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Abstract

In this paper, we prove that spatially semi-discrete evolving finite element method for
parabolic equations on a given evolving hypersurface of arbitrary dimensions preserves
the maximal Lp-regularity at the discrete level. We first establish the results on a sta-
tionary surface and then extend them, via a perturbation argument, to the case where
the underlying surface is evolving under a prescribed velocity field. The proof combines
techniques in evolving finite element method, properties of Green’s functions on (discre-
tised) closed surfaces, and local energy estimates for finite element methods.
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1 Introduction

Overview of maximal regularity results in flat domains. Let Ω ⊂ Rd be a flat,
polyhedral of dimensions d ∈ {2, 3} or smooth domain of arbitrary dimensions, and consider
the initial and boundary value problem for a linear parabolic partial differential equation
(PDE) 

∂u(t, x)

∂t
−

d∑
i,j=1

∂

∂xi

(
aij(x)

∂u(t, x)

∂xj

)
= f(t, x) for (t, x) ∈ R+ ×Ω,

u(t, x) = 0 for (t, x) ∈ R+ × ∂Ω,

u(0, x) = u0(x) for x ∈ Ω,

(1.1)

where aij = aji are real-valued bounded measurable functions satisfying the following uniform
ellipticity condition for some constant λ > 0:

λ−1|ξ|2 ≤
∑d

i,j=1aij(x)ξiξj ≤ λ|ξ|2, ∀ ξ = (ξ1, . . . , ξd) ∈ Rd, ∀x ∈ Ω. (1.2)

Under condition (1.2), the elliptic partial differential operator A =
∑d

i,j=1
∂
∂xi

(
aij(x)

∂
∂xj

)
generates a bounded analytic semigroup on Lq(Ω), 1 < q < ∞, and the solution of (1.1)
possesses the following maximal Lp-regularity in Lq(Ω):

∥∂tu∥Lp(R+;Lq(Ω)) + ∥Au∥Lp(R+;Lq(Ω)) ≤ C∥f∥Lp(R+;Lq(Ω)), if u0 = 0, 1 < p, q <∞, (1.3)

which is an important mathematical tool in studying the well-posedness and regularity of
solutions of nonlinear parabolic PDEs; see [4, 9, 27,36,39,41].

Analogously, denoting by Ah the finite element approximation of the elliptic operator A
on a finite element subspace Sh ⊂ H1

0 (Ω), i.e.,

(Ahϕh, φh) = −(aij∇ϕh,∇φh), ∀ϕh, φh ∈ Sh, (1.4)

it is known that the semi-discrete finite element solutions given by{
(∂tuh, vh) +

∑d
i,j=1(aij∂juh, ∂ivh) = (f, vh), ∀ vh ∈ Sh, ∀ t ∈ (0, T ),

uh(0) = uh,0,
(1.5)

satisfies the following spatially discrete h-uniform maximal Lp-regularity [31, 35] (with a
constant C > 0 independent of the mesh size h):

∥∂tuh∥Lp(R+;Lq(Ω)) + ∥Ahuh∥Lp(R+;Lq(Ω)) ≤ C∥f∥Lp(R+;Lq(Ω)), if uh,0 = 0, 1 < p, q <∞,

(1.6)

which has applications in numerical analysis for semilinear parabolic equations with strong
nonlinearities [18], and quasi-linear parabolic equations with nonsmooth coefficients [34]. The
spatially discrete maximal Lp-regularity results were firstly proved in smooth domains with
Neumann boundary condition [17,31], and then extended to polyhedral domains [32,35] with
the Dirichlet boundary condition. The discrete maximal Lp-regularity is also closely related
(in the techniques of proof) to the maximum-norm stability of finite element solutions of
parabolic equations [29,40,42,43,47]:

∥u− uh∥L∞(0,T ;L∞(Ω)) ≤ C ln(2 + 1/h) inf
χh∈L∞(0,T ;Sh)

∥u− χh∥L∞(0,T ;L∞(Ω)). (1.7)

The extension of maximal Lp-regularity to the time-discrete setting was established for
different time discretization methods, including the backward Euler method [5], discontinuous
Galerkin method [30], θ-schemes [21], and A-stable multistep and Runge-Kutta methods
[24]. All these methods are A-stable. The maximal Lp-regularity of A(α)-stable backward
differentiation formulae (BDF) was established in [33]. The discrete maximal Lp-regularity
helps us to control the nonlinearlity as well (see [1,23,26]), and besides it enables us to obtain
optimal-order Lp-norm error estimates without using the inverse inequality (cf. [23, 24,32]).
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Overview of maximal regularity results on surfaces. The maximal Lp-regularity
of parabolic equations on an evolving surface Γ ⊂ Rm+1, m ∈ N, as well as the maximal Lp-
regularity of time discretizations on an evolving surface and its application to the convergence
analysis of BDF methods for nonlinear PDEs on an evolving surface, was discussed in [23].

Semi-discrete maximal regularity results on evolving surfaces. However, since
the maximal Lp-regularity of spatial discretizations for parabolic equations on an evolving
surface is still missing, only semi-discretization in time were considered in [23]. The aim of
this article is to fill in this gap, by establishing spatially discrete maximal Lp-regularity of
isoparametric finite element methods (FEMs) for parabolic equations on an evolving surface
which is approximated by quasi-uniform curved triangles.

In order to prove the discrete maximal Lp-regularity for the spatially semi-discrete prob-
lems, we combine the techniques developed for evolving surface FEMs and local energy esti-
mates. Firstly, we shall prove the discrete maximal Lp-regularity for spatially semi-discrete
FEM in (2.12) on a stationary surface (Theorem 2.2). Then we use a temporal perturbation
argument to extend this result to evolving surfaces (Theorem 2.3). The discrete maximal
Lp-regularity results for (2.14) can be obtained analogously by a perturbation argument for
the lower-order advection term.

Since we are considering a spatially semi-discrete setting, the underlying smooth surface
Γ(t) should also be replaced by the finite element surface Γh(t). The discrepancy between
Γ(t) and Γh(t) is the main obstacle in the proof, leading to the following technical difficulties
to be addressed:

• The discrete delta functions on Γ(t) and Γh(t) are not simply related by the lift via
the distance projection. Indeed, they are correlated via a nonlinear way which stems
from the nonlinear relation of L2 projections Ph(Γ(t)) and Ph(Γh(t)). Therefore, it is
necessary for us to obtain the high-order consistency between the discrete delta func-
tions on different surfaces (Lemma 3.3) in order to ensure the consistency of the corre-
sponding Green’s functions, which are indispensable in the used local energy estimate
(Lemma 3.5) and dyadic decomposition argument (Lemma 4.1).

• The discrepancy of Γ(t) and Γh(t) will introduce a bunch of additional geometric pertur-
bation terms in the local energy estimate (Lemma 3.5) and in the dyadic decomposition
argument (Lemma 4.1). We need to treat them carefully to make sure that the leading
order stability is still available.

• In the temporal perturbation argument, we need to develop the norm equivalence of the
discrete Laplacian (Lemma 5.1 and Remark 5.1). The super-approximation property
(cf. (P3) in Section 3.2) also plays an important role in the derivation of this equivalence.
Besides, as a nature of parametric finite elements, the matrix-valued coefficient Bh(t, x)
of the following change of variable∫

Γh(t)
∇Γh(t)u

−ℓ∇Γh(t)v
−ℓ =

∫
Γ(t)

Bh(t, ·)∇Γ(t)u∇Γ(t)v

always has jumps at the edges and thus is discontinuous. To this end, it is desirable as
well to construct a globally continuous substitute B̃(t, x) according to the definition of
the discrete Laplacian.

• The norm equivalence of the discrete Laplacian will bring in a lower-order term ∥∇u∥Lp .
To control this term by the maximal Lp-regularity, we need to use the discrete inter-
polation inequality (Lemma 5.2) whose proof greatly relies on the W 1,p-stability of the
Ritz projection. The latter is a consequence of the Green’s function estimate on closed
manifold ( [13, Theorem 3.2]).
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The article is organized as follows: In Section 2, we introduce the basic notations for
evolving surface FEMs, the semi-discrete evolving surface FEMs for parabolic equations on
an evolving surface, and the main theoretical results about discrete maximal Lp-regularity
of evolving surface FEMs. In Section 3, we develop the preliminary results of geometric per-
turbation estimates, Green’s function estimates and local energy estimates on the stationary
surface. We will prove the maximal regularity on stationary surface (Theorem 2.2) and on
evolving surface via a temporal perturbation argument (Theorem 2.3) in Section4 and Sec-
tion 5, respectively. In Appendix A we present the detailed proof of local energy estimates
(Lemma 3.5), which is a technical lemma used in the proof of the main theorems.

2 Evolving surface FEMs and main results

We now introduce the problem to be considered in this paper and briefly recall the standard
parametric evolving surface FEM, see [13–15,22].

2.1 Parabolic equations on an evolving surface

We assume that the evolution of a closed hypersurface Γ(t) ⊂ Rm+1 of arbitrary dimensions
is given by a diffeomorphic flow map X(t, ·) : Γ0 → Γ(t), where m ∈ N, and Γ0 is a smooth
m-dimensional initial hypersurface, with X(0, ·) being the identity map on Γ0. We assume
that X(t, y) is smooth with respect to (t, y) ∈ [0, T ]× Γ0 and the inverse function X−1(t, x)
is smooth with respect to x ∈ Γ(t) uniformly for t ∈ [0, T ].

The material velocity (which is simply called velocity below) and material derivative on
the surface are respectively given, for x = X(y, t) ∈ Γ(t) with y ∈ Γ0, by

v(t, x) = ∂tX(t, y), (2.1)

and

∂•t u(t, x) =
d

dt
u(t,X(t, y)).

Let ν be the unit outward normal vector to the surface Γ(t). We denote by ∇Γ(t)u the
tangential gradient of the function u, and denote by ∆Γ(t)u = ∇Γ(t) · ∇Γ(t)u the Laplace–
Beltrami operator acting on u. For more details on all these basic concepts we refer to
[12, 14, 15], and the references therein. An unified abstract theory for evolving mesh FEMs
for partial differential equations on evolving domains can be found in [16].

We consider the following two types of linear parabolic equations on the closed surface
Γ(t).

(i) A parabolic model problem on a given evolving surface:{
∂•t u−∆Γ(t)u = f on Γ(t), ∀ t ∈ (0, T ),

u(0, ·) = u0 on Γ0,
(2.2)

where ∂•t is the material derivative associated to the flow velocity v. The above model
problem arises in the analysis and numerical analysis of mean curvature flow, see [20] and [25],
respectively, wherein the following evolution equations of normal vector ν and mean curvature
H play an important role:

∂•t ν −∆Γ(t)ν = |∇Γ(t)ν|2ν and ∂•tH −∆Γ(t)H = |∇Γ(t)ν|2H.
(ii) The heat equation on a given evolving surface (see, e.g., [14, equation (1.1)]):{

∂•t u+ u∇Γ(t) · v −∆Γ(t)u = f on Γ(t), ∀ t ∈ (0, T ),

u(0, ·) = u0 on Γ0.
(2.3)
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The regularity of solutions to PDEs on an evolving surface is often characterized by the
following Sobolev spaces on a space-time manifold GT =

⋃
t∈(0,T )({t} × Γ(t)):

Lp
t (0, T ;W

k,q(Γ(t))) =

{
w : GT → R : w(t, ·) ∈W k,q(Γ(t)) a.e. t ∈ (0, T ),

t→ ∥w(t, ·)∥Wk,q(Γ(t)) ∈ Lp(0, T )

}
, (2.4)

W 1,p
t (0, T ;W k,q(Γ(t))) =

{
w ∈ Lp

t (0, T ;W
k,q(Γ(t))) : ∂•tw ∈ Lp

t (0, T ;W
k,q(Γ(t)))

}
. (2.5)

The conventional notational convention Hk(Γ(t)) = W 2,k(Γ(t)) will also be used. For more
details on these spaces we refer to [2, 3] (employing a different notation).

The weak formulation of (2.2) reads as follows. Find u ∈ H1(GT ) ∩ L2
t (0, T ;H

1(Γ(t)))
satisfying relation ∫

Γ(t)
∂•t uφ+

∫
Γ(t)

∇Γ(t)u · ∇Γ(t)φ =

∫
Γ(t)

fφ (2.6)

for all φ ∈ H1(GT ) and almost all t ∈ (0, T ).
The weak formulation of (2.3) reads as follows (see, e.g., [14, equation (1.2)]): Find

u ∈ H1(GT ) ∩ L2
t (0, T ;H

1(Γ(t))) satisfying relation

d

dt

∫
Γ(t)

uφ+

∫
Γ(t)

∇Γ(t)u · ∇Γ(t)φ =

∫
Γ(t)

fφ (2.7)

for almost all t ∈ (0, T ) and all φ ∈ H1(GT ) with ∂
•
t φ = 0.

2.2 Evolving surface finite elements

Let Γh(t) be the closed and continuous piecewise polynomial surface (of degree k) which
approximates the smooth surface Γ(t) evolving under the prescribed velocity v. Additionally,
we require that the nodes of Γh(t) stay on Γ(t) and move with the same velocity as Γ(t). In
other words, the evolution of Γh(t) is uniquely determined with velocity vh = Ihv.

