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Abstract. A stable and convergent second-order fully discrete finite difference scheme with efficient
approximation of the exact absorbing boundary conditions is proposed to solve the Cauchy problem of one-
dimensional Schrödinger equation. Our approximation is based on the Padé expansion of the square root
function in the complex plane. By introducing a constant damping term to the governing equation and
modifying the standard Crank-Nicolson implicit scheme, we show that the fully discrete numerical scheme is
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1. Introduction. The Schrödinger equation describes the time evolution of a phys-
ical system in which the quantum effects are significant. It also appears in some other
applications, such as underwater acoustics and optics [23, 29, 30]. This work is concerned
with an effficient numerical method for the Cauchy problem of one-dimensional Schrödinger
equation:

i ∂tψ(x, t) = −∂2
xψ(x, t) + V (x)ψ(x, t) + Vex(x, t)ψ(x, t), x ∈ R, (1.1)

lim
|x|→+∞

ψ(x, t) = 0, ψ(x, 0) = ψ0(x), x ∈ R, (1.2)

where i =
√
−1 denotes the imaginary unit, ψ(x, t) the complex-valued wave function to

be determined, V (x) a real-valued nuclear potential, and Vex(x, t) a real-valued external
electric potential.

Over the past few decades, great efforts have been made to overcome the numerical
difficulties arising from solving PDEs in unbounded domains. Among these efforts, the
artificial boundary method turns out to be very successful, see the monograph [19] and
the review papers [4, 11, 12, 14, 33]. The key step of the artificial boundary method is
the construction of suitable boundary conditions on some artificial boundaries. By this
approach, the original problems in the whole space are reduced to problems on bounded
domains, which can be solved by grid-based numerical methods. For wave-like problems,
these boundary conditions are usually referred to as absorbing boundary conditions (ABCs)
in the literature. ABCs are called exact if they render the solutions of truncated domain
problems exactly the same as those of unbounded domain problems.

For the Schrödinger equation, the exact ABCs are nonlocal in time, containing some
temporal convolutions in the formulations [7, 18]. The nonlocal convolutions in the ex-
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act ABC cause many difficulties in developing and analyzing numerical methods for the
truncated problem in bounded domains [5, 31]. On the one hand, only sub-optimal error
estimate has been proved for the Schrödinger equation under exact ABCs [31, Theorem 4.3].
On the other hand, fast evaluation of temporal convolutions is important when the number
of time steps is large (this occurs in long-time evolution or small time-step simulations, and
at the n-th time step O(n) operations are needed to compute the convolution integral, which
results in a total computational cost of O(N2) in operations and O(N) in memory, with
N denoting the number of time steps). Fast convolution algorithms with essentially linear
complexity O(N ln2N) and memory O(N) have been developed in [9, 16]. Fast algorithms
with less memory requirements are also extensively studied. This kind of algorithms usu-
ally utilizes the summation of exponentials to approximate the convolution kernel (see [21]
for an exception), and transform a temporal convolution to a sequence of first order ODE
problems. The derivation of exponentials can be done through quadrature approximation
in the time domain [8, 22, 36], direct rational approximation of kernel symbols [2, 25], or
quadrature approximation of contour integrals in the Laplace domain [28]. While maintain-
ing the almost optimal complexity in terms of operations count, i.e. O(N lnN) or O(N),
these algorithms can reduce the memory requirement to at most O(lnN).

There are some works on high-order local ABCs for the Schrödinger equation which have
considered accelerating long time simulations by using the Padé approximation [6, 32, 34, 35].
However, no analysis has been given for choosing the explicit order of Padé approximation for
the fast numerical solutions to achieve optimal-order convergence. In [36], Zheng investigated
the convergence of a fast algorithm for the one-dimensional heat equation. However, the
analysis technique cannot be directly extended to the Schrödinger equation.

The objective of this paper is to construct a stable and convergent numerical method,
integrating an efficient evaluation of the exact ABC as well, for solving the Cauchy problem
of one-dimensional Schrödinger equation. To this end, we first reformulate the Schrödinger
equation into an equivalent form with a constant damping term σ, and then construct a per-
turbed Crank-Nicolson scheme to discretize the reformulated problem in time. Specifically,
we apply the Z-transform to the reformulated Schrödinger equation to derive a discrete
ABC for the temporally discretized problem, and then propose a second-order finite differ-
ence scheme for further spatial discretization. By using the (m,m)-Padé rational expansion
of the square root function [25], we introduce an efficient algorithm to approximate the
discrete convolution involved in the discrete ABC, which is reformulated as a system of
differential equations by applying Lindman’s idea [24]. The construction of the damping
term and the perturbation of the Crank-Nicolson discretization are the key ingredients to
maintain the stability of the resulting fully discrete numerical scheme. Finally, we present
numerical analysis for the proposed numerical method to guarantee the optimal-order con-

vergence by explicitly prescribing the order of Padé expansion m = ln 1/8(στ)9/2

2 ln(1−(στ)1/2)
, where τ

denotes the step size of time discretization. If T is the length of the time interval, we can
choose the the parameter σ = 1/T and step size τ = T/N in the numerical simulations.
The number of auxiliary variables, m, behaves asymptotically like 9

4

√
N lnN . Therefore,

the proposed algorithm requires O(
√
N lnN) storage and the additional computational cost

O(N
3
2 lnN) to evaluate the exact ABCs.

The rest of this paper is organized as follows. In section 2, we introduce the setting
of the problem, reformulating the problem by constructing a damping factor in time, and
deriving the exact ABC for the reformulated equation. In section 3, we propose temporal and
spatial discretizations for the reformulated equation on a truncated computational domain.
In sections 4, we introduce the Padé approximation of the fully discrete numerical method,
as well as the resulting algorithm for practical computation. In section 5, we determine the
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order of Padé expansion and prove the optimal-order convergence of the numerical solutions.
Numerical examples are provided in section 6 to illustrate the effectiveness of the proposed
numerical method.

2. Construction of exact ABCs. We assume that the initial wave function ψ0(x)
and the nuclear potential V (x) in (1.1)-(1.2) are smooth functions with compact supports.
Besides, the external electric potential function Vex(x, t) is smooth and has constant tail
parts when the location point is suitably far away from the origin. If we set

Ṽ (x, t) =

∫ t

0

Vex(x, s)ds, A(x, t) = −∂xṼ (x, t),

then the above assumptions imply the existence of two real numbers x± such that

ψ0(x) = 0, A(x, t) = 0, V (x) = 0, ∀x ∈ (−∞, x−] ∪ [x+,∞). (2.1)

Let us introduce a new wave function

u(x, t) = eiṼ (x,t)−σtψ(x, t),

where σ ∈ [0, 1] is an auxiliary parameter for controlling the stability of the algorithm to be
introduced in this paper. Generally, we set σ = T−1 with T being the evolutionary time.
It is straightforward to verifty that the function u(x, t) solves the following initial value
problem:

i(∂t + σ)u(x, t) = L(t)u(x, t), ∀x ∈ R, ∀ t > 0,

u(x, 0) = ψ0(x), ∀x ∈ R,
lim

|x|→+∞
u(x, t) = 0, ∀ t > 0,

(2.2)

where the time-dependent linear operator L(t) is defined by

L(t) = −[∂x + iA(x, t)]2 + V (x). (2.3)

To obtain exact ABCs for the problem (2.2), we first consider the following exterior
problem on the semi-infinite interval [x+,+∞):

i(∂t + σ)u(x, t) = −∂2
xu(x, t), ∀x ∈ [x+,+∞), ∀ t > 0, (2.4a)

u(x, 0) = 0, ∀x ∈ [x+,+∞), (2.4b)

lim
x→+∞

u(x, t) = 0, ∀ t > 0. (2.4c)

The Laplace transform of (2.4) in time yields

i(z + σ)û(x, z) = −∂2
xû(x, z), ∀x ∈ [x+,∞), ∀ z ∈ C+, (2.5)

lim
x→∞

û(x, z) = 0, ∀ z ∈ C+, (2.6)

where C+ stands for the right half part of the complex plane. The general solution of the
equation (2.5) is

û(x, z) = c1(z) exp
(
−x
√
−i(z + σ)

)
+ c2(z) exp

(
x
√
−i(z + σ)

)
,

where
√
· denotes the square root with nonnegative real part. Clearly, the infinity boundary

condition (2.6) implies c2(z) = 0. Consequently, by differentiating the last equation we
obtain

∂xû(x, z) = −
√
−i(z + σ) û(x, z), ∀x ∈ [x+,+∞), ∀ z ∈ C+, (2.7)

whose inverse Laplace transform yields an absorbing boundary condition at x+:√
−i(∂t + σ)u(x+, t) + ∂xu(x+, t) = 0, ∀ t > 0. (2.8)
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In the above,
√
−i(∂t + σ) stands for the multiplier operator (in time) associated with the

symbol
√
−i(z + σ), namely,√
−i(∂t + σ)u(x+, t) := L −1

z [
√
−i(z + σ) û(x+, z)](t), ∀ t > 0,

with L −1
z denoting the inverse Laplace transform with respect to z-variable.

