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Abstract. Numerical analysis for the stochastic Stokes equations is still challenging even
though it has been well done for the corresponding deterministic equations. In particular, the
pre-existing error estimates of finite element methods for the stochastic Stokes equations in
the L∞(0, T ;L2(Ω;L2)) norm all suffer from the order reduction with respect to the spatial
discretizations. The best convergence result obtained for these fully discrete schemes is only
half-order in time and first-order in space, which is not optimal in space in the traditional
sense. The objective of this article is to establish strong convergence of O(τ1/2 + h2) in the

L∞(0, T ;L2(Ω;L2)) norm for approximating the velocity, and strong convergence of O(τ1/2+
h) in the L∞(0, T ;L2(Ω;L2)) norm for approximating the time integral of pressure, where τ
and h denote the temporal step size and spatial mesh size, respectively. The error estimates are
of optimal order for the spatial discretization considered in this article (with MINI element),
and consistent with the numerical experiments. The analysis is based on the fully discrete
Stokes semigroup technique and the corresponding new estimates.

1. Introduction

We consider the time-dependent stochastic Stokes equations in a domainD ⊂ Rd, d ∈ {2, 3},
under the stress boundary condition, i.e.,

du = [∇ · T(u, p) + f ] dt+B(u) dW (t) in D × (0, T ],

∇ · u = 0 in D × (0, T ],

T(u, p)n = 0 on ∂D × (0, T ],

u = u0 at D × {0},

(1.1)

where u and p denote the velocity and the pressure of the fluid, respectively, f is a given
source field and n denotes the outward unit normal vector on the boundary ∂D. Moreover,
the stress tensor T(u, p) is defined by

T(u, p) = 2D(u)− pI and D(u) =
1

2

(
∇u+ (∇u)T

)
, (1.2)

where I denotes the identity tensor. The stochastic noise is determined by an L2(D)d-valued
Q-Wiener process {W (t); t ≥ 0} on a filtered probability space (Ω,F ,P, {Ft}t≥0) with respect
to the normal filtration {Ft}t≥0, and a linear operator B(u) : L2(D)d → L2(D)d which depends
on the solution nonlinearly.

The numerical approximations of deterministic Navier–Stokes (NS) equations have been
well-understood nowadays; see [21, 22, 27, 31, 33–35]. For the stochastic NS equations driven
by multiplicative non-solenoidal noises, Brzeźniak, Carelli & Prohl [9] proposed practical time-
stepping schemes based on the finite element methods (FEMs) and established the convergence
for velocity approximation (as a function sequence) to weak martingale solutions in 3D and
to strong solutions in 2D, using the compactness argument. To obtain convergence rates for
space-time discretizations of the stochastic NS equations, a main tool is the localization of the
nonlinear term over a probability space of large probability, leading to a convergence rate in
probability, as discussed in [3, 7, 8, 12].

• For the 2D stochastic NS equations with non-solenoidal noises under the periodic boundary
condition, Carelli & Prohl [12] investigated implicit and semi-implicit time discretizations
with FEMs, demonstrating a convergence in probability in the L∞(0, T ;L2) norm with
rate (almost) 1/4 in time and linear convergence in space for the velocity.
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• For the 2D stochastic NS equations with non-solenoidal noises under the periodic boundary
condition, Bessaih, Brzeźniak & Millet [3] studied the convergence of a time-splitting
method based on the Lie-Trotter formula. They proved that the speed of the convergence
in probability is almost 1/2 for the velocity approximations, which is shown by means of
an L2(Ω,P) convergence localized on a set of arbitrarily large probability.

• For the 2D stochastic NS equations with non-solenoidal noises under the periodic boundary
condition, Breit & Dodgson [7] recently established convergence in probability for the fully
discrete implicit FEMs based on a stochastic pressure decomposition technique. They
obtained a convergence in probability with rate (almost) 1/2 in time and linear convergence
in space, measured in the norm of L∞(0, T ;L2) ∩ L2(0, T ;H1). This improves the earlier
results in [12], where the convergence rate in time was only (almost) 1/4.

• For the 2D stochastic NS equations with solenoidal noises under the Dirichlet boundary
condition, Breit & Prohl [8] established convergence rates for the fully discrete semi-
implicit FEMs using an approach based on discrete stopping times. They showed the
convergence of velocity approximations in the L∞(0, T ;L2) ∩ L2(0, T ;H1) norm with re-
spect to convergence in probability, achieving the rate (almost) 1/2 in time and linear
convergence in space.

In addition to previously discussed convergence in probability, the strong rates of convergence
(i.e., rates in L2(Ω)) for the stochastic NS equations have also been explored, see [4–6].

• The first study on the strong convergence for the 2D stochastic NS equations was con-
ducted by Bessaih & Millet [4] under periodic boundary conditions. They focused on the
splitting scheme from Bessaih et al. [3] and the implicit Euler schemes used in Carelli &
Prohl [12].

• Further exploration of strong convergence for the fully discrete schemes of the 2D stochas-
tic NS equations was carried out in [5]. They focused on the implicit Euler scheme coupled
with FEMs for non-solenoidal noises under periodic boundary conditions. This research
refines previous results in the stochastic NS equations, which had only established the
convergence in probability of these fully discrete numerical approximations.

The stochastic Stokes system (1.1) is a simplified version of the stochastic NS equations
with non-solenoidal noises. Most of the numerical analyses discussed above can be applied to
the 2D stochastic Stokes equation. However, the convergence of pressure was not provided for
the stochastic NS equations. Studies on the convergence of velocity approximations in 3D and
pressure approximations for the stochastic Stokes equations have emerged only recently.

• For the 2D and 3D stochastic Stokes equations with non-solenoidal noises under the peri-
odic boundary condition, Feng & Qiu [16] developed the fully discrete semi-implicit mixed
FEMs and established strong convergence with rates for both velocity approximation in
the norm of L∞(0, T ;L2(Ω;L2)) and pressure approximation in a time-averaged norm.
The error estimates provided in [16] were derived based on a τ -dependent stability of the
pressure approximations, as discussed in [16, Lemma 2], leading to a sub-optimal error es-

timate of order O(τ
1
2 +hτ−

1
2 ). This τ -dependent stability of pressure approximations can

be avoided in the case of solenoidal noises (i.e., B(u) maps L2(D)d into its divergence-free
subspace, as considered in [11]) or pointwise divergence-free FEMs, as discussed in [12].

The convergence order was improved to O(τ
1
2 +h+h2τ−

1
2 ) in Feng & Vo [17] based on the

Chorin-type projection methods. However, all spatial error constants presented in [16,17]

include a growth factor τ−
1
2 .

• Recently, for 2D and 3D non-solenoidal noises under the periodic boundary condition,
Feng, Prohl & Vo [15] proposed new fully discrete mixed FEMs for the stochastic Stokes
equations by utilizing the Helmholtz decomposition to the noises. By removing a gradient
part from the non-solenoidal noise, the modified noise becomes divergence-free. This
modification results in an improved stability estimate of the new pressure approximations,
which is not dependent on the temporal stepsize τ . Consequently, the inf-sup stable mixed
FEMs for the stochastic Stokes equation proposed in [15] achieve strong convergence with
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rate O(τ
1
2+h) for velocity in the L∞(0, T ;L2(Ω;L2)) norm and pressure in a time-averaged

norm. This improvement addresses the sub-optimal estimates in [16].

The numerical analysis in [15–17] is based on the certain conditions of noise, which can be
viewed as the following Lipschitz continuity and growth conditions in the case that B is an
L0
2-valued function:

∥B(v)−B(w)∥L0
2(L2,L2) ≤ C∥v − w∥L2 and ∥B(v)∥L0

2(L2,L2) ≤ C
(
1 + ∥v∥L2

)
(1.3)

for v, w ∈ L2(D)d, where L0
2(L2,L2) is the space of Hilbert–Schmidt operators on L2 =

L2(D)d. In the presence of non-solenoidal noises, the half-order temporal convergence shown
in the above-mentioned analyses is optimal and consistent with the numerical experiments.
However, the first-order spatial convergence in the L∞(0, T ;L2(Ω;L2)) norm is not optimal
and inconsistent with the numerical experiments.