Each polynomial element K of Γh(t) is the image of an element K0 ⊂ Γh(0) under the
discrete flow map. We denote by K0

f the unique flat element which has the same endpoints as
K0, and denote by FK : K0

f → K the parametrization of K, i.e., FK is the unique polynomial
of degree k that maps K0

f onto K. For a more detailed description of high-order surface
triangulations we refer to [13,22]. The finite element space of degree k on the discrete surface
Γh(t) is defined as

Sh(Γh(t)) :=
{
φh ∈ C(Γh(t)) : φh ◦ FK ∈ Pk(K0

f ) for every element K ⊂ Γh(t)
}

= span
{
ϕ1, . . . , ϕN

}
,

where Pk(K0
f ) denotes the space of polynomials of degree k ≥ 1 on the flat element K0

f , and
where ϕj denote the standard nodal basis functions of Sh(Γh(t)). By construction Sh(Γh(t))
is an isoparametric finite element space.

We denote by ∂•h,t the discrete material derivative associate to the discrete flow vh. The
basis functions ϕj satisfy the following transport property (see [14, Proposition 5.4]):

∂•h,tϕj = 0 for j = 1, . . . , N. (2.8)

Let δ > 0 be a fixed sufficiently small constant such that every point x in the δ-
neighbourhood of surface Γ(t), denoted by Dδ(Γ(t)) = {x ∈ Rm+1 : dist(x,Γ(t)) ≤ δ}, has a
unique distance projection onto Γ(t), denoted by q(t, x), satisfying the following relation:

q(t, x)− x = |x− q(t, x)|ν(t, q(t, x)),
where ν(t, ·) is the outward unit normal vector to Γ(t). It is known that such a constant δ
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exists and only depends on the curvature of Γ(t) (thus δ is independent of t ∈ [0, T ], but
possibly dependent on T ). We will use the notation q−1(t, ·) to denote the inverse of the
bijective map q(t, ·)|Γh(t) : Γh(t) → Γ(t).

We assume that each element K0 ⊂ Γh(0) interpolates the smooth initial surface Γ(0)
and that the parametrization FK0 : K0

f → K0 is a polynomial of degree at most k with the
following property:

max
K0⊂Γh(0)

(
∥FK0∥Wk,∞(K0

f )
+ ∥∇K0F−1

K0∥L∞(K0)

)
≤ κ0, (2.9)

where κ0 is some constant that is independent of h. This property holds for standard para-
metric finite elements which interpolate the smooth surface Γ(0) and guarantees the following
optimal-order approximation to Γ(0) by Γh(0) (see [13,15]):

max
K0⊂Γh(0)

∥q(0) ◦ FK0 − FK0∥L∞(K0
f )

≤ Chk+1. (2.10)

The projection q(0, x) is well defined for points x in a neighbourhood of Γ(0) and therefore
well defined on Γh(0) for sufficiently small mesh size h. Since the discrete flow vh = Ihv is
piecewise smooth, at any time t ∈ [0, T ] the optimal-order approximation to Γ(t) by Γh(t) is
also available

max
K⊂Γh(t)

∥q(t) ◦ FK − FK∥L∞(K0
f )

≤ Chk+1. (2.11)

2.3 Lift

The lift of a finite element function wh ∈ Sh(Γh(t)) onto the smooth surface Γ(t) is defined
as

wℓ
h = wh ◦ (q(t)|Γh(t))

−1,

see [13, Section 2.4] and [25, Section 3.4]. The inverse lift of a function f(t, ·) : Γ(t) → R is
denoted by f−ℓ(t, ·) : Γh(t) → R, which is the function satisfying that (f−ℓ)ℓ = f . By lifting
the triangulation from Γh(t) to Γ(t), we obtain a triangulation and finite element space on
the smooth surface Γ(t), i.e.,

Sh(Γ(t)) =
{
wh ∈ C(Γ(t)) : wh ◦ q(t) ◦ FK ∈ Pk(K0

f ) for every element K ⊂ Γh(t)
}
.

For the ease of notations, if the specified domain is Γ(t) we will also identify vh as its lift
on Γ(t). Namely, vℓh ∈ Sh(Γ(t)) and wh ∈ Sh(Γh(t)) simply mean that v−ℓ

h ∈ Sh(Γh(t)) and
wℓ
h ∈ Sh(Γ(t)). We will use the explicit superscript ℓ to denote the lift where we want to

emphasize its underlying domain.

2.4 The semi-discrete problems

We will now formulate the evolving surface finite element semi-discretisations of the two weak
formulations in (2.6) and (2.7).

The semi-discretisation of (2.6) reads: Find uh ∈ C1
t ([0, T ];Sh(Γh(t))) such that{

(∂tuh(t), φh)Γh(t) + (∇Γh(t)uh(t),∇Γh(t)φh)Γh(t) = (f−ℓ(t), φh)Γh(t) ∀ t ∈ (0, T ],

uh(0) = uh,0 on Γ0
h,

(2.12)

for all φh ∈ Sh(Γh(t)), where u
0
h = Ihu(0), and ∂tuh = ∂•h,tuh should be interpreted in the

nodal sense. Equivalently, (2.12) can be written into the following strong form{
∂tuh(t)−∆Γh(t),huh(t) = fh(t) ∀ t ∈ (0, T ],

uh(0) = uh,0 on Γ0
h,

(2.13)

where fh(t, x) = Ph(Γh(t))f
−ℓ(t, x) and Ph(Γh(t)) : L

2(Γh(t)) → Sh(Γh(t)) is the L2 projec-
tion on surface Γh(t).
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Similarly, the semi-discretisation of (2.7) reads: Find uh ∈ C1
t ([0, T ];Sh(Γh(t))) such that

d

dt
(uh(t), φh)Γh(t) + (∇Γh(t)uh(t),∇Γh(t)φh)Γh(t) = (f−ℓ(t), φh)Γh(t) ∀ t ∈ (0, T ],

uh(0) = uh,0 on Γ0
h,

(2.14)

for all φh ∈ C1
t ([0, T ];Sh(Γh(t))) such that ∂•h,tφh = 0.

2.5 Main results: Spatially discrete maximal regularity

Following [23], we recall that u ∈ H1(GT ) is a solution of (2.2) if and only if the function
U(t, y) := u(t,X(t, y)), where X : Γ(0) → Γ(t) is the flow map, defines a solution U ∈
H1(Γ(0)× (0, T )) of the following weak formulation:∫

Γ(0)
a(t, y)∂tU(t, y)ψ(y) +

∫
Γ(0)

B(t, y)∇Γ(0)U(t, y) · ∇Γ(0)ψ(y) =

∫
Γ(0)

a(t, y)F (t, y)ψ(y),

(2.15)

for all ψ ∈ H1(Γ(0)) and almost all t ∈ [0, T ], with F (t, y) := f(X(t, y), t) and U(0, ·) = u0.
Since the Riemannian metric on the evolving surface is positive definite (see [23, Ap-

pendix]), it follows that the functions a(t, y) and B(t, y) satisfy the following estimates:

C−1 ≤ a(t, y) ≤ C, ∀y ∈ Γ(0), ∀t ∈ [0, T ], (2.16)

C−1|ξy|2 ≤ B(t, y)ξy · ξy ≤ C|ξy|2, ∀y ∈ Γ(0), ∀ξy ∈ TΓ(0)y,∀t ∈ [0, T ], (2.17)

where C is some positive constant (depending only on the given flow map).
The continuous maximal regularity result for the solution of (2.15) (cf. [23, Theorem 3.1,

3.2], [49, p. 211] and [41]) is summarized below.

Theorem 2.1 (Maximal regularity of continuous PDE, [23, Theorem 3.1]) If u0 = 0, then
the solution U of the pulled-back PDE (2.15) obeys the following estimate for p, q ∈ (1,∞):

∥∂tU∥Lp(0,T ;Lq(Γ0)) + ∥U∥Lp(0,T ;W 2,q(Γ0)) ≤ C∥F∥Lp(0,T ;Lq(Γ0)) (2.18)

where the constant C > 0 only depends on GT .

The main results of this paper are the following two theorems, which concern discrete
maximal regularity on discrete stationary surfaces and a discrete evolving surfaces, respec-
tively.

Theorem 2.2 (Maximal regularity of semi-discrete surface FEMs on a stationary surface)
On a discrete stationary surface Γh(s) (for any fixed s ∈ [0, T ]), the finite element solution
uh of weak formulation{

(∂tuh(t), φh)Γh(s) + (∇Γh(s)uh(t),∇Γh(s)φh)Γh(s) = (fh, φ)Γh(s) ∀φh ∈ Sh(Γh(s)),

uh(0) = 0 on Γh(s),
(2.19)

satisfies the following estimate for any given p, q ∈ (1,∞), and h ≤ h0:

∥∂tuh∥Lp(R+;Lq(Γh(s))) + ∥∆Γh(s),huh∥Lp(R+;Lq(Γh(s))) ≤ C∥fh∥Lp(R+;Lq(Γh(s))) (2.20)

where the constant C > 0 is independent of h and s, but depends on the GT and T .

Theorem 2.3 (Maximal regularity of semi-discrete surface FEM on an evolving surface)
In the case uh,0 = 0, the solution uh of (2.12) obeys the following estimate for any given
p, q ∈ (1,∞), and h ≤ h0:

∥∂tuh∥Lp
t (0,T ;Lq(Γh(t)))

+ ∥∆Γh(t),huh∥Lp
t (0,T ;Lq(Γh(t)))

≤ C∥fh∥Lp(0,T ;Lq(Γh(t))) (2.21)

where fh(t, x) = Ph(Γh(t))f
−ℓ(t, x), and the constant C > 0 is independent of h, but depends

on T .

The proofs of Theorems 2.2–2.3 are presented in the following sections.
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3 Preliminary results on stationary surfaces

In this section, we develop preliminary results of geometric perturbation estimates, Green’s
function estimates and local energy estimates on surfaces Γ(s) and Γh(s) for some fixed
s ∈ [0, T ]. For the simplicity of notations, we omit the dependence on s by using Γ and Γh

instead to denote the surfaces. The constants in this section will not depend on s, but may
depend on T .

3.1 Function spaces

We use the conventional notations of Sobolev spaces W s,q(Γ), s ≥ 0 and 1 ≤ q ≤ ∞, with
abbreviations Lq := W 0,q(Γ), W s,q := W s,q(Γ) and Hs := W s,2(Γ). We denote by H−s(Γ)
the dual space of Hs

0(Γ). The latter is defined as the closure of C∞
0 (Γ) in Hs(Γ).

For any given function f : (0, T ) →W s,q we define the following Bochner norm (for space-
time functions):

∥f∥Lp(0,T ;W s,q) =
∥∥∥f(·)∥W s,q

∥∥
Lp(0,T )

, ∀ 1 ≤ p, q ≤ ∞, s ∈ R. (3.1)

For any subdomain D ⊂ Γ, we define

∥f∥W s,q(D) := inf
f̃ |D=f

∥f̃∥W s,q(Γ), ∀ 1 ≤ q ≤ ∞, s ∈ R, (3.2)

where the infimum extends over all possible f̃ defined on Γ such that f̃ = f in D. Similarly,
for any subdomain Q ⊂ Q = (0, 1)× Γ, we define

∥f∥LpW s,q(Q) := inf
f̃ |Q=f

∥f̃∥Lp(0,T ;W s,q), ∀ 1 ≤ p, q ≤ ∞, s ∈ R, (3.3)

where the infimum extends over all possible f̃ defined on Q such that f̃ = f in Q. For more
details on these spaces we refer to [2, 3].

In addition, the following notations of inner products will be used:

(ϕ, φ) :=

∫
Γ
ϕ(x)φ(x)dx, [u, v] :=

∫ T

0

∫
Γ
u(t, x)v(t, x)dx dt. (3.4)

For any function w defined on Q, We denote w(t) = w(t, ·). The notation 10<t<T stands
for the characteristic function of time interval (0, T ), i.e., 10<t<T (t) = 1 if t ∈ (0, T ) and
10<t<T (t) = 0 if t /∈ (0, T ).

3.2 Properties of the finite element space

For any subdomain D ⊂ Γ, we denote by Sh(D) the space of functions in Sh(Γ) restricted to
the domainD, and denote by S0

h(D) the subspace of Sh(D) consisting of functions which equal
zero outside D. For d > 0, we denote by Bd(D) = {x ∈ Γ : dist(x,D) ≤ d} a neighborhood
of D in Γ. On a quasi-uniform triangulation of surface Γ, there exist positive constants K
and κ such that the triangulation and the corresponding finite element space Sh(Γ) possess
the following properties (K and κ are independent of the subset D and h).

(P1) Quasi-uniformity:

For all triangles τhl in the partition, the diameter hl of τhl and the radius ρl of its
inscribed ball satisfy

K−1h ≤ ρl ≤ hl ≤ Kh.

(P2) Inverse inequality:

If D is a union of elements in the partition, then, for 0 ≤ k ≤ l ≤ 1 and 1 ≤ q ≤ p ≤ ∞,

∥χh∥W l,p(D) ≤ Kh−(l−k)−(m/q−m/p)∥χh∥Wk,q(D), ∀ χh ∈ Sh.
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(P3) Local approximation and super-approximation:

There exists an operator Ih : H
1(Γ) → Sh with the following properties:

(1) For v ∈ H2(Γ) the following estimate holds, for Γ ⊂ Rm+1 with m = 1, 2, 3, and
h ≤ h0:

∥v − Ihv∥L2 + h∥∇(v − Ihv)∥L2 ≤ Kh2∥v∥H2 .

