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Abstract

This paper introduces a novel formulation and an associated space-time finite element method
for simulating solutions to the nonlinear Schrödinger equation. A major advantage of the proposed
algorithm is its intrinsic ability to preserve the conservation of mass, energy, and momentum at the
discrete level. This is proved for the numerical solutions determined by the fully discrete implicit
scheme. An effective iterative scheme is proposed for solving the nonlinear system based on an
equivalent formulation which suggests using Newton’s iteration for the solution and no iteration for
the Lagrange multipliers in the nonlinear system. Extensive numerical examples are provided to
demonstrate the high-order convergence and effectiveness of the proposed algorithm in conserving
mass, energy, and momentum in the simulation of one-dimensional Ma-solitons and bi-solitons, as
well as of two-dimensional solitons governed by the nonlinear Schrödinger equation. The numerical
results show that the mass-, energy- and momentum-conserving method designed in this paper also
significantly reduces the errors of the numerical solutions in long-time simulations compared with
methods which do not conserve these quantities.
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1. Introduction

This paper concerns the numerical solution of the nonlinear Schrödinger (NLS) equation, subject
to periodic boundary conditions, in a rectangular domain Ω ⊂ Rd for some d ⩾ 1. The equation can
be expressed as

i∂tu+∆u+ f(|u|2)u = 0 in Ω × (0, T ],(1.1a)
u|t=0 = u0 in Ω,(1.1b)

where u is an unknown complex-valued wave function, i =
√
−1 denotes the imaginary unit, u0 denotes

the given initial value of the complex-valued wave function, and f : R+ → R is a real-valued function,
the derivative of a potential function F : R+ → R. Typical examples of the nonlinearity function f
take the form f(|u|2) = µ|u|q−1, where µ ∈ R and q > 1. The case where µ > 0 is often referred to as
the self-focusing model, in which the solution exhibits a finite-time blow-up when the initial energy is
negative. Conversely, µ < 0 is referred to as the self-defocusing model.
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The NLS equation (1.1a) is one of the fundamental equations in mathematical physics [14, 48,
56, 59, 66]. It is capable of describing the nonlinear dispersive waves in the modeling of the Bose–
Einstein condensate [6, 20, 42], the nonlinear optics [16, 38], the deep-water modulation [49, 65], and
other applications. Accordingly, the numerical computation of the NLS equation has been extensively
studied with various methods, including finite difference methods [1,7–10,19,23,63], splitting methods
[24, 45, 60], spectral methods [25], discontinuous Galerkin methods [27, 44, 64], and finite element
methods (FEMs) [15,33–36,43,61,62,68].

It is widely recognized that solutions to the NLS equation possess conserved quantities such as
mass, energy, momentum, etc., where the invariance of the momentum requires periodic boundary
conditions. In other words, for all t ∈ (0, T ], the following relations hold:

(1.2) M [u(t)] = M [u0], E[u(t)] = E[u0] and P [u(t)] = P [u0],

where

M [u] =
1

2

∫
Ω

|u|2 dx,(1.3)

E[u] =
1

2

∫
Ω

(
|∇u|2 − F (|u|2)

)
dx,(1.4)

P [u(t)] =
1

2
Im

∫
Ω

ū∇u dx,(1.5)

denote the mass, energy, and momentum of the solution, respectively. Correspondingly, the de-
velopment of numerical methods that achieve high-order accuracy and retain the above-mentioned
conservation properties at the discrete level simultaneously is important for long-time numerical sim-
ulation of wave propagation governed by the NLS equation. Let us mention that the periodicity is
crucial for the invariance of the momentum.

There has been extensive research on mass- and energy-conservative methods for the nonlinear
Schrödinger (NLS) equation. Typical mass-conserving methods include the implicit midpoint method
[30] and symplectic Rung–Kutta methods [17, 31, 34]. Additionally, energy conservation is commonly
achieved using discrete gradient methods [26,47], averaged vector field methods [50], and continuous-
stage Runge–Kutta methods [29].

The modified Crank–Nicolson method [2, 19, 32, 54, 62] was one of the earliest and most widely
adopted methods for preserving both mass and energy. To avoid solving nonlinear systems, a linearly
implicit mass- and energy-conserving leap-frog scheme for NLS equations with cubic nonlinearity was
developed in [21]. This led to the design of linearly implicit mass- and energy-conserving methods,
referred to as relaxation schemes [10,11], which exhibit second-order temporal convergence. The scalar
auxiliary variable (SAV) technique was originally introduced to construct energy-decaying methods
for dissipative equations [57, 58], and was employed to develop schemes that conserve mass and SAV
energy for Schrödinger-type equations in [3, 4, 22,28].

