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Abstract
A variable stepsize exponential multistep integrator, with contour integral approximation
of the operator-valued exponential functions, is proposed for solving semilinear parabolic
equations with nonsmooth initial data. By this approach, the exponential k-step method
would have kth-order convergence in approximating a mild solution, possibly nonsmooth
at the initial time. In consistency with the theoretical analysis, a numerical example shows
that the method can achieve high-order convergence in the maximum norm for semilinear
parabolic equations with discontinuous initial data.

Keywords Nonlinear parabolic equation · Nonsmooth initial data · Exponential integrator ·
Variable stepsize · High-order accuracy · Discontinuous initial data

1 Introduction

Let A be the generator of a bounded analytic semigroup on a Banach space X , with domain
D(A) ⊂ X , and consider the abstract semilinear initial-value problem{

u′(t) − Au(t) = f (t, u(t)) for t ∈ (0, T ],
u(0) = u0,

(1)

where u0 ∈ X and f : [0,∞)× X → X is a smooth (locally Lipschitz continuous) function.
A function u ∈ C([0, T ]; X) is called amild solution of (1) if it satisfies the integral equation

u(t) = et Au0 +
∫ t

0
e(t−s)A f (s, u(s))ds, ∀ t ∈ (0, T ], (2)
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where et A denotes the semigroup generated by the operator A.
In the linear case f (t, u) ≡ f (t), time discretization of (1) by a kth-order Runge–Kutta

method satisfies the following error estimate:

‖un − u(tn)‖ ≤ Cτ k t−k
n for u0 ∈ X , (3)

where τ denotes the stepsize of time discretization; see [22,28]. In particular, for a nonsmooth
initial value u0 ∈ X , the methods have kth-order accuracy when tn is not close to zero. This
result also holds for implicit backward difference formulae (BDF), exponential integrators
[12,16], and fractional-order evolution equations [15, Remark 2.6].

However, such high-order convergence as (3) does not hold when the source function
f (t, u) is nonlinear with respect to u. A counter example constructed in [4] shows that
a kth-order Runge–Kutta method normally has only first-order convergence for a general
nonsmooth initial data u0 ∈ X , i.e.,

C1τ t
−1
n ≤ ‖un − u(tn)‖ ≤ C2τ t

−1
n for u0 ∈ X . (4)

Similarly, semi-implicit Runge–Kutta methods also suffer from this barrier of convergence
rate [24]. For nonlinear problems with nonsmooth initial data, existing error estimates for
exponential integrators also yield only first-order convergence (see [11,23,24])

‖un − u(tn)‖ ≤ Cτ for u0 ∈ X . (5)

No method has been proved to have high-order convergence for semilinear parabolic equa-
tions with general nonsmooth initial data u0 ∈ X .

Of course, if the initial value is sufficiently smooth and satisfies certain compatibility con-
ditions, e.g., u0 ∈ D(Ak), then O(τ k) convergence can be achieved uniformly for tn ∈ [0, T ]
for the nonlinear problem (1). This has been proved for most time discretization methods,
including Runge–Kutta methods [4], implicit A(α)-stable multistep methods [20], implicit–
explicit BDF methods [1,2], splitting methods [5,6,10] and several types of exponential
integrators [3,11,12,25]. Extension to quasi-linear parabolic problems has also been done;
see [7–9,13,14,21]. The error estimates presented in these articles do not apply to nonsmooth
initial data.

Due to the presence of the factor t−1
n , the first-order convergence of Runge–Kutta meth-

ods cannot be improved by using variable stepsizes. However, compared with other time
discretization methods, exponential integrators were proved to have an error bound of O(τ )

uniformly for tn ∈ [0, T ] for nonsmooth initial data u0 ∈ X , without the factor t−1
n appearing

in the error estimates for othermethods (see [11,23,24]). This uniform convergencemotivates
us to consider the possibility of constructing high-order exponential integrators with variable
stepsizes.

In this paper, we propose a variable stepsize exponential k-step integrator for (1) with
general nonsmooth initial data u0 ∈ X , by choosing

τn = O((tn/T )βτ ), for some β > 1 − 1

k
, (6)

where τn = tn − tn−1 denotes the nth stepsize in the partition 0 = t0 < t1 < · · · < tN = T ,
and τ the maximal stepsize. For the convenience of implementation, we also integrate in the
numerical method (and the error analysis) an algorithm for approximating the exponential
integrator by using the contour integral techniques developed in [17,19,27].

