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Abstract

The continuous interior penalty finite element method (CIP-FEM) has shown promise in reducing
pollution errors when numerically simulating the Helmholtz equation with high wave numbers. How-
ever, its reliance on structured meshes largely limits its applicability. To address this limitation, this
paper presents a novel approach to CIP-FEM on general unstructured meshes. The interior penalty
parameters of the CIP-FEM are determined in an offline phase through minimizing the residual ob-
tained by substituting the plane waves into the CIP finite element equation. To enhance accuracy, a
quasi-Newton algorithm is employed to correct the penalty parameters and minimize errors of the CIP
finite element approximations to the plane waves. The calculated interior penalty parameters can be
saved, enabling the online solutions of CIP-FEM to be obtained by reusing these parameters for arbi-
trary sources during practical computations. Numerical experiments are presented to demonstrate the
significant reduction of pollution errors for both linear and higher-order CIP-FEMs on unstructured
meshes. Furthermore, the proposed algorithm successfully simulates high-frequency acoustic fields in
a three-dimensional vehicle cabin with greatly reduced errors within certain fixed computational time,
demonstrating its practical effectiveness in real-world scenarios.

Keywords: Helmholtz equation, high wave number, continuous interior penalty finite element
method, unstructured mesh, residual minimization, error minimization
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1. Introduction

This article is concerned with the development of new approach to the continuous interior penalty
finite element method (CIP-FEM) for the Helmholtz equation in a bounded domain Ω ⊂ Rd, d = 2, 3,
under the impedance boundary condition, i.e.,

−∆u− k2u = f in Ω,(1.1)

∂u

∂n
− iku = g on Γ = ∂Ω,(1.2)

where i =
√
−1 and k are the imaginary unit and the wave number, respectively, and n is the

unit outward normal vector on the boundary Γ. The impedance boundary condition (1.2) can be
replaced by other boundary conditions, such as the DtN boundary condition [1,2] and PML boundary
condition [3–5]. We are mainly interested in the numerical approximation of the Helmholtz equation
in the high-frequency case, i.e., k � 1, with given source functions f ∈ L2(Ω) and g ∈ L2(Γ).
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Fig. 1.1: Structured meshes

It is known that the classical FEM for the Helmholtz equation with high wave number suffers from
the pollution effect; see [2, 6–12]. For example, the error estimate of the linear FEM is

‖u− uFEM
h ‖H1(Ω) ≤ C1kh+ C2k

3h2,

provided that k3h2 is sufficiently small, where uFEM
h is the classical finite element solution and h is

the mesh size. The first term O(kh) in the error bound is of the same order as the interpolation
error, and the second term O(k3h2) dominates when k2h is large, which is called the pollution error.
The pollution error is not only a technical condition in the error estimates but also observed in the
numerical computations. In particular, the mesh condition h ≤ Ck−3/2 is required to control the
pollution error below O(1). This significantly increases the computational cost when k is large. In
practice, h ≤ Ck−1 is acceptable in the practical computation, which requires about 2π/C degrees
of freedom per wave-length and is consistent with the requirement to control the interpolation error.
Recently, a variety of FEMs have been developed to reduce the pollution error, including the hp-
FEM [2,10,11,13,14], the CIP-FEM [5,15–21], the discontinuous Galerkin method [22–30], the weak
Galerkin method [31–33], the Trefftz methods [34–40], and the multiscale mathods [41–44]. For other
approaches to reduce the pollution error for Helmholtz equation, such as the RF-bubble method,
GLS-FEM, GFEM, QSFEM, etc., we refer to [9, 10,45–50].

The CIP-FEM, which was first proposed by Douglas and Dupont [51] for elliptic and parabolic
problems in the 1970s, has recently shown great potential in significantly reducing the pollution errors
for the Helmholtz equation with high wave number; see [5, 16–18]. The CIP-FEM uses the same
approximation space as the FEM but modifies the bilinear form of the FEM by adding a continuous
interior penalty term (1.3) at mesh interfaces:

(1.3) J(u, v) =
∑
e∈EIh

p∑
j=1

γe,jh
2j−1
e

〈[
∂ju

∂nje

]
,

[
∂jv

∂nje

]〉
e

,

where E I
h is the set of all interior edges/faces of the mesh and γe,j denotes the penalty parameters to be

determined and may be tuned to greatly reduce the pollution error. The choice of penalty parameter
γ = (γe,1, . . . , γe,p)e∈EIh is crucial for the CIP-FEM. For some structured meshes, the theoretical

parameters can be obtained by the dispersion analysis technique [13]. For example, for equilateral
triangulations (see Figure 1.1(a)), the optimal parameters for linear and higher-order CIP-FEMs
were derived in [52] and [53], respectively. For isosceles right triangulations (see Figure 1.1(b)), the
parameters for linear finite element were derived in [54]. Furthermore, the parameters for arbitrary
order tensor-product elements on a Cartesian mesh (see Figure 1.1(c)) were derived in [21].