Bai et al. [5] developed high-order mass- and energy-conserving methods based on Gauss collocation
in time and finite element discretization in space by correcting the numerical solution at every time
level to conserve both mass and energy. Numerical results show that the solutions given by this
prediction-correction procedure achieve higher accuracy in long-time simulations.

Ketcheson [37] initially proposed a relaxation-type Runge–Kutta method to preserve quadratic
energy, leading to the construction of numerous relaxation-type methods in [39–41, 51–53], typically
preserving one invariant. Recently, new relaxation methods were developed in [13] by combining the
relaxation concept with embedded Runge–Kutta methods. Biswas and Ketcheson [12] formulated an
essentially explicit discretization for the NLS equation, conserving one or two invariants by integrat-
ing implicit-explicit higher-order Runge–Kutta time integrators with the relaxation technique and
adaptive step size control.

Despite these advancements, designing high-order numerical methods that conserve mass, energy,
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and momentum, or even more invariants of the NLS equation remains challenging and interesting.
This paper aims to fill this gap by presenting a family of high-order methods for the NLS equation that
conserve mass, energy, and momentum, based on novel formulations of the NLS equation leveraging
Lagrange multipliers and associated constraint equations, as well as space-time FEMs that preserve
the structure of the novel continuous formulation. The framework developed in this paper may also
be further extended to conserve additional invariants of the NLS equation. The numerical results
in this paper show that the mass-, energy- and momentum-conserving methods designed here also
significantly reduce the errors of the numerical solutions in long-time simulations compared with
methods which do not conserve these quantities; see Figure 3.13.

The paper is organized as follows: In Section 2, we introduce a novel formulation of the NLS
equation utilizing Lagrange multipliers and a high-order space-time finite element algorithm for the
novel formulation, as well as an iterative scheme for solving the nonlinear system associated to the
fully implicit numerical scheme. In Section 3 we present several numerical examples that demonstrate
the algorithm’s high-order convergence and efficacy in conserving mass, energy, and momentum of the
NLS equation, particularly in simulating Ma-solitons, bi-solitons, and solitons.

2. The algorithm and main results

In this section, we present the motivation and design of the algorithm that conserves mass, energy,
and momentum of the NLS equation.

2.1. Motivation and continuous formulation
Based on the mass conservation property, application of the fundamental theorem of calculus with

respect to the time variable t yields:

(2.1)

M [u(tn)]−M [u(tn−1)] =

∫ tn

tn−1

d

dt
M [u(t)] dt

=

∫ tn

tn−1

Re
∫
Ω

∂tu · ū dxdt

= −
∫ tn

tn−1

Re
∫
Ω

i∂tu · iū dxdt = 0.

Similarly, the conservation properties of energy and momentum lead to

(2.2)

E[u(tn)]− E[u(tn−1)] =

∫ tn

tn−1

d

dt
E[u(t)] dt

= −Re
∫ tn

tn−1

∫
Ω

i∇∂tu · i∇ū dxdt+ Re
∫ tn

tn−1

∫
Ω

i∂tuh · if(|u|2)ū dxdt

= Re
∫ tn

tn−1

∫
Ω

i∂tu · [i∆ū+ if(|u|2)ū] dxdt = 0

and, for the components Pj [u], j = 1, . . . , d, of the momentum,

(2.3)

Pj [u(tn)]− Pj [u(tn−1)] =

∫ tn

tn−1

d

dt
Pj [u(t)] dt

= −
∫ tn

tn−1

Im
∫
Ω

∂tu · ∂j ū dxdt

=

∫ tn

tn−1

Re
∫
Ω

i∂tu · ∂j ū dxdt = 0.
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Conversely, if the following constraints are satisfied:

Re
∫ tn

tn−1

∫
Ω

i∂tu · iū dxdt = 0,(2.4a)

Re
∫ tn

tn−1

∫
Ω

i∂tu · [i∆ū+ if(|u|2)ū] dxdt = 0,(2.4b)

Re
∫ tn

tn−1

∫
Ω

i∂tu · ∂j ū dxdt = 0,(2.4c)

then the mass, energy, and momentum are conserved at the discrete time levels tm.
Our observation is that the constraints in (2.4) simply mean that i∂tu is orthogonal to the finite-

dimensional subspace

(2.5) X(u) = span{iu, i∆u+ if(|u|2)u, ∂1u, . . . , ∂du}

with respect to the space-time inner product of L2(Ω × (tn−1, tn]). Therefore, if we restrict the test
functions for the NLS equation only to the orthogonal complement subspace X(u)⊥, i.e., considering
the following formulation of the NLS equation:

Re

∫ tn

tn−1

∫
Ω

[i∂tu+∆u+ f(|u|2)u]v̄ dxdt = 0 for v ∈ X(u)⊥,

then this simply means that i∂tu +∆u + f(|u|2)u ∈ X(u). Thus, there exist real-valued coefficients
κ0, κ1 and κj+1, j = 1, . . . , d, such that

i∂tu+∆u+ f(|u|2)u = κ0iu+ κ1[i∆u+ if(|u|2)u]

+

d∑
j=1

κj+1∂ju in Ω × (tn, tn+1].
(2.6)

The real-valued coefficients κ0, κ1 and κj+1, j = 1, . . . , d, can be regarded as Lagrange multipliers for
the constraints of the mass, energy, and momentum invariants.

In the next subsection, we propose a fully discrete space-time FEM for the NLS equation based
on the continuous formulations in (2.4) and (2.6).

Throughout this article, we denote by C a generic positive constant, possibly depending on the
exact solution and T , but are independent of the mesh size and the time step size. The notation
X ≲ Y means X ⩽ CY for some constant C.

2.2. Space-time FEM
For finite element discretization in space, we introduce a shape-regular and quasiuniform triangu-

lation Th of Ω with mesh size h ∈ (0, 1]. For any positive integer r ⩾ 1 and domain K ⊂ Rd, Qr(K) is
the space of complex-valued polynomials of degree up to r in the domain K. Additionally, we denote
by Sh the periodic complex-valued Lagrange finite element space, i.e.,

Sh = {v ∈ C(Ω) : v|K ∈ Qr(K) for all K ∈ Th},

where C(Ω) denotes the space of uniformly continuous complex-valued functions in Ω.
We denote by (·, ·) and ∥ ·∥ the sesquilinear inner product and norm of the complex-valued Hilbert

space L2(Ω), i.e.,

(u, v) :=

∫
Ω

uv dx and ∥u∥ =

√∫
Ω

|u|2 dx.
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The discrete Laplacian operator on the finite element space Sh is defined as the unique linear operator
∆h : Sh → Sh satisfying the following relation:

(2.7) (∆hvh, wh) = −(∇vh,∇wh) ∀wh ∈ Sh.

For finite element discretization in time, we divide the time interval [0, T ] into subintervals In =
[tn−1, tn], n = 1, . . . , N , with tn = nτ and stepsize τ = T/N . For an integer k ⩾ 1, we denote by Pk

the space of real-valued polynomials of degree up to k in the time variable t. Given a Banach space
X, such as X = L2(Ω) or X = Sh, the tensor-product space Pk ⊗X can be defined as follows:

Pk ⊗X := span
{
p(t)ϕ(x) : p ∈ Pk, ϕ ∈ X

}
=

{ k∑
j=0

tjϕj : ϕj ∈ X
}
.

For n = 1, 2, . . . , N and given un−1
h , we consider the following space-time FEM on Ω × In: Find

uh|In ∈ Pk ⊗ Sh and κ0,h|In , κj+1,h|In ∈ R, j = 0, 1, . . . , d, satisfying the following equations:

Re
∫ tn

tn−1

∫
Ω

i∂tuh · iūh dxdt = 0,(2.8a)

Re
∫ tn

tn−1

∫
Ω

i∇∂tuh · i∇ūh dxdt− Re
∫ tn

tn−1

∫
Ω

i∂tuh · if(|uh|2)ūh dxdt = 0,(2.8b)

Re
∫ tn

tn−1

∫
Ω

i∂tuh · ∂j ūh dxdt = 0 for j = 1, . . . , d,(2.8c) ∫ tn

tn−1

∫
Ω

i∂tuh · v̄h dxdt−
∫ tn

tn−1

∫
Ω

∇uh · ∇v̄h dxdt+

∫ tn

tn−1

∫
Ω

f(|uh|2)uhv̄hdxdt

=κ0,h Re

∫ tn

tn−1

∫
Ω

iuhv̄h dxdt+ κ1,h Re

∫ tn

tn−1

∫
Ω

i∇uh∇v̄h dxdt

− κ1,h Re

∫ tn

tn−1

∫
Ω

if(|uh|2)uhv̄h dxdt

+

d∑
j=1

κj+1,h Re

∫ tn

tn−1

∫
Ω

∂juhv̄h dxdt ∀ vh ∈ Pk−1 ⊗ Sh,(2.8d)

uh(tn−1) = un−1
h .(2.8e)

As initial value of the numerical solution we can take u0
h := Ihu0, where Ih is the Lagrange interpolation

operator onto the finite element space. In (2.8), we view the coefficients κj,h as piecewise constant
functions, constant in each subinterval In.