A similar boundary condition can be derived at x−:√
−i(∂t + σ)u(x−, t)− ∂xu(x−, t) = 0, ∀ t > 0. (2.9)

In view of (2.8) and (2.9), the solution of (2.2) is the same as the solution of the following
problem in a bounded domain:

i(∂t + σ)u(x, t) = L(t)u(x, t), ∀x ∈ (x−, x+), ∀ t > 0,√
−i(∂t + σ)u(x±, t) + ∂νu(x±, t) = 0, ∀ t > 0,

u(x, 0) = ψ0(x), ∀x ∈ [x−, x+],

(2.10)

where ∂ν denotes the outward normal derivative at the boundary points x±.

3. Discretization of (2.10). In this section, we discretize (2.10) in time by the Crank-
Nicolson scheme with an O(τ2) perturbation, with convolution quadrature for discretizing
the fractional time derivative at the boundary points. The O(τ2) perturbation is proposed to
guarantee the stability and convergence of an efficient algorithm to be introduced in section
4.

We first introduce the notations of Z-transform in the following subsection.

3.1. Z-transform of a sequence of functions. Given a Hilbert space H with the
inner product (·, ·)H and the induced norm ‖ ·‖H, let us introduce the semi-infinite sequence
spaces:

`2(H) =

{
g = {gn}∞n=0 : gn ∈ H, ‖g‖`2(H) ≡

( ∞∑
n=0

‖gn‖2H
) 1

2

<∞
}
,

`20(H) =
{
g = {gn}∞n=0 ∈ `2(H) : g0 = 0

}
.

The linear space `2(H) is a Hilbert space with the inner product

(f, g)`2(H) ≡
∞∑
n=0

(fn, gn)H, ∀f, g ∈ `2(H).

For any element in g = {gn}∞n=0 ∈ `2(H), we define its Z-transform as g̃(z) =
∑∞
n=0 g

nzn,
which is an H-valued function holomorphic in the unit disk D. The limit g̃(z) = limr↗1 g̃(rz)
exists in L2(∂D;H), and the following Parseval’s identity holds:

(f, g)`2(H) =

∫
∂D

(f̃(z), g̃(z))H µ(dz), ∀f, g ∈ `2(H). (3.1)

For a sequence f = {fn}∞n=0 ∈ `2(H), we define the shift operator S by Sf = {fn+1}∞n=0.
The average operator E and the forward difference quotient operator Dτ are defined by

E =
S + I

2
and Dτ =

S − I
τ

,

respectively. Besides, we make the following notations our convention:

Sfn = (Sf)n, Efn = (Ef)n, Dτf
n = (Dτf)n.
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It is straightforward to verify that

S̃f(z) = z−1f̃(z), Ẽf(z) =
z−1 + 1

2
f̃(z), D̃τf(z) =

z−1 − 1

τ
f̃(z), ∀f ∈ `20(H). (3.2)

Besides, for all f, g ∈ `2(H) the following identities hold:

Dτ (fngn) = fnDτg
n + gnDτf

n + τDτf
nDτg

n, ∀n ≥ 0, (3.3)

Re(Dτf
n, Efn)H =

1

2
Dτ‖fn‖2H, ∀n ≥ 0. (3.4)

The identities (3.1) and (3.2)-(3.4) will be used frequently in this paper.

3.2. A perturbed Crank-Nicolson scheme. We shall derive a time-stepping scheme
for (2.10) from the time discretization of the original problem (1.1). Let τ > 0 be the time
step and let us set tn = nτ . We discretize (2.2) in the following way:

i(Dτ + σE)un(x) = Ln+ 1
2 (E + στ2Dτ )un(x), ∀x ∈ R, ∀n ≥ 0,

u0(x) = ψ0(x), ∀x ∈ R,
lim

|x|→+∞
un(x) = 0, ∀n ≥ 1,

(3.5)

where un(x) ≈ u(x, tn) and Ln+ 1
2 = L(tn+ 1

2
); see (2.3). The scheme (3.5) differs from the

standard Crank-Nicolson scheme by the small term Ln+ 1
2στ2Dτu

n(x).

In view of assumption (2.1), on the interval [x+,+∞) the semi-discrete problem (3.5)
reduces to

i(Dτ + σE)un(x) = −∂2
x(E + στ2Dτ )un(x), ∀x ∈ [x+,+∞), ∀n ≥ 0,

u0(x) = 0, ∀x ∈ [x+,+∞),

lim
x→+∞

un(x) = 0, ∀n ≥ 1.

(3.6)

Let ũ(x, z) denote the Z-transform of the sequence {un(x)}∞n=0. Applying the Z-transform
to (3.6) and using (3.2), we obtain

1

iτ
δ(z, σ)ũ(x, z)− ∂2

xũ(x, z) = 0, ∀x ∈ [x+,+∞),

lim
x→+∞

ũ(x, z) = 0,

where

δ(z, σ) =
2− 2z + στ(1 + z)

1 + z + 2στ(1− z)

may be viewed as the generating function for time discretization [27].

The solution ũ of the equation above can be generally expressed as

ũ(x, z) = c+1 exp

(
x

√
−i δ(z, σ)

τ

)
+ c+2 exp

(
−x
√
−i δ(z, σ)

τ

)
.

The condition lim
x→+∞

ũ(x, z) = 0 implies c+1 = 0. This leads to the following identity (by

differentiating ũ(x, z) with respect to x):

∂xũ(x+, z) = −
√
−i δ(z, σ)

τ
ũ(x+, z), ∀z ∈ D, (3.7)

which is in analogy to the continuous case (2.7).
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Note that the function

K̃(z) =
√
−iδ(z, σ) (3.8)

is analytic in the unit disk D. Thus it has a power series expansion

K̃(z) =

∞∑
j=0

Kjz
j , ∀ z ∈ D. (3.9)

Substituting (3.9) and ũ(x, z) =
∑∞
n=0 u

n(x)zn into (3.7) yields an exact absorbing boundary
condition for (3.5) at the right artificial boundary point x = x+:

τ−
1
2 (K∗u)n(x+) + ∂xu

n(x+) = 0, ∀n ≥ 0,

where K∗ is the convolution quadrature operator corresponding to the symbol K̃(z), namely,

(K∗u)n =

n∑
j=0

Kju
n−j . (3.10)

For the simplicity of notations, for a function u(x, t) we denoteK∗u(x, tn) =

n∑
j=0

Kj u(x, tn−j).

Analogously, by analyzing the problem (3.5) on (−∞, x−], we derive an exact absorbing
boundary condition at the left artificial boundary point x = x−:

τ−
1
2 (K∗u)n(x−)− ∂xun(x−) = 0, ∀n ≥ 1.

Consequently, the semi-discrete problem (3.5), originally defined on the the whole space,
can be reduced to the following semi-discrete problem on a bounded domain:

i(Dτ + σE)un(x) = Ln+ 1
2 (E + στ2Dτ )un(x), ∀x ∈ (x−, x+), ∀n ≥ 0,

τ−
1
2 (K∗u)n(x±) + ∂νu

n(x±) = 0, ∀n ≥ 0,

u0(x) = ψ0(x), ∀x ∈ [x−, x+].