The key idea of obtaining the optimal penalty parameters by dispersion analysis is to reduce the
phase difference, which is represented by |k − kh|, where kh is the discrete wave number such that
eikhx·d solves the homogeneous CIP finite element equation, with d denoting the incident direction of
the plane wave. It was shown in [21] that the phase difference could be reduced from O(k(kh)

2p
) to

O(k(kh)
2p+2

) by choosing the following theoretical parameter in a tensor-product FEM on a Cartesian
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mesh:

(1.4) γ#
p ≡ −

1

(2p+ 1)

[
p!

(2p)!

]2

.

The derivation of such optimal penalty parameters requires complex analytical techniques with sym-
bolic operations, and relies heavily on structured meshes.

In practice, the computational domain may not be partitioned into a structured mesh in Figure
1.1. In this case, the optimal penalty parameters cannot be derived by means of the dispersion
analysis. The determination of penalty parameters which can effectively reduce the pollution errors
of CIP-FEMs on general unstructured meshes still remains open and challenging. In this article,
we introduce an innovative approach to numerically determine the penalty parameter in the CIP-
FEM. The CIP-FEM that incorporates this new numerical parameter, called an optimized CIP-FEM,
shows great ability in reducing the pollution errors on general unstructured meshes. The key idea
of determining the numerical penalty parameter is to minimize the error between the plane wave
upw = eikx·d and its CIP finite element approximation uCIP

pw (γ; k,d), i.e.,

(1.5) γnum := arg min
γ

∥∥eikx·d − uCIP
pw (γ; k,d)

∥∥ .
Here, ‖·‖ represents a norm applied to functions, such as the L2-norm or H1-norm. The more detailed
definitions are given in Sections 3 and 4. In the dispersion analysis for structured meshes, uCIP

pw is

simply the plane wave function eikhx·d with a discrete wave number kh. The numerical experiments
conducted in this study demonstrate the remarkable ability of the proposed optimized CIP-FEM to
effectively reduce pollution errors on general unstructured meshes, where deriving the theoretically
optimal penalty parameter through dispersion analysis is not feasible. Notably, the last set of numer-
ical examples involves simulating high-frequency acoustic fields within a vehicle cabin characterized
by a complex geometry that cannot be partitioned into structured meshes. The numerical results
obtained for this specific application highlight the immense potential of our proposed method.

We would like to emphasize that the computation of the optimization problem (1.5) takes place in
an offline phase, in other words, this step should be considered as a one-time preprocessing step. Once
the offline computations are finished, the resulting parameter γnum can then be reused in CIP-FEM to
obtain an approximated solution of the Helmholtz problem, which is called an online step. Online steps
are fast and efficient when the parameter is effective, enabling their repeated execution for Helmholtz
problems with different sources and at frequencies smaller than k. Generally, the cost of the offline
phase is more expensive than an online step, but fortunately, it only needs to be computed once. We
strike a delicate balance, accepting a slight reduction in offline efficiency in exchange for improved
online performance. This preference for online efficiency proves advantageous when a substantial
number of online computations are required.

The rest of this article is organized as follows. Section 2 provides the definition of CIP-FEM
for the Helmholtz equation. Section 3 introduces an optimized CIP-FEM approach utilizing the
residual-minimization technique, primarily aimed at reducing pollution errors in linear finite element
approximations. In Section 4, a quasi-Newton iteration algorithm is presented to enhance the perfor-
mance of the optimized CIP-FEM. The numerical experiments are detailed in Section 5, followed by
concluding remarks in Section 6.

Throughout the paper, the standard Sobolev spaces, norms, and inner products associated with
Helmholtz equations are adopted. For any domain G ⊂ Rd and boundary Σ ⊂ ∂G, we denote by (·, ·)G
and 〈·, ·〉Σ the inner products on the complex-valued Hilbert spaces L2(G) and L2(Σ), respectively.
In particular, we denote (·, ·) := (·, ·)Ω and 〈·, ·〉 := 〈·, ·〉Γ.
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2. The CIP-FEM in online step

Let Th be a partition (triangular, tetrahedral, quadrilateral, etc.) of the computational domain Ω.
We denote by hK = diam(K) the diameter of an element K ∈ Th, and denote by he = diam(e) the
diameter of any edge/face e on ∂K. The mesh size of the partition is denoted by h = maxK∈Th hK .
The finite element space of order p ≥ 1 is defined by

(2.1) Vh := {vh ∈ H1(Ω) : vh|K ∈ Pp(K) for all K ∈ Th},

where Pp(K) denotes the set of all polynomials on K with degree ≤ p. For any u, v ∈ H1(Ω), we
denote

(2.2)
a0(u, v) := (∇u,∇v)− k2(u, v)− ik 〈u, v〉 ,
a(u, v) := a0(u, v) + J(u, v),

where the penalty term J(u, v) is defined in (1.3). The CIP-FEM for the Helmholtz equation (1.1)–
(1.2) reads: Find uh ∈ Vh such that

(2.3) a(uh, vh) = (f, vh) + 〈g, vh〉 ∀ vh ∈ Vh.