The number of unknown functions uh|In , κ0,h|In , and κj+1,h|In , j = 0, 1, . . . , d, is equal to the
number of equations in (2.8). The constraint equations, namely, (2.8a), (2.8b), and (2.8c), ensure the
conservation of mass, energy, and momentum in view of (2.1)–(2.3). This is presented in the following
theorem.

Theorem 2.1 (Conservation properties of the algorithm). Let un
h ∈ Sh, n = 1, . . . , N , be the numerical

solutions determined by the algorithm (2.8). Then, the following conservation properties hold:

M [uh(tn)] = M [uh(tn−1)],(2.9a)
P [uh(tn)] = P [uh(tn−1)](2.9b)
E[uh(tn)] = E[uh(tn−1)].(2.9c)
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2.3. Equivalent formulation and iterative scheme
The algorithm (2.8) can also be formulated without Lagrange multipliers by introducing the sub-

space

Xh(uh|In) = span{uh, i∆huh + iPh[f(|uh|2)uh], i∂1uh, . . . , i∂duh},

where Ph : L2(Ω) → Sh stands for the L2-orthogonal projection onto the finite element space. The
orthogonal complement of Xh(uh|In) with respect to the inner product of Pk ⊗ Sh is defined as

Xh(uh|In)⊥ =
{
vh ∈ Pk ⊗ Sh : Re

∫ tn

tn−1

∫
Ω

vhϕh dxdt = 0 for all ϕh ∈ Xh(uh|In)
}
,

where the inner product is defined as the real part of the L2 inner product on a complex space, which
can be interpreted as an inner product on the corresponding two-dimensional real vector space.

Then, (2.8) can be equivalently reformulated as follows: For given un−1
h , find ∂tuh|In ∈ Xh(uh|In)⊥

with initial condition uh(tn−1) = un−1
h , satisfying the following equation:∫ tn

tn−1

∫
Ω

i∂tuh · v̄h dxdt−
∫ tn

tn−1

∫
Ω

∇uh · ∇v̄h dxdt

+

∫ tn

tn−1

∫
Ω

f(|uh|2)uhv̄h dxdt = 0 ∀ vh ∈ Xh(uh|In)⊥.
(2.10)

We emphasize that the test and trial space Xh(uh|In)⊥ in (2.10) depends on the numerical solution
uh.

For the numerical implementation, the solution of the nonlinearly implicit scheme (2.8) needs to
be approximated by an iterative algorithm. In view of the formulation in (2.10) (which is essentially
a nonlinear system for uh without considering κj,h), we propose the following iterative approach:
Newton’s iteration is used for uh, while κj,h is treated as an unknown Lagrange multiplier during each
iteration of uh, without applying Newton’s iteration to it. This is equivalent to applying a fixed-point
iteration for the Lagrange multipliers. Namely, for given u

(ℓ−1)
h |In ∈ Pk ⊗ Sh, find u

(ℓ)
h |In ∈ Pk ⊗ Sh
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and κ
(ℓ)
j,h ∈ R, j = 0, 1, . . . , d+ 1, satisfying the following linearized equations:

Re
∫ tn

tn−1

∫
Ω

i∂tu
(ℓ)
h · iū(ℓ−1)

h dx dt+ Re
∫ tn

tn−1

∫
Ω

i∂tu
(ℓ−1)
h · i(ū(ℓ)

h − ū
(ℓ−1)
h ) dx dt = 0,(2.11a)

Re
∫ tn

tn−1

∫
Ω

(
i∇∂tu

(ℓ)
h · i∇ū

(ℓ−1)
h − i∂tu

(ℓ)
h · if(|u(ℓ−1)

h |2)ū(ℓ−1)
h

)
dx dt

+ Re
∫ tn

tn−1

∫
Ω

i∇∂tu
(ℓ−1)
h · i∇(ū

(ℓ)
h − ū

(ℓ−1)
h ) dx dt

− Re
∫ tn

tn−1

∫
Ω

i∂tu
(ℓ−1)
h · i

(
ḡ2(u)(u

(ℓ)
h − u

(ℓ−1)
h ) + g1(u)(ū

(ℓ)
h − ū

(ℓ−1)
h ) dx dt

)
= 0,(2.11b)