As far as we know, the numerical analysis of the stochastic heat equation has been studied
extensively [10,32,39,40] and the second-order convergence in space has been proved. However,
for the stochastic Stokes equations, the existing approach applies only to a simple case with
a solenoidal noise and a pointwise divergence-free finite element space, for which the error
analysis actually reduces to the analysis for an abstract parabolic equation. The second-order
convergence in space in the norm of L∞(0, T ;L2(Ω;L2)) for (1.1), under the common setting
involving general non-solenoidal noises and frequently used inf-sup stable mixed FEMs, has
not been proved. The objective of this article is to address this question under the following
noise condition for some β > d

2 :∥B(v)−B(w)∥L0
2(L2,H−1/2) ≤ C∥v − w∥L2 ,

∥B(v)−B(w)∥L0
2(L2,H1) ≤ C∥v − w∥Hβ and ∥B(v)∥L0

2(L2,H1) ≤ C
(
1 + ∥v∥Hβ

)
,

(1.4)

which also covers many noises that were considered in the literature (e.g., [15, 17]); see the
examples in Remark 2.2 and the numerical experiments in Section 6. The error analyses for
the stochastic Stokes equations in the previous articles, based on energy approach, do not yield
second-order convergence in space in the L∞(0, T ;L2(Ω;L2)) norm under noise condition (1.4),
for the same difficulty caused by the low regularity of pressure; see the discussions in [15–17].
Therefore, a new approach of error analysis needs to be developed to address this difficulty.

In this article, we establish optimal convergence of fully discrete mixed methods with
standard inf-sup stable finite element pairs for the stochastic Stokes equations driven by a
non-solenoidal multiplicative noise under condition (1.4) and the regularity of the mild so-

lution (see Proposition 3.1). In particular, the strong convergence of O(τ1/2 + h2) in the
L∞(0, T ;L2(Ω;L2)) norm is proved for approximating the velocity, and the strong conver-

gence of O(τ1/2 + h) in the L∞(0, T ;L2(Ω;L2)) norm is proved for approximating the time
integral of pressure (see Theorem 2.4), where τ and h denote the temporal stepsize and spa-
tial mesh size, respectively. The error estimates are of optimal order for MINI element in the
traditional sense and consistent with the numerical experiments.

The analysis presented in this article is based on the fully discrete Stokes semigroup tech-
nique and the corresponding new estimates (refer to Lemma 4.1 and Remark 4.1) for general
non-solenoidal functions. The regularity of the pressure solution to the stochastic Stokes prob-
lem is generally low due to the influence of the non-solenoidal noise. This low regularity of
the pressure is a main obstacle in proving second-order convergence in space, as discussed
in [15,16]. We overcome this difficulty by using the fully discrete Stokes semigroup technique
to avoid using the τ -dependent estimates of the pressure approximations. Specifically, we
have developed technical estimates in Lemma 4.1, which do not require v to be divergence-free
(where v represents the noise term in the error estimates, as indicated by T3 in the error equa-
tion (5.10)). This was achieved by proving and utilizing the H1-stability of the orthogonal
projection onto the discrete divergence-free finite element subspace (see Subsection 4.1) and
based on the error estimates of the fully-discrete FEMs for the deterministic Stokes problem.
In the previous papers, the semigroup estimates provided in Lemma 4.1 were only shown and
utilized for the abstract parabolic equation, which requires v to be divergence-free and requires
the finite element space to be pointwise divergence-free when the results are applied to the
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Stokes equations. This distinction is crucial for our error analysis of the stochastic Stokes
equations, and makes it possible to prove a better convergence rate for non-solenoidal noises
using non-divergence-free finite elements.

The rest of this article is organized as follows. In Section 2, we collect the assumptions
and describe a fully discrete method with a standard inf-sup stable FE pair for the stochastic
Stokes and then, present our main theorem. In Section 3, we present the abstract formulation
of the stochastic Stokes equations under the stress boundary condition and define the mild
solution based on the abstract formulation. In Section 4, we present some technical estimates
for the discrete semigroup associated to the Stokes operator. The results are used in the error
analysis of the fully discrete FEMs for the stochastic problem in Section 5. In Section 6, we
present numerical experiments to support our theoretical analysis by illustrating the conver-
gence orders of the velocity and pressure approximations. The current paper is a reduced
version of [29], which contains complete proofs of some technical intermediate results.

2. Main results

In this section, we present some notations and assumptions to be used in this article, as
well as the numerical scheme for the stochastic Stokes equations. Then we present the main
theoretical result on the convergence of the numerical scheme.

2.1. Basic notations

We assume that the domain D exhibits elliptic H2 regularity when considering the deter-
ministic Stokes equations with the stress boundary condition. This assumption implies that
solutions (v, q) of the linear Stokes equations

v −∇ · T(v, q) = g in D,

∇ · v = 0 in D,

T(v, q)n = 0 on ∂D,

(2.1)

satisfy the following estimates:

∥v∥H2 + ∥q∥H1 ≤ C∥g∥L2 . (2.2)

This H2 elliptic regularity estimate holds for Stokes equations in two-dimensional convex
polygons under both Dirichlet boundary condition [23] and Neumann/Stress boundary condi-
tion [28,30], and three-dimensional convex polyhedron under the Dirichlet boundary condition
(see [13, Eq. (1.8)]). If the domain is smooth then the H2 elliptic regularity estimate holds for
both Dirichlet [13, Eq. (1.5)] and Neumann/Stress boundary conditions [36, Theorem 1.1]. In
this paper, we focus on domains on which the H2 elliptic regularity estimate in (2.2) holds.

Let Hs(D), s ≥ 0, denote the conventional Sobolev space of functions defined on D,
with L2(D) = H0(D), spaces with blackboard letters (e.g., Hs(D) = Hs(D)d) represent
the spaces of vector valued functions. The dual space of Hs(D) is denoted by H−s(D). Let
(Ω,F ,P, {Ft}t≥0) denote a filtered probability space with the probability measure P, the σ-
algebra F and the continuous filtration {Ft}t≥0. The expectation of a random variable v
defined on (Ω,F ,P, {Ft}t≥0) is denoted by Ev.

For a Hilbert space K, let W (t) be a K-valued Q-Wiener process on (Ω,F ,P, {Ft}t≥0), with
expression

W (t) =
∑
ℓ

√
µℓϕℓWℓ(t) ∀ t ∈ [0, T ], (2.3)

where {Wℓ(t)}j≥1 is a family of independent real-valued Wiener processes and the trace oper-
ator Q : K → K is bounded, self-adjoint, positive semi-definite, with eigenvalues {µℓ}ℓ≥1 and
eigenfunctions {ϕℓ}ℓ≥1.

Let L2(K,H) and L0
2(K,H) be the spaces of Hilbert-Schmidt operators from K to H and

from Q1/2(K) to H, respectively, satisfying

∥Φ∥L0
2(K,H) :=

(∑
ℓ

µℓ∥Φϕℓ∥2H
) 1

2
= ∥ΦQ

1
2 ∥L2(K,H).
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For a progressively measurable process Φ : [0, T ] → L0
2(K,H) with

∫ T
0 ∥Φ(s)∥2L0

2(K,H)
ds < ∞

P-a.s., the stochastic integral
∫ t
0 Φ(s) dW (s) is well defined and Itô’s isometry holds, i.e.,

E
∥∥∥∥∫ t

0
Φ(s) dW (s)

∥∥∥∥2
H
= E

∫ t

0
∥Φ(s)∥2L0

2(K,H) ds. (2.4)

For the simplicity of notations, we denote by L0
2 = L0

2(L2, L2) and denote by x ≲ y (or
y ≳ x) the statement “x ≤ Cy (or x ≥ Cy) for some positive constant C which is independent
of the stepsize τ and the mesh size h in the numerical approximation”.

