow map φ : Ω±(0)× [0,T ] → Rd and its inverse φ(·, t)−1 : Ω±(t) → Ω±(0) are both
sufficiently smooth so that the subdomains Ω±(t) are sufficiently smooth and the interpolated triangulations
Kh[x∗(t)] are shape-regular and quasi-uniform for t ∈ [0,T ]. Then there exists a positive constant h0 such
that for h ⩽ h0, the finite element method in (2.8) with Taylor–Hood finite elements of degree k ⩾ 2 has
following error bound:

max
t∈[0,T ]

∥φh(·, t)−φ
∗
h (·, t)∥H1(Ω 0

h )
+ max

t∈[0,T ]
∥uh ◦φh(·, t)−u∗h ◦φ

∗
h (·, t)∥H1(Ω 0

h )

+ max
t∈[0,T ]

∥wh ◦φh(·, t)−w∗
h ◦φ

∗
h (·, t)∥H1(Ω 0

h )

+∥ph ◦φh(·,s)− p∗h ◦φ
∗
h (·,s)∥L2(0,T ;L2(Ω 0

h ))
⩽Chk, (4.3)

where φ ∗
h ∈ Sk

h[x
0]d , (u∗h, p∗h) ∈ Xh[x∗(t)]×Mh[x∗(t)] and w∗

h ∈ u∗h + X̊h[x∗(t)] are the Lagrange interpolations
of the exact solutions.

The proof of Theorem 4.1 will be presented in the next two subsections based on the technique of a
homotopy map between two different domains Ω ∗

h (t) and Ωh(t).

4.1 Comparison of integrals on two different domains

To establish the convergence of the numerical schemes, it is necessary to compare the integrals over two
different domains, i.e, the triangulated domain Ω ∗

h (t) obtained from interpolating the exact domain Ω(t), and
the triangulated domain Ωh(t) determined by the numerical solution. In the spirit of the techniques in [15,30],
we can obtain a similar sequence of results employing shape derivatives by constructing a homotopy map
between Ω ∗

h (t) and Ωh(t).
To handle the rate of change of an integral over a moving domain, we will frequently make use of the

following lemma (cf. [40, Lemma 5.7]):

Lemma 4.1 If the domain Ω(t) moves with velocity w ∈W 1,∞(Ω(t)), then
d
dt

∫
Ω(t)

f dx =
∫

Ω(t)
(∂ •

t f + f ∇ ·w)dx, (4.4)

where the material derivative ∂ •
t f = ∂t f +∇ f ·w.

REMARK 4.1 The commutation of the material derivative and gradient is crucial in the error analysis.
Through direct computation, we obtain the following identities:

∂
•
t (∇v) = ∇(∂ •

t v)−∇v∇w and ∂
•
t (∇ · v) = ∇ · (∂ •

t v)− tr[∇v∇w]. (4.5)

We establish a linear continuous deformation from Ω ∗
h (t) to Ωh(t). Using the basis functions ϕ j[x(0)] of
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Sk
h(Ω

0
h )

d , we uniquely determine the domains Ω ∗
h (t) and Ωh(t) by vectors x∗ and x, respectively. The vector

xθ = (1−θ)x∗+θx = x∗+θex, for 0 ⩽ θ ⩽ 1, (4.6)

then defines an intermediate domain Ω θ
h (t) that changes continuously from Ω ∗

h (t) to Ωh(t) when the pa-
rameter θ varies over the interval [0,1]. For the vector u∗ = (u∗1(t), . . . ,u

∗
M(t)), we define the finite element

function on Ω θ
h (t) as

u∗,θh =
M

∑
j=1

u∗j(t)ϕ j[xθ (t)] for u∗j(t) ∈ Rd and 0 ⩽ θ ⩽ 1. (4.7)

Similarly, we can define functions eθ
x , eθ

u ,e
θ
w, w∗,θ

h and (∂ •
t,∗u∗h)

θ , which are defined on intermediate domain
Ω θ

h (t) and share the nodal vectors ex,eu,ew, w∗ and u̇∗, respectively. These notations are consistently applied
to other functions without redundant introductions.

Let ∂ •
θ

denote the material derivative with respect to the velocity field eθ
x . By using the transport property,

we have

∂
•
θ u∗,θh = 0 and ∂

•
θ eθ

u = 0. (4.8)

Then the following relations follow from (4.8) and (4.5):

∂
•
θ (∇eθ

u ) =−∇eθ
u ∇eθ

x and ∂
•
θ (∇ · eθ

u ) =−tr[∇eθ
u ∇eθ

x ], (4.9)

∂
•
θ (∇u∗,θh ) =−∇u∗,θh ∇eθ

x and ∂
•
θ (∇ ·u∗,θh ) =−tr[∇u∗,θh ∇eθ

x ]. (4.10)

We denote by ρθ
h and µθ

h the piecewise constant functions in Ω θ
h (t) defined by

ρ
θ
h =

{
ρ+ in Ω

θ
h,+(t),

ρ− in Ω
θ
h,−(t),

and µ
θ
h =

{
µ+ in Ω

θ
h,+(t),

µ− in Ω
θ
h,−(t).

(4.11)

In combination with the fundamental theorem of calculus, Lemma 4.1 and the transport property (2.9), the
following lemma was proved in [15, Lemma 5.1].

