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Summary

This paper is concerned with time-harmonic electromagnetic scattering from a cavity
embedded in an impedance ground plane. The fillings (which may be inhomoge-
neous) do not protrude the cavity and the space above the ground plane is empty. This
problem is obviously different from those considered in previous work where either
perfectly conducting boundary conditions were used or the cavity was assumed to be
empty. By employing the Green’s function method, we reduce the scattering problem
to a boundary-value problem in a bounded domain (the cavity), with impedance
boundary conditions on the cavity walls and an impedance-to-Dirichlet condition
on the cavity aperture. Existence and uniqueness of the solution are proved for the
weak formulation of the reduced problem. We also propose a numerical method to
calculate the radar cross section (RCS), which is a parameter of physical interest.
Numerical experiments show that the proposed model and numerical method are
efficient for the calculation of RCS from cavities.

KEYWORDS:
electromagnetic cavity, impedance boundary condition, impedance-to-Dirichlet map, existence and
uniqueness, radar cross section

1 INTRODUCTION

Radar cross section (RCS) is a measure of how detectable a target is in radar systems. A larger RCS indicates that a target is
more easily detected. Reducing the RCS from cavities is highly valuable in many applications since it dominates the target’s
overall RCS. Accurate prediction of the RCS from cavities relies on the direct electromagnetic scattering problems involving
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cavities. Well-known examples of cavities include cavity-backed antennas, jet engine inlet ducts, and cracks and gaps in the skin
of aircrafts.
Electromagnetic scattering from cavities has attracted much attention in recent years. Existing literature mainly deals with

cavities embedded in a perfectly conducting plane; e.g., see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Numerical methods
for solving these cavity problems have also been studied extensively; e.g., see [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30]. Some stability estimates on these cavity problems are given in [31, 32, 28].
When cavities are embedded in an imperfect conductor, it can be shown that the electric and magnetic fields at the surface

of the conductor satisfy impedance boundary conditions, which are more prevalent in real applications, e.g., the detection of a
target hidden in a hole on the ground plane, the detection of improvised explosive devices, etc. Although there are a wide range
of applications, little mathematical analysis exists for the problem with filled cavities embedded in an impedance ground plane.
As far as we know, the only mathematical treatment of the transient problem with overfilled cavities embedded in an impedance
ground plane is reported in [33], where the (time-domain) wave equation was first discretized in time and then reduced to a
modified Helmholtz equation −Δun+1 + �2"run+1 = f n+1 in a bounded domain with an artificial boundary condition on a
semicircle enclosing the overfilled cavity. The well-posedness of the associated variational formulation and convergence of finite
element solutions at a fixed time step were proved.
The cavity problem can be viewed as a scattering problem by locally perturbed infinite planes. We mention that some works

(on perfectly conductors or homogeneous media) are reported for problems involving locally perturbed infinite planes; e.g., see
[34, 35, 36, 37, 38]. For the case of nonlocal perturbations of infinite planes, which is called rough surface scattering, we refer
to [39, 40, 41, 42, 43, 44, 45, 46].
In this paper, we consider time-harmonic electromagnetic scattering from cavities embedded in an impedance ground plane

and assume that the fillings (which may be inhomogeneous) do not protrude the ground plane and the upper half-space is empty.
The current paper differs from the existing work on impedance ground plane in the following several aspects:
∙ By using the Green’s function in the upper half plane, we reducd the scattering problem to a boundary-value problem of the
Helmholtz equation ∇ ⋅ (a−1∇u) + k20bu = 0 in a bounded domain (cavity) with an artificial boundary condition on a part of
the boundary. The reduced Helmholtz equation in the current paper and modified Helmholtz equation studied in [33] contain
opposite signs in the Laplacian operator. This brings different mathematical difficulties in the analysis of well-posedness of
the reduced problem.

∙ The artificial boundary condition in [33] contains a nonlocal integral operator (Steklov-Poincaré operator R) acting on un+1,
while our formulation yields a boundary integral operator (impedence-to-Dirichlet) acting on a−1)yu+�u; see equation (12).
This difference motivates us to introduce an auxiliary variable w = a−1)yu in the weak formulation and the corresponding
finite element method. In particular, the weak formulation of the reduced problem is to find (u,w) ∈ H1(Ω) × H̃−1∕2(Γ)
simultaneously; see (14).

∙ Another contribution of this paper is the numerical evaluation of the impedence-to-Dirichlet boundary integral operator in
(12) by the finite element method:

GΓij = −∫
Γ

∫
Γ

(

1
�

∞

∫
0

cos((x − x0)�)

� −
√

�2 − k20

d�
)

�i(x0)�j(x) dx0dx,

where �i and �j are the basis functions of the finite element space. The improper integral with respect to � causes mathemat-
ical difficulties for the convergence of standard quadratures, as the kernel cos((x−x0)�)

�−
√

�2−k20
is not absolutely integrable with respect

to �. To overcome this difficulty, we rewrite the matrix GΓij into an equivalent form

GΓij = −
1
�

k0

∫
0

gij(�)

� + i
√

k20 − �
2
d� − 1

�

∞

∫
k0

gij(�)

� −
√

�2 − k20

d�,

with a matrix gij(�) = O(�−4) decaying sufficiently fast as � → ∞ so that both integrals above can be evaluated sufficiently
accurately by a quadrature.
Numerical examples are provided to show that the proposed model and numerical method are efficient for accurate prediction

of the RCS from cavities.
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2 THE ELECTROMAGNETIC CAVITY PROBLEM

We consider a time-harmonic electromagnetic plane wave incident on a cavity embedded in an infinite impedance ground plane,
and assume that no currents are present. The total electric and magnetic fields E and H satisfy the following time-harmonic
Maxwell’s equations (time dependence e−i!t):