Re
∫ tn

tn−1

∫
Ω

i∂tu
(ℓ)
h · ∂j ū(ℓ−1)

h dx dt+ Re
∫ tn

tn−1

∫
Ω

i∂tu
(ℓ−1)
h · (∂j ū(ℓ)

h − ∂j ū
(ℓ−1)
h ) dx dt = 0,(2.11c) ∫ tn

tn−1

∫
Ω

i∂tu
(ℓ)
h · v̄h dx dt−

∫ tn

tn−1

∫
Ω

∇u
(ℓ)
h · ∇v̄h dx dt

+

∫ tn

tn−1

∫
Ω

f(|u(ℓ−1)
h |2)u(ℓ−1)

h v̄h dx dt+

∫ tn

tn−1

∫
Ω

g1(u
(ℓ−1)
h )(u

(ℓ)
h − u

(ℓ−1)
h )v̄h dx dt

+

∫ tn

tn−1

∫
Ω

g2(u
(ℓ−1)
h )(ū

(ℓ)
h − ū

(ℓ−1)
h )v̄h dx dt

=κ
(ℓ)
0,h Re

∫ tn

tn−1

∫
Ω

iu
(ℓ−1)
h v̄h dx dt+ κ

(ℓ)
1,h Re

∫ tn

tn−1

∫
Ω

i∇u
(ℓ−1)
h ∇v̄h dx dt

− κ
(ℓ)
1,h Re

∫ tn

tn−1

∫
Ω

if(|u(ℓ−1)
h |2)u(ℓ−1)

h v̄h dx dt

+

d∑
j=1

κ
(ℓ)
j+1,h Re

∫ tn

tn−1

∫
Ω

∂ju
(ℓ−1)
h v̄h dx dt ∀ vh ∈ Pk−1 ⊗ Sh,(2.11d)

u
(ℓ)
h (tn−1) = un−1

h ,(2.11e)

where
g1(u) := ∂u[f(|u|2)u] and g2(u) := ∂ū[f(|u|2)u].

The iteration for ℓ can be terminated once the error reaches a predefined tolerance level.

Remark 2.2. Since uh|In is a polynomial of degree k with respect to t, the integrals in (2.8a) and
(2.8c) can be evaluated exactly with the k-point Gauss quadrature, which is exact for polynomials
of degree up to 2k − 1, for discretizing the equations in time, while the integrands i∂tuh · iūh and
i∂tuh · ∂j ūh in (2.8a) and (2.8c), respectively, are polynomials of degree 2k − 1 with respect to t.
The integrals in (2.8b) can be evaluated accurately by utilizing an m-point Gauss quadrature with
a sufficiently large m. For example, for the cubic NLS equation which corresponds to the function
f(|uh|2) = |uh|2, the integrand in (2.8b) is a polynomial of degree 4k − 1 with respect to t. In this
case, the integral can be evaluated exactly by using the 2k-point Gauss quadrature.

Remark 2.3. This standard Newton iteration for (2.10) converges under the condition that the initial
guess lies sufficiently close to the solution of (2.8). In particular, employing the numerical solution at
the previous time level tn−1 as the initial guess at tn provides a suitable approximation, whose error
is of order O(τ) and is subsequently reduced to order O(τ2ℓ) after ℓ iterations, in accordance with the
quadratic convergence of Newton’s method.
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3. Numerical results

In this section, several numerical examples are presented to illustrate the high-order accuracy of the
numerical scheme and the conservation of mass, energy, and momentum. The numerical experiments
are performed by using the open-source high-performance finite element software NGSolve; see [55].

Example 3.1 (Simulation of one-dimensional Ma-soliton [46]). Consider the periodic initial value
problem

(3.1)
i∂tu+∆u+ 2|u|2u = 0 in [−L,L]× (0, T ]

u|t=0 = u0 in [−L,L]

}
,

which is an approximation of the NLS equation on the real line R. The soliton solution that Ma
derived is, after some simplification and choice of the space and time origin,

(3.2) u(x, t) = q0 exp (2iq
2
0t)

[
1 +

2m1(m1 cos (4m1m2q
2
0t) + im2 sin (4m1m2q

2
0t))

m2 cosh (2m1q0x) + cos (4m1m2q20t)

]
,

where m2
2 = 1+m2

1, an unsteady solution with period π/(2m1m2q
2
0). The proposed Newton iterative

method for uh, with fixed-point iteration for κj,h, is used to solve the nonlinear system. The iteration
is set to stop when the H1 error (∥u(ℓ)

h (tn) − u
(ℓ−1)
h (tn)∥H1) is below 10−9. The L∞(0, T,H1) error

between the numerical solution and the exact solution (3.2) is measured by

(3.3) H1 error = max
1⩽n⩽N
1⩽j⩽k

∥uh(·, tnj)− Pp+2u(·, tnj)∥H1 ,

where Pp+2 denotes the L2 projection to the finite element space of degree p+ 2 (two degrees higher
than Sh), and tnj , j = 1, . . . , k, denote the Gauss points on [tn−1, tn].