Lemma 4.2 In the above setting the following identities hold (for the corresponding finite element functions
and the associated nodal vectors):

(u∗)⊤(M(x)−M(x∗))v∗ =
∫ 1

0

∫
Ω θ

h (t)
u∗,θh (∇ · eθ

x )v
∗,θ
h dxdθ , (4.12)

(u∗)⊤(A(x)−A(x∗))v∗ =
∫ 1

0

∫
Ω θ

h (t)
∇u∗,θh (D

Ω θ
h

eθ
x ) ·∇v∗,θh dxdθ , (4.13)

(u∗)⊤(Mρρρ(x)−Mρρρ(x∗))v∗ =
∫ 1

0

∫
Ω θ

h (t)
ρ

θ
h u∗,θh (∇ · eθ

x )v
∗,θ
h dxdθ , (4.14)

(u∗)⊤(Aµµµ(x)−Aµµµ(x∗))v∗ = 2
∫ 1

0

∫
Ω θ

h (t)
µ

θ
h

[
D(u∗,θh )(∇ · eθ

x ) ·D(v
∗,θ
h ) (4.15)

−S(∇u∗,θh ∇eθ
x ) ·D(v

∗,θ
h )−D(u∗,θh ) ·S(∇v∗,θh ∇eθ

x )
]

dxdθ ,

(u∗)⊤(C(x)−C(x∗))⊤p∗ =
∫ 1

0

∫
Ω θ

h (t)

[
(∇ ·u∗,θh )(∇ · eθ

x )− tr(∇u∗,θh ∇eθ
x )
]

p∗,θh dxdθ , (4.16)

where D
Ω θ

h
eθ

x = ∇ · eθ
x −2S(∇eθ

x ) with S(E) = 1
2 (E +E⊤).

A direct consequence of Lemma (4.2) is the following conditional equivalence of norms, i.e., if ∇eθ
x is

small, the norms of finite element functions on the two domains Ω ∗
h (t) and Ωh(t) with same nodal vectors

are equivalent. This lemma was proved in [15, Lemma 5.2] by using the Gronwall’s inequality.
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Lemma 4.3 If ∥∇ · eθ
x ∥L∞(Ω θ

h (t))
⩽ α for 0 ⩽ θ ⩽ 1, then

∥v∥M(xθ ) ⩽ eα/2∥v∥M(x∗).

If ∥D
Ω θ

h
eθ

x ∥L∞(Ω θ
h (t))

⩽ η for 0 ⩽ θ ⩽ 1, then

∥v∥A(xθ ) ⩽ eη/2∥v∥A(x∗).

REMARK 4.2 (Norm equivalence) By using the Poincaré’s inequality, the norms ∥ · ∥A(x∗) and ∥ · ∥K(x∗) are
equivalent for finite element functions in H1

0 (Ω
∗
h (t)), and the equivalence is independent of h since there is a

one-to-one W 1,∞-uniformly bounded lift map from Ω ∗
h (t) onto Ωh(t).

In combination with the above Lemmas, the definition of the norms in (3.21)–(3.23) implies the following
conclusion under the condition in Lemma 4.3:

the norms ∥ · ∥M(xθ ) are h-uniformly equivalent for 0 ⩽ θ ⩽ 1,

and so are the norms ∥ · ∥A(xθ ) and ∥ · ∥K(xθ ).
(4.17)

Then by using Korn’s inequality, the estimate (3.4), Lemma 4.3 and the equivalence (4.17), the follow-
ing norms are h-uniformly equivalent when h is sufficiently small for 0 ⩽ θ ⩽ 1 under the condition in
Lemma 4.3:

∥ · ∥M(xθ ) ∼ ∥ ·∥Mρρρ (xθ ) and ∥ · ∥K(xθ ) ∼ ∥ ·∥A(xθ ) ∼ ∥ ·∥Aµµµ (xθ ). (4.18)

The following lemma was proved in [15, Lemma 5.3], which says that the condition for eθ
x in Lemma 4.3

can be reduced to θ = 0.

Lemma 4.4 Let e∗x = eθ
x |θ=0 be the finite element error function on Ω ∗

h (t) with nodal vectors ex. If
∥∇e∗x∥L∞(Ω∗

h (t))
⩽ 1

2 , then the finite element function v∗,θh (t) defined on Ω θ
h (t), with 0 ⩽ θ ⩽ 1, satisfies

the following estimate:

∥∇v∗,θh ∥Lp(Ω θ
h (t))

⩽Cp∥∇v∗h∥Lp(Ω∗
h (t))

for 1 ⩽ p ⩽ ∞,

where Cp depends only on p.

We also need results that bound the time derivatives of the mass and stiffness matrices. The following
results can be shown in a similar way as the analogous results on a surface [30, Lemma 4.6].

Lemma 4.5 For the nodal vectors u, v ∈ RdM , there holds

u⊤
( d

dt
M(x∗)

)
v ⩽C∥u∥M(x∗)∥v∥M(x∗), (4.19)

u⊤
( d

dt
A(x∗)

)
v ⩽C∥u∥A(x∗)∥v∥A(x∗), (4.20)

u⊤
( d

dt
Aµµµ(x∗)

)
v ⩽C∥u∥A(x∗)∥v∥A(x∗), (4.21)

where C depends only on a bound of the W 1,∞ norm of the domain velocity w∗
h.

4.2 The proof of Theorem 4.1

Let e∗x ∈ Sk
h[x

∗(t)]d , e∗u ∈ Xh[x∗(t)], e∗p ∈ Mh[x∗(t)] and e∗w ∈ Xh,±[x∗(t)](e∗u) be the finite element error func-
tions on Ω ∗

h (t) with nodal vectors ex, eu, ep and ew, respectively.
Let t∗ ∈ (0,T ] be the maximal time such that the following inequalities hold for t ∈ [0, t∗]:

∥e∗x(t)∥W 1,∞(Ω∗
h (t))

⩽ h−
d
4 h

k
2 , (4.22a)

∥e∗u(t)∥W 1,∞(Ω∗
h (t))

⩽ 1, (4.22b)

∥e∗w(t)∥W 1,∞(Ω∗
h (t))

⩽ 1. (4.22c)
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A key issue in the proof is to ensure that the W 1,∞ norm of the position error e∗x(t) remains small. Since
(4.22a) is small only for k ⩾ 2, the estimates in this proof cannot be derived for the linear case k = 1. In fact,
t∗ is positive because the inequalities above hold for t = 0 when h is smaller than some sufficiently small
constant.
(1) Since x∗(0) = x0 and u∗(0) = u0, it follows that ex(0) = 0 and eu(0) = 0, which gives e∗x(0) = 0 and

e∗u(0) = 0, respectively.

(2) Testing (3.27c) with ew − eu at t = 0 and using the fact that ex(0) = eu(0) = 0 yields the following
relation:

∥ew(0)∥2
A(x∗(0)) =−ew(0)⊤E w(0).