Let {φi}Ni=1 be the basis of Vh, where N denotes the number of degrees of freedom. We define the
finite element matrix A0 and the penalty matrix J = J(γ) by

(2.4) (A0)il = a0(φl, φi) and Jil = J(φl, φi) for 1 ≤ i, l ≤ N,

and denote the CIP finite element matrix by

A(γ) = A0 + J(γ).

Moreover, we denote by F = F(f, g) the N -dimensional vector with the following components:

(2.5) Fi = (f, φi) + 〈g, φi〉 .

Therefore, the CIP-FEM (2.3) is equivalent to the following system of linear equations:

(2.6) A(γ)U = F,

with uh =
∑N
i=1 Uiφi.

In the case γ ≡ 0, the CIP-FEM reduces to FEM, which is equivalent to A0U = F.

3. Residual-minimization approach for the penalty parameters

In this section, we present an algorithm to determine the penalty parameters of CIP-FEM through
minimizing the residual in the CIP finite element equations for plane waves in the offline phase. The
algorithm is mainly designed for the piecewise linear CIP-FEM (in the case p = 1) for reducing
the pollution errors in the numerical solution of the Helmholtz equation. It can also be used as a
preparation stage for the optimization algorithm proposed in the next section.

For each e ∈ E I
h, the penalty parameter γ|e = (γe,1, · · · , γe,p)T is a p-dimensional vector-valued

function. Therefore, the penalty parameter is an element of the following discrete trace space:

(3.1) Wh := {wh : wh|e ∈ P0(e)p ∩ Rp for all e ∈ E I
h}.

Here we assume that the penalty parameter is real-valued since the theoretical optimal parameters are
always real-valued. We denote the plane wave function by upw = eikx·d with direction d. It is easy to
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see that upw is the solution of Helmholtz equation in (1.1)–(1.2) with the following source functions:

(3.2) fpw = 0 in Ω and gpw = ikeikx·d(d · n− 1) on ∂Ω.

Let Ih be the standard finite element interpolation operator and Upw be the vector generated by the
degrees of freedom of Ihupw, i.e.,

(3.3) Ihupw =

N∑
i=1

(Upw)iφi.

Inspired by the dispersion analysis, the error of Upw and the solution U to (2.6) should be as small
as possible. Therefore, a simple way to find a reasonable parameter is to minimize the residual

(3.4) r(d) = min
γ∈Wh

‖A(γ)Upw − Fpw‖K with Fpw = Fpw(d) := F(fpw, gpw),

where K is a real symmetric positive definite matrix and ‖ · ‖K is the vector norm defined by

‖v‖K :=
√
vHKv.

The matrix K is usually chosen as the identity matrix (refer to the l2 norm), the mass matrix (refer
to the L2 norm), or the sum of mass matrix and stiffness matrix (refer to the H1 norm). By the
definition of A(γ), it is easy to see that

(3.5) A(γ)Upw − Fpw = J(γ)Upw − b,

where b = b(d) := Fpw −A0Upw. From the definition of J in (1.3) and the definition of Ihupw in
(3.3) we know that J(γ)Upw is a vector assembled by term J(Ihupw, ·), i.e.,

(J(γ)Upw)l =

N∑
i=1

Jli(Upw)i =

N∑
i=1

J(φi, φl)(Upw)i = J(Ihupw, φl), l = 1, 2, · · · , N.

For a given function u, we define the sesquilinear form J̃(u) : Wh × Vh → C by

(3.6) J̃(u;wh, vh) =
∑
e∈EIh

p∑
j=1

(wh|e)jh2j−1
e

〈[
∂ju

∂nje

]
,

[
∂jvh

∂nje

]〉
e

∀wh ∈Wh, vh ∈ Vh,

where (wh|e)j denotes the j-th component of wh on edge e. Let {ψi}Mi=1 be the basis of Wh and denote

γ =

M∑
i=1

γiψi ∈Wh and γ = (γ1,γ2, · · · ,γM )T.

Furthermore, we denote the N ×M matrix J̃(u) by

(3.7) J̃(u)il = J̃(Ihu;ψl, φi) for 1 ≤ i ≤ N, 1 ≤ l ≤M.

Then we have

(3.8) J(γ)Upw = J̃(upw)γ.
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Therefore, in view of (3.5) and (3.8), the residual can be rewritten as

A(γ)Upw − Fpw = J̃(upw)γ − b,

and the optimization problem (3.4) becomes

(3.9) r(d) = min
γ∈Wh

∥∥J̃(upw)γ − b
∥∥
K
.