In this example, we choose m1 = 1, q0 = 0.5, and L = 20. Taking T = 2, the time discretization
errors are presented in Figure 3.1, where we used finite elements of degree p = 3 with a sufficiently
fine spatial mesh h = 1/100 so that the error due to the spatial discretization is negligibly small
in observing the temporal convergence rates. From Figure 3.1, we see that the error of the time
discretization is O(τk+1) in the L∞(0, T,H1)-norm. The spatial discretization errors are shown in
Figure 3.2, where we chose k = 3 with a sufficiently small time stepsize τ = 1/100 so that the time
discretization error is negligibly small compared to the spatial error. The numerical results in Figure
3.2 show that the spatial discretization errors are O(hp) in the L∞(0, T,H1)-norm.

Next, for the numerical solution with p = 3, k = 3, τ = 1/20, and h = 1/16, we present the
evolutions of mass, energy, and momentum in Figure 3.3, which shows that there is no visible loss
of mass, energy, and momentum in the evolution. The errors of mass, energy, and momentum in
the numerical solution are presented in Figure 3.5; we see that the mass, energy, and momentum are
conserved up to a discrepancy of the order 10−12, which is significantly smaller than the errors of the
numerical solution (about 10−4 according to the case p = 3 in Figure 3.2). Therefore, the numerical
results show the high-order convergence of the method as well as its effectiveness in conserving mass,
energy, and momentum. The numbers of iterations at each time level are presented in Figure 3.4; we
see that a few iterations, 5 or 6, suffice for the conservation of the mass, energy, and momentum of
the numerical solution.

Furthermore, Figure 3.6 illustrates the variation of the H1 error versus total runtime up to time
T = 1, where we have set k − 1 = p so that the temporal and spatial discretizations converge at the
same rate in the L∞(0, T ;H1) norm. The results indicate that, as the time step and mesh size decrease,
the H1 error decreases as the runtime increases. Moreover, higher-order methods have significantly
smaller errors for the same runtime, underscoring the advantages and importance of designing higher-
order methods for the NLS equation. This aligns with the main objective of this paper: developing
high-order structure-preserving methods.
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Fig. 3.1: Time discretization errors in the L∞(0, T,H1) norm (Example 3.1).

Fig. 3.2: Space discretization errors in the L∞(0, T,H1) norm (Example 3.1).
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Fig. 3.3: Evolution of mass, energy, and momentum (Example 3.1).

Fig. 3.4: Number of iterations at each time level (Example 3.1).
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Fig. 3.5: Errors of mass, energy, and momentum (Example 3.1).

Fig. 3.6: Change in H1 error as total runtime increases (Example 3.1).
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Example 3.2 (Simulation of one-dimensional bi-soliton [67]). We consider the one-dimensional fo-
cusing NLS equation on the real line R with the following solution:

u(x, t) =
eiM

2
1 tM1sechM1x− eiM

2
2 tM2sechM2x

cosh J − sinh J(tanhM1x tanhM2x+ cosSsechM1xsechM2x)
,(3.4)

with

S = (M2
1 −M2

2 )t, tanh J = 2M1M2/(M
2
1 +M2

2 ).

The solution in (3.4) represents the interaction between two individual solitons; see [49]. In this
example, we choose L = 20, M1 = 1.2, and M2 = 1.
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(a) Initial function and short time evolution
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(b) Long time evolution of the numerical solution of the
proposed method

Fig. 3.7: Evolution of the amplitude of the numerical solution (Example 3.2).

At t = 0, the strong interaction between two solitons results in a striking peak of |u| at the origin, as
displayed in Figure 3.7(a). This peak shows larger L∞ and H1 norms of the initial function. The most
distinctive characteristic of |u| is its periodicity, with a period of 2π/(M2

1 −M2
2 ). Consequently, the

periodic appearance of the initial peak (see Figure 3.7(b)) presents challenges for numerical methods
in terms of energy conservation and accuracy, making this situation an ideal choice for examining the
long-term performance of the proposed method.

We solve problem (3.1) by the proposed method (2.11a)–(2.11e) and compare the numerical so-
lutions with the exact solution (3.4). The errors at T = 1 from the temporal discretizations are
investigated in Figure 3.8 with p = 3 and h = 1/100 so that the errors caused by the spatial dis-
cretization are negligible in observing the temporal convergence orders. By fixing k = 3 and τ = 1/100
to neglect the temporal errors in observing the spatial convergence orders, the errors from the spa-
tial discretizations are checked in Figure 3.9. The above numerical results indicate that the errors
from the temporal and spatial discretizations are of order O(τk+1) and O(hp), respectively, in the
L∞(0, T,H1)-norm.