The relation above, together with Lemma 3.1, implies that ∥ew(0)∥K(x∗) ⩽Chk. By the inverse inequality of
finite element function, we have

∥e∗w(0)∥W 1,∞(Ω∗
h (t))

⩽Ch−
d
2 ∥e∗w(0)∥H1(Ω∗

h (t))
⩽Ch−

d
2 ∥ew(0)∥K(x∗) ⩽Chk− d

2 ⩽ 1.

Since k ⩾ 2 > d/2, it follows that (4.22b)–(4.22c) hold for t = 0 when h is sufficiently small.
We first prove that error estimate (4.3) holds for t ∈ [0, t∗] under condition (4.22). Then we complete the

proof by showing that t∗ = T .

(A) Estimates for ex: Multiplying (3.27d) by matrix A(x∗), testing with ex, and dropping the omnipresent
argument t ∈ [0, t∗], we have

(ex)
⊤A(x∗)ėx = (ex)

⊤A(x∗)ew. (4.23)

In order to apply Gronwall’s inequality, we relate d
dt ∥ex∥2

A(x∗) to (ex)
⊤A(x∗)ėx as follows

1
2

d
dt
∥ex∥2

A(x∗) =
1
2

d
dt

(
(ex)

⊤A(x∗)ex
)
= (ex)

⊤A(x∗)ėx +
1
2
(ex)

⊤
( d

dt
A(x∗)

)
ex. (4.24)

By using Lemma 4.5, we have
1
2

d
dt
∥ex∥2

A(x∗) =(ex)
⊤A(x∗)ew +

1
2
(ex)

⊤
( d

dt
A(x∗)

)
ex (4.25)

⩽
∫

Ω∗
h (t)

∇e∗w ·∇e∗x dx+C∥ex∥2
A(x∗)

⩽C∥∇e∗w∥L2(Ω∗
h (t))

∥∇e∗x∥L2(Ω∗
h (t))

+C∥ex∥2
A(x∗)

⩽C∥ew∥2
A(x∗)+C∥ex∥2

A(x∗).

(B) Estimates for ew under condition (4.22): Since e∗w − e∗u = 0 on Γ ∗
h (t), i.e., e∗w − e∗u ∈ X̊h[x∗(t)], we can

choose χχχ = ew − eu in (3.27c). This yields the following result:

∥ew∥2
A(x∗) =−(ew − eu)

⊤(A(x)−A(x∗))w+(eu)
⊤A(x∗)ew (4.26)

− (ew − eu)
⊤E w

=: H1 +H2 +H3.

The first term on the right hand side of (4.26) can be estimated by using Lemma 4.2 and Hölder’s in-
equality, i.e.,

H1 ⩽C∥∇wθ
h ∥L∞(Ω θ

h (t))
∥∇eθ

x ∥L2(Ω θ
h (t))

∥∇eθ
w −∇eθ

u ∥L2(Ω θ
h (t))

⩽C
(
1+∥∇e∗w∥L∞(Ω∗

h (t))
)
∥∇e∗x∥L2(Ω∗

h (t))
(
∥∇e∗w∥L2(Ω∗

h (t))
+∥∇e∗u∥L2(Ω∗

h (t))
)

⩽C∥ex∥A(x∗)(∥ew∥A(x∗)+∥eu∥A(x∗))

⩽C∥ex∥2
A(x∗)+C∥eu∥2

A(x∗)+
1
8
∥ew∥2

A(x∗),
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where we have used ∥∇wθ
h ∥L∞(Ω θ

h (t))
= ∥∇eθ

w −∇w∗,θ
h ∥L∞(Ω θ

h (t))
⩽C

(
1+∥∇e∗w∥L∞(Ω∗

h (t))
)
.

The second term on the right hand side of (4.26) can be bounded by

H2 ⩽C∥eu∥A(x∗)∥ew∥A(x∗) ⩽C∥eu∥2
A(x∗)+

1
8
∥ew∥2

A(x∗).

The last term on the right hand side of (4.26) can be estimated similarly, i.e.,

H3 ⩽Chk∥ew − eu∥K(x∗) ⩽Chk∥ew − eu∥A(x∗) (4.27)

⩽Ch2k +
1
8
∥eu∥2

A(x∗)+
1
8
∥ew∥2

A(x∗),

where we have converted ∥ew − eu∥K(x∗) (i.e., the full H1 norm) to ∥ew − eu∥A(x∗) (i.e., the H1 semi-norm)
because the corresponding function e∗w − e∗u satisfies the zero boundary condition in Ω ∗

h,±(t). Altogether we
obtain the bound as

∥ew∥2
A(x∗) ⩽Ch2k +C∥ex∥2

A(x∗)+C∥eu∥2
A(x∗). (4.28)

Then, substituting (4.28) into (4.25), we obtain
d
dt
∥ex∥2

A(x∗) ⩽Ch2k +C∥eu∥2
A(x∗)+C∥ex∥2

A(x∗). (4.29)

By integrating (4.29) on both sides with respect to time from 0 to t, we obtain

∥ex∥2
A(x∗) ⩽Ch2k +

∫ t

0

(
∥ex(s)∥2

A(x∗)+∥eu(s)∥2
A(x∗)

)
ds. (4.30)

(C) Estimates for eu under condition (4.22): Testing (3.27a) by ėu, we obtain

(ėu)
⊤Mρρρ(x)ėu +

1
2

d
dt

(
(eu)

⊤Aµµµ(x∗)eu

)
− 1

2
(eu)

⊤
( d

dt
Aµµµ(x∗)

)
eu (4.31)

= − (ėu)
⊤(Mρρρ(x)−Mρρρ(x∗))u̇∗

− (ėu)
⊤(Aµµµ(x)−Aµµµ(x∗))u∗

− (ėu)
⊤(Aµµµ(x)−Aµµµ(x∗))eu

− (ėu)
⊤
(

Bρρρ(x,u−w)u−Bρρρ(x∗,u∗−w∗)u∗
)

+(ėu)
⊤(C(x)⊤−C(x∗)⊤)p∗+(ėu)

⊤C(x)⊤ep

+(ėu)
⊤(M(x)f−M(x∗)f∗)− (ėu)

⊤E u1

=:
7

∑
j=1

S j − (ėu)
⊤E u1.