The proposed variable stepsize method, with contour integral approximation of the expo-
nential integrator, can achieve kth-order accuracy in approximating a mild solution of (1),
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i.e.,

max
1≤n≤N

‖un − u(tn)‖ ≤ Cτ k . (7)

This is thefirst high-order convergence result in approximating semilinear parabolic equations
with nonsmooth initial data (without any regularity in addition to u0 ∈ X ). In view of the
result (4) for the Runge–Kutta methods, the convergence result (7) shows the superiority of
the variable stepsize exponential integrator for problems with nonsmooth initial data. The
approximation of exponential integratorwould require O(ln(τ−1)) parallel solutions of linear
equations, and there are N = O(τ−1) time levels by using the stepsize in (6). Therefore, the
total computational cost is O(τ−1 ln(τ−1)) for an accuracy of O(τ k).

For rigorous analysis without extra regularity assumptions on the solution, we assume that
the nonlinear source function satisfies the following estimates:

‖ f (t, u) − f (t, v)‖ ≤ C f ,u,v‖u − v‖ for u, v ∈ X , (local Lipschitz continuity) (8)∥∥∥∥ d�

dt�
f (t, u(t))

∥∥∥∥ (smoothness in t and u)

≤ C f ,u,�

�∑
j=1

∑
m1+···+m j≤�

‖∂m1
t u(t)‖ ‖∂m2

t u(t)‖ · · · ‖∂m j
t u(t)‖, � = 0, 1, . . . , (9)

where ‖ · ‖ denotes the norm of X , C f ,u,v is a constant depending on f , ‖u‖ and ‖v‖;
similarly, C f ,u,� is a constant depending on f , ‖u(t)‖, �, and the summation above extends
over all possible positive integers m1, . . . ,m j satisfying m1 + · · · + m j ≤ � for a given j .

Assumptions (8)–(9) are naturally satisfied by a general smooth function f : R → R,
with f (0) = 0, in a semilinear parabolic partial differential equation (PDE)⎧⎪⎨

⎪⎩
∂t u(x, t) − Δu(x, t) = f (u(x, t)) for (x, t) ∈ Ω × (0, T ],

u(x, t) = 0 for (x, t) ∈ ∂Ω × (0, T ],
u(x, 0) = u0(x) for x ∈ Ω.

(10)

In this case, the Dirichlet Laplacian Δ generates a bounded analytic semigroup on X =
C0(Ω), the space of continuous functions on Ω which equal zero on the boundary ∂Ω; see
[26]. Furthermore, the smooth function f naturally extends to a function of u ∈ C0(Ω),
satisfying

‖ f (u) − f (v)‖C0(Ω) ≤ C max|s|≤‖u‖+‖v‖ |∂s f (s)| ‖u − v‖C0(Ω)

and

d

dt
f (u(x, t)) = ∂u f (u)∂t u,

d2

dt2
f (u(x, t)) = ∂2u f (u)(∂t u)2 + ∂u f (u)∂t t u,

d3

dt3
f (u(x, t)) = ∂3u f (u)(∂t u)3 + 3∂2u f (u)∂t u∂t t u + ∂u f (u)∂t t t u,

...

Obviously, all these time derivatives of f (u(x, t)) satisfy (9). Hence, the semilinear parabolic
PDE (10) with a general smooth function f : R → R is an example of the abstract problem
(1) satisfying assumptions (8)–(9).
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Assumption (8) is the same as the local Lipschitz continuity assumption used in [3] and
[11]. In [3], authors proved high-order convergence with an addition assumption that the
solution is in Ck([0, T ], X), which is not satisfied when the initial data is nonsmooth, i.e.,
u0 ∈ X instead of D(Ak). In [11], authors proved high-order convergence of exponential
integrators with an additional assumption that ∂kt f (u(t)) is uniformly bounded for t ∈ [0, T ],
which is also not satisfied when the initial data is nonsmooth. These additional assumptions
in [3,11] are replaced by (9) in this paper, which is used to prove the weighted estimates

‖∂�
t u(t)‖ ≤ Ct−� for � = 1, . . . , k,

which allow the solution to be nonsmooth at t = 0. These weighted estimates are used to
prove high-order convergence of the exponential integrator in this paper.

Both the regularity analysis and the error analysis in this paper can be similarly extended
to semilinear parabolic equations with smoothly varying time-dependent operators. How-
ever, the extension to quasilinear parabolic equations with nonsmooth initial data is still not
obvious.