(3.11)

Comparing (3.11) with (2.10), we see that the equation is discretized by a Crank-
Nicolson scheme subject to an O(τ2) perturbation, with a convolution quadrature approx-
imation to the fractional-order time derivative at the boundary points x±. Since the time
discretization (3.5) in the whole space is of second order, it follows that the induced convo-
lution quadrature at the boundary points x± in (3.11) is also second order:

|τ− 1
2 (K ∗ u±)n −

√
−i(∂t + σ)u(x±, tn)| ≤ Cτ2, (3.12)

where un± := u(x±, tn). A proof of (3.12) is presented in Appendix A based on the ideas of
[26, 27].

3.3. Spatial discretization. Let M be a positive integer, h = (x+ − x−)/M be the
mesh size, and τ > 0 be the time step. We define the mesh points

xk = x− +

(
k − 1

2

)
h, k = 0, 1, · · · ,M + 1,

tn = nτ, n = 0, 1, · · · , N,
with x0 and xM+1 being two ghost points.

Given a vector v = (v0, · · · , vM+1) ∈ CM+2, we introduce the discrete gradient ∇hv as
the (M + 1)-dimensional vector (∇hv0, · · · ,∇hvM ) defined by

∇hvk =
vk+1 − vk

h
, k = 0, 1, · · · ,M.
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The linear operator which maps the (M + 2)-dimensional vector v = (v0, · · · , vM+1) to the
M -dimensional vector (v1, · · · , vM ) will be denoted by P. The linear operator which maps
v to the (M + 1)-dimensional vector (v0, · · · , vM ) will be denoted by Q. Besides, we define
the Neumann and Dirichlet data associated with the (M + 2)-dimensional vector v as

∂−ν v =
v0 − v1

h
, ∂+

ν v =
vM+1 − vM

h
, γ−v =

v0 + v1

2
, γ+v =

vM+1 + vM
2

.

We introduce an inner product in the M -dimensional vector space as

(φ, ϕ)h = h

M∑
k=1

φ̄kϕk,

and an inner product in the (M + 1)-dimensional vector space as

〈χ, ω〉h =
h

2
χ̄0ω0 + h

M−1∑
k=1

χ̄kωk +
h

2
χ̄MωM .

Correspondingly, the induced norms will be denoted by

‖φ‖h =
√

(φ, φ)h, |χ|h =
√
〈χ, χ〉h.

We introduce a second-order spatial discretization Lnh for the continuous differential
operator L(tn), which maps the (M + 2)-dimensional vector space to the M -dimensional
vector space:

Lnhv = ((Lnhv)1, · · · , (Lnhv)M ), ∀ v = (v0, · · · , vM+1),

with

(Lnhv)k =
2vk − vk+1 − vk−1

h2
+
A(xk+ 1

2
, tn)vk+1 −A(xk− 1

2
, tn)vk−1

ih

+ [V (xk) +A2(xk, tn)]vk.

For the simplicity of notations, we use the abbreviation Lnhvk := (Lnhv)k. A direct computa-
tion shows that for all (M + 2)-dimensional vectors v and w, the following discrete Green’s
formula holds (with element-wise multiplication by Un and An)

(Pv,Lnhw)h = 〈∇nhv,∇nhw〉h + (Pv, UnPw)h − γ±v · ∂±ν w, (3.13)

where ∇nh = ∇h+iAnQ, An = (An0 , · · · , AnM ) and Un = (Un1 , · · · , UnM ) with the components
determined by

Ank = A(xk+ 1
2
, tn), Unk = V (xk) +A2(xk, tn)−A2(xk+ 1

2
, tn).

In the time-stepping scheme (3.11), replacing the function un(x) by the vector un =

(un0 , · · · , unM+1) and replacing the continuous operator Ln+ 1
2 with its discrete analogue

Ln+ 1
2

h , we obtain the following fully discrete finite difference scheme:

i(Dτ + σE)Pun = Ln+ 1
2

h (E + στ2Dτ )un, ∀n ≥ 0, (3.14)

τ−
1
2 (K ∗ γ±u)n + ∂±ν u

n = 0, ∀n ≥ 0, (3.15)

u0 = (ψ0(x0), · · · , ψ0(xM+1)). (3.16)

4. Efficient approximation of (3.14)-(3.16). In this section, we introduce an effi-
cient algorithm for approximating the solution of (3.14)-(3.16). The stability and conver-
gence of the proposed algorithm will be presented in the next section.
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4.1. Rational approximation of the convolution quadrature. Prescribed a non-
negative integer m > 0, the (m,m)-order Padé approximation for the function

√
1 + s can

be expressed as (see [25])

√
1 + s ≈ 1 +

m∑
j=1

ajs

1 + bjs
,

where

aj =
2

2m+ 1
sin2 jπ

2m+ 1
, bj = cos2 jπ

2m+ 1
, j = 1, · · · ,m.

Based on the Padé approximation, we design a rational approximation for the square root
function

√
s on the closed right half complex plane:

√
s =
√

1 + s− 1 ≈ 1 +

m∑
j=1

aj(s− 1)

1 + bj(s− 1)
≡ Rm(s), Re(s) ≥ 0.

We can rewrite Rm(s) as

Rm(s) = λ−
m∑
j=1

1

cjs+ dj
,

λ = 1 +

m∑
j=1

ajb
−1
j , cj = a−1

j b2j , dj = a−1
j bj(1− bj), j = 1, · · · ,m.

(4.1)

The following result was proved in [25].

Lemma 4.1. Let

γ(s) :=

√
s− 1√
s+ 1

and Em(s) :=
√
s−Rm(s), m = 0, 1, 2, · · ·

Then the following identity holds:

Em(s) = 2
√
s

γ2m+1(s)

1 + γ2m+1(s)
, if Re(s) ≥ 0 and s 6= 0. (4.2)

For all τ > 0 and σ > 0, let us introduce the rational approximation K̃(m)(z) of the

symbol K̃(z):

K̃(m)(z) := i−
1
2Rm(δ(z, σ)), ∀m ≥ 0. (4.3)

We denote by K(m)∗ the convolution operator analogously defined as (3.10), by replacing the
convolution coefficients Kj in (3.10) with the series expansion coefficients of the function

K̃(m)(z). After replacing the convolution operator K∗ in (3.14)-(3.16) with its rational
approximation K(m)∗, we obtain the following fully discrete scheme:

i(Dτ + σE)Pun = Ln+ 1
2

h (E + στ2Dτ )un, ∀n ≥ 0,

τ−
1
2 (K(m) ∗ γ±u)n + ∂±ν u

n = 0, ∀n ≥ 0,

u0 = (ψ0(x0), · · · , ψ0(xM+1)).

(4.4)

In the practical computation, (4.4) can be solved by an efficient algorithm described in the
next subsection.
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4.2. Implementation algorithm. Let us define vn := (E + στ2Dτ )un for n ≥ 0.
Then we have

un+1 =
2vn − (1− 2στ)un

1 + 2στ
, ∀n ≥ 0,

(Dτ + σE)Pun =
2 + στ

τ(1 + 2στ)
Pvn − 2− 2σ2τ2

τ(1 + 2στ)
Pun, ∀n ≥ 0.

By applying (4.1) to (4.3), we derive

i
1
2 K̃(m)(z) = λ−

m∑
j=1

1

cjδ(z, σ) + dj

= λ−
m∑
j=1

1

cj
2+στ+(στ−2)z

1+2στ+(1−2στ)z + dj

= λ−
m∑
j=1

ej + fjz

1 + gjz
= λ−

m∑
j=1

ej −
m∑
j=1

(fj − ejgj)z
1 + gjz

,

where we have set

ej =
1 + 2στ

cj(2 + στ) + dj(1 + 2στ)
,

fj =
1− 2στ

cj(2 + στ) + dj(1 + 2στ)
,

gj =
cj(στ − 2) + dj(1− 2στ)

cj(2 + στ) + dj(1 + 2στ)
.