2.2. Assumptions on the noise and nonlinearity

For the existence and uniqueness of mild solutions to problem (1.1), as well as the numerical
approximation to the mild solutions, we work with the following assumptions on the noise and
nonlinearity.

Assumption 2.1. (Stochastic noise) We assume that the Q-Wiener process W (t) has the
following property:

∥(−∆)
1
2 ∥L2

0
≲ 1, (2.5)

where ∆ : H2
N (D) → L2(D) denotes the Neumann Laplacian operator with the domain

H2
N (D) = {v ∈ H2(D) : ∂nv = 0 on ∂D},

and (−∆)
1
2 : H1(D) → L2(D) denotes the fractional power of −∆.

Remark 2.1. In the case that Q and −∆ have the same eigenfunctions, the condition (2.5)
is equivalent to ∑

ℓ

µℓλℓ ≲ 1,

where λℓ is an eigenvalue of −∆.

Assumption 2.2. (Nonlinearity and source term)We assume thatB(v) : L2(D)d → L2(D)d is
a bounded nonlinear operator for any v ∈ L2(D)d, satisfying the following Lipschitz continuity
and growth conditions for some β ∈ (d2 , 2):

∥B(v)−B(w)∥L0
2(L2,H−1/2) ≲ ∥v − w∥L2 , (2.6)

∥B(v)−B(w)∥L0
2(L2,H1) ≲ ∥v − w∥Hβ and ∥B(v)∥L0

2(L2,H1) ≲ 1 + ∥v∥Hβ . (2.7)

Moreover, we assume that the function f : [0, T ]× L2(D)d → L2(D)d satisfies

∥f(t)∥L2 ≲ 1 ∀ 0 ≤ t ≤ T, (2.8)

∥f(t1)− f(t2)∥L2 ≲ (t1 − t2)
1
2 ∀ 0 ≤ t1 ≤ t2 ≤ T. (2.9)

Remark 2.2. The conditions in (2.6)-(2.7) are satisfied if B(v) satisfies the following esti-
mates:

∥B(v)ϕℓ∥H1 ≲ (1 + ∥v∥Hβ )∥ϕℓ∥H1 ∀ v ∈ Hβ(D)d, (2.10)

∥(B(v1)−B(v2))ϕℓ∥
H− 1

2
≲ ∥v1 − v2∥L2∥ϕℓ∥H1 ∀ v1, v2 ∈ L2(D)d, (2.11)

∥(B(v1)−B(v2))ϕℓ∥H1 ≲ ∥v1 − v2∥Hβ∥ϕℓ∥H1 ∀ v1, v2 ∈ Hβ(D)d. (2.12)

for some β ∈ (d2 , 2). The proofs in this paper exclusively rely on the use of (2.6)–(2.7). A 2D
example of a suitable operator B(u) and noise W (t), satisfying (2.10)–(2.12), is given by

B(u) =

( √
u21 + 1

√
u21 + 1√

u22 + 1
√
u22 + 1

)
for u = (u1, u2),

W (t,x) =

∞∑
ℓ1=1

∞∑
ℓ2=1

√
µℓ1ℓ2

(
ϕℓ1ℓ2(x)

ϕℓ1ℓ2(x)

)
wℓ1ℓ2(t) ∀ t ∈ [0, T ],

(2.13)
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with

µℓ1ℓ2 =

{
0 for (ℓ1, ℓ2) = (0, 0),

(ℓ21 + ℓ22)
−(2+ε) for (ℓ1, ℓ2) ∈ Z2/{(0, 0)}, ε = 0.1,

ϕℓ1ℓ2(x) = sin(ℓ1πx1) sin(ℓ2πx2), ℓ1, ℓ2 = 0, 1, 2, . . . ,

which forms an orthonormal basis of L2(D). The noise term B(u)dW determined by (2.13)
and series W (t) can be written as

B(u)dW (t) =
∞∑

ℓ1=1

∞∑
ℓ2=1

√
µℓ1ℓ2

( √
u21 + 1√
u22 + 1

)
ϕℓ1ℓ2(x)wℓ1ℓ2(t),

which is non-solenoidal and was used in [15,17] to measure the effectiveness of numerical meth-
ods for the stochastic Stokes/NS equation. This example of noise satisfies both Assumption
2.1 and conditions (2.6)–(2.7) in Assumption 2.2.

Remark 2.3. In the case that (B(v)ϕℓ)(x) = bℓ(v(x))ϕℓ(x) for some functions bℓ : R → R,
ℓ = 1, 2, . . . , the conditions (2.10)–(2.12) are satisfied if the functions bℓ are uniformly Lipschitz
continuous with respect to ℓ, i.e.,

|bℓ(σ)| ≲ 1 + |σ| ∀σ ∈ R,
|bℓ(σ1)− bℓ(σ2)| ≲ |σ1 − σ2| ∀σ1, σ2 ∈ R.

Assumption 2.3. (Initial value) We assume that the initial value u0 : Ω → L2(D)d is an
F0/B(L2(D)d)-measurable function with u0 ∈ L2(Ω,D(A)).

2.3. The numerical method and its convergence

Let Vh × Qh ⊂ H1(D)d × L2(D) be a pair of finite element spaces subject to a quasi-
uniform triangulation of D with the mesh size h > 0, satisfying the following properties
(see [19, Chapter II]):

(1) There exists a projection operator Πh : H1(D)d → Vh, called the Fortin projection,
satisfying(

∇ · (v −Πhv), qh
)
= 0 ∀ v ∈ H1(D)d and qh ∈ Qh, (2.14)

∥v −Πhv∥Hm ≲ h1−m∥v∥H1 ∀ v ∈ H1(D)d and m = 0, 1, (2.15)

∥Πhv∥H1 ≲ ∥v∥H1 ∀ v ∈ H1(D)d, (2.16)

(2) The following approximation properties hold:

inf
qh∈Qh

∥q − qh∥L2 ≲ hm∥q∥Hm ∀ q ∈ Hm(D) and m = 1, 2, (2.17)

inf
qh∈Qh∩H1

0 (D)
∥q − qh∥L2 ≲ hm∥q∥Hm ∀ q ∈ Hm(D) ∩H1

0 (D) and m = 1, 2. (2.18)

Therefore, the L2 projection PQh
: L2(D) → Qh satisfies the following estimates:

∥q − PQh
∥L2 ≲ hm∥q∥Hm ∀ q ∈ Hm(D) and m = 1, 2, (2.19)

∥q − PQh
q∥H−1 = sup

η∈H1(D)
η ̸=0

(q − PQh
q, η)

∥η∥H1

= sup
η ∈H1(D)

(q − PQh
q, η − PQh

η)

∥η∥H1

≲ h2∥q∥H1 . (2.20)

(3) The following inverse inequality holds

∥vh∥H1 ≲ h−1∥vh∥L2 ∀ vh ∈ Vh. (2.21)

(4) The inf-sup condition holds:

∥qh∥L2 ≲ sup
vh∈Vh
vh ̸=0

(qh,∇ · vh)
∥vh∥H1

∀ qh ∈ Qh. (2.22)
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Several finite element spaces Vh×Qh are known to satisfy the properties above, such as the
standard inf-sup finite element spaces including the mini element space in [2] and the Taylor–
Hood finite element space in [37]. We assume that the triangulation may contain curved
triangles/tetrahedra which fits the boundary exactly in order to avoid making the problem
more complicated with additional errors in approximating the boundary.