2 Numerical Method

We denote by ĝ(z) := ∫ ∞
0 e−zt g(t)dt the Laplace transform of a given function g. Then we

let g(t) := f (t, u(t)) and take the Laplace transform of (2) in time. This yields

û(z) = (z − A)−1u0 + (z − A)−1 ĝ(z). (11)

Since A generates a bounded analytic semigroup on X , there exists an angle φ ∈ (0, π
2 ) such

that the operator (z − A)−1 is analytic with respect to z in the sector

Σπ−φ := {z ∈ C : |arg(z)| < π − φ}.
In order to use the established contour integral techniques of [17,19], we take inverse Laplace
transform of (11) along the contour

Γλ = {λ(1 − sin(α + is)) : s ∈ R} ⊂ Σπ−φ,

where α = π
4 − φ

2 and λ is to be determined. Then we have

u(t) = 1

2π i

∫
Γλ

etz(z − A)−1(ĝ(z) + u0)dz.

Similarly, by considering tn−1 as the initial time, the solution at t = tn can be written as

u(tn) = 1

2π i

∫
Γλn

eτn z(z − A)−1(ĝn(z) + u(tn−1))dz, (12)

where gn(s) = f (tn−1 + s, u(tn−1 + s)).
In [17, Theorem 1] the authors proved that, by choosing the parameter

λn = 2πdK (1 − θ)

τna(θ)
, (13)

with

d = α

2
, θ = 1 − 1

K
and a(θ) = arccosh

(
1

(1 − θ) sin(α)

)
,
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there are quadrature nodes and weights on the contour Γλn ,

z� = λn(1 − sin(α + i�h)) and w� = λnh

2π
cos(α + i�h), � = −K , . . . , K , with h = a(θ)

K
,

such that (12) can be approximated by a quadrature

u(tn) ≈
K∑

�=−K

w�e
τn z� (z� − A)−1(ĝn(z�) + u(tn−1))

with an error of O(e−K/C ).
Therefore, if u(τ ) = (un)Nn=0 denotes the numerical approximation of (u(tn))Nn=1, then we

approximate the source function f (t, u(t)) by an extrapolation polynomial of degree k − 1:

fn(t; u(τ )) =
k∑
j=1

L j (t) f (tn− j , un− j ) for t ∈ (tn−1, tn],

where L j (t) is the unique polynomial of degree k − 1 such that

L j (tn−i ) = δi j , i = 1, . . . , k.

For n ≥ k + 1 and given numerical solutions un− j , j = 1, . . . , k, we denote

gn(s; u(τ )) = fn(tn−1 + s; u(τ )), L j,n(s) = L j (tn−1 + s),

and compute

un =
K∑

�=−K

w�e
τn z� (z� − A)−1(ĝn(z�; u(τ )) + un−1)

=
K∑

�=−K

w�e
τn z� (z� − A)−1

( k∑
j=1

L̂ j,n(z�) f (tn− j , un− j ) + un−1

)
. (14)

The numerical solution at the starting k steps can be computed by using the exponential
Euler method

un =
K∑

�=−K

w�e
τn z� (z� − A)−1(z−1

� f (tn−1, un−1) + un−1
)
, n = 1, . . . , k. (15)

Since the stepsize choice in (6) implies τn = O(τ
1

1−β ) = O(τ k) for the starting k steps, the
exponential Euler scheme (14) can keep the errors of numerical solutions within O(τ k) at
the starting k steps.

The main result of this paper is the following theorem.

Theorem 1 Let u0 ∈ X and assume that the nonlinear problem (1) has a mild solution u ∈
C([0, T ]; X). Then there exist constants τ0 and c0 such that for τ ≤ τ0 and K ≥ 3

2c0 ln(τ
−1),

the solutions un, n = 1, . . . , N, given by (14)-(15) with stepsize choice from (6), satisfies the
following error estimate:

max
1≤n≤N

‖un − u(tn)‖ ≤ Cτ k + Cτ−1e−K/c0 . (16)
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Remark 1 For K ≥ (k + 1)c0 ln(τ−1) there holds τ−1e−K/c0 ≤ τ k . Therefore, O(ln(1/τ))

quadrature nodes are needed to have an error of O(τ k).

Remark 2 Instead of choosing different λn at different time steps, one can also divide the time
interval [tk+1, T ] into O(log(τ−1)) parts [Λ− j−1T ,Λ− j T ], j = 0, . . . , J = O(log(τ−1)),
with

λn = 2πdK (1 − θ)

ΛβτK j a(θ)
being constant for tn ∈ [Λ− j−1T ,Λ− j T ], (17)

and

d = α

2
, θ = 1 − 1

K
and a(θ) = arccosh

(
Λ

(1 − θ) sin(α)

)
,

where τK j denotes the minimal stepsize for tn ∈ [Λ− j−1T ,Λ− j T ]. This was used in many
articles; see [17–19,27]. By this method, at most O(log(τ−1)) different contours are needed
to have an error of O(τ k).