The last term on the left-hand side of (4.31) can be estimated by using Lemma 4.5, i.e.,∣∣∣1
2
(eu)

⊤
( d

dt
Aµµµ(x∗)

)
eu

∣∣∣⩽C∥eu∥2
A(x∗). (4.32)

In the following, we present estimates for each term on the right-hand side of (4.31).
The first term on the right hand side of (4.31) can be estimated by using Lemma 4.2 and Hölder’s in-

equality, and the norm equivalence in Lemma 4.3, i.e.,

S1 = (ėu)
⊤(Mρρρ(x)−Mρρρ(x∗))u̇∗ (4.33)

=
∫ 1

0

∫
Ω θ

h (t)
ρ

θ
h (∂

•
t,∗e∗u)

θ (∇ · eθ
x )(∂

•
t,∗u∗h)

θ dxdθ

⩽C∥∇ · eθ
x ∥L2(Ω θ

h (t))
∥(∂ •

t,∗u∗h)
θ∥L∞(Ω θ

h (t))
∥(∂ •

t,∗e∗u)
θ∥L2(Ω θ

h (t))

⩽C∥∇e∗x∥L2(Ω∗
h (t))

∥∂
•
t,∗u∗h∥L∞(Ω∗

h (t))
∥∂

•
t,∗e∗u∥L2(Ω∗

h (t))

⩽C∥ex∥A(x∗)∥ėu∥M(x)
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⩽ ε∥ėu∥2
Mρρρ (x)+Cε

−1∥ex∥2
A(x∗),

where the positive constant ε can be arbitrarily small and we have used ∥∂ •
t,∗u∗h∥L∞(Ω∗

h (t))
⩽C.

The second term on the right hand side of (4.31) can be estimated by using integration by parts in time,
i.e.,

S2 = − (ėu)
⊤(Aµµµ(x)−Aµµµ(x∗))u∗ (4.34)

= − d
dt

(
(eu)

⊤(Aµµµ(x)−Aµµµ(x∗))u∗
)
+(eu)

⊤
( d

dt
(Aµµµ(x)−Aµµµ(x∗))

)
u∗

+(eu)
⊤(Aµµµ(x)−Aµµµ(x∗))u̇∗

=:S21 +S22 +S23,

where the first term on the right-hand side of (4.34) can be bounded after integrating it over [0, t] for 0⩽ t ⩽ t∗,
i.e., ∫ t

0
S21(s)ds = − (eu)

⊤(Aµµµ(x)−Aµµµ(x∗))u∗ (4.35)

= −2
∫ 1

0

∫
Ω θ

h (t)
µ

θ
h

[
D(u∗,θh )(∇ · eθ

x ) ·D(eθ
u ) (Lemma 4.2 is used)

−S(∇u∗,θh ∇eθ
x ) ·D(eθ

u )+D(u∗,θh ) ·S(∇eθ
u ∇eθ

x )
]

dxdθ

⩽C∥∇u∗h(t)∥L∞(Ω∗
h (t))

∥∇e∗x(t)∥L2(Ω∗
h (t))

∥∇e∗u(t)∥L2(Ω∗
h (t))

(Lemma 4.3 is used)

⩽C∥ex(t)∥A(x∗)∥eu(t)∥A(x∗)

⩽ε∥eu(t)∥2
Aµµµ (x∗)+Cε

−1∥ex(t)∥2
A(x∗).

In order to estimate S22, we define wθ
h = w∗,θ

h +θeθ
w to be the finite element function on Ω θ

h (t) with nodal
vector wθ = w∗+θew. Note that d

dt xθ = ẋ = wθ and d
dθ

xθ = ex. By using the transport formula, Lemma 4.1
and (4.5), we have

d
dt

∫
Ω θ

h (t)
f dx =

∫
Ω θ

h (t)
(∂ •

t,θ f + f ∇ ·wθ
h )dx,

d
dθ

∫
Ω θ

h (t)
f dx =

∫
Ω θ

h (t)
(∂ •

θ f + f ∇ · eθ
x )dx,

where ∂ •
θ

denotes the material derivative with respect to the velocity field eθ
x with

∂
•
θ (∇wθ

h ) = ∇eθ
w −∇wθ

h ∇eθ
x and ∂

•
θ (∇ ·wθ

h ) = ∇ · eθ
w − tr[∇wθ

h ∇eθ
x ], (4.36)

and ∂ •
t,θ denotes the material derivative with respect to the velocity field wθ

h with

∂
•
t,θD(ηθ

h ) =−S(∇η
θ
h ∇eθ

x ) for ∂
•
t,θ η

θ
h = 0, (4.37)

∂
•
t,θ S(∇η

θ
h ∇eθ

x ) = S(∇η
θ
h ∇eθ

w)−S(∇η
θ
h (∇wθ

h ∇eθ
x +∇eθ

x ∇wθ
h )), (4.38)

where we note ∂ •
t,θ eθ

x = eθ
w and ηθ

h is defined from (4.7), which is the finite element function on Ω θ
h (t) and

shares the nodal vector ηηη ∈ RdM with η̇ηη = 0.
The second term on the right hand side of (4.34) can be estimated by using the above-mentioned setting

and Lemma 4.2, we have

|S22|=
∣∣∣(eu)

⊤
( d

dt
(Aµµµ(x)−Aµµµ(x∗))

)
u∗
∣∣∣ (4.39)

=
∣∣∣ d
dt

∫ 1

0

∫
Ω θ

h (t)
2µ

θ
h

[
D(u∗,θh )(∇ · eθ

x ) ·D(eθ
u )