The time evolution of mass, energy, and momentum is shown in Figure 3.10 with p = 3, k = 3, T =
1, τ = 1/20, and h = 1/16. Figure 3.12 shows that the mass, energy, and momentum are conserved
up to a discrepancy of order 10−12, which is significantly smaller than the error of the numerical
solution (about 10−7 according to Figure 3.8). This shows the effectiveness of the proposed method
in conserving the mass, energy, and momentum of the NLS equation. The numbers of iterations at
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Fig. 3.8: Time discretization errors in the L∞(0, T,H1) norm (Example 3.2).

Fig. 3.9: Space discretization errors in the L∞(0, T,H1) norm (Example 3.2).
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Fig. 3.10: Time evolutions of mass, energy and momentum (Example 3.2).

Fig. 3.11: Number of iterations at each time level (Example 3.2).
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Fig. 3.12: Errors of mass, energy, and momentum (Example 3.2).
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Fig. 3.13: Energy and H1 errors in long-time simulation, up to T = 128 (Example 3.2).
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each time level are shown in Figure 3.11; we see that 6 to 8 iterations suffice for the conservation of
the mass, energy, and momentum of the numerical solutions.

The parameters for the numerical discretization are chosen as τ = 2−5, h = 2−4, k = 2, and p = 3,
with an end time set to T = 128. The exact solution in (3.4) decays exponentially as |x| → ∞, and the
selected parameter settings guarantee that the solutions before T = 128 have negligible amplitude (up
to rounding error) at the boundary of the truncated domain [−20, 20]. We compared the performance
of our algorithm with the standard Gauss collocation method in terms of energy loss and H1 error. As
shown in Figure 3.13, our algorithm maintains energy conservation within the rounding error range
and is significantly superior to the standard Gauss collocation method. In addition, our algorithm
substantially reduces the H1 error of the numerical solutions due to its structure-preserving properties.

Example 3.3 (Simulation of two-dimensional soliton). We investigate the interactions of two-dimensional
solitons described by the cubic focusing NLS equation with the following initial value:

(3.5) u0(x, y) =

1∑
k=0

exp (−(x− (−1)k2)2 − y2) exp (i0.1(x− (−1)k2) + y).

The solution of this problem decays exponentially as |x + y| tends to ∞ and is a constant along
x+ y = C. Correspondingly, we solve the equation by the proposed method in a rectangular domain
(which is periodic in x± y)

Ω = {(x, y) ∈ R2 : |x|+ |y| ⩽
√
2L}

with L = 10. Since the exact solution of Example 3.3 is not explicitly given, we compute a reference
solution uref by using a sufficiently small time stepsize τ for a fixed mesh size h when we test the
convergence rates of the spatial discretizations, or a sufficiently small mesh size h for a fixed time
stepsize τ when we test the convergence rates of the temporal discretizations.

Fig. 3.14: Time discretization errors in the L∞(0, T,H1) norm (Example 3.3).

Figure 3.14 demonstrates that the temporal discretization errors exhibit an O(τk+1) convergence
rate. The spatial mesh size is fixed at h = 5/6 with p = 1. In this setting, the spatial discretization
error is negligible, as the reference solution is computed using the same mesh size h = 5/6 and a
sufficiently small time step τ = 1/100. This choice ensures that the temporal error in the reference
solution is negligible compared to the errors corresponding to the time step sizes used in Figure 3.14.
Figure 3.15 shows that the errors from the spatial discretizations are O(hp), where the time stepsize
is chosen to be τ = 1/100 with k = 1. These numerical results illustrate the high-order convergence
of the proposed method.

The conservation of mass, energy, and momentum is presented in Figure 3.16 with p = 1, k = 2, 3, 4,
T = 1, τ = 1/10, and h = 1/2. The errors in conserving mass, energy, and momentum are about
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Fig. 3.15: Space discretization errors in the L∞(0, T,H1) norm (Example 3.3).
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Fig. 3.16: Time evolutions of mass, energy, and momentum (Example 3.3).
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Fig. 3.17: Errors of mass, energy, and momentum (Example 3.3).

Fig. 3.18: Number of iterations at each time level (Example 3.3).
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(a) |u| at t = 0 (b) |u| at t = 0.5

(c) |u| at t = 1 (d) |u| at t=1.5

Fig. 3.19: Time evolutions of solitons for Example 3.3.

(a) |u| at t = 0 (b) |u| at t = 0.5

(c) |u| at t = 1 (d) |u| at t=1.5

Fig. 3.20: Time evolutions of solitons for Example 3.3.
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10−12, 10−12, and 10−14, respectively, as shown in Figure 3.17. These errors are significantly smaller
than the errors of the numerical solutions (about 10−1 as shown in Figure 3.15). This shows the
effectiveness of the proposed method in conserving the mass, energy, and momentum of the NLS
equation. The numbers of iterations at each time level are shown in Figure 3.18; 6 Newton iterations
are needed at every time level. This is not large and it is acceptable in exchange of the conservation
of mass, energy, and momentum of the numerical solutions.