Therefore, we have

τ−
1
2 K̃(m)(z) = λ̃−

m∑
j=1

f̃jz

1 + gjz
,

where λ̃ = (iτ)−
1
2 (λ−

∑m
j=1 ej) and f̃j = (iτ)−

1
2 (fj − ejgj). The last identity implies

τ−
1
2 K̃(m)(z)γ±ṽ(z) = λ̃γ±ṽ(z)−

m∑
j=1

f̃jz

1 + gjz
γ±ṽ(z).

To simplify the notations, we set w̃j,± =
f̃j

1+gjz
γ±ṽ(z). Therefore, we derive

w̃j,± + gjzw̃j,± = f̃jγ
±ṽ(z),

τ−
1
2 K̃(m)(z)γ±ṽ(z) = λ̃γ±ṽ(z)−

m∑
j=1

zw̃j,±.

The inverse Z-transform of the last two equations yields

wnj,± + gjw
n−1
j,± = f̃jγ

±vn,

τ−
1
2 (K(m) ∗ γ±v)n = λ̃γ±vn −

m∑
j=1

wn−1
j,± .
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Consequently, the fully discrete scheme (4.4) can be written into an equivalent form:

i(2 + στ)

τ(1 + 2στ)
Pvn − Ln+ 1

2

h vn =
i(2− 2σ2τ2)

τ(1 + 2στ)
Pun, ∀n ≥ 0,

∂±ν v
n + λ̃γ±vn −

m∑
j=1

wn−1
j,± = 0, ∀n ≥ 0,

wnj,± + gjw
n−1
j,± = f̃jγ

±vn, ∀n ≥ 0,

u0 = (ψ0(x0), · · · , ψ0(xM+1)) and w−1
j,± = 0, j = 1, · · · ,m.

(4.5)

Given un with n ≥ 0, one can solve vn and wn from (4.5), and then update un+1 by using
the identity vn = (E + στ2Dτ )un. The scheme (4.5) is equivalent to (4.4) but does not
require evaluating discrete convolutions at the boundary points x±.

5. Error estimate. In this section, we prove the following theorem on the convergence
of the numerical solutions given by (4.4).

Theorem 5.1. Assume that the solution u of (2.10) is sufficiently smooth, or equiv-
alently, the solution ψ of (1.1) is sufficiently smooth. Let ηn = (ηn0 , · · · , ηnM+1), with
ηnj = u(xj , tn) − unj denoting the error of the numerical solution given by the algorithm

(4.4) for solving (2.10). If the time step τ is small enough such that στ ∈ (0, 1
2 ], and the

order m of the Padé approximation is sufficiently large such that

2m+ 1 ≥ ln ε

ln(1− (στ)
1
2 )
, for some ε ∈

(
0,

(στ)
9
2

8

]
, (5.1)

then we have the following error estimate:

max
1≤n≤[T/τ ]

(
‖Pηn‖h + |∇nhηn|h

)
≤ CT (τ2 + h2), (5.2)

where CT is a constant depending on T .

The proof of Theorem 5.1 is presented in the following two subsections.

5.1. Properties of the rational approximation K̃(m)(z). By using (3.8) one can

prove that the symbol K̃(z) satisfies the following inequalities (see Appendix B):

max
z∈∂D

|K̃(z)| ≤ (στ)−
1
2 , min

z∈∂D
|K̃(z)| ≥ (στ)

1
2 if στ ∈

(
0,

1

2

]
, (5.3)

max
z∈∂D

Im K̃(z) ≤ − (στ)
3
2

2
, min

z∈∂D
Re K̃(z) ≥ (στ)

3
2

2
, if στ ∈

(
0,

1

2

]
. (5.4)

Lemma 5.2. Under the conditions στ ∈
(
0, 1

2

]
and (5.1), we have

max
z∈∂D

Im K̃(m)(z) ≤ 0 and max
z∈∂D

Im
(
K̃(z)2K̃(m)(z)

)
≤ 0, (5.5)

max
z∈∂D

|K̃(m)(z)− K̃(z)| ≤ (στ)4

2
. (5.6)

Proof. Let us set s(z) =
2− 2z + στ(1 + z)

1 + z + 2στ(1− z)
, which satisfies the following inequality (see

Appendix B):

max
z∈∂D

|γ(s(z))| ≤ 1− (στ)
1
2 , ∀στ ∈

(
0,

1

2

]
. (5.7)
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If 2m+ 1 ≥ ln ε

ln(1−(στ)
1
2 )

, then
[
1− (στ)

1
2

]2m+1

≤ ε ≤ 1
2 . As a result, Lemma 4.1 implies

max
z∈∂D

∣∣∣∣∣K̃(z)− K̃(m)(z)

K̃(z)

∣∣∣∣∣ = max
z∈∂D

∣∣∣∣ 2γ2m+1(s(z))

1 + γ2m+1(s(z))

∣∣∣∣ ≤ max
z∈∂D

2 |γ(s(z))|2m+1

1− |γ(s(z))|2m+1 ≤ 4ε.

Consequently, by using (5.3) and (5.1) we have

max
z∈∂D

|K̃(m)(z)− K̃(z)| ≤ 4ε|K̃(z)| ≤ (στ)4

2
.

Since ε ≤ (στ)
9
2

8 ≤ (στ)2

8 , it follows that

max
z∈∂D

Im K̃(m)(z) = max
z∈∂D

[
Im K̃(z)− Im

(
K̃(z)− K̃(m)(z)

)]
≤ − (στ)

3
2

2
+ 4ε max

z∈∂D
|K̃(z)| ≤ − (στ)

3
2

2
+ 4ε(στ)−

1
2 ≤ 0.

Besides, we have

max
z∈∂D

(
Im K̃(z)2K̃(m)(z)

)
= max
z∈∂D

(
Im K̃(z)2K̃(z)

)
+ max
z∈∂D

Im K̃(z)2(K̃(m)(z)− K̃(z))

≤ max
z∈∂D

Im K̃(z)|K̃(z)|2 + max
z∈∂D

|K̃(z)|2|K̃(m)(z)− K̃(z)|

≤ − (στ)
5
2

2
+ max
z∈∂D

|K̃(z)|2 (στ)4

2

≤ − (στ)
5
2

2
+

(στ)3

2
≤ 0.

The proof thus ends.

The following properties are direct consequences of (5.5).

Proposition 5.3. For all complex sequences f = {fn}∞n=0 with f0 = 0, the following
inequalities hold:

Im

n∑
k=0

fk(K(m)∗ f)k ≤ 0, ∀n ≥ 0, (5.8)

Re

n∑
k=0

(Dτ + σE)fk(K(m)∗ (E + στ2Dτ )f)k ≥ 0, ∀n ≥ 0. (5.9)

Proof. Without loss of generality, we re-define fk = 0 for k > n. This does not affect
the value of Im

∑n
k=0 f

k(K(m)∗ f)k, and we have

Im

n∑
k=0

fk(K(m)∗ f)k = Im(f,K(m)∗ f)`2(C) = Im

∫
∂D

(f̃(z), K̃(m)(z)f̃(z))C ν(dz)

= Im

∫
∂D
|f̃(z)|2K̃(m)(z) ν(dz) ≤ 0.

Analogously, without loss of generality, we re-define fk = 1−σ
1+σ f

k−1 for k > n. Then we have

(Dτ + σE)fk = 0 for k > n and thus

Re

n∑
k=0

(Dτ + σE)fk(K(m)∗ (E + στ2Dτ )fk)

= Re((Dτ + σE)f,K(m)∗ (E + στ2Dτ )f)`2(C)
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= τ−1Re

∫
∂D
|f̃(z)|2[z−1 − 1 + στ(z−1 + 1)/2]K̃(m)(z)[(z−1 + 1)/2 + στ(z−1 − 1)] ν(dz)

= (4τ)−1Re

∫
∂D
|z|−2|f̃(z)|2[2− 2z + στ(1 + z)]K̃(m)(z)[1 + z + 2στ(1− z)] ν(dz)

= (4τ)−1Re

∫
∂D
|z|−2|f̃(z)|2iK̃(z)2K̃(m)(z)|1 + z + 2στ(1− z)|2 ν(dz)

= −(4τ)−1

∫
∂D

Im
(
K̃(z)2K̃(m)(z)

)
|z|−2|f̃(z)|2|1 + z + 2στ(1− z)|2 ν(dz) ≥ 0.