3 Proof of Theorem 1

The proof consists of two parts. In sect. 3.1, we prove the regularity of the solution u. By
using the regularity result, we estimate errors of numerical solutions in sect. 3.2.

3.1 Regularity of Solution

It is well known that the solution of a linear parabolic equation has higher regularity at positive
time and satisfies the estimate ‖∂�

t u(t)‖ ≤ Ct−�, � = 0, 1, . . . , for a nonsmooth initial data
u0 ∈ X . In this subsection, we prove that this is also true for the nonlinear problem (1) if the
source function f is smooth with respect to t and u in the sense of (9). Since we have not
found such a result in the literature for semilinear parabolic equations, we present the proof
in the following lemma.

Lemma 1 If u ∈ C([0, T ]; X) is a mild solution of (1), then u ∈ Ck((0, T ]; X) and

‖∂�
t u(t)‖ ≤ Ct−�, � = 0, 1, . . . , k.

Proof Ifu ∈ C([0, T ]; X) then the constantC f ,u,� in (9) is bounded for 1 ≤ � ≤ k.We simply
denote this constant byC . By mathematical induction, we assume that form = 0, . . . , �−1,

‖∂mt u(t)‖ ≤ Ct−m, t ∈ (0, T ]. (18)

Then (9) implies∥∥∥∥ dm

dtm
f (t, u(t))

∥∥∥∥ ≤ Ct−m, t ∈ (0, T ], for m = 0, . . . , � − 1. (19)

In the following, we prove that (18) also holds for m = �.
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Multiplying (2) by t� yields

t�u(t) = t�et Au0 +
∫ t

0
(t − s + s)�e(t−s)A f (s, u(s))ds

= t�et Au0 +
�∑

j=0

(
�

j

) ∫ t

0
(t − s) j e(t−s)As�− j f (s, u(s))ds

=: t�et Au0 +
�∑

j=0

(
�

j

)
w�, j (t), (20)

with

w�, j (t) =
∫ t

0
g j (t, s)ds and g j (t, s) = (t − s) j e(t−s)As�− j f (s, u(s)). (21)

First, by differentiating the first equality in (21), we obtain

∂tw�, j (t) = ∂t

[∫ t

0
g j (t, s) ds

]
=

∫ t

0
∂t g j (t, s) ds + g j (t, s)|s=t =

∫ t

0
∂t g j (t, s) ds.

(22)

Second, we consider the mathematical induction on k: assume that for some k such that
1 ≤ k ≤ j − 1 there holds

∂kt w�, j (t) =
∫ t

0
∂kt g j (t, s) ds. (23)

This assumption is valid for k = 1 in view of (22). Then differentiating (23) yields that

∂k+1
t w�, j (t) =

∫ t

0
∂k+1
t g j (t, s) ds + ∂kt g j (t, s)

∣∣∣
s=t

=
∫ t

0
∂k+1
t g j (t, s) ds, (24)

where the last equality makes use of the fact that ∂kt g j (t, s)|s=t = 0 for k ≤ j − 1, in view
of the expression of g j (t, s) in (21). This completes the mathematical induction on (23) and
shows that (23) actually holds for all 1 ≤ k ≤ j . Next, by using identity (23) with k = j , we
derive that

∂
j
t w�, j (t) =

∫ t

0
∂
j
t g j (t, s) ds

=
∫ t

0
∂
j
t [(t − s) j e(t−s)A]s�− j f (s, u(s))ds

=
∫ t

0
∂
j
s
[
s j es A

]
(t − s)�− j f (t − s, u(t − s)) ds (change of variable)

=:
∫ t

0
h�− j (t, s) ds. (25)

Since the function h�− j (t, s) = ∂
j
s
[
s j es A

]
(t − s)�− j f (t − s, u(t − s)) contains a factor

(t − s)�− j , by a similar argument as (25) we have

∂
�− j
t ∂

j
t w�, j (t) = ∂

�− j
t

∫ t

0
h�− j (t, s) ds =

∫ t

0
∂

�− j
t h�− j (t, s) ds,
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which implies that

∂�
t w�, j (t) =

∫ t

0
∂
j
s (s j es A)

d�− j

dt�− j
[(t − s)�− j f (t − s, u(t − s))]ds, for 0 ≤ j ≤ �.

As a result, we have

‖∂�
t w�, j (t)‖ ≤

∫ t

0
C‖∂ j

s (s j es A)‖X→X

∥∥∥∥ d�− j

dt�− j
[(t − s)�− j f (t − s, u(t − s))]

∥∥∥∥ds
≤

∫ t

0
C

∥∥∥∥ d�− j

dt�− j
[(t − s)�− j f (t − s, u(t − s))]

∥∥∥∥ds, (26)

where we have used ‖∂ j
s (s j es A)‖X→X ≤ C, which is a consequence of the analytic semi-

group estimate

‖∂ms esA‖X→X ≤ Cs−m, m = 0, 1, . . .