−S(∇u∗,θh ∇eθ
x ) ·D(eθ

u )−D(u∗,θh ) ·S(∇eθ
u ∇eθ

x )
]
dxdθ

∣∣∣
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=
∣∣∣∫ 1

0

∫
Ω θ

h (t)
2µ

θ
h

[
−S(u∗,θh wθ

h )(∇ · eθ
x ) ·D(eθ

u )−D(u∗,θh )(∇ · eθ
x ) ·S(eθ

u wθ
h )

+D(u∗,θh )
(
∇ · eθ

w − tr[∇eθ
x ∇wθ

h ]
)
·D(eθ

u )
]
dxdθ

+
∫ 1

0

∫
Ω θ

h (t)
2µ

θ
h

[(
S(∇u∗,θh ∇eθ

w)−S(∇u∗,θh (∇eθ
x ∇wθ

h +∇wθ
h ∇eθ

x ))
)
·D(eθ

u )

+D(u∗,θh ) ·
(
S(∇eθ

u ∇eθ
w)−S(∇eθ

u (∇eθ
x ∇wθ

h +∇wθ
h ∇eθ

x ))
)

−S(∇u∗,θh ∇eθ
x ) ·S(∇eθ

u ∇wθ
h )−S(u∗,θh ∇wθ

h ) ·S(∇eθ
u ∇eθ

x )
]
dxdθ

+
∫ 1

0

∫
Ω θ

h (t)
2µ

θ
h

[
D(u∗,θh )(∇ · eθ

x ) ·D(eθ
u )

−S(∇u∗,θh ∇eθ
x ) ·D(eθ

u )−D(u∗,θh ) ·S(∇eθ
u ∇eθ

x )
]
(∇ ·wθ

h )dxdθ

∣∣∣
⩽C∥∇u∗h∥L∞(Ω∗

h (t))
(
1+∥∇e∗w∥L∞(Ω∗

h (t))
)
∥∇e∗x∥L2(Ω∗

h (t))
∥∇e∗u∥L2(Ω∗

h (t))

+C∥∇u∗h∥L∞(Ω∗
h (t))

(
1+∥∇e∗w∥L∞(Ω∗

h (t))
)
∥∇e∗w∥L2(Ω∗

h (t))
∥∇e∗u∥L2(Ω∗

h (t))

⩽C
(
∥∇e∗w∥L2(Ω∗

h (t))
+∥∇e∗x∥L2(Ω∗

h (t))
)
∥∇e∗u∥L2(Ω∗

h (t))

⩽C∥eu∥2
A(x∗)+C∥ex∥2

A(x∗)+C∥ew∥2
A(x∗).

Similarly as the estimates of (4.35), the third term on the right hand side of (4.34) can be estimated as

|S23|=
∣∣(eu)

⊤(Aµµµ(x)−Aµµµ(x∗))u̇∗∣∣ (4.40)
⩽C∥∇∂

•
t,∗u∗h∥L∞(Ω∗

h (t))
∥∇e∗x∥L2(Ω∗

h (t))
∥∇e∗u∥L2(Ω∗

h (t))

⩽C∥eu∥2
A(x∗)+C∥ex∥2

A(x∗).

The estimates of
∫ t

0 S21(s)ds, S22 and S23 show that∣∣∣∫ t

0
S2(s)ds

∣∣∣ (4.41)

⩽ ε∥eu(t)∥2
Aµµµ (x∗)+Cε

−1∥ex(t)∥2
A(x∗)+C

∫ t

0

(
∥eu(s)∥2

A(x∗)+∥ex(s)∥2
A(x∗)+∥ew(s)∥2

A(x∗)

)
ds.

The third term on the right hand side of (4.31) can be written as

S3 = − (ėu)
⊤(Aµµµ(x)−Aµµµ(x∗))eu (4.42)

= − d
dt

(1
2
(eu)

⊤(Aµµµ(x)−Aµµµ(x∗))eu

)
+

1
2
(eu)

⊤
( d

dt
(Aµµµ(x)−Aµµµ(x∗))

)
eu

= : S31 +S32,

where S31 and S32 can be treated similarly as S21 and S22, with the following estimates:∣∣∣∫ t

0
S31(s)ds

∣∣∣= ∣∣∣1
2
(eu)

⊤(Aµµµ(x)−Aµµµ(x∗))eu

∣∣∣ (4.43)

⩽C∥e∗x∥W 1,∞(Ω∗
h (t))

∥eu(t)∥2
Aµµµ (x∗)

⩽Ch
k
2−

d
4 ∥eu(t)∥2

Aµµµ (x∗)

|S32|=
∣∣∣(eu)

⊤
( d

dt
(Aµµµ(x)−Aµµµ(x∗))

)
eu

∣∣∣ (4.44)

⩽C∥e∗u∥W 1,∞(Ω∗
h (t))

(
∥∇e∗w∥L2(Ω∗

h (t))
+∥∇e∗x∥L2(Ω∗

h (t))
)
∥∇e∗u∥L2(Ω∗

h (t))

⩽C∥eu∥2
A(x∗)+C∥ex∥2

A(x∗)+C∥ew∥2
A(x∗),
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where we have used the results ∥e∗x∥W 1,∞(Ω∗
h (t))

⩽ h−
d
4 h

k
2 and ∥e∗u∥W 1,∞(Ω∗

h (t))
⩽ 1 in (4.22). Therefore,∣∣∣∫ t

0
S3(s)ds

∣∣∣⩽Ch
k
2−

d
4 ∥eu(t)∥2

Aµµµ (x∗)+C
∫ t

0

(
∥eu(s)∥2

A(x∗)+∥ex(s)∥2
A(x∗)+∥ew(s)∥2

A(x∗)

)
ds. (4.45)

The fourth term on the right hand side of (4.31) can be estimated similarly, i.e.,

S4 = − (ėu)
⊤
(

Bρρρ(x,u−w)u−Bρρρ(x,u∗−w∗)u∗
)

(4.46)

− (ėu)
⊤
(

Bρρρ(x,u∗−w∗)u∗−Bρρρ(x∗,u∗−w∗)u∗
)