Note that both upw and b depend on the direction d.
We can choose the plane waves, with directions

(3.10) dj =

{
(cosϕj , sinϕj)

T for d = 2;

(cosϕj1 sin θj2 , sinϕj1 sin θj2 , cos θj2)T for d = 3,

where the angles ϕj ∈ [0, 2π) and θj ∈ [0, π) are generally chosen as a uniform partition of the entire
space, that is,

(3.11)

{
ϕj = (j − 1) 2π

J , j = 1, · · · , J, for d = 2,

ϕj1 = (j1 − 1) 2π
J1
, θj2 = (j2 − 1) πJ2 , j1 = 1, · · · , J1, j2 = 1, · · · , J2, for d = 3.

In numerical experiments of Section 5, we will uniformly sample the directions dj according to (3.11).
The numerical results show that such selection is sufficiently effective. We denote the plane wave with
direction dj by uj = eikx·dj and let Uj be the vector generated by the degrees of freedom of Ihuj ,
that is,

Ihuj = Ih(eikx·dj ) =

N∑
i=1

(Uj)iφi.

Moreover, we denote J̃j = J̃(uj) and bj = b(dj) = Fpw(dj) −A0Uj . Then the numerical penalty
parameter for the CIP-FEM can be obtained by solving the following minimization problem:

(3.12) γnum
1 = arg min

γ∈Wh

g(γ) := arg min
γ∈Wh

J∑
j=1

∥∥J̃jγ − bj
∥∥2

K
.

The object function in (3.12) is a quadratic function with respect to γ, the minimum of g is obtained
when the gradient ∇γg = 0, which yields a linear system of γ:

(3.13) Re

J∑
j=1

J̃H
j K
(
J̃jγ − bj

)
= 0,

where J̃H
j denotes the Hermitian transpose of J̃j .

The procedure for determining the numerical penalty parameter is presented in Algorithm 3.1.

Algorithm 3.1 The numerical penalty parameter defined in (3.12).

Given: The wave number k; the number of directions J or J = J1J2; a mesh (satisfying kh/p ≤ 1).

1: Assemble the stiffness matrix A0 by (2.4).

2: Determine directions dj by (3.10)–(3.11) for j = 1, 2, · · · , J , and denote uj = eikx·dj .

3: Compute bj = Fpw(dj)−A0Uj and assemble J̃j = J̃(uj) by (3.7).

4: Solve γ from the linear system (3.13) and set γnum
1 =

∑M
i=1 γiψi.

Output: γnum
1 .
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Remark 3.1. Some explanations for Algorithm 3.1 are as follows.

(1) The mesh condition kh/p ≤ 1 says that at least 2π degrees of freedom are set per wave length.
This is necessary to ensure the accuracy of linear finite element.

(2) The algorithm does not rely on structured mesh, the numerical experiments in Section 5 show that
Algorithm 3.1 is effective for not only the structured meshes but also the unstructured meshes.
However, the numerical penalty parameter γnum

1 is defined on all the interior edges/faces of the
mesh, which means that if the mesh changes, the penalty parameter should be recalculated.

(3) According to (3.4), γnum
1 actually minimizes the residual A(γ)Upw −F, so for structured meshes,

the numerical parameter γnum
1 is no less effective than the theoretical parameter which is obtained

by dispersion analysis.

(4) The number of unkowns in (3.13) is related to the number of interior edges/faces and the order
of elements, which brings large computational cost when h is small and p is large. Fortunately,
this offline phase only needs to be computed once for a given mesh. The resulting interior penalty
parameter can be stored and reused for various source functions and different wave numbers no
larger than k in online steps. This practice indeed enhances the performance when a substantial
number of online computations are required.

(5) For scenarios involving piecewise or variable medium k(x), such as two-layer medium problems,
the proposed algorithms in this paper remain viable once the penalty parameters are computed
using the maximum wave number k = maxx∈Ω k(x) during the offline stage.

(6) It is possible to choose the penalty parameters with negative imaginary parts so that the CIP-FEM
is absolutely stable [18,20].

4. Error-minimization approach based on optimization

In this section, we introduce an error-minimization approach with a quasi-Newton iteration al-
gorithmin offline phase to enhance the performance of the optimized CIP-FEM for both linear and
higher-order finite elements in online steps. The numerical tests indicate that applying the residual-
minimization approach, as discussed in Section 3, to higher-order CIP-FEMs does not lead to a fur-
ther reduction in pollution errors compared to the linear CIP-FEM. The proposed error-minimization
approach and quasi-Newton iteration algorithm address this limitation, aiming to improve the perfor-
mance of both linear and higher-order CIP-FEMs and effectively reduce pollution errors.