(2) If d ≥ 2h then the value of Ihv in D depends only on the value of v in Bd(D). If
d ≥ 2h and supp(v) ⊂ D, then Ihv ∈ S0

h(Bd(D)).

(3) If d ≥ 2h, χ = 0 outside D and |∂βχ| ≤ Cd−|β| for all multi-index β, then

ψh ∈ Sh(Bd(D)) =⇒ Ih(χψh) ∈ S0
h(Bd(D)),

∥χψh − Ih(χψh)∥L2 + h∥χψh − Ih(χψh)∥H1 ≤ Khd−1∥ψh∥L2(Bd(D)).

(4) If d ≥ 2h and χ ≡ 1 on Bd(D), then Ih(χψh) = ψh on D.

Properties (P1)–(P3) hold for any quasi-uniform triangulation with the standard finite
element spaces consisting of globally continuous piecewise polynomials of degree r ≥ 1 (cf. [45,
Appendix]).

Remark 3.1 Properties (P1)–(P3) hold for parametric surface finite element spaces Sh(Γ(t))
and Sh(Γh(t)) for all t ∈ [0, T ], see [13,15].

Given Γ and Γh, we define the scalar-valued function ah(x) and the R(m+1)×(m+1)-valued
function Bh(x) with x ∈ Γ(s) to be the piecewise smooth prefactors in the following change
of variables: ∫

Γh

uv =

∫
Γ
ah(x)u

ℓvℓ, (3.5)∫
Γh

∇Γh
u · ∇Γh

v =

∫
Γ
Bh(x)∇Γu

ℓ · ∇Γv
ℓ. (3.6)

Then the following estimates hold (see [13]):

Lemma 3.1 Let Γ and Γh be as above. Then, for sufficiently small h ≤ h0, the prefactors
satisfy the geometric estimates:

∥ah − 1∥L∞(Γ) + ∥Bh − I∥L∞(Γ) ≤ Chk+1.

Besides, the basic parametric finite element theory says that the Lp and W 1,p norms on
Γ and Γh are equivalent (cf. [13, p. 811]), i.e. ∥φh∥Lp(Γ) ∼ ∥φh∥Lp(Γh) and ∥∇Γφh∥Lp(Γ) ∼
∥∇Γh

φh∥Lp(Γh) for all φh ∈ Sh and p ∈ [1,∞]. Here the notation a ∼ b means there exist a
positive constant C such that C−1a ≤ b ≤ Ca.

3.3 Green’s functions

We consider the heat equation on a fixed closed and smooth surface Γ, i.e.,{
∂tu(t, x)−∆Γu(t, x) = f(t, x) in (0, T )× Γ,
u(0, x) = u0(x) in Γ,

(3.7)

and the corresponding semi-discrete finite element scheme:{
(∂tuh(t, x), vh)Γh

+ (∇Γh
uh(t, x),∇Γh

vh)Γh
= (fh(t, x), vh)Γh

, ∀ vh ∈ Sh(Γh),

uh(0, x) = uh,0,
(3.8)
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where fh = Ph(Γh)f
−ℓ. According to Lemma 3.1, we can equivalently lift the scheme onto Γ:{

(ah(x)∂tu
ℓ
h(t, x), v

ℓ
h)Γ + (Bh(x)∇Γu

ℓ
h(t, x),∇Γv

ℓ
h)Γ = (ah(x)f

ℓ
h(t, x), v

ℓ
h)Γ, ∀ vℓh ∈ Sh(Γ),

uℓh(0, x) = uℓh,0.

(3.9)

Let G(t, x, x0) denote the Green’s function (i.e. the heat kernel) of the parabolic equation
(3.7), i.e. G = G(·, · , x0) is the solution of{

∂tG(·, · , x0)−∆ΓG(·, · , x0) = 0 in (0, T )× Γ,
G(0, ·, x0) = δx0 in Γ.

(3.10)

The Li–Yau heat kernel estimate on closed manifold Γ with Ricci curvature bounded from
below (cf. [38, Corollary 3.1]) gives

G(t, x, y) ≤ c0t
−m

2 ec1te
− d(x,y)2

c0t t > 0, (3.11)

where the constant c0 > 0 and c1 ≥ 0 only depend on the lower bound of the Ricci curvature.
Additionally, c1 = 0 if the Ricci curvature of Γ is non-negative everywhere and c1 > 0 for
the general case. The self-adjointness of Laplace-Beltrami operator implies the symmetry of
the kernel, i.e. G(t, x, y) = G(t, y, x), and the analyticity of the kernel G(z, x, y) on the right
complex plane z ∈ {t + is : t > 0} (see [11, Lemma 2]). Following [10, Theorem 3.4.8], the
following pointwise bound for the complex time heat kernel G(z, x, y) holds.

Lemma 3.2 The analytic complex time heat kernel on surface Γ satisfies

|G(z, x, y)| ≤ c0(Re(z))
−m

2 ec1Re(z)e
−Re

d(x,y)2

c0z , (3.12)

for all Re(z) > 0 and x, y ∈ Γ.

Then Cauchy’s integral formula says that for all real time t > 0

∂kt G(t, x, y) =
k!

2πi

∫
|z−t|= t

2

G(z, x, y)

(z − t)k+1
dz, (3.13)

which, together with (3.12), yields the following Gaussian pointwise estimate for the time
derivatives of Green’s function:

|∂kt G(t, x, x0)| ≤
Ck

tk+m/2
eCkte

− d(x−x0)
2

Ckt , ∀x, x0 ∈ Γ, ∀ t > 0, k = 0, 1, 2, . . . , (3.14)

where the constant Ck depends on c0 and c1 which are related to the Ricci curvature of Γ.
As constructed in [48, Lemma 2.2], for any x0 ∈ K̄ l ⊆ Γ (where K l is a lifted open triangle

in the triangulation of Γ), there exists a function δ̃x0 ∈ C∞
0 (K l) such that

χh(x0) =

∫
Γ
χhδ̃x0dx, ∀χh ∈ Sh(Γ),

and

∥δ̃x0∥W l,p ≤ Ch−l−m(1−1/p) for 1 ≤ p ≤ ∞, l = 0, 1, 2, . . . , (3.15)

sup
y∈Γ

∫
Γ
|δ̃y(x)|dx+ sup

x∈Γ

∫
Γ
|δ̃y(x)|dy ≤ C. (3.16)

Let δx0 denote the Dirac Delta function centered at x0 ∈ Γ. In other words,
∫
Γ δx0(y)φ(y)dy =

φ(x0) for arbitrary φ ∈ C(Γ). Then the discrete Delta function associated to Γ

δ̃h,x0 := Ph(Γ)δx0 = Ph(Γ)δ̃x0 ∀x0 ∈ Γ

decays exponentially away from x0 (cf. [48, Lemma 2.3] and [46, Lemma 6.1]):

|δ̃h,x0(x)| = |Ph(Γ)δ̃x0(x)| ≤ Ch−me−
d(x,x0)

Kh , ∀x, x0 ∈ Γ. (3.17)

Let H = H(·, · , x0), x0 ∈ Γ be the regularized Green’s function of the parabolic equation
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on the closed manifold Γ, defined by{
∂tH(·, · , x0)−∆ΓH(·, · , x0) = 0 in (0, T )× Γ,

H(0, ·, x0) = δ̃x0 in Γ.
(3.18)

The regularized Green’s function can be represented by

H(t, x, x0) =

∫
Γ
G(t, y, x)δ̃x0(y)dy =

∫
Γ
G(t, x, y)δ̃x0(y)dy. (3.19)

From the representation (3.19) and (3.14), one can easily derive that the regularized Green’s
functionH also satisfies the Gaussian pointwise estimate in the region max(d(x, x0),

√
t) ≥ 2h:

|∂ktH(t, x, x0)| ≤
Ck

tk+m/2
eCkte

− d(x−x0)
2

Ckt , ∀x, x0 ∈ Γ, ∀ t > 0, (3.20)

with k = 0, 1, 2, . . . .
Similarly, for any x0 ∈ K̄ ⊆ Γh (where K is an open triangle in the triangulation of Γh),

we denote by δ̄x0 ∈ C∞
0 (K) the regularized Green’s function on Γh (cf. [48, Lemma 2.2]),

satisfying the following relations:

χh(x0) =

∫
Γh

χhδ̄x0dx, ∀χh ∈ Sh(Γh),

and

∥δ̄x0∥W l,p ≤ Ch−l−m(1−1/p) for 1 ≤ p ≤ ∞, l = 0, 1, 2, . . . , (3.21)

sup
y∈Γh

∫
Γh

|δ̄y(x)|dx+ sup
x∈Γh

∫
Γh

|δ̄y(x)|dy ≤ C. (3.22)

Let δ̄h,x0 be the discrete Green’s function in Sh(Γh), defined as

δ̄h,x0 := Ph(Γh)δx0 = Ph(Γh)δ̄x0 ∀x0 ∈ Γh.

By the same argument as in a flat domain (see [46, Lemma 6.1]), it is straightforward to
verify that δ̄h,x0 exponentially decays away from x0, i.e.,

|δ̄h,x0(x)| = |Ph(Γh)δ̄x0(x)| ≤ Kh−me−
d(x,x0)

Kh , ∀x, x0 ∈ Γh. (3.23)

This estimate of the discrete Delta function also implies the boundedness of projection Ph(Γh)
in Lq(Γh), i.e.,

∥Ph(Γh)v∥Lp(Γh) ≤ C∥v∥Lp(Γh) ∀ v ∈ Lp(Γh), 1 ≤ p ≤ ∞. (3.24)

Let Hh = Hh(·, ·, x0) ∈ Sh(Γh), x0 ∈ Γh, be the discrete Green’s function associated to (3.8),
i.e., {

(∂tHh(t, ·, x0), vh)Γh
+ (∇Γh

Hh(t, ·, x0),∇Γh
vh)Γh

= 0, ∀ vh ∈ Sh(Γh),

Hh(0, ·, x0) = δ̄h,x0 .
(3.25)

Then the discrete Green’s function Hh(t, x, x0) is symmetric with respect to x and x0. More-
over, in view of the relations in (3.5)–(3.6), the lifted discrete Green’s function Hℓ

h(t, x, x0) =
Hh(t, q

−1(x), q−1(x0)), for x, x0 ∈ Γ, satisfies the following weak formulation on Γ:{
(ah(·)∂tHℓ

h(t, ·, x0), vℓh)Γ + (Bh(·)∇ΓH
ℓ
h(t, ·, x0),∇Γv

ℓ
h)Γ = 0, ∀ vh ∈ Sh(Γ),

Hℓ
h(0, ·, x0) = δ̄ℓh,q−1(x0)

.
(3.26)

By testing (3.7) and (3.8) with the backward Green’s function and discrete Green’s func-
tions, respectively, the solutions of (3.7) and (3.8) can be represented by

u(t, x0) =

∫
Γ
G(t, x, x0)u0(x)dx+

∫ t

0

∫
Γ
G(t− s, x, x0)f(s, x)dxds, (3.27)

uh(t, x0) =

∫
Γh

Hh(t, x, x0)uh,0(x)dx+

∫ t

0

∫
Γh

Hh(t− s, x, x0)fh(s, x)dxds
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=

∫
Γ
ah(x)H

ℓ
h(t, x, q(x0))u

ℓ
h,0(x)dx+

∫ t

0

∫
Γ
ah(x)H

ℓ
h(t− s, x, q(x0))f

ℓ
h(s, x)dxds,

(3.28)

where the last equality uses (3.5) and relation fh = Ph(Γh)f
−ℓ.

Remark 3.2 The construction of the regularized Green’s function is not unique, since we
can indeed choose any smooth weight function in the reference element in the proof of [48,
Lemma 2.2]. By definition, δ̄h,x0 and δ̃h,x0 are the L2 projections of the Dirac delta functions
onto the closed subspaces Sh(Γh) and Sh(Γ) (in the sense of distribution), respectively, and
therefore they do not depend on the definitions of the regularized Green’s functions δ̄x0 and
δ̃x0 .

In order to see the relation between the regularized Delta functions δ̄x0 on Γh and δ̃x0

on Γ, respectively, we can consider a fixed point x0 ∈ K̄ ⊂ Γh and push the regularized
delta function δ̄x0 to Γ through the distance projection q (which projects any point in a
neighborhood of Γ onto Γ). This leads to the following relations:

δ̄x0 = (a−1
h )−ℓδ̃−ℓ

q(x0)
and δ̃q(x0) = ahδ̄

ℓ
x0

for all x0 ∈ Γh. (3.29)

This relation can be used to show the following estimate for the discrete Green’s functions.

Lemma 3.3 Let h ≤ h0, then the discrete Green’s functions satisfy the estimate

∥δ̄ℓh,x0
− δ̃h,q(x0)∥Lp(Γ) ≤ Chk+1min{∥δ̃q(x0)∥Lp(Γ), ∥δ̄x0∥Lp(Γh)}, (3.30)

for all x0 ∈ Γh and p ∈ [1,∞].