If 1 ≤ j ≤ � then substituting (19) into (26) yields

‖∂�
t w�, j (t)‖ ≤ C, 1 ≤ j ≤ �. (27)

If j = 0 then substituting (9) and (19) into (26) yields

‖∂�
t w�,0(t)‖ ≤

∫ t

0
C

∥∥∥∥ d�

dt�
[(t − s)� f (t − s, u(t − s))]

∥∥∥∥ds
≤

∫ t

0
C

�∑
j=1

∥∥∥∥(t − s)�− j d
�− j

dt�− j
f (t − s, u(t − s))

∥∥∥∥ds
+

∫ t

0
C

∥∥∥∥(t − s)�
d�

dt�
f (t − s, u(t − s))

∥∥∥∥ds (product rule)

≤ C +
∫ t

0
C

∥∥∥∥(t − s)�
d�

dt�
f (t − s, u(t − s))

∥∥∥∥ds (28)

where we have used (19) in estimating (t − s)�− j d�− j

dt�− j f (t − s, u(t − s)) for j ≥ 1. By
considering the cases j ≥ 2 and j = 1 in (9), separately, we have

∥∥∥∥ d�

dt�
f (t − s, u(t − s))

∥∥∥∥
≤ C

�∑
j=2

∑
m1+···+m j≤�

‖∂m1
t u(t − s)‖ ‖∂m2

t u(t − s)‖ · · · ‖∂m j
t u(t − s)‖ + C‖∂�

t u(t − s)‖

≤ C(t − s)−� + C‖∂�
t u(t − s)‖.

Substituting the inequality above into (28), we obtain

‖∂�
t w�,0(t)‖ ≤ C +

∫ t

0
C‖(t − s)�∂�

t u(t − s)‖ds = C +
∫ t

0
C‖s�∂�

s u(s)‖ds. (29)
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Then substituting (27) and (29) into (20) yields

‖∂�
t (t

�u(t))‖ ≤ ‖∂�
t (t

�et A)u0‖ +
�∑

j=0

(
�

j

)
‖∂�

t w�, j (t)‖

≤ C +
∫ t

0
C‖s�∂�

s u(s)‖ds. (30)

By using the product rule we can derive that

‖t�∂�
t u(t)‖ ≤ ‖∂�

t (t
�u(t))‖ + C

�∑
j=1

‖t�− j∂
�− j
t u(t)‖ ≤ ‖∂�

t (t
�u(t))‖ + C,

where we have used the induction assumption (18) in the last inequality. The above inequality
and (30) imply

‖t�∂�
t u(t)‖ ≤ C +

∫ t

0
C‖s�∂�

s u(s)‖ds. (31)

By using Gronwall’s inequality, we derive

‖t�∂�
t u(t)‖ ≤ C, ∀ t ∈ (0, T ]. (32)

This proves (18) for m = �, and therefore the mathematical induction is closed. �

3.2 Error Estimate

We shall introduce a function v(t) which is intermediate between u(tn) and un , and denote

en := u(tn) − un, η(t) := u(t) − v(t), and ξn := v(tn) − un, (33)

which imply the error decomposition

en = η(tn) + ξn .

Then we shall estimate η(tn) and ξn separately.
To this end, we define v(tk) = uk and consider n ≥ k + 1: for given v(tn−1) we define

v(t) for t ∈ (tn−1, tn] by

v(t) = 1

2π i

∫
Γλn

e(t−tn−1)z(z − A)−1(ĝn(z; u(τ )) + v(tn−1))dz. (34)

Comparing (34)with (12), we see that v(t) is actually the solution of the initial-value problem{
v′(t) − Av(t) = f (τ )(t; u(τ )) for t ∈ (tk, T ],

v(tk) = uk,
(35)

where

f (τ )(t; u(τ )) = fn(t; u(τ )), for t ∈ (tn−1, tn], n = k + 1, k + 2, . . .

To estimate η(tn), we consider the difference between (1) and (35). By using the notation
in (33), we see that η(t) satisfies the following equation:{

η′(t) − Aη(t) = f (t, u(t)) − f (τ )(t, u(τ )) for t ∈ (tk, T ],
η(tk) = ek .