4.1. The error-minimization approach

In the previous section, we define numerical penalty parameter by (3.12) through minimizing the
residual of CIP finite element equation. Algorithm 3.1 works well for p = 1, however, the algorithm
may not work well for p > 1. Indeed, although we minimize the residual

A(γ)Upw − Fpw,

the difference between the plane wave Upw and the CIP finite element solution A−1Fpw may still be
large. This inspires us to define the objective function by

(4.1) gj(γ) :=
∥∥Uj −A(γ)−1Fj

∥∥2

K
,

where Fj = Fpw(dj). Then, we can define the numerical penalty parameter for CIP-FEM by mini-
mizing gj(γ), namely,

(4.2) γnum
2 := arg min

γ∈Wh

g(γ) = arg min
γ∈Wh

J∑
j=1

gj(γ).
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Note that gj(γ) is no more a quadratic function with respect to γ. In order to minimize such a
nonlinear function, some iterative methods are considered. In the next subsection, we will introduce
the quasi-Newton method to solve (4.2). To do this, we first give the gradient of gj(γ) in the following
lemma.

Lemma 4.1. There holds

(4.3) ∇γgj(γ) = 2 Re J̃(wj)
HA(γ)−HKrj ,

where wj =
∑N
i=1(wj)iφi with wj = A(γ)−1Fj, and rj = Uj −wj.

Proof. By taking the derivative with respect to i-th component, we can obtain

∂gj
∂ni

(γ) = lim
ε→0

g(γ + εni)− g(γ)

ε

= FH
j

(
A−HK

∂A−1

∂ni
+
(∂A−1

∂ni

)H

KA−1

)
Fj −

(
FH
j

(∂A−1

∂ni

)H

KUj + UH
j K

∂A−1

∂ni
Fj

)
= 2 Re (A−1Fj −Uj)

HK
∂A−1

∂ni
Fj .

Noting that
∂A−1

∂ni
= −A−1 ∂A

∂ni
A−1,

and A(γ)v = (A0 + J(γ))v = A0v + J̃(v)γ by (3.8), we have

∂A

∂ni
(γ)v = J̃(v)ni for any v =

N∑
i=1

viφi.

Therefore, we arrive at

∂A−1

∂ni
Fj = −A−1 ∂A

∂ni
(γ)wj = −A−1J̃(wj)ni,

and
∂gj
∂ni

(γ) = 2 Re rH
j KA(γ)−1J̃(wj)ni.

This completes the proof of this lemma.

4.2. The quasi-Newton algorithm

The quasi-Newton method [55, §6] is one of the most effective iterative method for solving nonlinear
problems. It requires only the gradient of the objective function to be supplied at each iteration. The
iteration can be represented as

(4.4) γn+1 = γn + αnpn for n ≥ 0,

where αn and pn are step length and search direction, respectively. In general, the search direction
has the form

pn = −Hn∇γg(γn),

where Hn is an approximation of the inverse of Hessian matrix ∇2
γg(γn). The matrix Hn is obtained

by the BFGS method [56], which is one of the most popular quasi-Newton algorithm. Moreover, since
Hn is dense and large, it is too expensive to identify this matrix. We adopt the limited-memory BFGS
(L-BFGS) method (see, e.g., [57] and [55, §7.2]) to reduce the storage and calculation. In addition,
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the step length αn can be obtained by inexact line search [55, §3] for the global minimizer of the
objective function g(γ):

(4.5) αn = arg min
α∈R

g(γn + αpn).

The quasi-Newton algorithm to determine the numerical penalty parameter for the optimized
CIP-FEM is presented in Algorithm 4.1.

Algorithm 4.1 The numerical penalty parameter defined in (4.2).

Given: The wave number k; the directions dj as (3.10)–(3.11); a mesh (satisfying kh/p ≤ 1); the

tolerances ε1 and ε2 and the maximum number of iterations mit; the initial value γ0; set n← 0.

1: repeat

2: Compute ∇gn = ∇γg(γn) by (4.3) and denote gn = g(γn).

3: Compute the search direction pn = −Hn∇gn by L-BFGS method.

4: Compute step length αn by line search (4.5).

5: γn+1 ← γn + αnpn.

6: If ‖∇gn‖ < ε1 or |gn − gn−1| < ε2 (n ≥ 1), stop; otherwise, n← n+ 1.

7: until n = mit.

Output: γnum
2 = γn.

Remark 4.2. The choice of the initial value γ0 is flexible. One reasonable choice is to use the nu-
merical parameter γnum

1 given by Algorithm 3.1. Another simpler choice is let γ0 ≡ (C1, C2, · · · , Cp)T

be a constant vector for all e ∈ E I
h. Such a choice is often used for meshes that are approximately

structured.