{

∇ × E − i!�H = 0,

∇ ×H + i!"E = 0,
(1)

where i =
√

−1 is the imaginary unit, ! is the angular frequency and the physical parameters " and � denote, respectively,
the permittivity (farads/meter) and the permeability (henrys/meter) of the medium. Throughout the paper, we assume that the
medium is isotropic.
Let "0 and �0 denote the permittivity and the permeability of the free space. Let "+r = "

+∕"0 and �+r = �
+∕�0 be the relative

permittivity and the relative permeability of the medium inℝ3
+∪Ω, respectively, whereℝ

3
+ = {(x, y, z) ∈ ℝ3

|y > 0} denotes the
upper half-space andΩ denotes the cavity. Similarly, "−r = "

−∕"0 and �−r = �
−∕�0 denote, respectively, the relative permittivity

and relative permeability of the homogeneous medium in the complementary domain ℝ3 ⧵ (ℝ3
+ ∪ Ω). On the ground plane and

the cavity wall, we have the following impedance boundary conditions (see (1.56) and (1.57) of [47])
1
�+r
n × (∇ × E) −

ik0
�
n × (n × E) = 0, (2)

and
1
"+r
n × (∇ ×H) − ik0�n × (n ×H) = 0, (3)

where n is the unit normal pointing into the ground, k0 = !
√

"0�0 > 0 is the free space wave number, and � =
√

�−r ∕"−r is the
normalized intrinsic impedance of the homogeneous medium below the ground plane and the walls of the cavity.
We simplify the problem by using a two-dimensional model to approximate the three-dimensional problem. Assume that the

fields, the associated medium and the cavity have no variation with respect to the z-axis. Let Ω denote the cross-section of the
cavity, Γ the aperture of the cavity, S the wall of the cavity, and assume thatΩ is a bounded Lipschitz domain. Denote the upper
half-plane by ℝ2

+ = {(x, y) ∈ ℝ2
| y > 0}. Let ΓC = {y = 0} ⧵ Γ. See Figure 1 for the problem geometry.
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FIGURE 1 Cavity geometry

Two fundamental polarizations, the transverse magnetic (TM) and the transverse electric (TE), are often considered in the
study of the propagation of the waves from the cavity.
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• TM polarization: the magnetic field is transverse to the z-axis so that E and H are of the form E = (0, 0, Ez), H =
(Hx,Hy, 0). By (1), (2) and n = (nx, ny, 0), we can show that Ez satisfies

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∇ ⋅
(

1
�+r
∇Ez

)

+ k20"
+
r Ez = 0, in ℝ2

+ ∪ Ω,

1
�+r

)Ez
)n

−
ik0
�
Ez = 0, on ΓC ∪ S.

(4)

• TE polarization: the electric field is transverse to the z-axis so thatE andH are of the formE = (Ex, Ey, 0),H = (0, 0,Hz).
By (1), (3) and n = (nx, ny, 0), we can show thatHz satisfies

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∇ ⋅
(

1
"+r
∇Hz

)

+ k20�
+
r Hz = 0, in ℝ2

+ ∪ Ω,

1
"+r

)Hz

)n
− ik0�Hz = 0, on ΓC ∪ S.

(5)

The problems (4) and (5) can be written in the following unified form
⎧

⎪

⎨

⎪

⎩

∇ ⋅
(1
a
∇u

)

+ k20bu = 0, in ℝ2
+ ∪ Ω,

1
a
)u
)n
− �u = 0, on ΓC ∪ S,

(6)

where u is the z-component of the unknown total electric or magnetic field, a and b are complex scalar functions of position
with Re(a) ≥ a0 > 0, Im(a) ≥ 0, Re(b) ≥ b0 > 0, and Im(b) ≥ 0, � ∈ ℂ is a constant with Im(�) > 0 or � = 0. In this paper, we
assume that the fillings do not protrude the cavity and the space above the ground plane is empty, i.e., a = 1 and b = 1 in ℝ2

+.
We assume that the incident field ui is given by

ui = eik0(x cos �−y sin �),

where 0 < � < � is the angle of incidence with respect to the positive x-axis. The total field

u = ui + ur + us,

where ur is the reflected field by the infinite impedance ground plane,

ur = −
� − ik0 sin �
� + ik0 sin �

eik0(x cos �+y sin �),

and us is the unknown scattered field. We note that ui + ur satisfies
⎧

⎪

⎨

⎪

⎩

Δ(ui + ur) + k20(u
i + ur) = 0, in ℝ2

+,

)(ui + ur)
)n

− �(ui + ur) = 0, on {y = 0}.

The scattering problem reads: for a given incident plane wave ui, determine the scattered field us in the cavity and the upper
half-plane. To obtain a unique solution for the problem, some appropriate boundary conditions must be specified at the outer
boundary for the scattered fields. Here, we use the Sommerfeld radiation condition [47]

)us

)r
− ik0us = o(r−1∕2), us = O(r−1∕2) (7)

uniformly as r =
√

x2 + y2 →∞.
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3 INTERIOR PROBLEM IN THE CAVITY

The scattered field us satisfies
⎧

⎪

⎪

⎨

⎪

⎪

⎩

Δus + k20u
s = 0, in ℝ2

+,
)us

)n
− �us = 0, on ΓC ,

us = u − g, on Γ,

(8)

where g = ui + ur. We use the Green’s function method to derive an integral expression for us in ℝ2
+, and by the field continuity

conditions we obtain a transparent boundary condition on the aperture of the cavity, which reduces the unbounded domain
problem (6) to the interior problem defined in the cavity.
Let x = (x, y) ∈ ℝ2

+ be the fixed source point, and x0 = (x0, y0). We introduce the impedance Green’s function G�(x, x0),
which is governed by the following boundary value problem