(36)
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where

‖ f (t, u(t)) − f (τ )(t, u(τ ))‖
= ‖ f (t, u(t)) − f (τ )(t; u(tn)

N
n=0) + f (τ )(t; u(tn)

N
n=0) − f (τ )(t, u(τ ))‖

≤ Cτ kn max
t∈[tn−k ,tn ]

∥∥ dk

dtk
f (t, u(t))

∥∥ + Cn,u(τ ) max
1≤ j≤k

‖en− j‖ (use (8) − (9) here)

≤ Cτ kn t
−k
n−k + Cn,u(τ ) max

1≤ j≤k
‖en− j‖

≤ Cτ kn t
−k
n + Cn,u(τ ) max

1≤ j≤k
‖en− j‖, for t ∈ (tn−1, tn], n ≥ k + 1.

where Cn,u(τ ) is a constant depending on ‖un− j‖ for j = 1, . . . , k.
By using mathematical induction, we assume that

‖u j − u(t j )‖ = ‖e j‖ ≤ 1 for 1 ≤ j ≤ m − 1, (37)

then Cn,u(τ ) is bounded for k + 1 ≤ n ≤ m, and therefore

‖ f (t, u(t)) − f (τ )(t, u(τ ))‖
≤ Cτ kn t

−k
n + C max

1≤ j≤k
‖en− j‖, for t ∈ (tn−1, tn], k + 1 ≤ n ≤ m.

Then we have

‖η(tn)‖ =
∥∥∥∥e(tn−tk )Aek +

∫ tn

tk
e(tn−s)A( f (s, u(s)) − f (τ )(s; u(τ )))ds

∥∥∥∥
≤ C‖ek‖ + C

∫ tn

tk
‖ f (s, u(s)) − f (τ )(s; u(τ ))‖ds

≤ C‖ek‖ + C
n∑

j=k+1

τ jτ
k
j t

−k
j + C

n∑
j=1

τ‖e j‖

≤ C max
0≤ j≤k

‖e j‖ + C
n∑

j=k+1

τ‖e j‖ + Cτ k, (38)

where we have used the following estimate in the last inequality:

n∑
j=k+1

τ jτ
k
j t

−k
j ≤Cτ k

n∑
j=k+1

τ j t
k(β−1)
j ≤Cτ k

∫ tn

tk
tk(β−1)dt ≤ Cτ k, if k(β − 1) + 1 > 0.

This justifies the choice of β in (6).
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To estimate ξn = v(tn) − un , we note that

v(tn) = 1

2π i

∫
Γλn

eτn z(z − A)−1(ĝn(z; u(τ )) + v(tn−1))dz

= 1

2π i

∫
Γλn

eτn z(z − A)−1(ĝn(z; u(τ )) + un−1)dz + eτn Aξn−1

= un + eτn Aξn−1

+ 1

2π i

∫
Γλn

eτn z(z − A)−1(ĝn(z; u(τ )) + un−1)dz

−
K∑

�=−K

w�e
τn z� (z� − A)−1(ĝn(z�; u(τ )) + un−1), (39)

where we have used the identity 1
2π i

∫
Γλn

eτn z(z − A)−1ξn−1dz = eτn Aξn−1. Since

ĝn(z; u(τ )) =
k∑
j=1

L̂ j,n(z�) f (tn− j , un− j )

and the polynomial L j,n(z) satisfies |L̂ j,n(z)| ≤ C |z|−ν for some ν ≥ 0, it follows that

‖(z − A)−1(ĝn(z; u(τ )) + un−1)‖ ≤ C |z|−1
(
|z|−ν

k∑
j=1

‖ f (tn− j , un− j )‖ + ‖un−1‖
)
.

For a function satisfying the estimate above, in [19, Theorem 1] (also see [17]) the authors
proved that ∥∥∥∥ 1

2π i

∫
Γλn

eτn z(z − A)−1(ĝn(z; u(τ )) + un−1)dz

−
K∑

�=−K

w�e
τn z� (z� − A)−1(ĝn(z�; u(τ )) + un−1)

∥∥∥∥
≤ Ce−K/c0

( k∑
j=1

‖ f (tn− j , un− j )‖ + ‖un−1‖
)

for some constant c0. By choosing e−K/c0 = τ k+1, which requires K = O(ln(τ−1)), sub-
stituting the inequality above into (39) yields

‖ξn − eτn Aξn−1‖ ≤ Ce−K/c0
( k∑

j=1

‖ f (tn− j , un− j )‖ + ‖un−1‖
)
.