5. Numerical experiments

In this section, we present numerical tests to illustrate the performance of the proposed algorithms
in reducing pollution errors on both structured and unstructured meshes. To showcase the practical
applicability of our approach, we specifically examine the simulation of high-frequency acoustic fields
within a vehicle cabin, characterized by its complex geometry that cannot be partitioned into struc-
tured meshes. The numerical results obtained from this car cabin example highlight the potential
and effectiveness of our proposed methods in accurately modeling and predicting acoustic behavior in
real-world scenarios. In the following numerical tests, we use the L2-norm and H1-norm to determine
the numerical parameters γnum given by Algorithm 3.1 and Algorithm 4.1, respectively.

5.1. Performance evaluation of Algorithm 3.1

In this subsection, we consider the linear CIP-FEM with the numerical penalty parameters γnum =
γnum

1 given by Algorithm 3.1 and compare it with the linear FEM and the linear CIP-FEM with the
theoretical parameters as

(5.1) γ# =

{
−
√

3
24 −

√
3

1728 (kh)2 for equilateral triangulation;

−0.08592096810583184 for Cartesian mesh,

which are derived in [52] and [21], respectively. The directions dj in Algorithm 3.1 are chosen according
to (3.10)–(3.11) with J = 12 for d = 2 and J1 = 12, J2 = 6 for d = 3.

Example 5.1. In this example, we consider the exact solution given by:

(5.2) u = cos(k|x|) for x ∈ Ω,
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and let f = −∆u − k2u in Ω and g = ∂nu − iku on ∂Ω represent the corresponding source and
impedance boundary values, respectively. We investigate two types of meshes: triangular meshes and
quadrilateral meshes, including both structured and unstructured configurations. These meshes are
represented as (a)-(d) in Figure 5.1.

Setting kmax = 500, we refine the four sample meshes in Figure 5.1 to have sizes ~ ≈ 1/kmax, where
~ denotes the maximum length of all edges in the mesh. By utilizing Algorithm 3.1 with k = kmax,
we calculate and save the four numerical penalty parameters γnum for the refined meshes.

Figure 5.1 displays the relative H1-errors of the finite element interpolation, the FEM (γ = 0), the
CIP-FEM with the theoretical parameter γ = γ#, and the CIP-FEM with the numerical parameter
γ = γnum, plotted against the increasing wave number k up to kmax. From Figure 5.1, the following
observations can be made:

(i) As the wave number increases, the errors of the standard FEM grow super-linearly. After the
wave number reaches a certain threshold, typically less than 100, the error plots of the FEM no
longer align with those of the corresponding finite element interpolation. This behavior clearly
demonstrates the impact of pollution errors associated with the standard FEM. In contrast, both
the theoretical and numerical CIP-FEM parameters can significantly reduce pollution errors.

(ii) For the structured meshes (a) and (c), the CIP-FEM with the numerical parameter γnum performs
as well as the one with the theoretical parameter γ#, and the pollution errors remain negligible
for k up to kmax. Moreover, the mean values of the numerical parameters γnum are approximately
−0.0729388 for equilateral triangulation and −0.0852447 for the Cartesian mesh, which are close
to the theoretically optimal parameters in (5.1).

(iii) For the unstructured meshes (b) and (d), the CIP-FEM with the numerical parameter γnum

outperforms the one with the theoretical parameter γ# for sufficiently large k. The pollution
errors of the CIP-FEM with γ = γnum are nearly imperceptible for k up to kmax, while the
pollution errors of the CIP-FEM with γ = γ# become noticeable when k exceeds a value greater
than 200.

Example 5.2. In this example, we consider the Helmholtz scattering problem involving a bounded,
sound soft obstacle occupying a nonconvex domain D ⊂ R2:

∆u+ k2u = 0 in R2 \D,
u = 0 on ∂D

with the Sommerfeld radiation condition

∂(u− uinc)

∂r
− ik(u− uinc) = o(r−1/2) as r = |x| → ∞,

which will be approximated using the perfectly matched layer (PML) technique (see, e.g., [5]). Let
the incident wave be uinc = 20 exp(−ikx1), which is a plane wave originating from the east of the
scatterer. The wave number is k = 500 and the mesh size is about ~ = 1/500. In Figure 5.2 we plot
the magnitude of the finite element solution and the CIP-finite element solutions for the total field u.
The reference solution is obtained by solving the equation with higher-order FEM (p = 3). The figure
clearly illustrates that the CIP-finite element solution with the numerical parameter provides a much
closer approximation to the reference solution compared to the other methods employed.

Example 5.3. In this example, we examine a three-dimensional problem with an exact solution
identical to that of Example 5.1. The structured and unstructured tetrahedral meshes used in this
example are displayed on the left side of Figure 5.3. Currently, the theoretical optimal parameter
for this case remains unknown. The meshes labeled (a) and (b) in Figure 5.3 are refined to sizes of
approximately ~ = 0.0216506 and ~ = 0.0340198, respectively.
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Fig. 5.1: Comparisons of the relative H1-errors of the finite element interpolation, the FEM (γ = 0), and the CIP-FEMs
with theoretical and numerical penalty parameters on the triangular meshes and quadrilateral meshes.
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(A) FEM (B) CIP-FEM (γ = γ#)

(C) CIP-FEM (γ = γnum) (D) Reference solution

Fig. 5.2: The total field of the scattering problem.