This ends the proof.

5.2. Error estimate. Let u(tn) = (u(x0, tn), u(x1, tn), . . . , u(xM+1, tn)). It is straight-
forward to check that the error vector ηn defined in Theorem 5.1 satisfies the following
equation:

i(Dτ + σE)Pηn = Ln+ 1
2 (E + στ2Dτ )ηn + fn, ∀n ≥ 0, (5.10)

τ−
1
2 (K(m)∗ γ±η)n + ∂±ν η

n = gn±, ∀n ≥ 0, (5.11)

η0 = 0, (5.12)

where fn and gn± are given truncation errors of the time and space discretizations, i.e.

fn =[i(Dτ + σE)Pu(tn)− i(∂tu(tn+ 1
2
) + σu(tn+ 1

2
))]

−
[
Ln+ 1

2Eu(tn)− L(tn+ 1
2
)u(tn+ 1

2
)
]
− στ2Ln+ 1

2Dτu(tn), (5.13)

gn± =τ−
1
2 (K(m) −K)∗ γ±u(tn) +

[
τ−

1
2K∗ γ±u(tn)−

√
−i(∂t + σ)γ±u(tn)

]
+
[√
−i(∂t + σ)γ±u(tn)−

√
−i(∂t + σ)u(x±, tn)

]
+
[
∂±ν u(tn)− ∂νu(x±, tn)

]
. (5.14)

By using Taylor expansion, (3.12) and (5.6), it is straightforward to verify the following
estimate of the truncation errors (see Appendix C):

‖fn‖h + ‖Dτf
n‖h + |gn±|+ |Dτg

n
±| ≤ C(τ2 + h2). (5.15)

Then Theorem 5.1 is a consequence of the following stability estimate.

Lemma 5.4. The solution of (5.10)-(5.12) satisfies the following stability estimate:

max
1≤n≤[T/τ ]

(
‖Pηn‖2 + |∇nhηn|2h

)
≤ CT

[
max

0≤k≤n−2
‖Dτf

k‖2h + max
0≤k≤n−1

(‖fk‖2h + |Dτg
k
±|2) + max

0≤k≤n
|gk±|2

]
, (5.16)

where CT is a constant depending on T .

Proof. Since γ±η0 = 0, we have EK(m) ∗ γ±η = K(m) ∗Eγ±η. By applying the discrete
Green’s formula (3.13) and the boundary conditions (5.11), taking the imaginary part of the
inner product between (5.10) and (E + στ2Dτ )Pηn yields

1

2
(1 + σ2τ2)Dτ‖Pηn‖2h

≤ Re ((E + στ2Dτ )Pηn, (Dτ + σE)Pηn)h

= −Im (E + στ2Dτ )γ±ηn · (E + στ2Dτ )∂±ν η
n + Im ((E + στ2Dτ )Pηn, fn)h

= τ−
1
2 Im(E + στ2Dτ )γ±ηn · (E + στ2Dτ )(K(m) ∗ γ±η)n

−Im (E + στ2Dτ )γ±ηn · (E + στ2Dτ )gn± + Im ((E + στ2Dτ )Pηn, fn)h

≤ τ− 1
2 Im(E + στ2Dτ )γ±ηn ·

[
K(m) ∗ (E + στ2Dτ )γ±η

]n
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+O(1)E
(
|γ±ηn|2 + |gn±|2 + ‖Pηn‖2h

)
+O(1)‖fn‖2h.

Summing up the index n and using Proposition 5.3, we obtain

‖Pηn‖2h ≤ O(τ)

n∑
k=1

(
|γ±ηk|2 + |gk±|2 + ‖Pηk‖2h

)
+O(τ)

n−1∑
k=0

‖fk‖2h. (5.17)

Next performing the inner product with (Dτ + σE)Pηn and taking the real part, we derive

Re((Dτ + σE)Pηn,Ln+ 1
2

h (E + στ2Dτ )ηn)h + Re((Dτ + σE)Pηn, fn)h = 0.

Applying the discrete Green’s formula (3.13), we derive

Re((Dτ + σE)Pηn,Ln+ 1
2

h (E + στ2Dτ )ηn)h

= Re〈∇n+ 1
2

h (Dτ + σE)ηn,∇n+ 1
2

h (E + στ2Dτ )ηn〉h
+ Re ((Dτ + σE)Pηn, Un+ 1

2 (E + στ2Dτ )Pηn)h

− Re γ±(Dτ + σE)ηn∂±ν (E + στ2Dτ )ηn

≡ I1 + I2 + I3.

Obviously, we have

I1 ≥ (1 + σ2τ2)Re 〈∇n+ 1
2

h Dτη
n,∇n+ 1

2

h Eηn〉h

=
1

2
(1 + σ2τ2)τ−1

[
〈∇n+ 1

2

h ηn+1,∇n+ 1
2

h ηn+1〉h − 〈∇
n+ 1

2

h ηn,∇n+ 1
2

h ηn〉h
]

=
1

2
(1 + σ2τ2)

[
Dτ |∇nhηn|2h +O(1)E

(
|∇nhηn|2h + ‖Pηn‖2h

)]
.

For the term I2, it holds that

I2 = (1 + σ2τ2)Re (DτPηn, Un+ 1
2EPηn)h +O(1)E‖Pηn‖2h

=
1

2
(1 + σ2τ2)Dτ (Pηn, UnPηn)h +O(1)E‖Pηn‖2h.

For the term I3, by the discrete Green’s formula we have

I3 =τ−
1
2 Re (Dτ + σE)γ±ηn(E + στ2Dτ )(K(m) ∗ γ±η)n − Re (Dτ + σE)γ±ηn(E + στ2Dτ )gn±

=τ−
1
2 Re (Dτ + σE)γ±ηn(E + στ2Dτ )(K(m) ∗ γ±η)n

− ReDτγ±ηnEg
n
± +O(1)E

(
|γ±ηn|2 + |gn±|2

)
.

On the other hand, we have

Re ((Dτ + σE)Pηn, fn)h = Re (DτPηn, fn)h +O(1)E‖Pηn‖2h +O(1)‖fn‖2h.
Combining the above together yields

1

2
(1 + σ2τ2)Dτ

[
|∇nhηn|2h + (Pun, UnPηn)h

]
≤ −τ− 1

2 Re (Dτ + σE)γ±ηn · (E + στ2Dτ )(K(m) ∗ γ±η)n

+ ReDτγ±ηn · Egn± − Re (DτPηn, fn)h +O(1)‖fn‖2h
+O(1)E

(
|∇nhηn|2h + ‖Pηn‖2h + |γ±ηn|2 + |gn±|2

)
.

Summing up the index n, using Proposition 5.3, and using summation by parts in time for∑n−1
k=0 ReDτγ±ηn · Egn± and −

∑n−1
k=0 Re (DτPηn, fn)h, we derive

1

2
(1 + σ2τ2)τ−1

[
|∇nhηn|2h + (Pηn, UnPηn)h

]
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≤ O(1)τ−1
(
|γ±ηn|2 + |gn−1

± |2 + |gn±|2 + ‖Pηn‖2h + ‖fn−1‖2h
)

+ O(1)

n∑
k=1

(
|∇khηk|2h + ‖Pηk‖2h + |γ±ηk|2 + |gk±|2

)
+O(1)

n−1∑
k=0

(
‖fk‖2h + |Dτg

k
±|2
)

+O(1)

n−2∑
k=0

|Dτf
k|2h,

which leads to

|∇nhηn|2h ≤O(1)
(
|γ±ηn|2 + |gn−1

± |2 + |gn±|2 + ‖Pηn‖2h + ‖fn−1‖2h
)

+O(τ)

n∑
k=1

(
|∇khηk|2h + ‖Pηk‖2h + |γ±ηk|2 + |gk±|2

)
+O(τ)

n−1∑
k=0

(
‖fk‖2h + |Dτg

k
±|2
)

+O(τ)

n−2∑
k=0

|Dτf
k|2h.