If (37) holds then ‖ f (tn− j , un− j )‖ ≤ C for j = 1, . . . , k and k + 1 ≤ n ≤ m, and
therefore

‖ξn − eτn Aξn−1‖ ≤ Ce−K/c0 for k + 1 ≤ n ≤ m.
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Therefore, qn := ξn − eτn Aξn−1 satisfies ‖qn‖ ≤ Ce−K/c0 and

ξn = qn + eτn Aξn−1

= qn + eτn Aqn−1 + e(τn+τn−1)Aξn−2

= qn + eτn Aqn−1 + e(τn+τn−1)Aqn−2 + e(τn+τn−1+τn−2)Aξn−3

= . . .

=
n−k−1∑
j=0

e(tn−tn− j )Aqn− j ,

where the last equality holds because ξk = 0. From the equation above we derive, for
k + 1 ≤ n ≤ m,

‖ξn‖ ≤
n−k−1∑
j=0

‖e(tn−tn− j )Aqn− j‖ ≤
n−k−1∑
j=0

C‖qn− j‖ ≤
n−k−1∑
j=0

Ce−K/c0 ≤ Cτ−1e−K/c0 .

(40)

Combining (38) and (40) and using the decomposition en = η(tn) + ξn , we have

‖en‖ ≤ ‖η(tn)‖ + ‖ξn‖

≤ C max
0≤ j≤k

‖e j‖ + C
n∑

j=k+1

τ‖e j‖ + Cτ k + Cτ−1e−K/c0 , for k + 1 ≤ n ≤ m.

By using Gronwall’s inequality, we obtain

‖en‖ ≤ C max
0≤ j≤k

‖e j‖ + Cτ k + Cτ−1e−K/c0 , for k + 1 ≤ n ≤ m. (41)

If the starting steps are approximated sufficiently accurate, i.e.,

max
0≤ j≤k

‖e j‖ ≤ 1

2
(42)

then there exists a positive constant τ1 such that for K ≥ 3
2c0 ln(1/τ) (thus e−K/c0 ≤ τ

3
2 )

and τ ≤ τ1 there holds

‖em‖ ≤ 1. (43)

This completes the mathematical induction from (37) to (43), provided that (42) holds. Then
(41) holds for m = N .

Since the starting k steps are computed by the exponential Euler method, which is the
special case k = 1 of the analysis above. Therefore, the analysis above also implies

max
0≤ j≤k

‖e j‖ ≤ Cτ k + Ce−K/c0 . (44)

This verifies (42) for sufficiently small stepsize τ and sufficiently large K , say τ ≤ τ2 and
K ≥ K2. Then substituting (44) into (41) yields

max
k+1≤n≤N

‖en‖ ≤ Cτ k + Cτ−1e−K/c0 . (45)

This completes the proof of Theorem 1 under the stepsize condition τ ≤ τ0 = min(τ1, τ2)
and K ≥ 3

2c0 ln(1/τ). �
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4 Numerical Example

In this section, we present a numerical example to support our theoretical analysis and illus-
trate the convergence of the proposed time stepping method. Since the proposed numerical
method is only for time discretization, which is independent of the spatial regularity of
solution, we shall present a one-dimensional example with sufficiently accurate spatial dis-
cretization in order to observe the error and order of convergence of the time discretization
method.

We consider the nonlinear parabolic equation⎧⎪⎨
⎪⎩

∂t u(x, t) − ∂xxu(x, t) = u(x, t) − u3(x, t) for (x, t) ∈ Ω × (0, T ],
u(x, t) = 0 for (x, t) ∈ ∂Ω × (0, T ],
u(x, 0) = u0(x) for x ∈ Ω,

(46)

in a domain Ω × (0, T ] , with a discontinuous initial condition

u0(x) =
{
0 x ∈ (0, 0.5]
1 x ∈ (0.5, 1).

(47)

The function f (u) = u−u3 is a smooth function of u and therefore satisfying the assumptions
(8)–(9), as mentioned in the example of semilinear parabolic equation (10).

The problem (46) has a unique solution

u ∈ C([0, T ]; L p(Ω)) ∩ C((0, T ];C0(Ω)), with u /∈ C([0, T ]; L∞(Ω)).