For these refined meshes, we determine two numerical parameters γ = γnum using Algorithm
3.1 with k = 60. The right side of Figure 5.3 presents the relative H1-errors of the finite element
interpolation, the FEM, and the CIP-FEM with the numerical parameters. It is evident that the
pollution errors are significantly diminished by employing the CIP-FEM with the numerical penalty
parameter.

All the numerical results in this subsection demonstrate the effectiveness of the proposed algorithm,
namely, Algorithm 3.1, for both structured and unstructured meshes. By employing the linear CIP-
FEM with the numerical penalty parameters obtained from Algorithm 3.1, the pollution errors can be
significantly reduced. In addition, it can be observed that penalty parameters computed with wave
number k = kmax prove effective for all k ≤ kmax. This is an evidence of the statements in Remark 3.1
(4) and (5).

5.2. Performance evaluation of Algorithm 4.1

Next, we consider the higher-order CIP-FEM with the numerical penalty parameters given by
Algorithm 4.1.

Example 5.4. In this example, we investigate the performance of high-order CIP-FEMs on equilateral
triangulations (Figure 5.1(a)), refined to satisfy kmax~/p = 1 for p = 2, 3. We set kmax = 600 and
consider the exact solution defined as (5.2). The numerical parameters γ0 = γnum

1 and γnum = γnum
2
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Fig. 5.3: Comparisons of the relative H1-errors of the interpolation, the FEM (γ = 0), and the CIP-FEM (γ = γnum).
Upper: structured mesh. Lower: unstructured mesh.
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Fig. 5.4: Comparisons of the relative H1-errors of FEM and CIP-FEMs with numerical penalty parameters γnum and
γ0, and with theoretical penalty parameters γ# on the equilateral triangulations satisfying kmax~/p = 1. Left: p = 2.
Right: p = 3.

are obtained using Algorithm 3.1 and Algorithm 4.1 (with initial value γ0), respectively. Figure 5.4
depicts the relative H1-errors for the FEM (γ = 0), the CIP-FEM with penalty parameter γ = γ0, and
the CIP-FEM with penalty parameter γ = γnum. The results demonstrate that the CIP-FEM with
numerical parameters γnum outperforms the standard FEM and the CIP-FEM with initial numerical
parameters γ0, and is comparable to the CIP-FEM with theoretical parameters γ# (derived in [53]
for p = 2, 3).

Example 5.5. In this example, we focus on the second-order CIP-FEM (p = 2) with both theoretical
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and numerical penalty parameters on an unstructured mesh, as shown in the left of Figure 5.5. For
this case, we utilize the theoretical penalty parameter derived for the equilateral triangulation in [53].
The numerical penalty parameter is obtained using Algorithm 4.1. The exact solution is defined as
(5.2), and the mesh is refined to have a maximum length ~ ≈ 5.87 × 10−3. The relative H1-errors
presented in the right of Figure 5.5 clearly demonstrate that the CIP-FEM with the numerical penalty
parameter is more effective in reducing errors compared to both the FEM and the CIP-FEM with the
theoretical penalty parameter.
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Fig. 5.5: Comparisons of the relative H1-errors of the interpolation, the FEM, and the CIP-FEMs with theoretical and
numerical penalty parameters on a unstructured mesh.

5.3. Numerical simulation of high-frequency acoustic fields in a vehicle cabin

In this subsection, we conduct a numerical simulation of high-frequency acoustic fields inside a
vehicle cabin using a model 1 adapted from the COMSOL software [58]. The geometry of the cabin
and the corresponding mesh used in the simulation are shown in Figure 5.6.

Two different meshes are considered: the first one, denoted as mesh1, consists of 226,570 cells
and 44,614 vertices, with a mesh size of approximately ~ ≈ 0.101 (see Figure 5.6(B)). The second
mesh, referred to as mesh2, comprises 1,465,699 cells and 261,886 vertices, with a mesh size of ap-
proximately ~ ≈ 0.058. The numerical penalty parameters utilized in this simulation are determined
using Algorithm 4.1.

Example 5.6. In this example, we solve the Helmholtz equation given by

(5.3)


−1

ρ
∆u− k2

ρ
u = f in Ω,

1

ρ

∂u

∂n
+
iω

Z
u = g on ∂Ω,

where k = ω/c = 2πν/c represents the wave number, ν is the frequency, c is the speed of sound, ρ is
the air density, and Z is the acoustic impedance.

For this example, we consider a manufactured solution in the form of u = sin(k|x|). The values
of f and g are calculated by substituting the manufactured solution u into equation (5.3). We set
c = 343, ρ = 1.2, and Z = c for this particular test case. In this example, we use linear elements
(p = 1) on mesh2 and quadratic elements (p = 2) on mesh1, so that the ratios k~/p are similar in both
cases.