The natural function spaces associated to incompressible flow is the divergence-free sub-
spaces of L2(D)d and H1(D)d, defined by

X = {v ∈ L2(D)d : ∇ · v = 0} and V = X ∩H1(D)d. (2.23)

Let Xh :=
{
vh ∈ Vh : (∇ · vh, qh) = 0, ∀ qh ∈ Qh

}
be a discrete divergence–free subspace of

Vh, and denote by PXh
: L2(D)d → Xh the L2-orthogonal projection onto Xh. On a uniform

partition tn = nτ , n = 0, 1, . . . , N , of the time interval [0, T ] with the stepsize τ = T/N , we
consider the following fully discrete semi-implicit Euler method for problem (1.1): For the
given initial value u0h = PXh

u0, find a pair of processes (unh, p
n
h) ∈ Vh ×Qh, n = 1, . . . , N , such

that the weak formulation
(unh, vh) + 2τ

(
D(unh),D(vh)

)
=(un−1

h , vh) + τ(pnh,∇ · vh) + τ(f(tn), vh) ∀ vh ∈ Vh

+ (B(un−1
h )∆Wn, vh),

(∇ · unh, qh) = 0 ∀ qh ∈ Qh

(2.24)

holds P-a.s. for all test functions (vh, qh) ∈ Vh × Qh, where ∆Wn := W (tn) − W (tn−1) is a
random variable with N(0, τQ) distribution.

By choosing vh ∈ Xh in (2.24), the fully discrete method in (2.24) can be equivalently
written as finding a Xh-valued process unh, n = 1, . . . , N , such that P-a.s.{

(unh, vh) + 2τ
(
D(unh),D(vh)

)
=(un−1

h , vh) + τ(f(tn), vh) + (B(un−1
h )∆Wn, vh) ∀ vh ∈ Xh,

u0h =PXh
u0.

(2.25)

If we denote by Ah : Xh → Xh the discrete Stokes operator defined by

(Ahvh, wh) = 2
(
D(vh),D(wh)

)
∀ vh, wh ∈ Xh. (2.26)

Then the fully discrete method in (2.25) is equivalent to finding a Xh-valued process unh,
n = 1, . . . , N such that P-a.s.{

unh = Ēh,τu
n−1
h + τĒh,τPXh

f(tn) + Ēh,τPXh
[B(un−1

h )∆Wn],

u0h = PXh
u0,

(2.27)

where Ēh,τ denotes the discrete semigroup in the full discretization defined by

Ēh,τvh = (I + τAh)
−1vh. (2.28)

The main result of this article is the following theorem, which provides the convergence of
the numerical solution to the mild solution of the stochastic Stokes equations.

Theorem 2.4. Let {W (t); t ≥ 0} be a Q-Wiener process on the filtered probability space
(Ω,F ,P, {Ft}t≥0). Let Assumptions 2.1–2.3 be fulfilled and assume that the finite element
space Vh × Qh has Properties (1)–(4). Then the numerical solution (unh, p

n
h), n = 1, . . . , N ,

determined by (2.24) has the following error bounds:

max
1≤n≤N

(
E∥u(tn)− unh∥2L2

) 1
2
≲ τ

1
2 + h2, (2.29)

max
1≤m≤N

(
E
∥∥∥∫ tm

0
p(s) ds− τ

m∑
n=1

pnh

∥∥∥2
L2

) 1
2
≲ τ

1
2 + h . (2.30)

Remark 2.4. Since the numerical scheme in (2.24) is linearly implicit, the existence and
uniqueness of numerical solutions are standard. The convergence rates presented in the The-
orem 2.4 is optimal in space for the inf-sup stable MINI element space in [2]. The half-order
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convergence in time is the same as the previous results and consistent with the numerical
experiments.

Remark 2.5. The numerical scheme and analysis presented in this article can be extended to
noises of the type B(s, u), provided that certain Hölder continuity conditions of B(s, u) with
respect to s are assumed, as stated in Assumption 2.2.

The proof of Theorem 2.4 will be presented in the next three sections based on the techniques
of continuous and discrete analytic semigroups.

3. The abstract formulation under the stress boundary condition

In this section, we present the abstract formulation and functional setting of the stochastic
Stokes equations under the stress boundary condition, and define the mild solution of the
stochastic Stokes equations to be approximated by the numerical solutions.

The divergence-free subspace X of L2(D)d is endowed with the L2(D)d norm. It is known
that the following orthogonal decomposition holds:

L2(D)d = X ⊕ U with U = {∇q : q ∈ H1
0 (D)}.

In particular, any v ∈ L2(D)d can be decomposed as v = PXv +∇η, where

PXv = v −∇η

denotes the L2-orthogonal projection from L2(D)d onto X, with η being the solution of the
equation {

∆η = ∇ · v in D,

η = 0 on ∂D.
(3.1)

Since the solution η of the Poisson equation satisfies

∥η∥Hs+1 ≤ C∥v∥Hs for s ∈ [0, 2],

it follows that the L2 projection PXv = v −∇η satisfies

∥PXv∥Hs ≲ ∥v∥Hs for s ∈ [0, 2]. (3.2)

Since the L2 projection operator PX : L2(D)d → X is self-adjoint, by a duality argument it
holds that

∥PXv∥H−s ≲ ∥v∥H−s for s ∈ [0, 2]. (3.3)

Let E(t) : X → X be the semigroup of bounded linear operators defined by E(t)v0 := v(t)
as the solution of the linear Stokes equations

∂v

∂t
−∇ · T(v, q) = 0 in D × R+

∇ · v = 0 in D × R+

T(v, q)n = 0 on ∂D × R+

v(0) = v0 in D.

(3.4)

Let −A be the generator of the semigroup E(t) with the domain

D(A) =
{
v0 ∈ X : lim

t→0

E(t)v0 − v0

t
exists in X

}
,

which is a dense subspace of X. Then v0 ∈ D(A) if and only if ∂tv ∈ C([0, T ];X), which is
equivalent to

∇ · T(v, q) ∈ C([0, T ];X) and ∇ · v = 0.

The above condition holds if and only if

−∆v +∇q ∈ C([0, T ];X) and ∇ · v = 0,

2D(v)n− qn = 0 on ∂D,

q is a harmonic function with boundary condition q = 2D(v)n · n, (3.5)
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which is equivalent to

v ∈ C([0, T ];H2(D)d), ∇ · v = 0 and D(v)n× n = 0 on ∂D, (3.6)

where the last equivalence relation follows from the H2 regularity of the stationary Stokes
equations. Since v0 ∈ D(A) if and only if Av ∈ C([0, T ];X), it follows from (3.6) that

D(A) = Ḣ2(D)d :=
{
v ∈ H2(D)d : ∇ · v = 0 and D(v)n× n = 0 on ∂D

}
.

Moreover, from (3.5) we see that the operator A : D(A) → X can be written as

Av = −∇ · T(v, qv) = −∆v +∇qv, (3.7)

where qv is determined by v through the following equation:{
∆qv = 0 in D,

qv = 2D(v)n · n on ∂D.
(3.8)

For v ∈ D(A), testing (3.7) with w and using integration by parts, we obtain by utilizing
the boundary condition qv = 2D(v)n · n and D(v)n× n = 0 (which imply 2D(v)n− qvn = 0 on
∂D) (

Av,w
)
=
(
2D(v),D(w)

)
∀ w ∈ V. (3.9)

The Stokes operator A : D(A) → X has an extension A : V → V ′ as defined above.
The boundary condition T(u, p)n = 0 in (1.1) implies that D(u)n×n = 0 and p = 2D(u)n ·n,

and therefore

−PXT(u, p) = −∆u+ PX∇p = −∆u+∇(p− η),

where η is the solution of {
∆η = ∆p in D

η = 0 on ∂D.
(3.10)

This implies that

−PXT(u, p) = −∆u+∇qu = Au, (3.11)

where qu = p− η is the harmonic function satisfying qu = 2D(u)n · n on ∂D.
As a result, applying PX to (1.1) yields the following abstract formulation of the stochastic

Stokes problem in (1.1):{
du = [−Au+ PXf ] dt+ PX [B(u) dW ] in D × (0, T ],

u = u0 at D × {0}.
(3.12)

A predictable process u ∈ C([0, T ];L2(Ω;X)) is called a mild solution of problem (3.12) if

u(t) = E(t)u0 +

∫ t

0
E(t− s)PXf(s)ds+

∫ t

0
E(t− s)PXB(u(s)) dW (s) P-a.s. (3.13)

The proof of the following proposition can be found in [29, Appendix A], where [29] refers
to the arXiv version of this paper, where certain technical intermediate results are proved.