⎧

⎪

⎨

⎪

⎩

Δx0G�(x, x0) + k
2
0G�(x, x0) = −�(x − x0), in ℝ2

+,

)G�(x, x0)
)n(x0)

− �G�(x, x0) = 0, on {y0 = 0},
(9)

and the radiation conditions [48, 49]. The solution of (9) is

G�(x, x0) =
1
4�

∞

∫
−∞

e−
√

�2−k20|y0−y| e
i(x0−x)�

√

�2 − k20

d�

− 1
4�

∞

∫
−∞

� +
√

�2 − k20

� −
√

�2 − k20

e−
√

�2−k20(y0+y) e
i(x0−x)�

√

�2 − k20

d�. (10)

See [48, 49] for a derivation. The complex square root is characterized, for �, k0 ∈ ℝ, by

√

�2 − k20 =

⎧

⎪

⎨

⎪

⎩

√

�2 − k20, if |�| ≥ k0,

−i
√

k20 − �
2, if |�| < k0.

We have the following remark for the impedance Green’s function.

Remark 1. Note that ∞

∫
−∞

e−
√

�2−k20|y0−y| e
i(x0−x)�

√

�2 − k20

d� = i�H (1)
0 (k0|x − x0|),

and ∞

∫
−∞

e−
√

�2−k20(y0+y) e
i(x0−x)�

√

�2 − k20

d� = i�H (1)
0 (k0|x − x̄0|),

where x̄0 = (x0,−y0) and H
(1)
0 denotes the zeroth-order Hankel function of the first kind [50]. When � = +∞i, we have the

Green’s function of the half-plane Helmholtz operator with the Dirichlet boundary condition

G+∞i(x, x0) =
1
4�

∞

∫
−∞

(

e−
√

�2−k20|y0−y| − e−
√

�2−k20(y0+y)
)

ei(x0−x)�
√

�2 − k20

d�

= i
4

[

H (1)
0 (k0|x − x0|) −H

(1)
0 (k0|x − x̄0|)

]

.
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When � = 0, we have the Green’s function of the half-plane Helmholtz operator with the Neumann boundary condition

G0(x, x0) =
1
4�

∞

∫
−∞

(

e−
√

�2−k20|y0−y| + e−
√

�2−k20(y0+y)
)

ei(x0−x)�
√

�2 − k20

d�

= i
4

[

H (1)
0 (k0|x − x0|) +H

(1)
0 (k0|x − x̄0|)

]

.

Now we derive the interior problem in the cavity. By the second Green’s scalar theorem, we have

us(x) = ∮
Γ∞

(

G�(x, x0)
)us

)n
(x0) − us(x0)

)G�(x, x0)
)n(x0)

)

ds(x0), x ∈ ℝ2
+,

where Γ∞ denotes the contour that encloses ℝ2
+. The contour integral over Γ∞ consists of a line integral along the horizontal

axis from −∞ to +∞ and another line integral over the upper half-circle whose radius extends to infinity. Since both us and G�
satisfy the Sommerfeld radiation condition, the line integral over the upper half-circle vanishes. Since both us andG� satisfy the
impedance boundary condition on ΓC , the line integral over ΓC vanishes. Thus

us(x) = ∫
Γ

(

G�(x, x0)
)us

)n
(x0) − us(x0)

)G�(x, x0)
)n(x0)

)

ds(x0)

= ∫
Γ

G�(x, x0)
()us

)n
(x0) − �us(x0)

)

ds(x0), x ∈ ℝ2
+. (11)

Let x = (x, y) → (x, 0) ∈ Γ from ℝ2
+. We obtain the boundary integral representation (the single layer potential is continuous

up to the boundary Γ)
us(x) = ∫

Γ

G�(x, x0)
()us

)n
(x0) − �us(x0)

)

ds(x0), x ∈ Γ.

By u = g+us, the impedance boundary conditions for g andG� on Γ, and the field continuity conditions (see (10.17) and (10.53)
of [47]),

u|y=0+ = u|y=0− ,
)u
)y

|

|

|

|y=0+
= 1
a
)u
)y

|

|

|

|y=0−
,

we have the impedance-to-Dirichlet type nonlocal boundary condition

u(x) = g(x) − ∫
Γ

G�(x, x0)
(

1
a
)u
)y
(x0) + �u(x0)

)

ds(x0), x ∈ Γ.

Therefore, the problem (6)-(7) reduces to the following interior problem
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∇ ⋅
(1
a
∇u

)

+ k20bu = 0, in Ω,

1
a
)u
)n
− �u = 0, on S,

u(x) = g(x) − ∫
Γ

G�(x, x0)
(

1
a
)u
)y
(x0) + �u(x0)

)

ds(x0), on Γ,

(12)

where

G�(x, x0) = −
1
2�

∞

∫
−∞

ei(x0−x)�

� −
√

�2 − k20

d�

= −1
�

∞

∫
0

cos ((x0 − x)�)

� −
√

�2 − k20

d�, ∀ x, x0 ∈ Γ.

We mention that mathematical analysis of the special case � = 0 of (12) has been presented in [2], where existence and unique-
ness of solutions have been proved in a Hilbert space consisting of functions satisfying the homogeneous Neumann-to-Dirichlet
condition on Γ. Here we prove the well-posedness of (12) with a different approach, by introducing a new variable w = a−1)yu
as unknown, which allows general inhomogeneous impedence-to-Dirichlet boundary condition on Γ.
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4 WELL-POSEDNESS OF THE REDUCED PROBLEM

For s ∈ ℝ, letHs(ℝ) denote the space of tempered distributionswwith Fourier transform ŵ ∈ L2loc(ℝ), equipped with the norm

‖w‖Hs(ℝ) ∶=
⎛

⎜

⎜

⎝

∞

∫
−∞

(1 + |�|2)s|ŵ(�)|2d�
⎞

⎟

⎟

⎠

1∕2

.