= −
∫

Ωh(t)
ρh
[
(eθ

u − eθ
w) ·∇u∗,θh +(uθ

h −wθ
h ) ·∇eθ

u
]
· (∂ •

t,∗e∗u)
θ

∣∣∣
θ=1

dx

+
∫ 1

0

∫
Ω θ

h (t)
ρ

θ
h

[
(u∗,θh −w∗,θ

h ) ·
(
∇u∗,θh ∇eθ

x −∇u∗,θh (∇ · eθ
x )
)]

· (∂ •
t,∗e∗u)

θ dxdθ

⩽C
(
∥e∗u∥L2(Ω∗

h (t))
+∥e∗w∥L2(Ω∗

h (t))
)(
∥∇u∗h∥L∞(Ω∗

h (t))
+∥∇e∗u∥L∞(Ω∗

h (t))
)
∥∂

•
t,∗e∗u∥L2(Ω∗

h (t))

+C∥u∗h −w∗
h∥L∞(Ω∗

h (t))
∥∇u∗h∥L∞(Ω∗

h (t))
∥∇e∗x∥L2(Ω∗

h (t))
∥∂

•
t,∗e∗u∥L2(Ω∗

h (t))

⩽C∥ėu∥M(x∗)
(
∥eu∥A(x∗)+∥ew∥A(x∗)+∥ex∥A(x∗)

)
⩽ε∥ėu∥2

Mρρρ (x)+Cε
−1(∥eu∥2

A(x∗)+∥ew∥2
A(x∗)+∥ex∥2

A(x∗)
)
.

The fifth term on the right hand side of (4.31) can be written as

S5 =(ėu)
⊤(C(x)⊤−C(x∗)⊤)p∗ (4.47)

=
d
dt

(
(eu)

⊤(C(x)⊤−C(x∗)⊤)p∗
)
− (eu)

⊤
( d

dt
(C(x)⊤−C(x∗)⊤)

)
p∗

− (eu)
⊤(C(x)⊤−C(x∗)⊤)ṗ∗

=:S51 +S52 +S53,

where the first term on the right-hand side of (4.47) can be bounded after integrating it over [0, t] for 0⩽ t ⩽ t∗,
i.e., ∫ t

0
S51(s)ds = (eu)

⊤(C(x)⊤−C(x∗)⊤)p∗ (4.48)

=
∫ 1

0

∫
Ω θ

h (t)

(
(∇ · eθ

x )(∇ · eθ
u )− tr

[
∇eθ

u ∇eθ
x ]
)

p∗,θh dxdθ

⩽C∥p∗h∥L∞(Ω∗
h (t))

∥∇e∗x∥L2(Ω∗
h (t))

∥∇e∗u∥L2(Ω∗
h (t))

⩽ ε∥eu(t)∥2
Aµµµ (x∗)+Cε

−1∥ex(t)∥2
A(x∗).

The second and third terms on the right-hand side of (4.47) can be treated similarly as S22 and S23, with the
following estimates:

|S52|⩽C∥eu∥2
A(x∗)+C∥ew∥2

A(x∗)+C∥ex∥2
A(x∗), (4.49)

|S53|⩽C∥eu∥2
A(x∗)+C∥ex∥2

A(x∗). (4.50)

The sixth term on the right-hand side of (4.31) can be estimated by differentiating (3.27b) in time. This
yields the following relation:

C(x)ėu =−
( d

dt
(C(x)−C(x∗))

)
u∗− (C(x)−C(x∗))u̇∗−

( d
dt

C(x)
)

eu −
d
dt

E u2. (4.51)

Testing this equation with ep and using relation q⊤C(x)v = (C(x)v)⊤q, we have

S6 = (C(x)ėu)
⊤ep =−(u∗)⊤

( d
dt
(C(x)⊤−C(x∗)⊤)

)
ep − (u̇∗)⊤(C(x)⊤−C(x∗)⊤)ep (4.52)
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− (eu)
⊤
( d

dt
C(x)⊤

)
ep − (ep)

⊤
( d

dt
E u2

)
,

which can be estimated similarly as S22, S23, and so on. In particular, we have

S6 ⩽ ε∥ep∥2
M(x∗)+Cε

−1(∥eu∥2
A(x∗)+∥ew∥2

A(x∗)+∥ex∥2
A(x∗)+h2k). (4.53)

The seventh term on the right hand side of (4.31) can be written as

S7 = (ėu)
⊤(M(x)f−M(x∗)f∗) (4.54)

= ( fh,(∂
•
t,∗e∗u)

θ |θ=1)Ωh(t)− ( f ∗h ,∂
•
t,∗e∗u)Ω∗

h (t)
(here we use(∂ •

t,∗e∗u)
θ |θ=0 = ∂

•
t,∗e∗u)

= ( fh − f ,(∂ •
t,∗e∗u)

θ |θ=1)Ωh(t)− ( f ∗h − f ,∂ •
t,∗e∗u)Ω∗

h (t)
+
(
( f ,(∂ •

t,∗e∗u)
θ |θ=1)Ωh(t)− ( f ,∂ •

t,∗e∗u)Ω∗
h (t)

)
=: S71 +S72 +S73.

By using the approximation properties of the Lagrange interpolations fh and f ∗h for f on the domains Ωh(t)
and Ω ∗

h (t), respectively, the terms S71 and S72 can be estimates as

|S71|+ |S72|⩽Chk∥ f∥Hk−1(Ω(t))∥∂
•
t,∗e∗u∥L2(Ω∗

h (t))
⩽Chk∥ėu∥M(x) ⩽ ε∥ėu∥2

Mρρρ (x)+Cε
−1h2k. (4.55)

By applying ∂ •
θ

f = ∇ f · eθ
x on Ω θ

h (t), the term S73 can be bounded similarly to the estimates for (4.33) as

|S73|=
∣∣∣∫ 1

0

∫
Ω θ

h (t)
(∇ f · eθ

x )(∂
•
t,∗e∗u)

θ dxdθ +
∫ 1

0

∫
Ω θ

h (t)
f (∇ · eθ

x )(∂
•
t,∗e∗u)

θ dxdθ

∣∣∣ (4.56)

⩽C
(
∥e∗x∥L2(Ω∗

h (t))
∥∇ f∥L∞(Ω∗

h (t))
+∥∇e∗x∥L2(Ω∗

h (t))
∥ f∥L∞(Ω∗

h (t))

)
∥∂

•
t,∗e∗u∥L2(Ω∗

h (t))

⩽C∥ex∥A(x∗)∥ėu∥M(x)

⩽ ε∥ėu∥2
Mρρρ (x)+Cε

−1∥ex∥2
A(x∗).