Proposition 3.1. (Well-posedness and regularity) Under Assumptions 2.1–2.3, problem (3.12)
has a unique mild solution in the sense of (3.13). Moreover, the mild solution satisfies the
following regularity estimates:

sup
t∈[0,T ]

E∥u(t)∥2H2 ≲
(
1 + E∥u0∥2H2

)
, (3.14)

E∥u(t)− u(s)∥2H1 ≲
(
1 + E∥u0∥2H2

)
(t− s) ∀ 0 ≤ s ≤ t ≤ T (3.15)

E∥u(t)− u(s)∥2Hβ ≲
(
1 + E∥u0∥2H2

)
(t− s)2−β ∀ 0 ≤ s ≤ t ≤ T, ∀β ∈ (d2 , 2). (3.16)

The error estimates for the numerical approximations will be proved with the regularity re-
sults in Proposition 3.1. Since the mild solution has the regularity u ∈ C([0, T ];L2(Ω, H1(D)d)),

the inf-sup condition [18, Theorem 4.1] implies that there exits
∫ t
0 p(s)ds ∈ C([0, T ];L2(Ω, L2(D)))
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satisfying following relation:(∫ t

0
p(s) ds,∇ · v

)
=(u(t)− u0, v) + 2

∫ t

0

(
D(u(s)),D(v)

)
ds

−
∫ t

0
(f(s), v) ds−

(∫ t

0
B(u(s)) dW (s), v

)
∀ v ∈ H1(D)d. (3.17)

4. Estimates for the discrete semigroups

In this section, we establish some technical estimates of the discrete analytic semigroup
associated to the Stokes operator. The main results are the following three types of error
estimates about approximating the semigroup E(t)PX by the discrete semigroup Ēn

h,τPXh
,

n = 1, . . . , N , defined in (2.28), which play a key role in our theoretical analysis.

Lemma 4.1. For any v ∈ H1(D)d, there holds
n∑

j=1

∫ tj

tj−1

∥[E(s)PX − Ēj
h,τPXh

] v∥2L2 ds ≤ C(τ + h4)∥v∥2H1 . (4.1)

In addition, for all v ∈ L2(D)d, there holds∥∥∥ n∑
j=1

∫ tj

tj−1

[E(s)PX − Ēj
h,τPXh

] v ds
∥∥∥2
L2

≤ C(τ + h4)∥v∥2L2 , (4.2)

and ∥∥∥ n∑
j=1

∫ tj

tj−1

∇[E(s)PX − Ēj
h,τPXh

] v ds
∥∥∥2
L2

≤ C(τ + h2)∥v∥2L2 . (4.3)

Remark 4.1. Note that the estimates above were analyzed in [38] for the abstract parabolic
equation, including the Stokes equations with divergence-free initial value v ∈ X using point-
wise divergence-free finite element spaces. Since we allow B(u) : L2(D)d → L2(D)d rather
than B(u) : L2(D)d → X, the estimates under such a weaker assumption are not straightfor-
ward and also the key to establish the second-order convergence in space for the numerical
solution of the stochastic Stokes equations.

In order to prove Lemma 4.1, we need to extend the H1-stability of the L2 projection PXh

from X ∩H1(D)d to H1(D)d. This is obtained by characeterizing the orthogonal complement
of Xh in Vh, as discussed in subsection 4.1. The proof of Lemma 4.1 is presented at the end of
this section after introducing the orthogonal decomposition and some properties of the discrete
semigroup.

4.1. Orthogonal complement of Xh in Vh

Let X⊥
h be the orthogonal complement of Xh in Vh, i.e., Vh = Xh⊕X⊥

h , namely, any vh ∈ Vh

has an orthogonal decomposition

vh = wh + zh with wh ∈ Xh and zh ∈ X⊥
h satisfying (wh, zh) = 0. (4.4)

This decomposition (see [7] for a slightly different presentation) is stable in the H1 norm, as
shown in the following lemma.

Lemma 4.2. The orthogonal decomposition in (4.4) is stable in the H1 norm, i.e.,

∥wh∥H1 + ∥zh∥H1 ≲ ∥vh∥H1 ∀ vh ∈ Vh. (4.5)

Proof. For any given vh ∈ Vh, the inf-sup condition (2.22) implies that there exists a unique
solution (wh, qh) ∈ Vh ×Qh of the following equations:

(wh, ah)− (qh,∇ · ah) = (vh, ah) ∀ ah ∈ Vh,

(∇ · wh, ηh) = 0 ∀ ηh ∈ Qh
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which shows that wh ∈ Xh and

(wh, ah) = (vh, ah) ∀ ah ∈ Xh.

Let zh = vh − wh where wh and zh are the functions in the orthogonal decomposition (4.4).
Before estimating (wh, qh) directly, we first introduce (w, q) ∈ H1(D)d × H1(D) to be the
solution of the continuous problem

(w, a)− (q,∇ · a) = (vh, a) ∀ a ∈ H1(D)d,

(∇ · w, η) = 0 ∀ η ∈ L2(D).

Via integration by parts in the first equation above, one can obtain that w = vh − ∇q, with
q ∈ H1(D) being the weak solution of{

∆q = ∇ · vh in D,

q = 0 on ∂D.
(4.6)

The equation above has the standard H2 elliptic regularity, i.e.,

∥q∥H2 ≲ ∥∇ · vh∥L2 ≲ ∥vh∥H1 , (4.7)

which implies that

∥w∥H1 = ∥vh −∇q∥H1 ≲ ∥vh∥H1 . (4.8)

Denote θh = wh −Πhw and ϕh = qh − PQh
q. They satisfy

(θh, ah)− (ϕh,∇ · ah) = (w −Πhw, ah) + (PQh
q − q,∇ · ah) ∀ ah ∈ Vh,

(∇ · θh, ηh) = 0 ∀ ηh ∈ Qh.

Substituting ah = θh and ηh = ϕh into the equations above and using the inverse inequality
(2.21) we obtain

∥θh∥2L2 =(w −Πhw, θh) + (PQh
q − q,∇ · θh)

≤∥w −Πhw∥L2∥θh∥L2 + ∥PQh
q − q∥L2∥∇ · θh∥L2

≲h∥w∥H1∥θh∥L2 + h2∥q∥H2∥θh∥H1

≲h
(
∥w∥H1 + ∥q∥H2

)
∥θh∥L2 ,

which together with (4.7) and (4.8) implies

∥θh∥H1 ≲ h−1∥θh∥L2 ≲ ∥w∥H1 + ∥q∥H2 ≤ ∥vh∥H1 .

Therefore, the H1-stability (2.16) of the Fortin projection operator gives

∥wh∥H1 = ∥θh +Πhw∥H1 ≲ ∥vh∥H1 ,

which yields

∥zh∥H1 = ∥vh − wh∥H1 ≲ ∥vh∥H1 .

This proves the desired H1-stability result in (4.5).

Remark 4.2. The H1 stability in Lemma 4.2 implies the following properties:

∥PXh
v∥H1 ≤ C∥v∥H1 for v ∈ H1(D)d, (4.9)

∥v − PXh
v∥H1 ≲ inf

vh∈Xh

∥v − vh∥H1 ≤ Ch∥v∥H2 for v ∈ D(A), (4.10)

∥v − PXh
v∥L2 ≲ inf

vh∈Xh

∥v − vh∥L2 ≤ Ch2∥v∥H2 for v ∈ D(A). (4.11)

For any v ∈ D(A), we denote by qv the solution of (3.8), and denote by RXh
: V → Xh the

Stokes–Ritz projection defined by(
v −RXh

v, wh

)
+
(
Ah(v −RXh

v), wh

)
− (qv,∇ · wh) = 0 ∀wh ∈ Xh, (4.12)

which is equivalent to finding (RXh
v, qv,h) ∈ Vh ×Qh satisfying(

v −RXh
v, wh

)
+ 2
(
D(v −RXh

v),D(wh)
)
− (qv − qv,h,∇ · wh) = 0 ∀wh ∈ Vh,(
∇ · (v −RXh

v), qh
)
= 0 ∀ qh ∈ Qh.