The Sobolev spaceHs(Γ) is defined by

Hs(Γ) ∶= {u ∈ (C∞0 (Γ))
′ ∶ u = w|Γ for some w ∈ Hs(ℝ)},

equipped with the norm
‖u‖Hs(Γ) = inf{‖w‖Hs(ℝ) ∶ w ∈ Hs(ℝ), w|Γ = u}.

We denote by H̃s(Γ) the space of functions w ∈ Hs(Γ) whose zero extension

w̃(x) =

{

w(x) if x ∈ Γ,
0 if x ∈ ℝ∖Γ,

is inHs(ℝ), equipped with the norm

‖w‖H̃s(Γ) ∶= ‖w̃‖Hs(ℝ). (13)

Then we have the following properties [51]:

H̃s(Γ) = (H−s(Γ))′, Hs(Γ) = (H̃−s(Γ))′.

where w̃ denotes the extension of w by zero outside Γ. In what follows we mainly consider the cases s = ±1∕2. In this case
H̃

1
2 (Γ) ≃ H

1
2
00(Γ), where the latter is often referred to as the Lions–Magenes Space (cf. [52, pp. 159–161]).

To simplify the notation, we define
m(�) ∶= 1

√

�2 − k20 − �

and define the operator G� ∶ H̃−1∕2(Γ)→ H1∕2(Γ) by

G�w(x) ∶=
1

√

2�

∞

∫
−∞

m(�) ̂̃w(�)eix�d�,

where

̂̃w(�) = 1
√

2�

∞

∫
−∞

w̃(x)e−ix�dx.

For any given g ∈ H1∕2(Γ), we seek a solution u ∈ H1(Ω) of the problem (12) in certain weak sense such that a−1)yu + �u
on Γ is in H̃−1∕2(Γ). Note that the conditions u ∈ H1(Ω) and a−1)yu + �u ∈ H̃−1∕2(Γ) are equivalent to u ∈ H1(Ω) and
a−1)yu ∈ H̃−1∕2(Γ). To avoid technical difficulties in defining a−1)yu for a given function u ∈ H1(Ω), we shall introduce a new
variable w to denote a−1)yu.
For (u,w) ∈ H1(Ω) × H̃−1∕2(Γ) and (v, ') ∈ H1(Ω) × H̃−1∕2(Γ) we define the linear form

l(v, ') = ∫
Γ

g'dx

and the bilinear form

B(u,w; v, ') =∫
Ω

(1
a
∇u ⋅ ∇v − k20buv

)

dxdy − ∫
S

�uvds − ∫
Γ

wvdx

+ ∫
Γ

G�(w + �u)'dx + ∫
Γ

u'dx
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where ds denotes the length element on the contour S. The weak formulation of (12) is to find (u,w) ∈ H1(Ω)× H̃−1∕2(Γ) such
that

B(u,w; v, ') = l(v, '), ∀ (v, ') ∈ H1(Ω) × H̃−1∕2(Γ). (14)

Theorem 1 (Existence and uniqueness). Suppose that k0 > 0, � is a complex constant with either Im(�) > 0 or � = 0, and
a, b ∈ L∞(Ω) are complex scalar functions such that Re(a) ≥ a0 > 0, Im(a) ≥ 0, Re(b) ≥ b0 > 0, Im(b) ≥ 0. Then, there exists
a unique solution (u,w) ∈ H1(Ω) × H̃−1∕2(Γ) for the problem (14).

The proof of Theorem 1 relies on the following lemma, which is concerned with the mapping properties of the operator G�.

Lemma 1. If Im(�) > 0 or � = 0, then the operator G� ∶ H̃−1∕2(Γ) → H1∕2(Γ) is bounded and, for w,' ∈ H̃−1∕2(Γ),
|

|

|

|

|

|

|

∫
Γ

G�w(x)'(x)dx
|

|

|

|

|

|

|

≤ C‖w‖H̃−1∕2(Γ)‖'‖H̃−1∕2(Γ),

and
Re∫

Γ

G�w(x)w(x)dx ≥ �‖w‖2
H̃−1∕2(Γ)

− �‖w̃‖2H−1(ℝ),

where C , � and � are some positive constants.

Proof. Let �� =
√

k20 + |�|2 + 1. If |�| ≥ ��, then,

1
(1 + |�|2)1∕2

≲ Re(m(�)) ≤ |m(�)| ≲ 1
(1 + |�|2)1∕2

. (15)

For any w ∈ H̃−1∕2(Γ), it follows from (15) that

∫
|�|≥��

|m(�)|| ̂̃w(�)|2d� ≲ ∫
|�|≥��

|

̂̃w(�)|2

(1 + |�|2)1∕2
d�

≲

∞

∫
−∞

|

̂̃w(�)|2

(1 + |�|2)1∕2
d� = ‖w̃‖2H−1∕2(ℝ). (16)

If |�| < �� and Im(�) > 0, then, |m(�)| ≲ 1, which implies that

∫
|�|<��

|m(�)|| ̂̃w(�)|2d� ≲ ∫
|�|<��

|

̂̃w(�)|2d�

≲

∞

∫
−∞

|

̂̃w(�)|2

1 + |�|2
d� = ‖w̃‖2H−1(ℝ) ≲ ‖w̃‖2H−1∕2(ℝ). (17)

If |�| < �� and � = 0, then |m(�)| = |�2−k20|
−1∕2. Let  ∈ C∞0 (ℝ) be a nonnegative function so that  ̂ is a Schwartz function

and

 ̂(0) =

∞

∫
−∞

 (x)dx > 0.