Proof. By the construction of the regularized delta function on Γ and Γh,

∥δ̄ℓh,x0
− δ̃h,q(x0)∥Lp(Γ) = ∥(Ph(Γh)δ̄x0)

ℓ − Ph(Γ)δ̃q(x0)∥Lp(Γ)

= ∥(Ph(Γh)δ̄x0)
ℓ − Ph(Γ)(ahδ̄

ℓ
x0
)∥Lp(Γ)

≤ ∥(Ph(Γh)δ̄x0)
ℓ − Ph(Γ)δ̄

ℓ
x0
∥Lp(Γ) + ∥Ph(Γ)(1− ah)δ̄

ℓ
x0
∥Lp(Γ)

≤ sup
vh∈Sh(Γ),∥vh∥Lp′ (Γ)

=1
((Ph(Γh)δ̄x0)

ℓ − Ph(Γ)δ̄
ℓ
x0
, vh)Γ + C∥1− ah∥L∞(Γ)∥δ̄ℓx0

∥Lp(Γ)

= sup
vh∈Sh(Γ),∥vh∥Lp′ (Γ)

=1
(δ̄x0 , Ph(Γh)(a

−1
h )−ℓvh − (a−1

h )−ℓvh)Γh
+ C∥1− ah∥L∞(Γ)∥δ̄ℓx0

∥Lp(Γ)

≤ sup
vh∈Sh(Γ),∥vh∥Lp′ (Γ)

=1
(δ̄x0 , Ph(Γh)(a

−1
h )−ℓvh − vh)Γh

+ sup
vh∈Sh(Γ),∥vh∥Lp′ (Γ)

=1
(δ̄x0 , vh − (a−1

h )−ℓvh)Γh
+ C∥1− ah∥L∞(Γ)∥δ̄ℓx0

∥Lp(Γ)

≤ sup
vh∈Sh(Γ),∥vh∥Lp′ (Γ)

=1
∥Ph(Γh)((a

−1
h )−ℓ − 1)vh∥Lp′ (Γh)

∥δ̄x0∥Lp(Γh)

+ sup
vh∈Sh(Γ),∥vh∥Lp′ (Γ)

=1
∥((a−1

h )−ℓ − 1)vh∥Lp′ (Γh)
∥δ̄x0∥Lp(Γh) + Chk+1∥δ̄ℓx0

∥Lp(Γ)

≤ Chk+1∥δ̄x0∥Lp(Γh),

where we have used the L∞ estimate of 1 − ah (Lemma 3.1) and the Lp stability of Ph(Γh)
shown in (3.24). Since δ̄ℓx0

= a−1
h δ̃q(x0), we know that ∥δ̄x0∥Lp(Γh) and ∥δ̃q(x0)∥Lp(Γ) are

equivalent. □
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3.4 W 1,q-stability of Ritz projection

We consider the Ritz projection Rh : H
1(Γ) → Sh(Γ) associated to the operator −∆Γ + 1 on

Γ, defined as

(∇Γ(u−Rhu),∇Γφ
ℓ
h)Γ + (u−Rhu, φ

ℓ
h)Γ = 0 ∀φℓ

h ∈ Sh(Γ).

From [13, Theorem 3.2] we know that the Ritz projection defined above is W 1,∞ stable.
Consequently the W 1,q-stability of Rh for q ∈ [1,∞] follows from interpolation (cf. [6, Theo-
rem 3.70]) and duality via Hodge decomposition (cf. [19, Eq. (10.101)]).

3.5 Dyadic decomposition of the domain Q = (0, 1)× Γ

In the proof of Theorem 2.2, we decompose the domainQ = ΓT with T = 1, i.e.Q = (0, 1)×Γ,
into subdomains, and present estimates of the finite element solutions in each subdomain.
The following dyadic decomposition of Q was introduced in [44]. The readers may skip this
subsection if they are familiar with such dyadic decompositions.

For any integer j, we define dj = 2−j . For a given x0 ∈ Γ, we let J1 = 1, J0 = 0 and J∗
be an integer satisfying 2−J∗ = C∗h with C∗ ≥ 16 to be determined later. If

h < 1/(4C∗), (3.31)

then

2 ≤ J∗ = log2[1/(C∗h)] ≤ log2(2 + 1/h). (3.32)

Let

Q∗(x0) = {(t, x) ∈ ΓT : max(d(x, x0), t
1/2) ≤ dJ∗},

Γ∗(x0) = {x ∈ Γ : d(x, x0) ≤ dJ∗} .
We define

Qj(x0) = {(t, x) ∈ ΓT : dj ≤ max(d(x, x0), t
1/2) ≤ 2dj} for j ≥ 1,

Γj(x0) = {x ∈ Γ : dj ≤ d(x, x0) ≤ 2dj} for j ≥ 1,

Dj(x0) = {x ∈ Γ : d(x, x0) ≤ 2dj} for j ≥ 1,

and

Q0(x0) = Q
∖(

∪J∗
j=1 Qj(x0) ∪Q∗(x0)

)
,

Γ0(x0) = Γ
∖(

∪J∗
j=1 Γj(x0) ∪ Γ∗(x0)

)
.

For j < 0, we simply define Qj(x0) = Γj(x0) = ∅. For all integer j ≥ 0, we define

Γ′
j(x0) = Γj−1(x0) ∪ Γj(x0) ∪ Γj+1(x0), Q′

j(x0) = Qj−1(x0) ∪Qj(x0) ∪Qj+1(x0),

Γ′′
j (x0) = Γj−2(x0) ∪ Γ′

j(x0) ∪ Γj+2(x0), Q′′
j (x0) = Qj−2(x0) ∪Q′

j(x0) ∪Qj+2(x0),

D′
j(x0) = Dj−1(x0) ∪Dj(x0), D′′

j (x0) = Dj−2(x0) ∪D′
j(x0).

Then we have

ΓT =

J∗⋃
j=0

Qj(x0) ∪Q∗(x0) and Γ =

J∗⋃
j=0

Γj(x0) ∪ Γ∗(x0). (3.33)

We refer to Q∗(x0) as the “innermost” set. We shall write
∑

∗,j when the innermost set is
included and

∑
j when it is not. When x0 is fixed, if there is no ambiguity, we simply write

Qj = Qj(x0), Q
′
j = Q′

j(x0), Q
′′
j = Q′′

j (x0), Γj = Γj(x0), Γ
′
j = Γ′

j(x0) and Γ′′
j = Γ′′

j (x0).
We shall use the notations

∥v∥k,D =

(∫
D

∑
|α|≤k

|∂αΓv|2dx
) 1

2

, |||v|||k,Q =

(∫
Q

∑
|α|≤k

|∂αΓv|2dxdt
) 1

2

, (3.34)
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for any subdomains D ⊂ Γ and Q ⊂ (0, 1) × Γ. Throughout this paper, we denote by C
a generic positive constant that is independent of h, x0 and C∗ (until C∗ is determined in
Section 4). To simplify the notations, we also denote d∗ = dJ∗ .

3.6 Local energy estimates

Since the Gagliardo–Nirenberg interpolation inequality still holds on closed manifold (cf. [6,
Theorem 3.70]), the standard energy estimates of heat equation (cf. [28, Lemma 2.1 of Chapter
III]) are also valid here. Consequently we have the following local estimates of (regularized)
Green’s function (cf. [32, Lemma 4.1] and [32, Eq. (4.9)] with α = 1).

Lemma 3.4 The Green’s function G defined in (3.10) and the regularized Green’s function
H defined in (3.18) satisfy the following estimates:

d
−5+m/2
j ∥H(·, ·, x0)∥L∞(Qj(x0)) + d−5

j |||∇ΓH(·, ·, x0)|||L2(Qj(x0))

+ d−4
j |||H(·, ·, x0)|||L2H2(Qj(x0))

+ d−2
j |||∂tH(·, ·, x0)|||L2H2(Qj(x0))

+ |||∂ttH(·, ·, x0)|||L2H2(Qj(x0))
≤ Cd

−m/2−5
j , (3.35)

|||∂tH(·, ·, x0)|||L2(Qj(x0))
+ dj |||∇Γ∂tH(·, ·, x0)|||L2(Qj(x0))

+ d2j |||∂ttH(·, ·, x0)|||L2(Qj(x0))

+ d3j |||∇Γ∂ttH(·, ·, x0)|||L2(Qj(x0))
≤ Cd

−m/2−1
j , (3.36)

∥G(·, ·, x0)∥L∞H2(∪k≤jQk(x0)) + d2j∥∂tG(·, ·, x0)∥L∞H2(∪k≤jQk(x0)) ≤ Cd
−m/2−2
j . (3.37)

Remark 3.3 The spatial high-order counterpart of (3.37), i.e.

∥G(·, ·, x0)∥L∞Hk(∪k≤jQk(x0)) ≤ Cd
−m/2−k
j , k ∈ N,

follows from a standard induction argument by differentiating the localized equation in the
spatial direction. Note that on the surface the surface derivatives do not commute with each
other (cf. [8, Lemma 5.1, Item 4]). However the commutator is of lower order and therefore
dose not affect the dominant stability in the energy estimates.

We also need the following local energy estimate for the error equation, which can be
proved in a similar way as [32, Lemma 5.1]. The proof of Lemma 3.5 can be found in
Appendix.

Lemma 3.5 Suppose that ϕ ∈ L2(0, T ;H1
0 (Γ)) ∩H1(0, T ;L2(Γ)) and ϕℓh ∈ H1(0, T ;Sh(Γ))

satisfy the equation

(∂tϕ− ah∂tϕ
ℓ
h), χ

ℓ
h)Γ + (∇Γϕ−Bh∇Γϕ

ℓ
h,∇Γχ

ℓ
h)Γ = 0, ∀χℓ

h ∈ Sh(Γ), a.e. t > 0, (3.38)

with ϕ(0) = 0 in Γ′′
j . Then∣∣∣∣∣∣∣∣∣∂t(ϕ− ϕℓh)
∣∣∣∣∣∣∣∣∣

Qj

+ d−1
j

∣∣∣∣∣∣∣∣∣ϕ− ϕℓh

∣∣∣∣∣∣∣∣∣
1,Qj

≤ Cϵ−3
(
Ij(ϕ

ℓ
h(0)) +Xj(Ihϕ− ϕ) + Yj(ϕ) + d−2

j

∣∣∣∣∣∣∣∣∣ϕ− ϕℓh

∣∣∣∣∣∣∣∣∣
Q′

j

)
+ (Ch1/2d

−1/2
j + Cϵ−1hd−1

j + ϵ)
(∣∣∣∣∣∣∣∣∣∂t(ϕ− ϕℓh)

∣∣∣∣∣∣∣∣∣
Q′

j

+ d−1
j

∣∣∣∣∣∣∣∣∣ϕ− ϕℓh

∣∣∣∣∣∣∣∣∣
1,Q′

j

)
, (3.39)

where

Ij(ϕ
ℓ
h(0)) = ∥ϕℓh(0)∥1,Γ′

j
+ d−1

j ∥ϕℓh(0)∥Γ′
j
,

Xj(Ihϕ− ϕ) = dj |||∂t(Ihϕ− ϕ)|||1,Q′
j
+ |||∂t(Ihϕ− ϕ)|||Q′

j

+ d−1
j |||Ihϕ− ϕ|||1,Q′

j
+ d−2

j |||Ihϕ− ϕ|||Q′
j
,
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Yj(ϕ) = hk+1

(
dj |||∇Γ∂tϕ|||Q′

j
+ |||∂tϕ|||Q′

j
+ d−1

j |||∇Γϕ|||Q′
j
+ d−2

j |||ϕ|||Q′
j

)
.

The positive constant C is independent of h, j and C∗; the norms |||·|||k,Q′
j
and |||·|||k,Γ′

j
are

defined in (3.34).

Remark 3.4 The term Yj(ϕ) is generated by approximating Γ with Γh.

4 Discrete maximal regularity on a stationary surface
(Proof of Theorem 2.2)

We shall prove the following key lemma using the local energy estimates in Section 3.6.

Lemma 4.1 The functions Hh(t, x, x0), H(t, x, x0) and F (t, x, x0) := Hℓ
h(t, x, x0)−H(t, x, x0)

satisfy

sup
x0∈Γ

∥∂tF (·, ·, x0)∥L1((0,+∞)×Γ) + sup
x0∈Γ

∥t∂ttF (·, ·, x0)∥L1((0,+∞)×Γ) ≤ C, (4.1)

sup
x0∈Γh

∥∂tHh(t, ·, x0)∥L1(Γh) ≤ Ce−λ0t, ∀ t ≥ 1, (4.2)

where the constants C > 0 and λ0 ≥ 0 are independent of h.

To simplify the notation, in this subsection we continue to omit the dependence of surface
Γ(s) on s ∈ [0, T ]. Additionally, we relax the dependence of the Green’s functions on x0 ∈ Γ
by denoting

Hℓ
h(t) = Hℓ

h(t, ·, x0), H(t) = H(t, ·, x0) and F (t) = Hℓ
h(t)−H(t).

Since the coefficient ah and Bh are bounded everywhere, the same proofs in [32, Section
4.3–4.4] using Lemma 4.1 can be carried over almost verbatim here. For example, by differ-
entiating (3.28) in time, we obtain

∂tuh(t, q
−1(x0)) =

∫ t

0

∫
Γ
ah(x)∂tF (t− s, x, x0)f

ℓ
h(s, x)dxds

+

∫ t

0

∫
Γ
ah(x)∂tH(t− s, x, x0)f

ℓ
h(s, x)dxds+ ah(x0)f

ℓ
h(t, x0)

=: Mh(ahf
ℓ
h) +Kh(ahf

ℓ
h) + ahf

ℓ
h, x0 ∈ Γ,

where Mh and Kh are the linear operators whose kernel are ∂tF and ∂tH respectively. There-
fore, by using Lemma 4.1 and the arguments in [32, Section 4.3–4.4], we can obtain the
following result for p, q ∈ [1,∞):

∥∂tuℓh∥Lp(R+;Lq(Γ)) ≤ C∥ahf ℓh∥Lp(R+;Lq(Γ)) ≤ C∥f ℓh∥Lp(R+;Lq(Γ)).