(4.13)
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The Stokes–Ritz projection has the following error bound (cf. [14, Lemma 2.44 and Lemma
2.45] and [14, Proposition 4.18]):

∥v −RXh
v∥L2 + h∥v −RXh

v∥H1 ≲ h2
(
∥v∥H2 + ∥qv∥H1

)
≤ Ch2∥v∥H2 ∀ v ∈ D(A). (4.14)

4.2. Fractional powers of I +A

Since the Stokes operator A defined in (3.7) is self-adjoint and positive semi-definite, it
follows that the operator z + A is invertible on X for z ∈ C\(−∞, 0], and −A generates
a bounded analytic semigroup E(t) = e−tA on X; see [1, Example 3.7.5]. The fractional
powers of the positive definite operator I+A (with compact inverse) can be defined by means
of the spectral decomposition (see [25, Appendix B.2]). We present some estimates in the
following two lemmas. The proof is based on complex interpolation and the details can be
found in [29, Appendix B].

Lemma 4.3. The following equivalence relations hold for s ∈ [0, 2]:

∥v∥Hs ≲ ∥(I +A)
s
2 v∥L2 ≲ ∥v∥Hs ∀ v ∈ D(A

s
2 ), (4.15)

∥v∥H−s ≲ ∥(I +A)−
s
2 v∥L2 ≲ ∥v∥H−s ∀ v ∈ D(A

s
2 )′, (4.16)

where D(A
s
2 ) = (X,D(A))[s/2] = X ∩Hs(D)d for s ∈ [0, 2] denotes the complex interpolation

spaces between X and D(A).

Lemma 4.4. For any v ∈ X, the following results hold for t ∈ (0, T ]:

∥(I +A)γE(t)v∥L2 ≲ t−γ∥v∥L2 ∀ γ ≥ 0, (4.17)

∥(I +A)−µ(I − E(t))v∥L2 ≲ tµ∥v∥L2 ∀µ ∈ [0, 1]. (4.18)

The following results hold for 0 ≤ t1 ≤ t2 ≤ T :∫ t2

t1

∥(I +A)
ρ
2E(t2 − s)v∥2L2 ds ≲ (t2 − t1)

1−ρ∥v∥2L2 ∀ ρ ∈ [0, 1], (4.19)∥∥∥(I +A)ρ
∫ t2

t1

E(t2 − s)v ds
∥∥∥
L2

≲ (t2 − t1)
1−ρ∥v∥L2 ∀ ρ ∈ [0, 1]. (4.20)

4.3. The discrete semigroup from spatial discretization

Let 0 = λh,1 ≤ λh,2 ≤ · · · ≤ λh,Mh
be the eigenvalues of the discrete Stokes operator Ah :

Xh → Xh with corresponding orthonormal eigenvectors {φh,j}Mh
j=1 ⊂ Xh and dim(Xh) = Mh.

The operator −Ah generates a bounded analytic semigroup on Xh defined by

Eh(t) = e−tAh , (4.21)

which can be expressed as Eh(t)vh =
∑Mh

j=1 e
−tλh,j (vh, φh,j)φh,j for all vh ∈ Xh. Hence,

following the proof [38, Lemma 3.9] and [26, Lemma 3.2 (iii)], we have

∥(I +Ah)
γ
2Eh(t)vh∥L2 ≲ t−

γ
2 ∥vh∥L2 for vh ∈ Xh, γ ∈ [0, 1], (4.22)∫ t

0
∥(I +Ah)

1
2Eh(s)vh∥2L2ds ≲ ∥vh∥2L2 , for vh ∈ Xh. (4.23)

Let

Φh(t) := E(t)PX − Eh(t)PXh
for t ∈ [0, T ], (4.24)

denote the error in approximating the continuous semigroup. The main results of this subsec-
tion are the estimates of Φh(t) presented in the following lemma.

Lemma 4.5. For v ∈ H1(D)d, the following estimates hold:∥∥Φh(t)v
∥∥
L2 ≤ Ct−

1
2h2∥v∥H1 , (4.25)

and (∫ t

0

∥∥Φh(s)v
∥∥2
L2 ds

) 1
2 ≤ Ch2∥v∥H1 . (4.26)
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For v ∈ L2(D)d, the following estimates hold:∥∥Φh(t)v
∥∥
L2 ≤ Ct−1h2∥v∥L2 , (4.27)

and ∥∥∥∥∫ t

0
Φh(s)v ds

∥∥∥∥
L2

+ h
∥∥∥∫ t

0
∇Φh(s)v ds

∥∥∥
L2

≤ Ch2∥v∥L2 . (4.28)

Moreover for v ∈ D(A
1+ρ
2 ), it holds that∥∥Φh(t)v
∥∥
L2 + h

∥∥∇Φh(t)v
∥∥
L2 ≤ Ct−

1−ρ
2 h2∥v∥H1+ρ for ρ ∈ [0, 1]. (4.29)

Remark 4.3. Lemma 4.5 is proved later based on an orthogonal decomposition of v = PXv+
∇q for v ∈ L2(D)d at the end of this subsection, and it does not require ∇ · v = 0 in the cases
v ∈ L2(D)d and v ∈ H1(D)d.

The proof of Lemma 4.5 is based on error estimates for the semi-discrete FEM for the
deterministic linear Stokes problem

∂tu−∇ · T(u, p) = 0 in D × [0, T ],

∇ · u = 0 in D × [0, T ],

T(u, p)n = 0 on ∂D × [0, T ],

u(0) = u0 in D.

(4.30)

which can be rewritten into the abstract formulation (by applying PX to the first relation)

∂tu+Au = 0 with u(0) = u0 ∈ X. (4.31)

The solution of (4.31) can be represented by u(t) = E(t)PXu0 in terms of the semigroup
generated by the Stokes operator. The FEM for (3.4) reads: for given uh(0) = PXh

u0, find
(uh(t), ph(t)) ∈ Vh ×Qh such that{(

∂tuh(t), vh
)
+ 2
(
D(uh(t)),D(vh)

)
− (ph(t),∇ · vh) = 0 ∀ vh ∈ Vh,

(∇ · uh(t), qh) = 0 ∀ qh ∈ Qh
(4.32)

which can be expressed in the following abstract form by choosing vh ∈ Xh:

d

dt
uh(t) +Ahuh(t) = 0 with uh(0) = PXh

u0 (4.33)

or equivalently uh(t) = Eh(t)PXh
u0.

In the following lemma, we present some estimate for the difference between the continuous
and discrete resolvent operators, i.e., (z + A)−1 and (z + Ah)

−1. The proof can be found
in [29, Appendix B].

Lemma 4.6. For any f ∈ L2(D)d, let w and wh be the solution and finite element solution
of the Stokes equations 

zw −∇ · T(w, p) = f in D,

∇ · w = 0 in D,

T(w, p)n = 0 on ∂D,

(4.34)

and {
(zwh, vh) + 2

(
D(wh),D(vh)

)
− (ph,∇ · vh) = (f, vh) ∀ vh ∈ Vh,

(∇ · wh, qh) = 0 ∀ qh ∈ Qh,
(4.35)

where z ∈ Σϕ := {1 + z′ ∈ C : |arg(z′)| < ϕ} for some ϕ ∈ (0, π). Then the following results
hold:

∥w − wh∥L2 + h∥∇(w − wh)∥L2 ≤ Ch2(∥w∥H2 + ∥p∥H1), (4.36)

∥w∥H2 + ∥p∥H1 ≤ C∥f∥L2 , (4.37)

where the constant C is independent of z ∈ Σϕ (but may depend on ϕ).
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Remark 4.4. The first equation in (4.34) can be written as

∇p = f − (z −∆)w.