Let  R(x) = 2R (Rx)∕ ̂(0). Then,  ̂R(�) = 2 ̂(�∕R)∕ ̂(0) and  ̂R(0) = 2. Let R be a sufficiently large constant such that
 R has compact support in [−1, 1], and for |�| < ��,  ̂R(�) ≥ 1. Choose �̂(�) ∈ C∞0 (ℝ) such that �̂(�) = 1 for |�| < �� and
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�̂(�) = 0 for |�| > 2��. Then, we have

∫
|�|<��

|m(�)|| ̂̃w(�)|2d� = ∫
|�|<��

|�̂(�) ̂̃w(�)|2
√

|�2 − k20|
d�

≤ ∫
|�|<��

|�̂(�) ̂R(�) ̂̃w(�)|2
√

|�2 − k20|
d�

≲ ‖�̂ ̂R ̂̃w‖
2
L6(ℝ)

(

∫
|�|<��

|�2 − k20|
−3∕4d�

)2∕3

≲ ‖�̂ ̂R ̂̃w‖
2
L6(ℝ)

≲ ‖� ∗ ( R ∗ w̃)‖2L6∕5(ℝ) (∗ denotes the convolution operator)

≲ ‖ R ∗ w̃‖2L6∕5(ℝ) (since � is a Schwartz function)

≲ ‖ R ∗ w̃‖2L2(ℝ) (since  R ∗ w̃ has compact support)

= ‖ ̂R ̂̃w‖
2
L2(ℝ)

≲ ‖w̃‖2H−1(ℝ) (since  ̂R is a Schwartz function)

≲ ‖w̃‖2H−1∕2(ℝ). (18)

It follows from (16), (17), (18) and (13) that, for w ∈ H̃−1∕2(Γ),
∞

∫
−∞

|m(�)|| ̂̃w(�)|2d� = ∫
|�|≥��

|m(�)|| ̂̃w(�)|2d� + ∫
|�|<��

|m(�)|| ̂̃w(�)|2d�

≲ ‖w̃‖2
H̃−1∕2(ℝ)

= ‖w‖2
H̃−1∕2(Γ)

.

Therefore, for w,' ∈ H̃−1∕2(Γ),
|

|

|

|

|

|

|

∫
Γ

G�w(x)'(x)dx
|

|

|

|

|

|

|

=
|

|

|

|

∞

∫
−∞

m(�) ̂̃w(�)̂̃'(�)d�
|

|

|

|

≤
(

∞

∫
−∞

|m(�)|| ̂̃w(�)|2d�
)1∕2(

∞

∫
−∞

|m(�)||̂̃'(�)|2d�
)1∕2

≤ C‖w‖H̃−1∕2(Γ)‖'‖H̃−1∕2(Γ).

This proves the first inequality of Lemma 1.
Since Re(m(�)) ≥ �(1 + |�|2)−1∕2 for |�| ≥ ��, where � denotes some positive constant, it follow that

Re∫
Γ

G�w(x)w(x)dx = ∫
|�|≥��

Re(m(�))| ̂̃w(�)|2d� + ∫
|�|<��

Re(m(�))| ̂̃w(�)|2d�

≥ �

∞

∫
−∞

|

̂̃w(�)|2

(1 + |�|2)1∕2
d� − ∫

|�|<��

(� + |m(�)|)| ̂̃w(�)|2d�

≥ �

∞

∫
−∞

|

̂̃w(�)|2

(1 + |�|2)1∕2
d� − �

∞

∫
−∞

|

̂̃w(�)|2

1 + |�|2
d�

= �‖w‖2
H̃−1∕2(Γ)

− �‖w̃‖2H−1(ℝ),

where � is some positive constant. This proves the second inequality of Lemma 1.

Now we are ready to prove Theorem 1. The proof consists of two steps.



10

Part 1: Uniqueness
It suffices to show that the homogeneous equation

B(u,w; v, ') = 0 for any v ∈ H1(Ω) and ' ∈ H̃−1∕2(Γ) (19)

admits only the zero solution (u,w) = (0, 0).
Substituting v = 0 into the equation (19), we obtain u = −G�� on Γ where � = w + �u. Substituting v = u and ' = −� into

the equation (19), we have

∫
Ω

(1
a
∇u ⋅ ∇u − k20b|u|

2
)

dxdy

=∫
S

�|u|2ds + 2Re∫
Γ

wudx + ∫
Γ

(G��)�dx + ∫
Γ

�|G��|
2dx (20)

Considering the imaginary part of (20), we get

∫
Ω

(

−
Im(a)
|a|2

∇u ⋅ ∇u − k20Im(b)|u|
2
)

dxdy

=∫
S

Im(�)|u|2ds + Im
⎛

⎜

⎜

⎝

∫
Γ

(G��)�dx + �∫
ℝ

|G��|
2dx

⎞

⎟

⎟

⎠

+ ∫
ℝ⧵Γ

Im(�)|G��|
2dx,

which can be rewritten as

∫
Ω

(

−
Im(a)
|a|2

∇u ⋅ ∇u − k20Im(b)|u|
2
)

dxdy

=Im(�)∫
S

|u|2ds + ∫
|�|<k0

√

k20 − �
2
|m(�)|2|̂̃�(�)|2d� + Im(�) ∫

ℝ⧵Γ

|G��|
2dx.