The evolution of the two-dimensional solitons is presented in Figures 3.19–3.20 for the numerical
solutions with p = 3, k = 2, τ = 1/50, and h = 1/5. Figure 3.19(a) shows that the initial state of
the solution is composed of two peaks. As time increases, the two peaks radiate and begin to collide
with each other, as shown in Figures 3.19(b) and 3.20(b). Later, the collision of solitons leads to the
creation of a new peak at the center of the domain, as shown in Figures 3.19(c) and 3.20(c). As time
increases, the amplitude of the peak at the center of the domain becomes bigger, while the amplitudes
of the other two peaks become smaller; see Figures 3.19(d) and 3.20(d).

Example 3.4 (Simulation of two-dimensional NLS equation with singular solutions). We investigate
the blow-up behavior of the solution to the following NLS equation with periodic boundary condition:

(3.6)
i∂tu+∆u+ 15|u|2u = 0 in Ω × (0, T ],

u|t=0 = 5 sin(2πx) sin(2πy) in Ω,

where Ω is a rectangular domain with periodicity in x± y:

Ω = {(x, y) ∈ R2 : |x|+ |y| ⩽
√
2L}, L = 1.

In this example, we set p = 1 and k = 1. The spatial mesh size is h = 2
√
2/100, and the time step

τ is dynamically adjusted based on the L∞-norm of u at the previous time level:

τn =
10−4

∥u(tn−1)∥L∞(Ω)
for n ⩾ 1.(3.7)

Given that the initial energy is approximately Eh(0) = −1.477 × 102, computed using the specified
mesh size and time step size, its negativity implies that the solution is expected to blow up in finite
time [18]. In particular, blow-up is detected by the rapid growth of the norms ∥u∥L∞(Ω), ∥u∥W 1,∞(Ω)

and ∥∂tu∥L∞(Ω).
Our simulations show that the blow-up occurs at tblow-up ≈ 0.0007755, at which ∥u∥W 1,∞(Ω) ≈ 1200

and ∥∂tu∥L∞(Ω) ≈ 2 × 107; see Figure 3.21. As illustrated in Figure 3.22, both the L∞ and W 1,∞

norms of u experience steep growth as t approaches tblow-up.
The proposed nonlinearly implicit scheme conserves energy exactly; however, the incomplete New-

ton iteration introduces errors that become more pronounced as the solution approaches blow-up. To
ensure that energy loss remains below a certain threshold, we have implemented the following stopping
criteria throughout:

∥u(ℓ)
h (tn)− u

(ℓ−1)
h (tn)∥H1(Ω) < 10−9,(3.8a)

|E(un
h)− E(un−1

h )| < 10−8,(3.8b)

With these stopping criteria, the mass, energy and momentum remain conserved within errors of 10−11,
10−8, and 10−12, respectively, up to the blow up time, as illustrated in Figure 3.23. In particular,
the energy conservation is maintained to within 10−8, which aligns with the termination condition in
Newton’s iteration. Therefore, the second criterion is crucial to ensure that the energy error remains
sufficiently small (i.e., on the order of 10−8) relative to the magnitude of the solution. Figure 3.24
illustrates the number of iterations performed per time step. In particular, as t approaches the blow-up
time, the number of iterations also increases to guarantee that the energy loss is within the tolerance
defined in (3.8b).
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(a) |u| at t = 0 (b) |u| at t = tblow-up

(c) |∇u| at t = 0 (d) |∇u| at t = tblow-up

Fig. 3.21: Graph of |u| and |∇u| at t = 0 and tblow-up (Example 3.4).

Fig. 3.22: Evolutions of ∥∂tu∥L∞(Ω) and ∥u∥W1,∞(Ω), up to blow-up time (Example 3.4).
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Fig. 3.23: Errors of mass, energy, and momentum (Example 3.4).

Fig. 3.24: Number of iterations per time level (Example 3.4).
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4. Conclusion

We have introduced a novel formulation along with an associated space-time finite element method
(FEM) for the NLS equation. We have demonstrated that the proposed algorithm conserves mass,
energy, and momentum of the NLS equation at the discrete level, and we have designed a semi-
Newton iteration for the nonlinear system associated with the numerical method. Through extensive
numerical examples, we have shown that the proposed method achieves high-order convergence in
approximating solutions of the NLS equation and effectively conserves mass, energy, and momentum
for the simulation of various solitons of the NLS equations.
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