By applying PX to the first equation in (4.34) and using relation −PXT(w, p) = −∆w+∇qw,
as shown in (3.11), we obtain

∇qw = PXf − (z −∆)w.

Combining the two equations above yields

∇p = f − PXf +∇qw.

In the case f ∈ X, we obtain p = qw and therefore (4.36) reduces to

∥w − wh∥L2 + h∥∇w −∇wh∥L2 ≤ Ch2∥w∥H2 , (4.38)

where we have used the inequality ∥qw∥H1 ≲ ∥w∥H2 .

In the following lemma, we study the case with v ∈ X ∩H1(D)d.

Lemma 4.7. It holds that∫ t

0
∥Φh(s)g∥2L2 ds ≤ Ch4∥g∥2H1 ∀ g ∈ X ∩H1(D)d. (4.39)

Proof. Let (u, p) and (uh, ph) be the solution of (3.4) and (4.32) with u(0) = g ∈ X∩H1(D)d

and uh(0) = PXh
g, respectively. By noting (4.24),

Φh(s)g = u(s)− uh(s). (4.40)

Subtracting (4.32) from (3.4) yields{(
∂t(u− uh), vh

)
+ 2
(
D(u− uh),D(vh)

)
− (p− ph,∇ · vh) = 0 ∀ vh ∈ Vh,

(∇ · (u− uh), ηh) = 0 ∀ ηh ∈ Qh,

and choosing vh ∈ Xh and using the Ritz projection RXh
defined in (4.12), we have(

∂t(u− uh), vh
)
+
(
(I +Ah)(RXh

u− uh), vh
)

=
(
u− uh, vh

)
+ (q − PQh

q,∇ · vh)− (qu − PQh
qu,∇ · vh), (4.41)

where qu is defined in (3.8) (with v replaced by u there). By denoting ẽh = PXh
u− uh ∈ Xh

and choosing vh = (I +Ah)
−1ẽh ∈ Xh in (4.41), we obtain

1

2

d

dt
∥(I +Ah)

− 1
2 ẽh∥2L2 + ∥ẽh∥2L2 (4.42)

= ∥(I +Ah)
− 1

2 ẽh∥2L2 +
(
PXh

u−RXh
u, ẽh

)
+Rq(ẽh) +Rqu(ẽh)

≤∥(I +Ah)
−1ẽh∥2L2 + C∥RXh

u− PXh
u∥2L2 +

1

4
∥ẽh∥2L2 + |Rq(ẽh)|+ |Rqu(ẽh)|

≤ ∥(I +Ah)
−1ẽh∥2L2 + Ch4∥u∥2H2 +

1

4
∥ẽh∥2L2 + |Rq(ẽh)|+ |Rqu(ẽh)|,

where
Rξ(ẽh) =

(
ξ − PQh

ξ,∇ · [(I +Ah)
−1ẽh]

)
, ξ = q, qu

It is easy to see that w = (I + A)−1PX ẽh and wh = (I + Ah)
−1PXh

ẽh are the solutions of
(4.34) and (4.35), respectively, with z = 1 and f = ẽh. Then applying Lemma 4.6 yields∥∥[(I +A)−1PX − (I +Ah)

−1PXh

]
ẽh
∥∥
H1 ≲ h∥ẽh∥L2 ,

which implies that

|Rq(ẽh)| =
∣∣(q − PQh

q,∇ ·
[
(I +A)−1PX ẽh

])∣∣
+
∣∣(q − PQh

q,∇ ·
[
(I +A)−1PX − (I +Ah)

−1PXh

]
ẽh
)∣∣

≲ ∥q − PQh
q∥H−1∥∇ ·

[
(I +A)−1PX ẽh

]
∥H1

+ ∥q − PQh
q∥L2

∥∥[(I +A)−1PX − (I +Ah)
−1PXh

]
ẽh
∥∥
H1

≲h2∥q∥H1∥(I +A)−1PX ẽh∥H2 + h∥q∥H1h∥ẽh∥L2

≲h2∥q∥H1∥ẽh∥L2
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≤Ch4∥q∥2H1 +
1

8
∥ẽh∥2L2 , (4.43)

where we have used the inequality ∥q − PQh
q∥H−1 ≲ h2∥q∥H1 and Young’s inequality; see

Property (2) in Section 2.3. Similarly, since ∥qu∥2H1 ≲ ∥u∥H2 , it follows that

|Rqu(ẽh)| ≤ Ch4∥qu∥2H1 +
1

8
∥ẽh∥2L2 ≤ Ch4∥u∥2H2 +

1

8
∥ẽh∥2L2 . (4.44)

Substituting (4.43)–(4.44) into (4.42), and using Gronwall’s inequality with ẽh(0) = 0, we see
that

∥(I +Ah)
− 1

2 ẽh(t)∥2L2 +

∫ t

0
∥ẽh(s)∥2L2 ds ≲ h4

∫ t

0

(
∥u∥2H2 + ∥q∥2H1

)
ds ≲ h4∥u(0)∥2H1

= h4∥g∥2H1 , (4.45)

where the basic energy inequality for the Stokes equations has been used. Since u(s)−uh(s) =
u(s)− PXh

u(s) + ẽh, by using the inequality above we get∫ t

0
∥u(s)− uh(s)∥2L2 ds ≲ h4∥g∥2H1 .

This proves the result of Lemma 4.7 in view of (4.40).

Now we turn back to the proof of Lemma 4.5.

Proof of Lemma 4.5. For v ∈ L2(D)d we denote

w = (z +A)−1PXv and wh = (z +Ah)
−1PXh

v,

which are the solutions of (4.34) and (4.35) with f = v.
Since −A generates a bounded analytic semigroup on X, there exists an angle ϕ ∈ (π2 , π)

such that the operator (z+A)−1 is analytic with respect to z in the sector Σϕ = {z ∈ C\{0} :

|arg(z)| < ϕ}. Moreover, the semigroup E(t) = e−tA can be expressed in terms of the resolvent
operator (z +A)−1 through a contour integral on the complex plane, i.e.,

E(t)PXv =
1

2πi

∫
Γ
(z +A)−1PXvezt dz, with Γ = {1 + z : |arg(z)| = ϕ} ⊂ Σϕ. (4.46)

Similarly,

Eh(t)PXh
v =

1

2πi

∫
Γ
(z +Ah)

−1PXh
vezt dz. (4.47)

Therefore,

∥Φh(t)v∥L2 = ∥E(t)PXv − Eh(t)PXh
v∥L2

=

∥∥∥∥ 1

2πi

∫
Γ

[
(z +A)−1PXv − (z +Ah)

−1PXh
v
]
ezt dz

∥∥∥∥
L2

≲
∫
Γ
∥w − wh∥L2eRe(z)t |dz|

≲
∫
Γ
h2∥v∥L2eRe(z)t |dz| (This follows from Lemma 4.6 with f = v)

≲ t−1h2∥v∥L2 for t ∈ (0, T ]. (4.48)

This proves (4.27).

For v ∈ D(A
1+ρ
2 ), by (4.38) we have

∥w − wh∥L2 + h∥∇(w − wh)∥L2 ≲ h2∥w∥H2

= h2∥(z +A)−1v∥H2

≲ h2∥(I +A)(z +A)−1v∥L2

= h2
∥∥(I +A)

1−ρ
2 (z +A)−1(I +A)

1+ρ
2 v
∥∥
L2
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≲ h2|z|−
1+ρ
2

∥∥(I +A)
1+ρ
2 v
∥∥
L2 ∀ ρ ∈ [0, 1], (4.49)

where we have used the interpolation inequality to get

∥(I +A)θ(z +A)−1v∥L2 ≤ Cθ|z|−(1−θ)∥v∥L2 ∀ θ ∈ [0, 1], v ∈ X. (4.50)

Substituting (4.49) into (4.48) and using (4.15) give

∥Φh(t)v∥L2 + h∥∇Φh(t)v∥L2 ≲ h2
∥∥(I +A)

1+ρ
2 v
∥∥
L2

∫
Γ
|z|−

1+ρ
2 eRe(z)t |dz|.