With Im(a) ≥ 0, Im(b) ≥ 0 and Im(�) ≥ 0, the above equation implies that ̂̃�(�) = 0 for |�| < k0. Since �̃ has compact support,
its Fourier transform ̂̃� is an entire analytic function, which means that ̂̃�(�) = 0 for all � ∈ ℝ. This proves that �̃ = 0, which
also implies that u = −G�� = 0 and w = � − �u = 0 on Γ. Now (19) reduces to

∫
Ω

(1
a
∇u ⋅ ∇v − k20buv

)

dxdy − ∫
S

�uvds = 0, for any v ∈ H1(Ω),

which implies that
⎧

⎪

⎨

⎪

⎩

∇ ⋅
(1
a
∇u

)

+ k20bu = 0, in Ω,

u = 0, )u
)y

= 0, on Γ.

Then the strong unique continuation theorem [53] implies u = 0 in Ω.

Part 2: Existence
It is easy to show that, for any (u,w), (v, ') ∈ H1(Ω) × H̃−1∕2(Γ),

|B(u,w; v, ')| ≤ C
(

‖u‖H1(Ω) + ‖w‖H̃−1∕2(Γ)

)(

‖v‖H1(Ω) + ‖'‖H̃−1∕2(Γ)

)

.
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It is obvious that l(⋅, ⋅) is a continuous linear functional onH1(Ω) × H̃−1∕2(Γ). By Lemma 1, we have

Re(B(u,w; u,w))

=Re∫
Ω

(1
a
∇u ⋅ ∇u − k20b|u|

2
)

dxdy − Re∫
S

�|u|2ds + Re∫
Γ

(G�(w + �u))wdx

≥a0‖a‖−2L∞(Ω)‖∇u‖
2
L2(Ω) − k

2
0‖b‖L∞(Ω)‖u‖

2
L2(Ω) − |�|‖u‖2L2(S)

+ �‖w‖2
H̃−1∕2(Γ)

− �‖w̃‖2H−1(ℝ) − C‖�u‖H̃−1∕2(Γ)‖w‖H̃−1∕2(Γ)

≥a0‖a‖−2L∞(Ω)‖∇u‖
2
L2(Ω) − k

2
0‖b‖L∞(Ω)‖u‖

2
L2(Ω) − |�|‖u‖2L2(S)

+ �
2
‖w‖2

H̃−1∕2(Γ)
− �‖w̃‖2H−1(ℝ) −

C2

2�
‖�u‖2

H̃−1∕2(Γ)

≥�0
(

‖u‖2H1(Ω) + ‖w‖2
H̃−1∕2(Γ)

)

− �0
(

‖u‖2L2(Ω) + ‖w̃‖2H−1(ℝ)

)

, (21)

where �0 and �0 are some positive constants.
Let X = H1(Ω) × H̃−1∕2(Γ) and let A ∶ X → X′ be defined by

⟨A(u,w), (v, ')⟩ = B(u,w; v, ') + �0 ∫
Ω

uvdxdy + �0 ∫
Γ

(Bw)'dx, (22)

where �0 is given in (21), and B is a compact operator from H̃−1∕2(Γ) toH1∕2(Γ) defined by

Bw(x) = 1
√

2�

∞

∫
−∞

̂̃w(�)
1 + |�|2

eix�d�.

From (21) we see that the bilinear form on the right-hand side of (22) is strongly elliptic, which implies that the operator
A ∶ X → X′ is well defined and invertible. Define the compact operator C ∶ X → X′ by

C(u,w) ∶= (u,Bw).

Consider the operator L = A − �0C, which maps X into X′. Clearly,

⟨L(u,w), (v, ')⟩ = B(u,w; v, '), for any (u,w), (v, ') ∈ X.

By the uniqueness of solution for the problem (19), we know that the null space of L only consists of zero. Since I− �0A−1C =
A−1L, then the null space of the Fredholm operator I − �0A−1C only consists of zero, which means I − �0A−1C is invertible.
Therefore, the operator L is invertible and the existence of the solution for the problem (14) follows.
The proof of Theorem 1 is complete.

5 NUMERICAL SIMULATION

The physical parameter of interest is the RCS defined by

�(#) = lim
r→∞

2�r
|us(r cos #, r sin #)|2

|ui|2

where # is the observation angle with respect to the positive x-axis. When the incident and observation directions are the same
(� = #), we have the backscatter RCS

Backscatter RCS(#) = 10 log10 �(#) dB.
By (11), the impedance boundary condition, the field continuity conditions, and the far field behavior of the impedance Green’
function G�, we can evaluate �(#) as

�(#) = 4
k0

|P (#)|2,

where P (#) is the far-field coefficient given by

P (#) = 1
2

ik0 sin #
� + ik0 sin # ∫

Γ

(

1
a
)u
)y
+ �u

)

eik0x cos #dx.
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In the following we present finite element simulations for calculating the RCS from a rectangular cavity Ω = (0, L) × (−D, 0)
based on the weak formulation (14).
Let Ω be partitioned into regular triangles �j , j = 1,… , , which also yields a uniform partition of Γ into intervals Ij ,

j = 1,… ,. Let

H1
ℎ(Ω) = {v ∈ C(Ω) ∶ v|�j ∈ P1(�j), j = 1,… , } ⊆ H1(Ω),

H̃−1∕2
ℎ (Γ) = {w ∈ C(Γ) ∶ v|�j ∈ P1(Ij), j = 1,… ,} ⊆ H̃−1∕2(Γ)

be the spaces of piecewise linear finite element basis functions on Ω and Γ respectively. We look for a pair of finite element
functions (uℎ, wℎ) ∈ H1

ℎ(Ω) × H̃
−1∕2
ℎ (Γ) to approximate the solution (u,w) ∈ H1(Ω) × H̃−1∕2(Γ), satisfying the weak form:

B(uℎ, wℎ; vℎ, 'ℎ) = l(vℎ, 'ℎ), ∀ (vℎ, 'ℎ) ∈ H1
ℎ(Ω) × H̃

−1∕2
ℎ (Γ). (23)