(5.18)

By the discrete Sobolev imbedding theorem, we have

|γ±ηn|2 ≤ O(ε−1)‖Pηn‖2h + ε|∇nhηn|2h. (5.19)

Combining (5.17), (5.18) and (5.19), choosing ε small enough and applying the discrete
Gronwall’s inequality, we derive (5.16). The proof of Lemma 5.16 is complete.

Remark 5.1. A “good” approximation of the exact DtN operator (continuous or dis-
crete) should preserve the “sign property”. In other words, upon integration or summation
by parts, the boundary contribution due to this approximate DtN should be nonpositive or
nonnegative as in the continuous setting. When we perform the error analysis, the boundary
conditions are inhomogeneous: there exists a truncation term getting involved. The direct
consequence of this quantity is that when we perform the discrete L2-estimate, the trace of
field will get involved. See in (5.17) the first term γ±ηk. If such a term does not exist, the
discrete Gronwall’s inequality will lead to the L2-stability. In order to handle this term, we
have to resort to the H1-estimate. This is performed below (5.17), until the end of page 13.
After the H1-estimate is established, we can apply a discrete Sobolev embedding to bound the
trace term γ±ηk by the H1-norm of ηk, please see (5.19).

6. Numerical results. We now provide numerical tests to validate the theoretical
results presented in the preceding sections. The convergence order of the proposed numer-
ical scheme will be examined. As applications, we will simulate the spontaneous radiation
of a wave packet and the ionization of a ground state due to the action of time-varying
electromagnetic field.

In the calculations to guarantee the second order convergence of the proposed scheme
above, we always take σ = 1/T and determine the number of Padé expansion terms (see
Lemma 5.2) by using the following criterion:

m =
ln ε

2 ln
(

1− (στ)
1
2

) , ε =
(στ)

9
2

8
.

Noting that στ = 1/N , in this situation the m behaves asymptotically like 9
4

√
N lnN . The

additional computational cost for evaluating the ABCs obtain uN is thus O(N
3
2 lnN) flops

(see Figs. 6.2 and 6.4 below) and the computational storage requires O(
√
N lnN).

Example 1. To demonstrate the performance of our numerical scheme, we first consider
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the free Schrödinger equation (i.e. V (x) = 0) with the following exact beam-like solution

ψ(x, t) =
1√
ζ + it

exp

[
ik(x− kt)− (x− 2kt)2

4(ζ + it)

]
. (6.1)

In the above, k is a real parameter which controls the beam propagation speed, and ζ is
a positive parameter which controls the beam width. The parameter ζ should be carefully
selected, so that the initial wave function ψ(x, 0) is negligibly small outside of the spatial
computation domain [−3, 3]. In this numerical simulation, we put k = 2 and ζ = 0.04.
Besides, we set the evolutionary time as T = 2.

The left panel of Fig. 6.1 illustrates the evolution of numerical solutions. No spurious
reflection can be detected near the absorbing boundaries. The right panel of Fig. 6.1 plots
the numerical errors when we recursively double the parameters M = N from 120 to 3840.
A second-order convergence order in the L∞-norm is clearly observed.

We now take a closer look at the computational cost by comparing with the direct
scheme (3.11). The CPU time is investigated in log10 scale by increasing the total number
of time steps N = 70000, · · · , 250000 and fixing M = 100. Fig. 6.2 shows the CPU times for
the efficient evaluation and direct evaluation of the discrete ABC. One can clearly observe
the expected slope of 3/2 for the efficient evaluation.

Fig. 6.1. (Example 1) Left: the evolution of the solution. Right: the convergence order.

Fig. 6.2. (Example 1) the log-log plot for the CPU time by fixing M = 100 with different N .

Example 2. Bound states are referred to as the L2-bounded eigenfunctions of the following



16

Schrödinger eigenvalue problem:

[−∂2
x + V (x)]ψ = λψ. (6.2)

Under mild conditions, the spectrums of (6.2) lie in the real axis. The bound state associated
with the smallest point spectrum is called ground state. For some well-prepared electric
potential function V (x), besides the continuum spectrums, the point spectrums might exist.
For example, in the case that

V (x) = −3 exp(−x2),

there exists a unique bound state ψ0 shown as in the left panel of Fig. 6.6 (unnormalized),
which is associated with the point spectrum λ0 = −1.641465.

If the initial wave packet is not on the state of ψ0, part of the wave function will radiate
spontaneously. To simulate this process, we set the initial wave packet as a Gaussian, i.e.,

ψ(x, 0) = 10 exp(−x2).

We take the computational domain of interest as [−15, 15]. Note that since the spontaneous
radiation is a relatively long time process, introducing absorbing boundaries turns to be a
must to reduce the computational cost.

The left panel of Fig. 6.3 illustrates the evolution of numerical solutions until T = 50.
In this simulation, we have put M = N = 1280. The right panel in Fig. 6.3 plots the
numerical errors at T = 10 by recursively doubling the parameters M = N from 120 to 3840.
The reference solution is obtained by the spectral method in a large enough computational
domain, see [10]. Again, a second-order convergence order can be clearly observed. The
CPU time is investigated in log10 scale by increasing N = 70000, · · · , 250000 and fixing
M = 200 and T = 20. Again, from Fig. 6.4 one can see the advantage of the proposed
algorithm over the direct method, and clearly observe the expected slope of 3/2 for the
efficient evaluation.

Fig. 6.3. (Example 2) Left: the evolution of the solution. Right: the convergence order.

A bound state will remain its profile if there is no interaction between a quantum system
and its environment. However, when a time-varying electromagnetic field is imposed, the
ionization phenomenon might occur. To simulate this process, we set the magnetic potential
as

A(x, t) =
2√
π

[1− cos(t)] exp(−x2).

The computational domain is taken as [−20, 20]. We present the evolutions of the numerical
solution (left) with M = N = 1280 and the reference solution (right) in Fig. 6.5. The



17

Fig. 6.4. (Example 2) the log-log plot for the CPU time by fixing M = 200 and T = 20 with different N .

reference solution is calculated in an enlarged computational domain by employing suffi-
ciently small mesh parameters. We illustrate the field error |ψnu − ψref | in the right panel
of Fig. 6.6. Here ψnu and ψref denote the numerical solution and the reference solution,
respectively. One can see that the error is always on the scale of 10−7 up to the evolutionary
time T = 80.

Fig. 6.5. (Example 2) Left: the evolution of numerical solutions. Right: the evolution of reference
solutions.

7. Conclusion. The one-dimensional Schrödinger equation in an unbounded domain
was reformulated into an initial-boundary value problem in a bounded domain of compu-
tational interest. A fully discrete perturbed Crank-Nicolson finite difference method was
proposed to solve the reformulated initial-boundary value problem. By applying the Padé
approximation, the convolution operations in the discrete ABCs were approximated by a sys-
tem of easily-solved simple finite difference equations. A criterion determining the number
of Padé approximation terms was proposed to guarantee the optimal accuracy with respect
to the mesh parameters. It was proved that the resulting numerical method preserves the
stability and the second-order convergence order of the fully discrete finite difference scheme.
Numerical tests validated the theoretical analysis and demonstrated the effectiveness of the
proposed numerical method.

We should point out that the complexity of the scheme proposed in this paper requires
the computational cost O(N

3
2 lnN) and the storage O(

√
N lnN). While the storage re-
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Fig. 6.6. (Example 2) Left: the initial value (i.e. the eigenfunction of λ0). Right: the errors between
numerical and reference solutions.

quirement is sub-linear, the computational cost is larger than the fast summation technique
developed in [9, 16], where the optimal computational complexity was achieved. Hence, an
important issue worthy of further consideration is to accelerate the convolution in the ABCs
with almost optimal cost in both complexity and memory.
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O(
√
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Appendix A. Proof of (3.12).