This proves the maximal regularity result in Theorem 2.2 (by choosing Γ = Γ(s) and Γh =
Γh(s) for any fixed s ∈ [0, T ]).

Remark 4.1 Analogous to [32, Section 4.2], we also have the analyticity and maximum-
norm stability (or discrete maximum principle, for the continuous maximum principle on
closed manifold Γ; see [37, Theorem 15.2]) results for the discrete heat semigroup on Γh: The
semi-discrete finite element solution uh = Eh(t)uh,0 of equation{

(∂tuh(t), φh)Γh
+ (∇Γh

uh(t),∇Γh
φh)Γh

= 0 ∀φh ∈ Sh,

uh(0) = uh,0 on Γ,

satisfies the following estimates for q ∈ [1,∞):

sup
t>0

(∥Eh(t)uh,0∥Lq(Γh) + t∥∂tEh(t)uh,0∥Lq(Γh)) ≤ C∥uh,0∥Lq(Γh),
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sup
t>0

∥Eh(t)uh,0∥L∞(Γh) ≤ C∥uh,0∥L∞(Γh).

(4.3)

In order to prove Lemma 4.1, we apply the local energy estimate in Lemma 3.5 to estimate
∥∂tF∥L1((0,+∞)×Γ)+∥t∂ttF∥L1((0,+∞)×Γ). The estimation consists of two parts: The first part
concerns estimates for t ∈ (0, 1), and the second part concerns estimates for t ≥ 1, which is
a consequence of the smoothing property of parabolic equations.

Part I. First, we present estimates in the domain Q = (0, 1) × Γ with the restriction
h < 1/(4C∗); see (3.31). In this case, the basic energy estimate gives

∥∂tH∥L2(Q) + ∥∂tHℓ
h∥L2(Q) ≤ C(∥H(0)∥H1 + ∥Hℓ

h(0)∥H1) ≤ Ch−1−m/2, (4.4)

∥H∥L∞L2(Q) + ∥Hℓ
h∥L∞L2(Q) ≤ C(∥H(0)∥L2 + ∥Hℓ

h(0)∥L2) ≤ Ch−m/2, (4.5)

∥∇ΓH∥L2(Q) + ∥∇ΓH
ℓ
h∥L2(Q) ≤ C(∥H(0)∥L2 + ∥Hℓ

h(0)∥L2) ≤ Ch−m/2, (4.6)

∥∂ttH∥L2(Q) + ∥∂ttHℓ
h∥L2(Q) ≤ C(∥∆ΓH(0)∥H1 + ∥∆Γ,hH

ℓ
h(0)∥H1) ≤ Ch−3−m/2, (4.7)

∥∇Γ∂tH∥L2(Q) + ∥∇Γ∂tH
ℓ
h∥L2(Q) ≤ C(∥∆ΓH(0)∥L2 + ∥∆Γ,hH

ℓ
h(0)∥L2) ≤ Ch−2−m/2, (4.8)

where we have used (3.15) and (3.17) to estimate H(0) and Hh(0), respectively. Hence, we
have

|||H|||Q∗
+ ∥|Hℓ

h∥|Q∗ ≤ Cd∗∥H∥L∞L2(Q∗) + Cd∗∥Hℓ
h∥L∞L2(Q∗) ≤ Cd∗h

−m/2 ≤ CC∗h
1−m/2.

(4.9)

Since the volume ofQj is Cd
2+m
j , we can decompose ∥∂tF∥L1(Q)+∥t∂ttF∥L1(Q) in the following

way:

∥∂tF∥L1(Q) + ∥t∂ttF∥L1(Q)

≤ ∥∂tF∥L1(Q∗) + ∥t∂ttF∥L1(Q∗) +
∑
j

(
∥∂tF∥L1(Qj) + ∥t∂ttF∥L1(Qj)

)
≤ Cd

1+m/2
∗

(
|||∂tF |||Q∗

+ d2∗|||∂ttF |||Q∗

)
+
∑
j

Cd
1+m/2
j

(
|||∂tF |||Qj

+ d2j |||∂ttF |||Qj

)
≤ CC

3+m/2
∗ + K , (4.10)

where we have used (4.4), (4.6) and (4.7) to estimate

Cd
1+m/2
∗

(
|||∂tF |||Q∗

+ d2∗|||∂ttF |||Q∗

)
,

and introduced the following notation:

K : =
∑
j

d
1+m/2
j (d−1

j |||F |||1,Qj
+ |||∂tF |||Qj

+ dj |||∂tF |||1,Qj
+ d2j |||∂ttF |||Qj

). (4.11)

It remains to estimate K . To this end, in view of (3.18) and (3.26), we set “ϕh = Hh,
ϕ = H, ϕh(0) = Ph(Γh)δ̄q−1(x0) and ϕ(0) = δ̃x0” and “ϕh = ∂tHh, ϕ = ∂tH, ϕℓh(0) =

∆Γ,h(Ph(Γh)δ̄q−1(x0))
ℓ and ϕ(0) = ∆Γδ̃x0” in Lemma 3.5, respectively. Then we obtain

d−1
j |||F |||1,Qj

+ |||∂tF |||Qj
≤ Cϵ−3(Îj + X̂j + Ŷj + d−2

j |||F |||Q′
j
) (4.12)

+ (Ch1/2d
−1/2
j + Cϵ−1hd−1

j + ϵ)
(
d−1
j |||F |||1,Q′

j
+ |||∂tF |||Q′

j

)
and

dj |||∂tF |||1,Qj
+ d2j |||∂ttF |||Qj

≤ Cϵ−3(Ij +Xj + Yj + |||∂tF |||Q′
j
) (4.13)

+ (Ch1/2d
−1/2
j + Cϵ−1hd−1

j + ϵ)
(
dj |||∂tF |||1,Q′

j
+ d2j |||∂ttF |||Q′

j

)
,

respectively. By using interpolation error estimate, (3.23) (exponential decay of Ph(Γh)δ̄q−1(x0))
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and Lemma 3.4 (local estimates of regularized Green’s function), we have

Îj = ∥Ph(Γh)δ̄q−1(x0)∥1,Γ′
j
+ d−1

j ∥Ph(Γh)δ̄q−1(x0)∥Γ′
j
≤ Ch2d

−3−m/2
j , (4.14)

X̂j = dj |||∂t(IhH −H)|||1,Q′
j
+ |||∂t(IhH −H)|||Q′

j

+ d−1
j |||IhH −H|||1,Q′

j
+ d−2

j |||IhH −H|||Q′
j

≤ Cdjh|||∂tH|||L2H2(Q′′
j )

+ Cd−1
j h|||H|||L2H2(Q′′

j )

≤ Chd
−2−m/2
j , (4.15)

Ŷj = hk+1

(
dj |||∇Γ∂tH|||Q′

j
+ |||∂tH|||Q′

j
+ d−1

j |||∇ΓH|||Q′
j
+ d−2

j |||H|||Q′
j

)
≤ Chk+1d

−1−m/2
j , (4.16)

and

Ij = d2j∥∆Γ,h(Ph(Γh)δ̄q−1(x0))
ℓ∥1,Γ′

j
+ dj∥∆Γ,h(Ph(Γh)δ̄q−1(x0))

ℓ∥Γ′
j
≤ Ch2d

−3−m/2
j , (4.17)

Xj = d3j |||Ih∂ttH − ∂ttH|||1,Q′
j
+ d2j |||Ih∂ttH − ∂ttH|||Q′

j

+ dj |||Ih∂tH − ∂tH|||1,Q′
j
+ |||Ih∂tH − ∂tH|||Q′

j

≤ C(d3jh+ d2jh
2)|||∂ttH|||L2H2(Q′′

j )
+ C(djh+ h2)|||∂tH|||L2H2(Q′′

j )

≤ Chd
−2−m/2
j , (4.18)

Yj = hk+1

(
d3j |||∇Γ∂ttH|||Q′

j
+ d2j |||∂ttH|||Q′

j
+ dj |||∇Γ∂tH|||Q′

j
+ |||∂tH|||Q′

j

)
≤ Chk+1d

−1−m/2
j . (4.19)

By substituting (4.12)-(4.19) into the expression of K in (4.11), we have

K =
∑
j

d
1+m/2
j (d−1

j |||F |||1,Qj
+ |||∂tF |||Qj

+ dj |||∂tF |||1,Qj
+ d2j |||∂ttF |||Qj

)

≤ C
∑
j

d
1+m/2
j ϵ−3

(
h2d

−3−m/2
j + hd

−2−m/2
j + d−2

j |||F |||Q′
j

)
+

∑
j

(Ch1/2d
−1/2
j + Cϵ−1hd−1

j + ϵ)d
1+m/2
j (d−1

j |||F |||1,Q′
j
+ |||∂tF |||Q′

j
+ dj |||∂tF |||1,Q′

j
+ d2j |||∂ttF |||Q′

j
)

≤ C + Cϵ−3
∑
j

d
−1+m/2
j |||F |||Q′

j

+
∑
j

(Ch1/2d
−1/2
j + Cϵ−1hd−1

j + ϵ)d
1+m/2
j (d−1

j |||F |||1,Q′
j
+ |||∂tF |||Q′

j
+ dj |||∂tF |||1,Q′

j
+ d2j |||∂ttF |||Q′

j
).

(4.20)

Since |||F |||Q′
j
≤ C(|||F |||Qj−1

+ |||F |||Qj
+ |||F |||Qj+1

), we can convert the Q′
j-norm in the

inequality above to the Qj-norm:

K ≤ C + Cϵ−3d
−1+m/2
∗ |||F |||Q∗

+ Cϵ−3
∑
j

d
−1+m/2
j |||F |||Qj

+
∑
j

(Ch1/2d
−1/2
j + Cϵ−1hd−1

j + ϵ)d
1+m/2
∗ (d−1

∗ |||F |||1,Q∗
+ |||∂tF |||Q∗

+ d∗|||∂tF |||1,Q∗
+ d2∗|||∂ttF |||Q∗

)

+
∑
j

(Ch1/2d
−1/2
j + Cϵ−1hd−1

j + ϵ)d
1+m/2
j (d−1

j |||F |||1,Qj
+ |||∂tF |||Qj

+ dj |||∂tF |||1,Qj
+ d2j |||∂ttF |||Qj

)
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≤ Cϵ + CϵC
3+m/2
∗ + Cϵ

∑
j

d
−1+m/2
j |||F |||Qj

+ C(CϵC
−1/2
∗ + CC−1

∗ + ϵ)K , (4.21)

where we have used dj ≥ C∗h and (4.4)-(4.8) to estimate

|||F |||1,Q∗
, |||∂tF |||Q∗

, |||∂tF |||1,Q∗
, and |||∂ttF |||Q∗

,

and used the expression of K in (4.11) to bound the terms involvingQj . Since ϵ∗ = ϵ+ϵ−1/C∗,
we can make ϵ∗ sufficiently small by first choosing ϵ small enough and then choosing C∗ large
enough (ϵ can be fixed now and C∗ will be determined later). Then the last term on the
right-hand side of (4.21) can be absorbed by the left-hand side. Therefore, we obtain

K ≤ C + CC
3+m/2
∗ +

∑
j

d
−1+m/2
j |||F |||Qj

. (4.22)

It remains to estimate |||F |||Qj
. We apply the parabolic duality argument: Let w be the

solution of the following backward parabolic equation on the domain Q:{
−∂tw −∆Γw = v,
w(1) = 0,

with supp(v) ⊆ Qj and ∥v∥L2(Qj) = 1. After testing the above equation by F , we get

[F, v] = (F (0), w(0)) + [Ft, w] + [∇ΓF,∇Γw], (4.23)

where

(F (0), w(0)) = (δ̄ℓh,q−1(x0)
− δ̃x0 , w(0))

= (Phδ̃x0 − δ̃x0 , w(0)− Ihw(0)) + (δ̄ℓh,q−1(x0)
− δ̃h,x0 , w(0))

= (Phδ̃x0 , w(0)− Ihw(0))Γ′′
j
+ (Phδ̃x0 − δ̃x0 , w(0)− Ihw(0))(Γ′′

j )
c + (δ̄ℓh,q−1(x0)

− δ̃h,x0 , w(0))

=: I1 + I2 + I3. (4.24)

Both I1 and I2 can be estimated in the same way as [32, Eq. (5.21), (5.23) and (5.24)]. The
only difference is the replacement of flat domain Ω in [32] by surface Γ here. These estimates
of I1 and I2 can be written as follows:

|I1| ≤ Ch2d
−1−m/2
j and |I2| ≤ Ch2∥w(0)∥W 2,∞((Γ′

j)
c),

≤ Ch2 sup
y∈Γ

∥G(·, ·, y)∥L∞W 2,∞(∪k≤j+log2 CQk)∥v∥L1(Qj),

≤ Ch2d−2−m
j ∥v∥L1(Qj),

≤ Ch2d
−1−m/2
j |||v|||L2(Qj)

,

where in the second-to-last inequality we have used the following pointwise estimate of Green’s
function (cf. (3.14)):

sup
y∈Γ

∥G(·, ·, y)∥L∞W 2,∞(∪k≤j+log2 CQk)

≤ C sup
y∈Γ

∥G(·, ·, y)∥1−θ
L∞L∞(∪k≤j+log2 CQk)

∥G(·, ·, y)∥θL∞HM (∪k≤j+log2 CQk)

≤ Cd
−m(1−θ)
j d

−(M+m/2)θ
j = Cd−2−m

j ,

where in the first and second inequality we have used the Gagliardo–Nirenberg interpolation
inequality with θ = 4

2M−m for any integer M > m
2 (cf. [6, Theorem 3.70]) and the local

estimates of Green’s function (Lemma 3.4 and Remark 3.3) respectively.
Similarly, by using Lemma 3.3 and (3.14), the argument in [32] leads to the following

estimate:

|I3| ≤ ∥δ̄ℓh,q−1(x0)
− δ̃h,x0∥L1(Γ)∥w(0)∥L∞(Γ)

≤ Chk+1 sup
y∈Γ

∥G(·, ·, y)∥L∞L∞(∪k≤j+log2 CQk)∥v∥L1(Qj)
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≤ Chk+1d−m
j ∥v∥L1(Qj)

≤ Chk+1d
1−m/2
j |||v|||L2(Qj)

.