Specifically, let i(x, y) and�i(x) be the basis functions ofH1
ℎ(Ω) and H̃

−1∕2
ℎ (Γ), respectively, and expressed the finite element

solution by

uℎ(x, y) =

∑

i=1
ui i(x, y), wℎ(x) =


∑

m=1
wm�m(x),

where ui and wm are the nodal values of the functions uℎ and wℎ. These nodal values are stored in the vectors u and w,
respectively.
The mass and stiffness matrices and forcing vectors are assembled as

SΩ =
[

SΩij
]

×
, SΩij = ∫

Ω

1
a
∇ j ⋅ ∇ idxdy

MΩ =
[

MΩ
ij

]

×
, MΩ

ij = ∫
Ω

b j idxdy

KS =
[

KS
ij

]

×
, KS

ij = ∫
S

b j ids

KΓ =
[

KΓ
im

]

× , KΓ
im = ∫

Γ

b�m ids

GΓ =
[

GΓmm′
]

× , GΓmm′ = ∫
Γ

∫
Γ

G�(x, x0)�m′(x0)�m(x)dx0dx

gΓ =
[

gΓm
]

×1 , gΓm = ∫
Γ

g�mds.

The matrices SΩ,MΩ, KS , KΓ and the vector gΓ can be evaluated in the standard way, while the evaluation of the matrix

GΓmm′ = −∫
Γ

∫
Γ

(

1
�

∞

∫
0

cos((x − x0)�)

� −
√

�2 − k20

d�
)

�m(x0)�m′(x) dx0dx,

requires more technical treatment of the improper integral with respect to �. Since the kernel cos((x−x0)�)
�−
√

�2−k20
is not absolutely inte-

grable with respect to � on (0,∞), standard quadrature for the interior integral would fail to converge. To overcome this difficulty,
we shall write GΓmm′ into an alternative form:

GΓmm′ = −
1
�

k0

∫
0

gmm′(�)

� + i
√

k20 − �
2
d� − 1

�

∞

∫
k0

gmm′(�)

� −
√

�2 − k20

d�,

with a matrix gmm′(�) = O(�−4) decaying sufficiently fast as � → ∞. Then both integrals in the expression above are evaluated
numerically. The expression of gmm′(�) can be found in appendix.
The global discretized algebraic system is assembled as

v = f , (24)
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where

 =
⎡

⎢

⎢

⎣

SΩ − k20M
Ω − �KS −KΓ

(

KΓ
)T + �GΓRΓ GΓ

⎤

⎥

⎥

⎦

, v =
⎡

⎢

⎢

⎣

u

w

⎤

⎥

⎥

⎦

, f =
⎡

⎢

⎢

⎣

0

gΓ

⎤

⎥

⎥

⎦

.

Here the restriction matrix RΓ projects u onto boundary Γ. After solving (24), we can compute P (#) by

P (#) ≈ 1
4
ik0ℎx sin #
� + ik0 sin #

M−1
∑

l=1

(

(

wl + �u(xl, 0)
)

eik0xl cos # +
(

wl+1 + �u(xl+1, 0)
)

eik0xl+1 cos #
)

.

We report computational results for a rectangular cavity with 1 meter wide and 0.25 meter deep (L = 1.0 andD = 0.25). Our
focus is on the efficiency of the proposed model and the finite element method for RCS calculation. Two different cases (see
Figure 2 ) are considered.

* *

FIGURE 2 The empty cavity (left) and the filled cavity (right).

(i) The cavity is empty, i.e., a(x, y) = b(x, y) = 1 in Ω. This is a standard test problem [19, 47]. The magnitudes of the total
fields at normal incidence (� = �∕2) on the aperture and backscatter RCS of the empty cavity for k0 = 2� and difference values
of the impedance parameter � are given in Figure 3 . Numerical results are obtained by using our finite element method with
M = 129, = 16641 and the method given in [19]. From the computational results, we observe that as � approaches to 0, the
total field approaches to the Neumann case. The magnitude of the total field at normal incidence on the aperture of the empty
cavity and the backscatter RCS for k0 = 4� and � = ik0 are given in Figure 4 . The total field at normal incidence in the empty
cavity can also be visualized in Figure 5 .
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FIGURE 3 Aperture field (left) at normal incidence � = �∕2 and backscatter RCS (right) for the empty cavity with k0 = 2�.
For � = 1i, 0.01i, the results are obtained via the proposed finite element method. For the Neumann cases, the result is obtained
via the method in [19].

(ii) There is a target inside the cavity. The parameters a(x, y) and b(x, y) in Ω are defined as follows:

a(x, y) =
{

4 + i, 0.2 < x < 0.8, −0.25 < y < −0.20,
1, otherwise,

b(x, y) = 1.

The magnitude of the total field at normal incidence on the aperture of the filled cavity and the backscatter RCS for k0 = 4� and
� = ik0 are given in Figure 6 . Numerical results are obtained by using our finite element method withM = 129, = 16641.
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FIGURE 4 Aperture field (left) at normal incidence � = �∕2 and backscatter RCS (right) for the empty cavity with k0 = 4�
and � = ik0.

FIGURE 5 Total field (real and imaginary parts) at normal incidence � = �∕2 for the empty cavity with k0 = 4� and � = ik0.

Compared with the empty case (Figure 4 ), both the magnitude of the aperture field and the backscatter RCS are significantly
different. The total field at normal incidence in the filled cavity can also be visualized in Figure 7 .
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FIGURE 6 Aperture field (left) at normal incidence � = �∕2 and backscatter RCS (right) for the filled cavity with k0 = 4�
and � = ik0.