By using Taylor’s expansion, it is straightforward to verify that∣∣∣τ− 1
2 K̃(e−iτξ)−

√
−i(iξ + σ)

∣∣∣ ≤ Cτ2
√
|iξ + σ||ξ|2. (A.1)

Assumption (2.1) and equation (1.1) imply that ψ(x±, t) and its time derivatives are zero
at t = 0. Consequently, by extending ψ(x±, t) to be zero on t ∈ (−∞, 0], we obtain a
sufficiently smooth function ψ(x±, t) defined for t ∈ R. We define

τ−
1
2K ∗ u(x±, t) := τ−

1
2

∞∑
j=0

Kju(x±, t− jτ), ∀ t ∈ R, (A.2)

which is consistent with the definition (3.10) at t = tn. The Fourier transform in time of
the last equation is

Ft[τ−
1
2K ∗ u(x±, t)](ξ) =

∫
R
τ−

1
2K ∗ u(x±, t)e

−itξdt

=

∞∑
j=0

∫
R
τ−

1
2Kju(x±, t− jτ)e−itξdt = τ−

1
2 K̃(e−iτξ)Ftu(x±, ξ)

=
√
−i(iξ + σ)Ftu(x±, ξ) +

(
τ−

1
2 K̃(e−iτξ)−

√
−i(iξ + σ)

)
Ftu(x±, ξ)

= Ft[
√
−i(∂t + σ)u(x±, t)](ξ) +

(
τ−

1
2 K̃(e−iτξ)−

√
−i(iξ + σ)

)
Ftu(x±, ξ),

which implies that∣∣τ− 1
2K ∗ u(x±, t)−

√
−i(∂t + σ)u(x±, t)

∣∣
=
∣∣F−1
ξ

[(
τ−

1
2 K̃(e−iτξ)−

√
−i(iξ + σ)

)
Ftu(x±, ξ)

]
(t)
∣∣
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≤
∫
R

∣∣τ− 1
2 K̃(e−iτξ)−

√
−i(iξ + σ)

∣∣|Ftu(x±, ξ)|dξ

≤ Cτ2

∫
R

√
|iξ + σ| ξ2Ftu(x±, ξ)|dξ

≤ Cτ2

∫
R

1

1 + |ξ|
(1 + |ξ|4)|Ftu(x±, ξ)|dξ

≤ Cτ2

(∫
R

1

(1 + |ξ|)2
dξ

) 1
2
(∫

R
(1 + |ξ|4)2|Ftu(x±, ξ)|2dξ

) 1
2

= Cτ2

(∫ ∞
0

(|u(x±, t)|2 + |∂4
t u(x±, t)|2)dt

) 1
2

.

By choosing t = tn in the preceding expression, we obtain (3.12).

Appendix B. Proof of (5.3)-(5.4) and (5.7).

Let ρ = i−1 2(1− z)
1 + z

. Then ρ ∈ R for z ∈ ∂D and we have

K̃(z) =
1√
iστ

√
iρ+ στ

iρ+ (στ)−1

= (στ)−
1
2

(
ρ2 + (στ)2

ρ2 + (στ)−2

) 1
4
(

cos
(π

4
− θ

2

)
− i sin

(π
4
− θ

2

))
, (B.1)

where

θ = arg

(
iρ+ στ

iρ+ (στ)−1

)
= arctan

(
ρ(στ)−1 − ρστ

1 + ρ2

)
∈
(
− π

2
,
π

2

)
. (B.2)

It is straightforward to verify that

(στ)
1
2 ≤ (στ)−

1
2

(
ρ2 + (στ)2

ρ2 + (στ)−2

) 1
4

≤ (στ)−
1
2 , if στ ∈ (0, 1]. (B.3)

This proves (5.3).

It is not difficult to verify that, for fixed στ ∈ (0, 1) and varying ρ, the angle θ attains

maximum θmax = arctan
(

(στ)−1−στ
2

)
when ρ = 1. Consequently, we have

sin
(π

4
− θ

2

)
=

√
1− sin(θ)

2
≥
√

1− sin(θmax)

2
=

√
στ

(στ)−1 + στ
≥ στ√

2
. (B.4)

Substituting (B.3)-(B.4) into (B.1) yields Im K̃(z) ≤ − (στ)
3
2√

2
. The result Re K̃(z) ≥ (στ)

3
2√

2

can be proved in the same way. This proves (5.4).

Note that√
s(z) =

√
iK̃(z) = (στ)−

1
2

(
ρ2 + (στ)2

ρ2 + (στ)−2

) 1
4
(

cos
(θ

2

)
+ i sin

(θ
2

))
= |K̃(z)|

(
cos
(θ

2

)
+ i sin

(θ
2

))
, (B.5)
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with cos
(
θ
2

)
≥ 1√

2
for θ ∈

(
− π

2 ,
π
2

)
. Using the last expression of

√
s(z), we have∣∣∣∣∣

√
s(z)− 1√
s(z) + 1

∣∣∣∣∣ =

√√√√1−
4|K̃(z)| cos

(
θ
2

)
|K̃(z)|2 + 2|K̃(z)| cos

(
θ
2

)
+ 1

≤

√
1− 2

√
2|K̃(z)|

|K̃(z)|2 +
√

2|K̃(z)|+ 1

≤ 1−
√

2|K̃(z)|
|K̃(z)|2 +

√
2|K̃(z)|+ 1

, (B.6)

where the last inequality is due to Taylor’s expansion (1−x)
1
2 = 1− 1

2x−
1
8x

2 + · · · ≤ 1− 1
2x.

By considering

d

dr

(
r

r2 +
√

2r + 1

)
=

1− r2

(r2 +
√

2r + 1)2
,

we see that the minimum value of
√

2|K̃(z)|
|K̃(z)|2+

√
2|K̃(z)|+1

is attained at either |K̃(z)| = (στ)
1
2 or

|K̃(z)| = (στ)−
1
2 , i.e.

√
2|K̃(z)|

|K̃(z)|2 +
√

2|K̃(z)|+ 1
≥ min

( √
2(στ)

1
2

στ +
√

2(στ)
1
2 + 1

,

√
2(στ)−

1
2

(στ)−1 +
√

2(στ)−
1
2 + 1

)
≥ (στ)

1
2 .

Substituting the last inequality into (B.6) yields (5.7).

Appendix C. Proof of (5.15).
We divide the proof into the following four steps.
Step 1: Note that fn = (fn1 , . . . , f

n
M ) with

fnj =[i(Dτ + σE)u(xj , tn)− i(∂tu(xj , tn+ 1
2
) + σu(xj , tn+ 1

2
))]

−
[
Ln+ 1

2Eu(xj , tn)− L(tn+ 1
2
)u(xj , tn+ 1

2
)
]
− στ2Ln+ 1

2Dτu(xj , tn). (C.1)

We estimate the three terms in the expression of fnj separately. Firstly, we have

i(Dτ + σE)u(xj , tn)− i(∂tu(xj , tn+ 1
2
) + σu(xj , tn+ 1

2
))

=i

(
u(xj , tn+1)− u(xj , tn)

τ
− ∂tu(xj , tn+ 1

2
)

)
+ iσ

(
u(xj , tn) + u(xj , tn+1)

2
− u(xj , tn+ 1

2
)

)
= O(τ2). (C.2)

Secondly, it holds that

Ln+ 1
2

h Eu(xj , tn)− L(tn+ 1
2
)u(xj , tn+ 1

2
)

=(Ln+ 1
2

h Eu(xj , tn)− Ln+ 1
2

h u(xj , tn+ 1
2
)) + (Ln+ 1

2

h u(xj , tn+ 1
2
)− L(tn+ 1

2
)u(xj , tn+ 1

2
))

=(Ln+ 1
2

h Eu(xj , tn)− Ln+ 1
2

h u(xj , tn+ 1
2
)) + (Ln+ 1

2

h u(xj , tn+ 1
2
)− L(tn+ 1

2
)u(xj , tn+ 1

2
))

= : I1 + I2, (C.3)

Since a Taylor’s expansion yields

Eu(xj , tn)− u(xj , tn+ 1
2
) =

∫ tn+1

tn

min(tn+1 − t, t− tn)∂ttu(xj , t)dt, (C.4)
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it follows that

|I1| =
∣∣∣∣ ∫ tn+1

tn

min(tn+1 − t, t− tn)Ln+ 1
2

h ∂ttu(xj , t)dt

∣∣∣∣
≤ Cτ2 max

t∈[0,T ]
max

1≤j≤M
|Ln+ 1

2

h ∂ttu(xj , t)|

≤ Cτ2‖u‖C4(Ω×[0,T ]). (C.5)