We decompose the second and third terms on the right-hand side of (4.23) as follows:

[Ft, w] + [∇ΓF,∇Γw]

= [∂t(H
ℓ
h −H), w] + [∇Γ(H

ℓ
h −H),∇Γw]

= [ah∂tH
ℓ
h − ∂tH,w] + [Bh∇ΓH

ℓ
h −∇ΓH,∇Γw]

+ [(1− ah)∂tH
ℓ
h, w] + [(1−Bh)∇ΓH

ℓ
h,∇Γw]

= [ah∂tH
ℓ
h − ∂tH, (w − Ihw)] + [Bh∇ΓH

ℓ
h −∇ΓH,∇Γ(w − Ihw)]

+ [(1− ah)∂tH,w] + [(1−Bh)∇ΓH,∇Γw]

+ [(1− ah)∂t(H
ℓ
h −H), w] + [(1−Bh)∇Γ(H

ℓ
h −H),∇Γw]

= [ah∂t(H
ℓ
h −H), (w − Ihw)] + [Bh∇Γ(H

ℓ
h −H),∇Γ(w − Ihw)]

+ [(ah − 1)∂tH, (w − Ihw)] + [(Bh − 1)∇ΓH,∇Γ(w − Ihw)]

+ [(1− ah)∂tH,w] + [(1−Bh)∇ΓH,∇Γw]

+ [(1− ah)∂t(H
ℓ
h −H), w] + [(1−Bh)∇Γ(H

ℓ
h −H),∇Γw]

=:
11∑
i=4

Ii. (4.25)

By [32, Eq. (5.26)], we know

|I4|+ |I5| ≤ C
∑
∗,i

(h2|||Ft|||Qi
+ h|||F |||1,Qi

)∥w∥L2H2(Q′
i)
. (4.26)

Using the interpolation error estimate,

|I6|+ |I7| ≤ Chk+1
∑
∗,i

(h2|||Ht|||Qi
+ h|||H|||1,Qi

)∥w∥L2H2(Q′
i)
,

and from Lemma 3.1, Sobolev embedding and Hölder’s inequality, it holds

|I8|+ |I9| ≤ Chk+1
∑
∗,i

(d2i |||Ht|||Qi
+ di|||H|||1,Qi

)∥w∥L2H2(Q′
i)
,

|I10|+ |I11| ≤ Chk+1
∑
∗,i

(d2i |||Ft|||Qi
+ di|||F |||1,Qi

)∥w∥L2H2(Q′
i)
.

According to the estimates above and [32, Eqs. (5.31)–(5.32)] (with α = 1 therein), we get

|||F |||Qj
≤ Ch2d

−1−m/2
j + Chk+1

∑
∗,i

(d2i |||Ht|||Qi
+ di|||H|||1,Qi

)
(min(di, dj)

max(di, dj)

)
+ C

∑
∗,i

(h2|||Ft|||Qi
+ h|||F |||1,Qi

)
(min(di, dj)

max(di, dj)

)
≤ Ch2d

−1−m/2
j + Chk+1

∑
∗,i

d
1−m/2
i

(min(di, dj)

max(di, dj)

)
+ C

∑
∗,i

(h2|||Ft|||Qi
+ h|||F |||1,Qi

)
(min(di, dj)

max(di, dj)

)
. (4.27)

Note that (cf. [32, Eq. (5.33)] with α = 1 therein)∑
j

d
−1+m/2
j

(min(di, dj)

max(di, dj)

)
≤ Cd

−1−m/2
i . (4.28)
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By substituting (4.27)–(4.28) into (4.22) we obtain

K ≤ C + CC
3+m/2
∗ +

∑
j

Cd
−1+m/2
j |||F |||Qj

≤ C + CC
3+m/2
∗ + C

∑
j

(
h

dj

)2

(here we have used (4.27))

+ C
∑
j

d
−1+m/2
j hk+1

∑
∗,i

d
1−m/2
i

(min(di, dj)

max(di, dj)

)
+ C

∑
j

d
−1+m/2
j

∑
∗,i

(h2|||Ft|||Qi
+ h|||F |||1,Qi

)
(min(di, dj)

max(di, dj)

)
.

Consequently,

K ≤ C + CC
3+m/2
∗ + CC−2

∗ (here we exchange the order of summation)

+ C
∑
∗,i

hk+1d
1−m/2
i

∑
j

d
−1+m/2
j

(min(di, dj)

max(di, dj)

)
+ C

∑
∗,i

(h2|||Ft|||Qi
+ h|||F |||1,Qi

)
∑
j

d
−1+m/2
j

(min(di, dj)

max(di, dj)

)
≤ C + CC

3+m/2
∗ + CC−2

∗ + C
∑
∗,i

hk+1

+ C
∑
∗,i

(h2|||Ft|||Qi
+ h|||F |||1,Qi

)d
m
2
−1

i (here we use (4.28))

= C + CC
3+m/2
∗ + CC−2

∗ + C(logC∗ + log
1

h
)hk+1

+ C
∑
∗,i

d
1+m/2
i

(
|||Ft|||Qi

( h
di

)2
+ d−1

i |||F |||1,Qi

( h
di

))
≤ C + CC

3+m/2
∗ + CC−2

∗ + C(logC∗ + log
1

h
)hk+1 + Cd

1+m/2
∗

(
|||Ft|||Q∗

+ d−1
j |||F |||1,Q∗

)
+ C

∑
i

d
1+m/2
i

(
|||Ft|||Qi

+ d−1
j |||F |||1,Qi

)(
h

di

)
≤ C + CC

3+m/2
∗ + CC−2

∗ + C
(
logC∗ + log

1

h

)
hk+1 + CC−1

∗ K .

By choosing C∗ to be large enough (C∗ is determined now), the term CC−1
∗ K will be absorbed

by the left-hand side of the inequality above. In this case, the inequality above implies

K ≤ C. (4.29)

Substituting the last inequality into (4.10) yields

∥∂tF∥L1((0,1)×Γ) + ∥t∂ttF∥L1((0,1)×Γ) ≤ C. (4.30)

Part II. For t ∈ [1,+∞), we first define the finite element space with vanishing average:
S̊h(Γh) = {φh ∈ Sh(Γh) :

∫
Γh
φh = 0} and S̊h(Γ) = {φℓ

h ∈ Sh(Γ) :
∫
Γ φ

ℓ
h = 0} on which we

can define the inverse of the discrete Laplacian operators ∆−1
Γh,h

and ∆−1
Γ,h respectively.

Lemma 4.2 For any fh ∈ S̊h(Γh), we define favg,ℓh = f ℓh − |Γ|−1
∫
Γ f

ℓ
h ∈ S̊h(Γ). Then we

have the following properties

∥(∆−1
Γh,h

fh)
ℓ∥L2(Γ) ∼ ∥∆−1

Γ,hf
avg,ℓ
h ∥L2(Γ),

∥∆−1
Γ,hf

avg,ℓ
h ∥L2(Γ) ≤ C∥favg,ℓh ∥L1(Γ) ≤ 2C∥f ℓh∥L1(Γ).
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Proof. The first result is a consequence of consistency of Γ and Γh. We define uh = ∆−1
Γh,h

fh ∈
S̊h(Γh) and ũ

ℓ
h = ∆−1

Γ,hf
avg,ℓ
h ∈ S̊h(Γ) with

∫
Γh
uh =

∫
Γ ũ

ℓ
h = 0 and define

uavg,ℓh = uℓh − |Γ|−1

∫
Γ
uℓh ∈ S̊h(Γ).

Since
∫
Γ u

ℓ
h =

∫
Γh
(a−1

h )−ℓuh =
∫
Γh
((a−1

h )−ℓ − 1)uh and |(a−1
h )−ℓ − 1| ≤ Chk+1, it follows that

|uavg,ℓh − uℓh| ≤ Chk+1∥uh∥L1(Γh), (4.31)

and, similarly

|favg,ℓh − f ℓh| ≤ Chk+1∥fh∥L1(Γh). (4.32)

By definition,

(∇Γh
uh,∇Γh

vh)Γh
= (fh, vh)Γh

∀vh ∈ Sh,

(∇Γũ
ℓ
h,∇Γv

ℓ
h)Γ = (favg,ℓh , vℓh)Γ ∀vh ∈ Sh.

Applying change of variables and subtraction, we obtain

(∇Γ(u
ℓ
h − ũℓh),∇Γv

ℓ
h)Γ = −((Bh − 1)∇Γũ

ℓ
h,∇Γv

ℓ
h)Γ + ((ah − 1)f ℓh, v

ℓ
h)Γ + ((f ℓh − favg,ℓh ), vℓh)Γ.

Then we test with vℓh = uavg,ℓh − ũℓh ∈ S̊h(Γ) and use (4.31)–(4.32), Lemma 3.1, Poincaré
inequality and the inverse inequality on Γ to derive

∥∇Γ(u
avg,ℓ
h − ũℓh)∥L2(Γ) = ∥∇Γ(u

ℓ
h − ũℓh)∥L2(Γ)

≤ Chk+1∥∇Γũ
ℓ
h∥L2(Γ) + Chk+1∥f ℓh∥L2(Γ)

≤ Chk+1∥∇Γũ
ℓ
h∥L2(Γ) + Chk+1min{∥f ℓh∥L2(Γ), ∥f

avg,ℓ
h ∥L2(Γ)}

≤ Chk∥ũℓh∥L2(Γ) + Chk−1min{∥uℓh∥L2(Γ), ∥ũℓh∥L2(Γ)},
and from the triangle inequality and Poincaré inequality again

∥uℓh − ũℓh∥L2(Γ) ≤ ∥uavg,ℓh − uℓh∥L2(Γ) + C∥∇Γ(u
avg,ℓ
h − ũℓh)∥L2(Γ)

≤ Chk+1∥uℓh∥L1(Γ) + Chk∥ũℓh∥L2(Γ) + Chk−1min{∥uℓh∥L2(Γ), ∥ũℓh∥L2(Γ)}.

Therefore ∥ũℓh∥L2(Γ) ∼ ∥uℓh∥L2(Γ) , and this proves the first result.
The second result follows from [7, Lemma 4.3] where we use the elliptic regularity theory

and the W 1,q-stability of Ritz projection on the smooth surface Γ (see Section 3.4). □
Denote by et∆Γh,h the analytical semigroup generated by the linear operator ∆Γh,h : S̊h(Γh) →

S̊h(Γh). Then, by the previous lemma with fh replaced by δ̄avgh,x0
therein for any fixed x0 ∈ Γh,

if we define δ̄avgh,x0
= δ̄h,x0 − |Γh|−1

∫
Γh
δ̄h,x0 ∈ S̊h(Γh) then

∥∂tHh(t, ·, x0)∥L2(Γh) = ∥∂tet∆Γh,h δ̄avgh,x0
∥L2(Γh)

= t−2∥(t∆Γh,h)
2et∆Γh,h∆−1

Γh,h
δ̄avgh,x0

∥L2(Γh)

= t−2∥∆−1
Γh,h

δ̄avgh,x0
∥L2(Γh)

≤ Ct−2∥δ̄avgh,x0
∥L1(Γh)

≤ Ct−2.

From the norm equivalence on Γ and Γh, it is straightforward to show the constant of
Poincaré inequality (with vanishing average) on Γh is bounded from above by the constant of
Poincaré inequality (with vanishing average) on Γ. As a consequence, the smallest eigenvalue
of −∆Γh

: S̊h(Γh) → S̊h(Γh) has a lower bound, denoted by λ0, which is uniform w.r.t h and
only depends on Γ. Hence (the average vanishes due to the differential ∂t),

∥∂tHh(t, ·, x0)∥L2(Γh) ≤ Ce−λ0(t−1)∥∂tHh(1, ·, x0)∥L2(Γh) ≤ Ce−λ0(t−1).
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Similarly, we also have

∥∂ttHh(t, ·, x0)∥L2(Γh) + ∥∂tH(t, ·, x0)∥L2(Γh) + ∥∂ttH(t, ·, x0)∥L2(Γh) ≤ Ce−λ0(t−1) t ≥ 1.

The proof of Lemma 4.1 is complete.