6 CONCLUDING REMARKS

We have proposed a bounded domain model for the scattering from two dimensional cavities embedded in an impedance ground
plane. It is shown that a unique weak solution exists. For the calculation of RCS, it is sufficient to solve the problem in the
cavity because of the homogeneous medium in the upper half-plane. A finite element method is given to solve the problem in
the cavity. Our algorithm has the advantages of being simple in structures and easy to implement.
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FIGURE 7 Total field (real and imaginary parts) at normal incidence � = �∕2 for the filled cavity with k0 = 4� and � = ik0.

The problem with large wave numbers is of significant interest, but the computation is especially challenging [17, 30] because
of the highly oscillatory nature of the fields. Low-order methods often require much more mesh points per wavelength due to
the pollution effect [54, 55, 56] of the computed solutions, therefore, extremely large scale indefinite linear systems occur. It is
well known that high-order methods are more attractive for solving Helmholtz problems with large wave numbers since they
can offer relative higher accurate solutions by utilizing fewer mesh points; e.g., see [57, 58, 21, 59, 60, 61, 62, 63]. Efficient
high-order methods and the corresponding fast algorithms for large wave number cavity problems with impedance boundary
conditions are being considered.

APPENDIX: EVALUATION OF THE MATRIX GΓ
MM ′

To evaluate the matrix

GΓmm′ = −1
�

∞

∫
0

1

� −
√

�2 − k20
∫
Γ

∫
Γ

cos((x − x0)�)�m′(x0)�m(x)dx0dxd�,

we denote

Km′(x, �) = ∫
Γ

cos((x − x0)�)�m′(x0)dx0

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 − cos(ℎx�)
ℎx�2

cos((x − xm′)�) +
ℎx� − sin(ℎx�)

ℎx�2
sin((x − xm′)�), if m′ = 1

1 − cos(ℎx�)
ℎx�2

cos((x − xm′)�) −
ℎx� − sin(ℎx�)

ℎx�2
sin((x − xm′)�), if m′ =

2(1 − cos(ℎx�))
ℎx�2

cos((x − xm′)�), otherwise.

where we have used the expressions of the basis functions �m(x), i.e.,

�1(x) =

⎧

⎪

⎨

⎪

⎩

x2 − x
ℎx

, x ∈ (x1, x2),

0, x ∈ [x2, L],
�M (x) =

⎧

⎪

⎨

⎪

⎩

x − xM−1

ℎx
, x ∈ (x−1, x)

0, x ∈ [0, x−1],

�m(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x − xm−1
ℎx

, x ∈ (xm−1, xm),
xm+1 − x
ℎx

, x ∈ (xm, xm+1),

0, x ∈ [0, xm−1] ∪ [xm+1, L],

for 2 ≤ m ≤ .
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We also defineHm(x′, �) and evaluate

Hm(x′, �) = ∫
Γ

sin((x − x′)�)�m(x)dx

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(1 − cos(ℎx�)) sin((xm − x′)�)
ℎx�2

+
cos((xm − x′)�)(ℎx� − sin(ℎx�))

ℎx�2
, if m = 1

(1 − cos(ℎx�)) sin((xm − x′)�)
ℎx�2

−
cos((xm − x′)�)(ℎx� + sin(ℎx�))

ℎx�2
, if m =M

2(1 − cos(ℎx�)) sin((xm − x′)�)
ℎx�2

, otherwise.

As such, we obtain the key quantities

gmm′(�) = ∫
Γ

∫
Γ

cos((x − x0)�)�m′(x0)�m(x)dx0dx

= ∫
Γ

Km′(x, �)�m(x)dx

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 − cos(ℎx�)
ℎx�2

Km(xm′ , �) +
ℎx� − sin(ℎx�)

ℎx�2
Hm(xm′ , �), if m′ = 1

1 − cos(ℎx�)
ℎx�2

Km(xm′ , �) −
ℎx� − sin(ℎx�)

ℎx�2
Hm(xm′ , �), if m′ =

2(1 − cos(ℎx�))
ℎx�2

Km(xm′ , �), otherwise.

Finally,

gmm′(�) =
4(1 − cos(ℎx�))2 cos((xm′ − xm)�)

ℎ2x�4
2 ≤ m,m′ ≤M − 2

gmm′(�) =
2(1 − cos(ℎx�))2 cos((xm′ − xm)�)

ℎ2x�4

+
2(1 − cos(ℎx�))(ℎx� − sin(ℎx�)) sin((xm′ − xm)�)

ℎ2x�4
m = 1, 2 ≤ m′ ≤M − 2

gmm′(�) =
2(1 − cos(ℎx�))2 cos((xm′ − xm)�)

ℎ2x�4

−
2(1 − cos(ℎx�))(ℎx� − sin(ℎx�)) sin((xm′ − xm)�)

ℎ2x�4
m =M, 2 ≤ m′ ≤M − 2

gmm′(�) =
(1 − cos(ℎx�))2 cos((xm′ − xm)�)

ℎ2x�4
+
(ℎx� − sin(ℎx�))2

ℎ2x�4
m = 1, m′ = 1

gmm′(�) =
(1 − cos(ℎx�))2 cos((xm′ − xm)�)

ℎ2x�4
−
(ℎx� − sin(ℎx�))2 cos((xm′ − xm)�)

ℎ2x�4

−
2(1 − cos(ℎx�))(ℎx� − sin(ℎx�)) sin((xm′ − xm)�)

ℎ2x�4
m =, m′ = 1

gMM (�) = g11(�).

The entries of GΓ are eventually computed by

GΓmm′ = −
1
�

k0

∫
0

gmm′(�)

� + i
√

k20 − �
2
d� − 1

�

∞

∫
k0

gmm′(�)

� −
√

�2 − k20

d�.

Both integrals above are evaluated numerically. Since gmm′(�) = O(�−4) decays sufficiently fast as � → ∞, the second integral
above can be evaluated sufficiently accurately.
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