On the other hand, by the definition of Ln+ 1
2

h and L(tn+ 1
2
), we have

|I2| =
−u(xj−1, tn+ 1

2
) + 2u(xj , tn+ 1

2
)− u(xj+1, tn+ 1

2
)

h2

+
A(xj+ 1

2
, tn+ 1

2
)u(xj+1, tn+ 1

2
)−A(xj− 1

2
, tn+ 1

2
)u(xj−1, tn+ 1

2
)

ih

+ [V (xj) +A2(xj , tn+ 1
2
)]u(xj , tn+ 1

2
)

+ ∂2
xu(xj , tn+ 1

2
) + ∂x

(
iA(x, tn+ 1

2
)u(x, tn+ 1

2
)
)∣∣
x=xj

+ iA(xj , tn+ 1
2
)∂xu(xj , tn+ 1

2
)

−A2(xj , tn+ 1
2
)u(xj , tn+ 1

2
)− V (xj)u(xj , tn+ 1

2
)

=: I3 + I4, (C.6)

where

|I3| =
∣∣∣∣−u(xj−1, tn+ 1

2
) + 2u(xj , tn+ 1

2
)− u(xj+1, tn+ 1

2
)

h2
+ ∂2

xu(xj , tn+ 1
2
)

∣∣∣∣
≤ Ch2‖u‖C4(Ω×[0,T ]), (standard central difference scheme) (C.7)

and

I4 =
A(xj+ 1

2
, tn+ 1

2
)u(xj+1, tn+ 1

2
)−A(xj− 1

2
, tn+ 1

2
)u(xj−1, tn+ 1

2
)

ih

+ ∂x

(
iA(x, tn+ 1

2
)u(x, tn+ 1

2
)
)∣∣
x=xj

+ iA(xj , tn+ 1
2
)∂xu(xj , tn+ 1

2
)

= −i
A(xj+ 1

2
, tn+ 1

2
)u(xj+1, tn+ 1

2
)−A(xj− 1

2
, tn+ 1

2
)u(xj−1, tn+ 1

2
)

h
+ i∂xA(xj , tn+ 1

2
)u(xj , tn+ 1

2
) + 2iA(xj , tn+ 1

2
)∂xu(xj , tn+ 1

2
)

= −i
A(xj+ 1

2
, tn+ 1

2
)−A(xj− 1

2
, tn+ 1

2
)

h
u(xj , tn+ 1

2
)

− i
(
A(xj+ 1

2
, tn+ 1

2
)
u(xj+1, tn+ 1

2
)− u(xj , tn+ 1

2
)

h
+A(xj− 1

2
, tn+ 1

2
)
u(xj , tn+ 1

2
)− u(xj−1, tn+ 1

2
)

h

)
+ i∂xA(xj , tn+ 1

2
)u(xj , tn+ 1

2
) + 2iA(xj , tn+ 1

2
)∂xu(xj , tn+ 1

2
)

=: I5 + I6, (C.8)

where

I5 =

∣∣∣∣− iA(xj+ 1
2
, tn+ 1

2
)−A(xj− 1

2
, tn+ 1

2
)

h
u(xj , tn+ 1

2
) + i∂xA(xj , tn+ 1

2
)u(xj , tn+ 1

2
)

∣∣∣∣
≤ Ch2‖A‖C2(Ω×[0,T ])‖u‖C(Ω×[0,T ]), (C.9)

I6 = −iA(xj+ 1
2
, tn+ 1

2
)
u(xj+1, tn+ 1

2
)− u(xj , tn+ 1

2
)

h
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− iA(xj− 1
2
, tn+ 1

2
)
u(xj , tn+ 1

2
)− u(xj−1, tn+ 1

2
)

h
+ 2iA(xj , tn+ 1

2
)∂xu(xj , tn+ 1

2
)

=
(
− iA(xj , tn+ 1

2
)− i∂xA(xj , tn+ 1

2
)
h

2
+O(h2)

)(
∂xu(xj , tn+ 1

2
) +

1

2
∂xxu(xj , tn+ 1

2
)h+O(h2)

)
+
(
− iA(xj , tn+ 1

2
) + i∂xA(xj , tn+ 1

2
)
h

2
+O(h2)

)(
∂xu(xj , tn+ 1

2
)− 1

2
∂xxu(xj , tn+ 1

2
)h+O(h2)

)
= O(h2). (C.10)

The last estimate requires ∂xxxu to be bounded. Substituting (C.7)-(C.10) into (C.6) yields

I2 = O(h2). (C.11)

Then substituting (C.5) and (C.11) into (C.3) yields

Ln+ 1
2

h Eu(xj , tn)− L(tn+ 1
2
)u(xj , tn+ 1

2
) = O(h2). (C.12)

Thirdly, ∣∣∣στ2Ln+ 1
2Dτu(tn)

∣∣∣ ≤ Cτ2‖u‖C3(Ω×[0,T ]). (C.13)

Finally, by substituting (C.2) and (C.12)-(C.13) into the expression (C.1), we obtain

‖fn‖h = O(τ2 + h2).

Step 2: In the similar way (Taylor expansion), one can prove

‖Dτf
n‖h ≤ C‖u‖C5(Ω×[0,T ])h

2.

Step 3: Inequliaty (5.6) of Lemma 5.2 implies |K̃(m)(z)− K̃(z)| ≤ Cτ4. Then

K
(m)
j =

∫
∂D
K̃(m)(z)z−jµ(dz) and Kj =

∫
∂D
K̃(z)z−jµ(dz)

imply that

|K(m)
j −Kj | ≤

∫
∂D
|K̃(m)(z)− K̃(z)|µ(dz) ≤ Cτ4.

Thus it holds that∣∣∣∣ n∑
j=0

K
(m)
j un−j −

n∑
j=0

Kju
n−j
∣∣∣∣ ≤ n∑

j=0

|K(m)
j −Kj |un−j ≤

n∑
j=0

Cτ4 ≤ Cτ3,

which implies

τ−
1
2 (K(m) −K)∗ γ±u(tn) = O(τ2.5). (C.14)

Besides, (3.12) implies that

τ−
1
2K∗ γ±u(tn)−

√
−i(∂t + σ)γ±u(tn) = O(τ2). (C.15)

Since γ+v = vM+1+vM
2 and x+ = xM+1+xM

2 = xM+ 1
2
, it follows that∣∣∣∣(√−i(∂t + σ)γ±u(tn)−

√
−i(∂t + σ)u(x±, tn))

∣∣∣∣
=

∣∣∣∣
√
−i(∂t + σ)u(xM+1, tn) +

√
−i(∂t + σ)u(xM , tn)

2
−
√
−i(∂t + σ)u(xM+ 1

2
, tn)

∣∣∣∣
=O(h2), (central difference of

√
−i(∂t + σ)u) (C.16)
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and

∂+
ν u(tn)− ∂νu(x+, tn) =

u(xM+1, tn)− u(xM , tn)

h
− ∂xu(xM+ 1

2
, tn) = O(h2),

∂−ν u(tn)− ∂νu(x−, tn) = −u(x1, tn)− u(x0, tn)

h
+ ∂xu(x 1

2
, tn) = O(h2).

(C.17)

Substituting (C.14)-(C.17) into (5.14) yields

gn± = O(τ2 + h2). (C.18)

Step 4: Since

Dτg
n
± =τ−

1
2 (K(m) −K)∗ γ±Dτu(tn)

+
[
τ−

1
2K∗ γ±Dτu(tn)−

√
−i(∂t + σ)γ±Dτu(tn)

]
+
[√
−i(∂t + σ)γ±Dτu(tn)−

√
−i(∂t + σ)Dτu(x±, tn)

]
+
[
∂±ν Dτu(tn)− ∂νDτu(x±, tn)

]
, (C.19)

it follows that (C.19) can be estimated similarly as (5.14) (replacing u(x, tn) by Dτu(x, tn)).
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