The last term on the right hand side of (4.31) can also be estimated by using integration by parts in time,
i.e.,

−(ėu)
⊤E u1 =− d

dt

(
(eu)

⊤E u1
)
+(eu)

⊤
( d

dt
E u1

)
=: S81 +S82. (4.57)

Then, using the consistency estimates in Proposition 3.1, we have∣∣∣∫ t

0
S81(s)ds

∣∣∣⩽Chk∥eu(t)∥K(x∗) ⩽ ε∥eu(t)∥2
Aµµµ (x∗)+Cε

−1h2k, (4.58a)

|S82|⩽Chk∥eu∥K(x∗) ⩽C∥eu∥2
A(x∗)+Ch2k. (4.58b)

Integrating the inequality (4.31) in time from 0 to t and using the estimates of S j, j = 1, . . . ,6, as
well as the estimates in (4.58), with a sufficiently small ε in these estimates, the terms ε∥eu(t)∥2

Aµµµ (x∗) and

ε
∫ t

0 ∥ėu(s)∥2
Mρρρ (x)ds on the right-hand side can be absorbed by the left-hand side. For k ⩾ 2 and sufficiently

small h, the term Ch
k
2−

d
4 ∥eu(t)∥2

Aµµµ (x∗) on the right-hand side can also be absorbed by the left-hand side. Then
we obtain the following result:

∥eu(t)∥2
A(x∗)+

∫ t

0
∥ėu(s)∥2

M(x∗) ds (4.59)

⩽ ε

∫ t

0
∥ep(s)∥2

M(x∗) ds+Cε
−1h2k

+Cε
−1

∫ t

0

(
∥ex(s)∥2

A(x∗)+∥eu(s)∥2
A(x∗)+∥ew(s)∥2

A(x∗)

)
ds.

The first term on the right-hand side of (4.59) is estimated in the next part of the proof.
(D) Estimates for ep under condition (4.22): To estimate ∥ep∥2

M(x∗), we test (3.27a) by a vector v associated
to a finite element function vh on Ωh(t) to get

(v)⊤C(x)⊤ep = (v)⊤Mρρρ(x)ėu +(v)⊤(Mρρρ(x)−Mρρρ(x∗))u̇∗ (4.60)
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+(v)⊤Aµµµ(x)eu +(v)⊤(Aµµµ(x)−Aµµµ(x∗))u∗

+(v)⊤
(
Bρρρ(x,u−w)u−Bρρρ(x∗,u∗−w∗)u∗)

− (v)⊤(C(x)⊤−C(x∗)⊤)p∗− (v)⊤(M(x)f−M(x∗)f∗)+(v)⊤E u1.

The estimates of the terms on the right-hand side of (4.60) are similar as that in part (C) of this proof and
therefore omitted. Specifically, we have

|(v)⊤C(x)⊤ep|⩽C
(
∥ėu∥M(x)+∥ex∥A(x∗)+∥eu∥A(x∗)+∥ew∥A(x∗)+hk)∥v∥K(x). (4.61)

By using the inf-sup condition (2.6) in the expression for ∥ep∥M(x), we can estimate ∥ep∥M(x) as follows:

∥ep∥M(x) ⩽ sup
v̸=0

(v)⊤C(x)⊤ep

∥v∥A(x)
(4.62)

⩽C
(
∥ėu∥M(x)+∥ex∥A(x∗)+∥eu∥A(x∗)+∥ew∥A(x∗)+hk),

which together with the norm equivalence in Remark 4.2 gives

∥ep∥2
M(x∗) ⩽C

(
∥ėu∥2

M(x∗)+∥ex∥2
A(x∗)+∥eu∥2

A(x∗)+∥ew∥2
A(x∗)+h2k). (4.63)

By integrating the above inequality with respect to time from 0 to t, we have∫ t

0
∥ep(s)∥2

M(x∗) ds ⩽Ch2k +C
∫ t

0
∥ėu(s)∥2

M(x∗) ds (4.64)

+C
∫ t

0

(
∥ex(s)∥2

A(x∗)+∥eu(s)∥2
A(x∗)+∥ew(s)∥2

A(x∗)

)
ds.

(E) Combination of the estimates: Summing up inequalities (4.30), (4.59) and ε×(4.64), substituting estimate
(4.28) into the resulted inequality and choosing a sufficiently small ε , we obtain the following combined
estimate:

∥eu(t)∥2
A(x∗)+∥ex(t)∥2

A(x∗)+
∫ t

0
∥ėu(s)∥2

M(x∗) ds (4.65)

⩽Ch2k +C
∫ t

0

(
∥ex(s)∥2

A(x∗)+∥eu(s)∥2
A(x∗)

)
ds.

By applying Gronwall’s inequality, we obtain

sup
0⩽t⩽t∗

(
∥eu(t)∥2

K(x∗)+∥ex(t)∥2
K(x∗)+

∫ t

0
∥ėu(s)∥2

M(x∗) ds
)
⩽Ch2k. (4.66)

This result can be substituted into (4.28) and (4.64) to yield an error estimate for ew and ep, i.e.,

sup
0⩽t⩽t∗

(
∥ew(t)∥2

K(x∗)+
∫ t

0
∥ep(s)∥2

M(x∗) ds
)
⩽Ch2k. (4.67)

It remains to show that t∗ = T when h is sufficiently small (smaller than some constant). In fact, for
0 ⩽ t ⩽ t∗ we can use the inverse inequality and (4.66) to bound the left-hand side in (4.22a) as

∥∇e∗x(t)∥L∞(Ω∗
h (t))