5 Perturbation arguments for an evolving surface
(Proof of Theorem 2.3)

Following usual notational conventions, we will always identify a finite element function and
the corresponding vector collecting its nodal values. Such representation is unique if we have
specified the underlying domain. For example, given any t, s ∈ [0, T ], the two integrands of∫

Γh(t)
vh and

∫
Γh(s)

vh

have the same vector of nodal values, denoted by v, but are defined on different domains Γh(t)
and Γh(s). When the underlying domain is specified, v is automatically substantialized to a
finite element function vh on that domain. Since all of the quantitative computations in this
paper involve either integrals or norms, our notations for finite element functions will always
have a unique and clear meaning. For another example, ∥vh∥Γh(t) and ∥vh∥Γh(s) denote the
norms of a finite element function (a nodal vector) on the two different surfaces Γh(t) and
Γh(s), respectively. Correspondingly, the interpolation operator Ih should be interpreted as
the determination of the nodal vector which uniquely corresponds to a finite element function
after specifying the underlying surface.

Given any s, t ∈ [0, T ], we first pull back the scheme onto the piecewise polynomial
approximate surface Γh(s) and then carry out temporal perturbation argument on Γh(s).

For the fixed time s ∈ [0, T ], we define the scalar function a(t, x) and the R(m+1)×(m+1)-
valued function B(t, x) with x ∈ Γ(s) to be the smooth prefactor of the following change of
variables via the smooth flow parametrized on Γ(s), i.e. Fs(t) : Γ(s) → Γ(t),∫

Γ(t)
uv =

∫
Γ(s)

a(t, x)(u ◦ Fs) (v ◦ Fs),∫
Γ(t)

∇Γ(t)u · ∇Γ(t)v =

∫
Γ(s)

B(t, x)∇Γ(s)(u ◦ Fs) · ∇Γ(s)(v ◦ Fs).

Similarly, we define the piecewise smooth scalar function ā(t, x) and matrix-valued function
B̄(t, x) with x ∈ Γh(s) to be the prefactor of the following change of variables via the smooth
flow parametrized on Γh(s), i.e. Fs(t) ◦ q(s) : Γh(s) → Γ(t),∫

Γ(t)
uv =

∫
Γh(s)

ā(t, x)(u ◦ Fs ◦ q(s)) (v ◦ Fs ◦ q(s)),∫
Γ(t)

∇Γ(t)u · ∇Γ(t)v =

∫
Γh(s)

B̄(t, x)∇Γh(s)(u ◦ Fs ◦ q(s)) · ∇Γh(s)(v ◦ Fs ◦ q(s)),

and define the piecewise smooth āh(t, x) and B̄h(t, x) with x ∈ Γh(s) to be the prefactor of
the following change of variables via the discrete flow parametrized on Γh(s), i.e. Fh,s(t) :=
Ih(Fs(t) ◦ q(s)) : Γh(s) → Γh(t),∫

Γh(t)
uv =

∫
Γh(s)

āh(t, x)u ◦ Fh,s v ◦ Fh,s,∫
Γh(t)

∇Γh(t)u · ∇Γh(t)v =

∫
Γh(s)

B̄h(t, x)∇Γh(s)(u ◦ Fh,s) · ∇Γh(s)(v ◦ Fh,s).

Since Fh,s(t) = Ih(Fs(t) ◦ q(s)), by the interpolation error estimates, it follows that for any
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s, t ∈ [0, T ]

∥āh(t, ·)− ā(t, ·)∥L∞(Γh(s)) ≤ Chk+1,

∥B̄h(t, ·)− B̄(t, ·)∥L∞(Γh(s)) ≤ Chk+1,

and moreover from the geometric perturbation error estimates (cf. [13])

∥āℓ(t, ·)− a(t, ·)∥L∞(Γ(s)) ≤ Chk+1,

∥B̄l(t, ·)−B(t, ·)∥L∞(Γ(s)) ≤ Chk.

Hence B̃(t, x) := (B(t) ◦ q(s))(x) ≈ B̄h(t, x), x ∈ Γh(s), s, t ∈ [0, T ] is a good approximation
which is globally continuous and piecewise smooth. This global continuity will allow us to
take advantage of the definition of discrete Laplacian. With the definitions above we have,
for any vh ∈ Sh,

(∂tuh, vh)Γh(s) + (∇Γh(s)uh,∇Γh(s)vh)Γh(s)

= (āh(s, ·)∂tuh(t, ·), vh)Γh(s) + (B̄h(s, ·)∇Γh(s)uh(t, ·),∇Γh(s)vh)Γh(s)

= (āh(t, ·)fh(t, ·), vh)Γh(s) + ((āh(s, ·)− āh(t, ·))∂tuh(t, ·), vh)Γh(s)

+ ((B̄h(s, ·)− B̄h(t, ·))∇Γh(s)uh(t, ·),∇Γh(s)vh)Γh(s)

=: (āh(t, ·)fh(t, ·), vh)Γh(s) + ((āh(s, ·)− āh(t, ·))∂tuh(t, ·), vh)Γh(s)

+ (∆Bt

Γh(s),h
uh(t, ·), vh)Γh(s), (5.1)

where ∆Bt

Γh(s),h
uh ∈ Sh(Γh(s)) is defined as the Riesz representative of the following linear

functional on Sh(Γh(s)):

((B̄h(s)− B̄h(t))∇Γh(s)uh(t),∇Γh(s)·)Γh(s) : Sh(Γh(s)) → Sh(Γh(s)).

The estimate of ∆Bt

Γh(s),h
uh is given in the lemma below.

Lemma 5.1 For any q ∈ [1,∞], we have the estimate

∥∆Bt

Γh(s),h
uh(t)∥Lq(Γh(s)) ≤ C∥∇Γh(s)uh(t)∥Lq(Γh(s)) + C|s− t|∥∆Γh(s),huh(t)∥Lq(Γh(s)).

Proof. We apply change of variables, Leibniz rule, super-approximation estimate (cf. (P3)
in Section 3.2) and the inverse inequality to get

(∆Bt

Γh(s),h
uh, vh)Γh(s)

= (∇Γh(s)uh, (B̃(s)− B̃(t))∇Γh(s)vh)Γh(s)

+

(
∇Γh(s)uh,

(
(B̄h(s)− B̄h(t))− (B̃(s)− B̃(t))

)
∇Γh(s)vh

)
Γh(s)

= −(∇Γh(s)uh,∇Γh(s)(B̃(s)− B̃(t))vh)Γh(s) + (∇Γh(s)uh,∇Γh(s)Ih((B̃(s)− B̃(t))vh))Γh(s)

+ (∇Γh(s)uh,∇Γh(s)(1− Ih)((B̃(s)− B̃(t))vh))Γh(s)

+

(
∇Γh(s)uh,

(
(B̄h(s)− B̄h(t))− (B̃(s)− B̃(t))

)
∇Γh(s)vh

)
Γh(s)

≤ C∥∇Γh(s)uh∥Lp(Γh(s))∥vh∥Lq(Γh(s)) + C|s− t|∥∆Γh(s),huh∥Lp(Γh(s))∥vh∥Lq(Γh(s))

+ C(h+ hk)∥∇Γh(s)uh∥Lp(Γh(s))∥∇Γh(s)vh∥Lq(Γh(s))

≤ C
(
∥∇Γh(s)uh∥Lp(Γh(s)) + |s− t|∥∆Γh(s),huh∥Lp(Γh(s))

)
∥vh∥Lq(Γh(s)) ∀vh ∈ Sh,

where in the second to last inequality we have used the consistency estimate ∥B̄h(t) −
B̃(t)∥L∞(Γh(s)) ≤ Chk for any t ∈ [0, T ], and all of the constants are independent of s, t ∈ [0, T ]
(possibly depend on T ). Thus we conclude the lemma by duality. □
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Remark 5.1 The above proof additionally leads to, for any s ∈ [0, T ],

∥∆Γ(s),huh∥Lq(Γ(s)) ≤ C∥∇Γh(s)uh∥Lq(Γh(s)) + C∥∆Γh(s),huh∥Lq(Γh(s)),

and, for any s′ ∈ [0, T ],

∥∆Γh(s),huh∥Lq(Γh(s)) ≤ C∥∇Γh(s′),huh∥Lq(Γh(s′)) + C∥∆Γh(s′),huh∥Lq(Γh(s′)).

Lemma 5.2 The following discrete interpolation inequality holds on the polynomial surface
Γh(s), for all q ∈ (1,∞),

∥∇Γh(s)uh∥Lq(Γh(s)) ≤ Cϵ−1∥uh∥Lq(Γh(s)) + Cϵ∥∆Γh(s),huh∥Lq(Γh(s)).

Proof. We define function u to be the solution of the following elliptic equation on Γ(s)

−(∆Γ(s) − 1)u = −(∆Γ(s),h − 1)uℓh,

or equivalently Rhu = uℓh where Rh is the Ritz projection associated to the finite element
space Sh(Γ(s)) the elliptic operator −∆Γ(s) +1 (see Section 3.4). Then the elliptic regularity
theory says

∥u∥W 2,q(Γ(s)) ≤ C∥(∆Γ(s),h − 1)uℓh∥Lq(Γ(s)). (5.2)

Moreover from the inverse inequality

∥(∆Γ(s),h − 1)uℓh∥Lq(Γ(s)) = sup
vh∈Sh,∥vℓh∥Lq′ (Γ(s))

=1

(∇Γ(s)u
ℓ
h,∇Γ(s)v

ℓ
h)Γ(s) + (uℓh, v

ℓ
h)Γ(s)

≤ Ch−2∥uℓh∥Lq(Γ(s)). (5.3)

Define A = −∆Γ(s) + 1 and we get

(u, v)Γ(s) = (Au,A−1v)Γ(s) = ((−∆Γ(s),h + 1)uℓh, A
−1v)Γ(s)

= ((−∆Γ(s),h + 1)uℓh, RhA
−1v)Γ(s) + ((−∆Γ(s),h + 1)uℓh, (1−Rh)A

−1v)Γ(s)

= ((∇Γ(s),h + 1)uℓh, (∇Γ(s),h + 1)A−1v)Γ(s) + ((−∆Γ(s),h + 1)uℓh, (1−Rh)A
−1v)Γ(s)

= (uℓh, v)Γ + ((−∆Γ(s),h + 1)uℓh, (1−Rh)A
−1v)Γ(s),

and therefore

∥u∥Lq(Γ(s)) = sup
∥v∥

Lq′ (Γ(s))
=1
(u, v)Γ(s)

≤ ∥uℓh∥Lq(Γ(s)) + ∥(−∆Γ(s),h + 1)uℓh∥Lq(Γ(s)) sup
∥v∥

Lq′ (Γ(s))
=1

∥(1−Rh)A
−1v∥Lq′ (Γ(s))

≤ ∥uℓh∥Lq(Γ(s)) + Ch2∥(−∆Γ(s),h + 1)uℓh∥Lq(Γ(s)) sup
∥v∥

Lq′ (Γ(s))
=1

∥A−1v∥W 2,q′ (Γ(s))

≤ C∥uℓh∥Lq(Γ(s)), (5.4)

where in the last line we have used (5.3) and the elliptic regularity theory ∥A−1v∥W 2,q′ (Γ(s)) ≤
C∥v∥Lq′ (Γ(s)) = C.

Hence the norm equivalence, Remark 5.1, (5.2), (5.4) and the W 1,q-stability of Rh (see
Section 3.4) imply

∥∇Γ(s)u
ℓ
h∥Lq(Γ(s)) ≤ ∥∇Γ(s)(Rhu− Ihu)∥Lq(Γ(s)) + ∥∇Γ(s)(Ih − 1)u∥Lq(Γ(s)) + ∥∇Γ(s)u∥Lq(Γ(s))

≤ Ch∥u∥W 2,q(Γ(s)) + ∥u∥1/2Lq(Γ(s))∥u∥
1/2
W 2,q(Γ(s))

≤ Cϵ−1∥uh∥Lq(Γh(s)) + Cϵ∥∇Γh(s)uh∥Lq(Γh(s)) + Cϵ∥∆Γh(s),huh∥Lq(Γh(s)).

We complete the proof by absorbing ϵ∥∇Γh(s)uh∥Lq(Γh(s)) into the left-hand side. □
Applying the discrete maximal regularity on the stationary surface Γh(s) with p, q ∈ (1,∞)

(Theorem 2.19) to (5.1) and using the norm equivalence between Γh(s) and Γh(s), we get

∥∂tuh∥Lp(0,t;Lq(Γh(s))) + ∥∆Γh(s),huh∥Lp(0,t;Lq(Γh(s)))
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≤ C∥fh∥Lp(0,t;Lq(Γh(s))) + C∥(āh(s, ·)− āh(t, ·))∂tuh(t, ·)∥Lp(0,t;Lq(Γh(s)))

+ C∥∆Bt

Γh(s),h
uh(t, ·)∥Lp(0,t;Lq(Γh(s)))

≤ C∥fh∥Lp(0,t;Lq(Γh(s))) + C|s− t|∥∂tuh∥Lp(0,t;Lq(Γh(s)))

+ C∥∇Γh(s)uh∥Lp(0,t;Lq(Γh(s))) + C|s− t|∥∆Γh(s),huh∥Lp(0,t;Lq(Γh(s))),

where in the second inequality we have used Lemma 5.1. Then we apply the norm equivalence,
Remark 5.1 and Lemma 5.2 to the inequality above to change the domain from Γh(s) to Γh(0):

∥∂tuh∥Lp(0,t;Lq(Γh(0))) + ∥∆Γh(s),huh∥Lp(0,t;Lq(Γh(0)))

≤ C∥fh∥Lp(0,t;Lq(Γh(0))) + C∥uh∥Lp(0,t;Lq(Γh(0))) + C|s− t|∥∂tuh∥Lp(0,t;Lq(Γh(0)))

+ C|s− t|∥∆Γh(0),huh∥Lp(0,t;Lq(Γh(0))). (5.5)

We define (cf. the proof of Theorem 3.1 and (4.22) in [23])

Lp,q(t) := ∥∂tuh∥pLp(0,t;Lq(Γh(0)))
+ ∥∆Γh(0),huh∥

p
Lp(0,t;Lq(Γh(0)))

with

∂tLp,q(t) = ∥∂tuh(t, ·)∥pLq(Γh(0)))
+ ∥∆Γh(0),huh(t, ·)∥

p
Lq(Γh(0)))

.