Therefore, X = L∞(Ω) does not fit the abstract problem directly. Nevertheless, the smooth-
ing property of the heat semigroup guarantees that u(·, t) ∈ C0(Ω) for arbitrarily small t > 0
and therefore X = C0(Ω) would fit the abstract problem if we replace the initial time t = 0
by an infinitesimal positive time. Therefore, Theorem 1 implies that the numerical solution
given by (14)-(15) has an error bound of

‖un − u(tn)‖C0(Ω) ≤ Cτ k

for sufficiently large K = O(ln(1/τ)).
We solve (46) by the method (14)–(15) with β = 3

4 for k = 2 and k = 3, respectively,
using α = π

4 and K = 10 log(1/τ) quadrature nodes, and investigate the time discretization
errors of the proposed time steppingmethod for several different T . The spatial discretization
is done by using the standard finite difference method with a sufficiently small mesh size
2−10 so that further decreasing spatial mesh size has negligible influence in observing the
order of convergence in time. The errors of numerical solutions between two consecutive
stepszies are presented in Tables 1 and 2, where the orders of convergence are computed by
the formula

order of convergence = log

( ‖u(τ )
N − u(τ/2)

N ‖C0(Ω)

‖u(τ/2)
N − u(τ/4)

N ‖C0(Ω)

)
/ log(2)

based on the finest three meshes. The orders of convergence observed in these numerical
tests are O(τ k), which is consistent with the theoretical result proved in Theorem 1.

For comparison with the exponential integrator, we also present in Table 3 the numerical
results for the Crank–Nicolson method, 2-stage Gauss Runge–Kutta method and 2-stage
Radau Runge–Kutta method for (46), with uniform stepsize τ = T /N . The numerical results
in Table 3 show that the standard Crank–Nicolson method and Gauss Runge–Kutta method
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Table 1 Numerical results of ‖u(τ )
N − u(τ/2)

N ‖C0(Ω)
for k = 2

T = 1/2 T = 1/4 T = 1/8 T = 1/16

τ =1/64 2.934×10−6 3.935×10−6 1.286×10−6 1.864×10−6

τ =1/128 7.410×10−7 9.351×10−7 3.053×10−7 7.297×10−7

τ =1/256 1.779×10−7 2.269×10−7 7.735×10−8 1.838×10−7

Order of convergence O(τ2.1) O(τ2.0) O(τ2.0) O(τ2.0)

Table 2 Numerical results of ‖u(τ )
N − u(τ/2)

N ‖C0(Ω)
for k = 3

T = 1/2 T = 1/4 T = 1/8 T = 1/16

τ =1/64 2.082×10−7 5.807×10−8 2.945×10−7 3.425×10−7

τ =1/128 2.614×10−8 7.756×10−9 3.188×10−8 4.129×10−8

τ =1/256 2.928×10−9 9.988×10−10 3.982×10−9 5.064×10−9

Order of convergence O(τ3.1) O(τ3.0) O(τ3.0) O(τ3.0)

Table 3 Numerical results of ‖u(τ )
N − u(τ/2)

N ‖C0(Ω)
at T = 1/2 (with h = 2−14)

τ =1/256 τ =1/512 τ =1/1024 Order of convergence

Crank–Nicolson 1.465×10−1 1.466×10−1 1.466×10−1 O(τ0.0)

Gauss Runge–Kutta (2 stages) 2.930×10−1 2.930×10−1 2.933×10−1 O(τ0.0)

Radau Runge–Kutta (2 stages) 2.215×10−8 1.085×10−8 4.022×10−9 O(τ1.2)

cannot yield any convergence rates. Indeed, these two methods do not satisfy the condition
|r(∞)| < 1 in [4, Theorem 1] when proving (10). This shows the necessary of this condition
in solving problems with nonsmooth initial data. The numerical results in Table 3 also show
that the 2-stage Radau Runge–Kutta method has roughly first-order convergence, instead of
the optimal third-order convergence, for nonsmooth initial data.

5 Conclusion

Wehave proved that a variable stepsize exponentialmultistep integrator, with contour integral
approximation of the operator-valued exponential functions, can produce high-order accurate
numerical solutions for a semilinear parabolic equation with nonsmooth initial data (with no
differentiability at all). The numerical example also supports this theoretical result. Both the
regularity analysis and the error analysis in this paper can be similarly extended to semilinear
parabolic equations with time-dependent coefficients. However, the extension to quasilinear
parabolic equations with nonsmooth initial data is not trivial.

The proposed method in this paper is essentially the multistep ETD with variable stepsize
and contour integral approximation to the exponential operator. We have proved the first
high-order convergence result in approximating semilinear parabolic equations with nons-
mooth initial data (without any regularity in addition to u0 ∈ X ). For smooth initial data
the exponential time differencing Runge–Kutta (ETD–RK) method would have the same
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complexity as the proposed multistep exponential integrator in this paper, both requiring to
solve the equation for O(τ−1) time levels to achieve the accuracy of O(τ k). However, since
high-order accuracy of ETD–RKmethod has not been proved for nonsmooth initial data, the
computational complexity of ETD–RK to achieve the accuracy of O(τ k) is still unknown in
this case. We believe the techniques of this paper may also be adapted to ETD–RK to yield
high-order convergence for nonsmooth initial data.
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