⩽Ch−
d
2 ∥ex(t)∥K(x∗) ⩽Chk− d

2 , (4.68)

where C is a constant dependent on T , but independent of t∗. Since k ⩾ 2, we have the following inequality
for 0 ⩽ t ⩽ t∗ when h is sufficiently small:

∥∇e∗x(t)∥L∞(Ω∗
h (t))

⩽
1
2

h−
d
4 h

k
2 . (4.69)

For the same reason, for k ⩾ 2 and sufficiently small h, we have

∥∇eu(t)∥L∞(Ω∗
h (t))

⩽
1
2

and ∥∇ew(t)∥L∞(Ω∗
h (t))

⩽
1
2

for 0 ⩽ t ⩽ t∗. (4.70)

Hence, we can extend the bound (4.22a)–(4.22c) beyond t∗, which contradicts the maximality of t∗ unless
t∗ = T . This proves that the error estimates in (4.66)–(4.67) actually hold for t∗ = T . Since the flow map
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φ ∗
h (·, t) and its inverse are bounded in the W 1,∞ norm, it follows that error estimates can be pulled back to the

initial domain Ω 0
h after composition with φ ∗

h (·, t). This proves the desired error estimates in Theorem 4.1.

5. Numerical results

In this section we present numerical results for a benchmark example without surface tension. One of
the most well-known benchmark examples for the two-phase NS flow problem was proposed in [27, Ta-
ble I] for simulating a moving bubble in fluid. This example includes surface tension and has been widely
adopted to test the convergence and robustness of numerical methods for two-phase NS flows; see [2, 8, 21].
In our study, we modify this model by considering a simplified version without surface tension and with
no-slip boundary conditions. All the computations are performed using the software package NGSolve
(https://ngsolve.org), and the mesh is generated by Gmsh (https://gmsh.info/).

The computational domain is Ω = (0,1)× (0,2) and the no-slip pieces of the boundary are given by

Γ1 = [0,1]×{0,2} and Γ2 = {0,1}× [0,2].

The initial interface is a circle with radius 0.25, i.e.,

Γ (0) =
{
(x,y) : |(x,y)− (0.5,0.5)|= 0.25

}
.

The gravitational force is f = (0,−0.98)⊤, and the physical parameters are shown in Table 1.

Table 1. Physical parameters for the benchmark problem

ρ+ ρ− µ+ µ−

BP-1 103 102 10 1

We first present numerical results to illustrate the convergence rate of the proposed method (2.8) for BP-1
in Table 1. We apply the time discretization of the proposed method (2.8) with a linearly semi-implicit Euler
method, which only requires solving several decoupled linear systems at every time level. Since the exact
solution of the problem is unknown, we evaluate the convergence rate in space by the formula

conv. rate in space = log
( ∥uτ,h −uτ,h/m∥
∥uτ,h/m −uτ,h/m2∥

)
/ log(m),

based on the finest three meshes, where uτ,h denotes the numerical solution at tN = T computed by using a
stepsize τ and mesh size h.

The spatial discretization errors of the numerical solutions at T = 0.1 and T = 0.5 are presented in
Figure 2 and Figure 3, respectively, where we have used the following finite elements

k = 1 : (Mini element P1b–P1)
k = 2 : (Taylor–Hood P2–P1) and k = 3 : (Taylor–Hood P3–P2)

with sufficiently small time step size τ = 10−3 so that the temporal discretization errors are negligibly small
compared to the spatial errors. From Figures 2–3, we see that the error of space discretization is O(hk), which
is consistent with the theoretical results proved in Theorem 4.1.

Next, we present simulations of the bubble’s circularity, center of mass, rise velocity, and the total en-
ergy of the two-phase NS system with parameters BP-1 in Table 1. We focus on the following benchmark
quantities in [27] with respect to time.

(a) Center of mass:

Xd =
1

|Ω−|

∫
Ω−

xd dx.

(b) Circularity (referred as sphericity in 3-D): In two dimensions it is defined as the quotient between
perimeter of area-equivalent circle and perimeter of the bubble. In three dimensions it is defined as
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FIG. 2. Spatial discretization errors of the numerical solutions at T = 0.1.

FIG. 3. Spatial discretization errors of the numerical solutions at T = 0.5.
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the quotient between surface area of volume-equivalent ball and surface area of the bubble, i.e.,

Cir =
2
√

|Ω−|π
|Γ |

(in 2-D) and Cir =
π1/3|Ω−|2/3

|Γ |
(in 3-D).

(c) Rise velocity:

Vd =
1

|Ω−|

∫
Ω−

uh · ed dx,

where the integrand uh · ed refers to the vertical component of the velocity uh.

We consider the proposed method (2.8) with polynomial degree k = 2 and quadratic isoparametric tri-
angular elements on the two different meshes as depicted in Figure 4, where the mesh M1 has mesh size
h1 = 0.04 and the mesh M2 has mesh size h2 = 0.02. Zoom-in of the deformed mesh around Ω−(t) at t = 1,
1.5 and 2.5 are shown in Figure 5.

In the computation the mesh may degenerate and in this case one has to regenerate the mesh. In our
computation we regenerate the mesh when the following angle criterion is satisfied:

min
K∈Kh[x(t)]

min
α∈∠K

⩽
π

18
, (5.1)

where ∠K denotes the set of interior angles of a triangle K. The remeshing is performed using the software
Gmsh. If the mesh is regenerated then we take the new mesh as the initial mesh to compute the above
benchmark quantities. Figure 6 shows the number of remeshing steps over time for two different meshes,
using a fixed stepsize τ = 1/200. The meshes before and after the 3rd and the 6th remeshing steps are shown
in Figures 7-8. In Figure 9, we present the numerical results of circularity, center of mass, rise velocity and
energy on the two different meshes with τ = 1/200. From Figures 4–9 we see that the method with the coarse
mesh captures the shape of the interface very well. The geometry of the interface at t = 1, 1.5 and 2.5, as
well as the distribution of interface-velocity with the mesh M2, are presented in Figure 10.

In summary, with the numerical comparison of results between coarse and fine meshes in Figures 4–9,
we have good reasons to trust the numerical simulation results for this benchmark example.
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