Then (5.5) implies that

Lp,q(s) = ∥∂tuh∥pLp(0,s;Lq(Γh(0)))
+ ∥∆Γh(0),huh∥

p
Lq(0,s;L2(Γh(0)))

≤ C∥fh∥pLp(0,s;Lq(Γh(0)))
+ C∥uh∥pLp(0,s;Lq(Γh(0)))

+ C

∫ s

0
(s− t)p

(
∥∂tuh(t, ·)∥pLq(Γh(0))

+ ∥∆Γh(0),huh(t, ·)∥
p
Lq(Γh(0))

)
dt

≤ C∥fh∥pLp(0,s;Lq(Γh(0)))
+ CT p

∫ s

0
Lp,q(t)dt+ CpT p−1

∫ s

0
Lp,q(t)dt,

where we have used the following estimates in the last line (cf. [23, p. 10])

∥uh∥pLp(0,s;Lq(Γh(0)))
≤ T p

∫ s

0
Lp,q(t)dt,∫ s

0
(s− t)p

(
∥∂tuh(t, ·)∥pLq(Γh(0))

+ ∥∆Γh(0),huh(t, ·)∥
p
Lq(Γh(0))

)
dt ≤ pT p−1

∫ s

0
Lp,q(t)dt.

Thus, by Grönwall’s inequality, it holds that

Lp,q(s) ≤ C∥fh∥pLp(0,s;Lq(Γh(0)))
∀s ∈ [0, T ].

Therefore, the proof of Theorem 2.3 is complete.
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A Proof of Lemma 3.5

The following lemma is proved in [32, Lemma A.1], which can be easily extended to our
current scenario.

Lemma A.1 Suppose that, for any t ∈ (0, T ), ϕℓh(t) ∈ Sh(Γ) satisfies

(∂tϕ
ℓ
h, χ

ℓ
h)Γ + (∇Γϕ

ℓ
h,∇Γχ

ℓ
h)Γ = 0 ∀χℓ

h ∈ S0
h(Γ

′′
j ), t ∈ (0, d2j ),

(∂tϕ
ℓ
h, χ

ℓ
h)Γ + (∇Γϕ

ℓ
h,∇Γχ

ℓ
h)Γ = 0 ∀χℓ

h ∈ S0
h(D

′′
j ), t ∈ (d2j/4, 2d

2
j ).

Then we have∣∣∣∣∣∣∣∣∣∂tϕℓh∣∣∣∣∣∣∣∣∣
Qj

+ d−1
j

∣∣∣∣∣∣∣∣∣∇Γϕ
ℓ
h

∣∣∣∣∣∣∣∣∣
1,Qj

≤ (Ch1/2d
−1/2
j + Cϵ−1hd−1

j + ϵ)
(∣∣∣∣∣∣∣∣∣∂tϕℓh∣∣∣∣∣∣∣∣∣

Q′
j

+ d−1
j

∣∣∣∣∣∣∣∣∣∇Γϕ
ℓ
h

∣∣∣∣∣∣∣∣∣
1,Q′

j

)
+ Cϵ−1

(
d−2
j

∣∣∣∣∣∣∣∣∣ϕℓh∣∣∣∣∣∣∣∣∣
Q′

j

+ d−1
j ∥ϕℓh(0)∥Γ′

j
+ ∥∇Γϕ

ℓ
h(0)∥1,Γ′

j

)
,

where the constant C > 0 is independent of h, j and C∗.

It is easy the construct the space-time cut-off function ω̃ which is constant one on Q′
j and

zero outside Q′′
j . We then define ϕ̃ = ω̃ϕ and ϕ̃ℓh ∈ Sh(Γ) to be the finite element solution of

(∂tϕ̃− ah∂tϕ̃
ℓ
h, χ

ℓ
h)Γ + (∇Γϕ̃−Bh∇Γϕ̃

ℓ
h, χ

ℓ
h)Γ = 0 ∀χℓ

h ∈ Sh(Γ), (A.1)

with the initial condition ϕ̃ℓh(0) = ϕ̃(0) = 0. Obviously, ϕ̃ℓh is zero outside Q′′
j as well.

Then,

(ah∂t(Ihϕ̃− ϕ̃ℓh), χ
ℓ
h)Γ + (Bh∇Γ(Ihϕ̃− ϕ̃ℓh), χ

ℓ
h)Γ

= (ah∂t(Ihϕ̃− ϕ̃), χℓ
h)Γ + (Bh∇Γ(Ihϕ̃− ϕ̃), χℓ

h)Γ

+ ((ah − 1)∂tϕ̃, χ
ℓ
h)Γ + ((Bh − 1)∇Γϕ̃, χ

ℓ
h)Γ ∀χℓ

h ∈ Sh(Γ).

Testing the above equation with χℓ
h = Ihϕ̃ − ϕ̃ℓh ∈ Sh(Γ) and using Lemma 3.1, temporal

integration by parts and Hölder’s inequality (cf. [32, p. 37]), we get

∥Ihϕ̃− ϕ̃ℓh∥2L∞L2(Q) + ∥∇Γ(Ihϕ̃− ϕ̃ℓh)∥2L2L2(Q)

≤ ∥Ihϕ̃− ϕ̃ℓh∥L2L2(Q)∥∂t(Ihϕ̃− ϕ̃)∥L2L2(Q) + ∥∇Γ(Ihϕ̃− ϕ̃)∥L2L2(Q)∥∇Γ(Ihϕ̃− ϕ̃ℓh)∥L2L2(Q)

+ Chk+1∥ϕ̃∥L2L2(Q)∥∂t(Ihϕ̃− ϕ̃ℓh)∥L2L2(Q) + Chk+1∥∇Γϕ̃∥L2L2(Q)∥∇Γ(Ihϕ̃− ϕ̃ℓh)∥L2L2(Q),

(A.2)

and, similarly, testing the above equation with χℓ
h = ∂t(Ihϕ̃− ϕ̃ℓh) ∈ Sh(Γ) leads to

∥∂t(Ihϕ̃− ϕ̃ℓh)∥2L2L2(Q) + ∥∇Γ(Ihϕ̃− ϕ̃ℓh)∥2L∞L2(Q)

≤ ∥∂t(Ihϕ̃− ϕ̃)∥L2L2(Q)∥∂t(Ihϕ̃− ϕ̃ℓh)∥L2L2(Q) + ∥∇Γ∂t(Ihϕ̃− ϕ̃)∥L2L2(Q)∥∇Γ(Ihϕ̃− ϕ̃ℓh)∥L2L2(Q)

+ Chk+1∥∂tϕ̃∥L2L2(Q)∥∂t(Ihϕ̃− ϕ̃ℓh)∥L2L2(Q) + Chk+1∥∇Γ∂tϕ̃∥L2L2(Q)∥∇Γ(Ihϕ̃− ϕ̃ℓh)∥L2L2(Q).

(A.3)

Applying Young’s inequality to (A.2) and (A.3), we obtain

∥∂t(Ihϕ̃− ϕ̃ℓh)∥L2L2(Q) + ∥∇Γ(Ihϕ̃− ϕ̃ℓh)∥L∞L2(Q)

+ d−1
j ∥Ihϕ̃− ϕ̃ℓh∥L∞L2(Q) + d−1

j ∥∇Γ(Ihϕ̃− ϕ̃ℓh)∥L2L2(Q)

≤ C∥∂t(Ihϕ̃− ϕ̃)∥L2L2(Q) + Cdj∥∇Γ∂t(Ihϕ̃− ϕ̃)∥L2L2(Q)

+ Cd−2
j ∥Ihϕ̃− ϕ̃∥L2L2(Q) + Cd−1

j ∥∇Γ(Ihϕ̃− ϕ̃)∥L2L2(Q)

+ Chk+1∥∂tϕ̃∥L2L2(Q) + Cdjh
k+1∥∇Γ∂tϕ̃∥L2L2(Q)

+ Cd−2
j hk+1∥ϕ̃∥L2L2(Q) + Cd−1

j hk+1∥∇Γϕ̃∥L2L2(Q).
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Using the triangle inequality and Hölder’s inequality in the temporal direction,

∥∂t(ϕ̃− ϕ̃ℓh)∥L2L2(Q) + d−1
j ∥∇Γ(ϕ̃− ϕ̃ℓh)∥L2L2(Q)

+ d−2
j ∥ϕ̃− ϕ̃ℓh∥L2L2(Q) + d−1

j ∥∇Γ(ϕ̃− ϕ̃ℓh)∥L2L2(Q)

≤ C∥∂t(Ihϕ̃− ϕ̃)∥L2L2(Q) + Cdj∥∇Γ∂t(Ihϕ̃− ϕ̃)∥L2L2(Q)

+ Cd−2
j ∥Ihϕ̃− ϕ̃∥L2L2(Q) + Cd−1

j ∥∇Γ(Ihϕ̃− ϕ̃)∥L2L2(Q)

+ Chk+1∥∂tϕ̃∥L2L2(Q) + Cdjh
k+1∥∇Γ∂tϕ̃∥L2L2(Q)

+ Cd−2
j hk+1∥ϕ̃∥L2L2(Q) + Cd−1

j hk+1∥∇Γϕ̃∥L2L2(Q). (A.4)

By subtracting (3.38) from (A.1) and using suitably arranged cut-off function, we know
that for χℓ

h ∈ S0
h(Γ

′′
j ), t ∈ (0, d2j ) and χ

ℓ
h ∈ S0

h(D
′′
j ), t ∈ (d2j/4, 2d

2
j )

(ah∂t(ϕ̃
ℓ
h − ϕℓh), χ

ℓ
h)Γ + (Bh∇Γ(ϕ̃

ℓ
h − ϕℓh),∇Γχ

ℓ
h)Γ = 0.

Then we apply Lemma A.1 to ϕ̃h − ϕh and get∣∣∣∣∣∣∣∣∣∂t(ϕ̃ℓh − ϕℓh)
∣∣∣∣∣∣∣∣∣

Qj

+ d−1
j

∣∣∣∣∣∣∣∣∣ϕ̃ℓh − ϕℓh

∣∣∣∣∣∣∣∣∣
1,Qj

≤ (Ch1/2d
−1/2
j + Cϵ−1hd−1

j + ϵ)

(∣∣∣∣∣∣∣∣∣∂t(ϕ̃ℓh − ϕℓh)
∣∣∣∣∣∣∣∣∣

Q′
j

+ d−1
j

∣∣∣∣∣∣∣∣∣ϕ̃ℓh − ϕℓh

∣∣∣∣∣∣∣∣∣
1,Q′

j

)
+ Cϵ−1

(
d−2
j

∣∣∣∣∣∣∣∣∣ϕ̃ℓh − ϕℓh

∣∣∣∣∣∣∣∣∣
Q′

j

+ d−1
j ∥ϕℓh(0)∥Q′

j
+ ∥ϕℓh(0)∥1,Q′

j

)
≤ (Ch1/2d

−1/2
j + Cϵ−1hd−1

j + ϵ)

(∣∣∣∣∣∣∣∣∣∂t(ϕ̃− ϕℓh)
∣∣∣∣∣∣∣∣∣

Q′
j

+ d−1
j

∣∣∣∣∣∣∣∣∣ϕ̃− ϕℓh

∣∣∣∣∣∣∣∣∣
1,Q′

j

)
+ Cϵ−1

(
d−2
j

∣∣∣∣∣∣∣∣∣ϕ̃− ϕℓh

∣∣∣∣∣∣∣∣∣
Q′

j

+ d−1
j ∥ϕℓh(0)∥Q′

j
+ ∥ϕℓh(0)∥1,Q′

j

)
+ (Ch1/2d

−1/2
j + Cϵ−1hd−1

j + ϵ)

(∣∣∣∣∣∣∣∣∣∂t(ϕ̃ℓh − ϕ̃)
∣∣∣∣∣∣∣∣∣

Q′
j

+ d−1
j

∣∣∣∣∣∣∣∣∣ϕ̃ℓh − ϕ̃
∣∣∣∣∣∣∣∣∣

1,Q′
j

)
+ Cϵ−1d−2

j

∣∣∣∣∣∣∣∣∣ϕ̃ℓh − ϕ̃
∣∣∣∣∣∣∣∣∣

Q′
j

, (A.5)

where in the last inequality, we use the splitting ϕ̃− ϕℓh = (ϕ̃− ϕ̃ℓh) + (ϕ̃ℓh − ϕℓh).
Finally, we complete the proof of Lemma 3.5 by applying the triangle inequality to (A.4)

and (A.5) and using the fact that both ϕ̃ and ϕ̃ℓh are zero outside Q′′
j .
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