1Model file: www.comsol.com/model/car-cabin-acoustics-8212-frequency-domain-analysis-15013
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(A) Geomerty (B) Mesh

Fig. 5.6: The geometry and mesh of the cabin.
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Fig. 5.7: H1-errors for Example 5.6 with exact solution.

Following the previous experiments, we present the H1-errors of the FEM, the CIP-FEM, and the
finite element interpolation in Figure 5.7. When considering frequencies around 3 kHz for p = 1 on
mesh2 and p = 2 on mesh1, the errors obtained by the CIP-FEM are comparable to the interpolation
error. However, the relative errors of the linear FEM and quadratic FEM exceed 100% and 60%,
respectively, significantly surpassing the interpolation errors.

To test the efficiency of the proposed method, we plot the errors against computational time for
both FEM and CIP-FEM using different meshes. The results for k = 40 and k = 60 are shown in
Figure 5.8, and the data points are labeled with the corresponding number of degrees of freedom
(dofs), where 1M = 1× 106. The proposed CIP-FEM demonstrates a reduced computational time to
achieve the same level of error compared to FEM.

From the numerical results we see that the proposed CIP-FEM is more effective than the FEM
for the three-dimensional simulation in a real vehicle cabin with unstructured meshes, while other
CIP-FEMs in the literature typically require structured meshes and therefore cannot be used in this
scenario.

Example 5.7. Next, we proceed with the simulation of the sound field inside the car cabin on mesh1

using the boundary conditions defined in the COMSOL model. In this simulation, we position the
sound source at the left midwoofer location.

Figure 5.9 illustrates the sound pressure level (SPL) at a point with coordinates [2.5,−0.5, 1.2]
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Fig. 5.8: The relative errors against the computational time for FEM and CIP-FEM. The points are labeled with the
corresponding number of degrees of freedom, where 1M = 1 × 106.

(near the driver’s head) for different methods and increasing frequencies. The finite element solution
with p = 3 serves as the reference solution, depicted by the black dotted lines in Figure 5.9. Notably,
even at frequencies around 1500 Hz, the SPL values obtained by CIP-FEM with p = 1 remain close to
those of the reference solution. In contrast, the solution of linear FEM can only accurately approximate
the reference solution with respect to the SPL values up to frequencies of 700 Hz. Moreover, for p = 2,
the solution of CIP-FEM exhibits closer proximity to the reference solution compared to that of FEM.
Importantly, the CIP-FEM precisely captures the peaks and troughs of the SPL with greater accuracy.

In the last simulation, we placed a sound source at the right tweeter in the front-right of the
car on mesh1. Figure 5.10 shows the real part of the solutions obtained using quadratic FEM and
CIP-FEM at a frequency of 2.5 kHz on the slice depicted in Figure 5.10(A). To provide a more
informative comparison, we overlaid contour lines of the reference solution (Figure 5.10(D)) onto
Figures 5.10(B) and (C). As shown in Figure 5.10, the solution obtained by CIP-FEM accurately
captures the peaks and troughs of the true solution, while the solution of FEM exhibits a noticeable
phase shift. Furthermore, we plotted the real part of the solutions along a line within the slice,
which is indicated by the black line in Figure 5.10(A). In Figure 5.11, we denote the distance between
the current point and the start point of the line by s. It can be observed that the phase difference
between the solution of CIP-FEM and the reference solution is much smaller compared to the phase
difference between the solution of FEM and the reference solution. This observation further confirms
the effectiveness of the proposed optimized CIP-FEM in accurately simulating high-frequency acoustic
fields.

6. Conclusion

We have presented an optimized CIP-FEM approach for effectively reducing pollution errors when
solving the Helmholtz equation with high wave numbers. Our method involves determining the interior
penalty parameters by minimizing the residual of the CIP finite element equations for plane waves in
the offline phase. To further enhance the performance of these penalty parameters, we have introduced
an error-minimization approach with a quasi-Newton algorithm for their correction. In practical
computations, the resulting interior penalty parameters can be stored and reused for different source
functions in online steps. Numerical experiments demonstrate the significant reduction in pollution
errors for the proposed algorithms, benefiting both linear and higher-order CIP-FEMs implemented
on both structured and unstructured meshes. Notably, our algorithms prove particularly valuable for
finite element discretization on general unstructured meshes, where it is not possible to derive the
theoretically interior penalty parameters for pollution error reduction through dispersion analysis.
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Fig. 5.9: Sound pressure level (SPL) at a point with coordinates [2.5,−0.5, 1.2].

Overall, our optimized CIP-FEM approach offers a robust and efficient solution for accurately
solving the Helmholtz equation with high wave numbers on general unstructured meshes, providing
reliable results across various mesh configurations for real-world applications with complex geometry.
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