≲ t−
1−ρ
2 h2∥v∥H1+ρ ∀ ρ ∈ [0, 1], v ∈ D(A

1+ρ
2 ). (4.51)

This proves (4.29).
In order to prove (4.25)–(4.26), we consider the orthogonal decomposition v = PXv + ∇q

for a function v ∈ H1(D)d, where q ∈ H1(D) is the weak solution of{
∆q = ∇ · v in D

q = 0 on ∂D,

with the regularity

∥q∥H2 ≲ ∥∇ · v∥L2 ≲ ∥v∥H1 . (4.52)

Since Φh(t)∇q = E(t)PX∇q−Eh(t)PXh
∇q = −Eh(t)PXh

∇q ∈ Xh, by using the self-adjointness
of Eh(t) we have

(Φh(t)∇q, ah) = −(PXh
∇q, Eh(t)ah)

= (q,∇ · [Eh(t)ah]) (since Eh(t)ah ∈ Xh and q = 0 on ∂D)

= (q − qh,∇ · [Eh(t)ah]) (for any qh ∈ H1
0 (D) ∩Qh)

= −(Eh(t)PXh
∇(q − qh), ah)

= −((I +Ah)
1
2Eh(t)(I +Ah)

− 1
2PXh

∇(q − qh), ah),

which implies that

Φh(t)∇q = −(I +Ah)
1
2Eh(t)(I +Ah)

− 1
2PXh

∇(q − qh) ∀ qh ∈ Qh ∩H1
0 (D). (4.53)

By using (4.22)–(4.23) and (2.18), we can obtain the following estimates:

∥Φh(t)∇q∥L2 ≲ inf
qh∈Qh∩H1

0 (D)
t−

1
2 ∥q − qh∥L2 ≲ t−

1
2h2∥q∥H2 ,

(∫ T

0
∥Φh(t)∇q∥2L2dt

) 1
2

≲ inf
qh∈Qh∩H1

0 (D)
∥q − qh∥L2 ≲ h2∥q∥H2 .

Substituting (4.52) into the two inequalities above gives

∥Φh(t)∇q∥L2 ≲ t−
1
2h2∥v∥H1 and

(∫ t

0
∥Φh(s)∇q∥2L2 ds

) 1
2

≲ h2∥v∥H1 . (4.54)

By using inequality (4.51) with ρ = 0 (with v replaced by PXv therein) and Lemma 4.7
with g = PXv, we see that

∥Φh(t)PXv∥L2 ≲ t−
1
2h2∥v∥H1 and

(∫ t

0
∥Φh(s)PXv∥2L2 ds

) 1
2

≲ h2∥v∥H1 . (4.55)

By noting the decomposition v = PXv+∇q, (4.25)-(4.26) follow from the last two inequalities
immediately.

To this end, we combine (4.46) and (4.47) to get∫ t

0
Φh(s)v ds =

∫ t

0

1

2πi

∫
Γ
[(z +A)−1PXv − (z +Ah)

−1PXh
v]ezs dzds

=
1

2πi

∫
Γ
z−1[(z +A)−1PXv − (z +Ah)

−1PXh
v]ezs dz
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=
1

2πi

∫
Γ
z−1[w − wh]e

zt dz.

By applying Lemma 4.6 with f = v, we have∥∥∥∫ t

0
Φh(s)v ds

∥∥∥
L2

+ h
∥∥∥∇ ∫ t

0
Φh(s)v ds

∥∥∥
L2

≲
∫
Γ
|z|−1

(
∥w − wh∥L2 + h∥∇w −∇wh∥L2

)
eRe(z)t |dz|

≲ h2∥v∥L2

∫
Γ
|z|−1eRe(z)t |dz| ≲ h2∥v∥L2 . (4.56)

This proves (4.28).

4.4. The discrete semigroup in the full discretization

Let λ∗
j ≥ 0 and ϕ∗

j , j = 1, 2, . . . , be the eigenvalues and eigenfunctions of the operator

A : D(A) → X. Similarly, let λ∗
h,j ≥ 0 and ϕ∗

h,j , j = 1, . . . ,Mh, be the eigenvalues and
eigenfunctions of the operator Ah : Xh → Xh.

We denote by R(τAh) : Xh → Xh the linear operator defined by

R(τAh)vh =

Mh∑
j=1

R(τλ∗
h,j)(vh, ϕ

∗
h,j)ϕ

∗
h,j with R(z) =

1

1 + z
for z ∈ R, z ̸= −1 (4.57)

with which we can rewrite the discrete semigroup Ēh,τ defined in (2.28) by

Ēh,τvh = R(τAh)vh for vh ∈ Xh.

As a time discrete version of (4.22) and (4.23), the following estimates hold for any vh ∈ Xh,

∥(I +Ah)
γ
2 Ēn

h,τvh∥L2 ≲ t
− γ

2
n ∥vh∥L2 for 1 ≤ n ≤ N and γ ∈ [0, 1], (4.58)

τ

n∑
j=1

∥(I +Ah)
1
2 Ēj

h,τvh∥
2
L2 ≲C∥vh∥2L2 for 1 ≤ n ≤ N. (4.59)

Remark 4.5. Inequality (4.58) is equivalent to

|(1 + λ∗
h,j)

γ
2R(τλ∗

h,j)
n| ≲ t

− γ
2

n for λ∗
h,j ≥ 0 and tn = nτ ∈ [0, T ]. (4.60)

The proof of this inequality can be found in [38, Lemma 7.3]). Since the function wj
h = Ēj

h,τvh,

n = 1, 2, . . . , are solutions of the equation

wj
h − wj−1

h

τ
+Ahw

j
h = 0.

Testing the equation with wj
h and summing up the results for j = 1, . . . , n, yield the basic

energy inequality

max
1≤j≤n

1

2
∥wj

h∥
2
L2 + τ

n∑
j=1

∥A
1
2
hw

j
h∥

2
L2 ≤ 1

2
∥w0

h∥2L2 =
1

2
∥vh∥2L2 ,

which implies (4.59).

The error of Ēn
h,τPXh

in approximating Eh(tn)PXh
is analyzed in the following lemma. The

proof can be found in [29, Lemma 4.8].

Lemma 4.8. Let Φ̄n
h,τv := Eh(tn)PXh

v − Ēn
h,τPXh

v for v ∈ L2(D)d. Then the following
estimates hold:∥∥Φ̄n

h,τv
∥∥
L2 ≲ τ

1
2 ∥v∥H1 ∀ v ∈ H1(D)d, (4.61)∥∥Φ̄n

h,τv
∥∥
L2 ≲ t

− 1
2

n τ
1
2 ∥v∥L2 ∀ v ∈ L2(D)d, (4.62)
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τ

n∑
j=1

∥∥Φ̄j
h,τv

∥∥2
L2

) 1
2
+
∥∥∥τ n∑

j=1

∇Φ̄j
h,τv

∥∥∥
L2

≲ τ
1
2 ∥v∥L2 ∀ v ∈ L2(D)d. (4.63)

Proof of Lemma 4.1. By using the expressions

Φh(t) := E(t)PX − Eh(t)PXh
and Φ̄n

h,τv := Eh(tn)PXh
v − Ēn

h,τPXh
v,

and the triangle inequality, we have
n∑

j=1

∫ tj

tj−1

∥[E(s)PX − Ēj
h,τPXh

] v∥2L2 ds ≲
n∑

j=1

∫ tj

tj−1

∥[Eh(s)− Eh(tj)]PXh
v∥2L2 ds

+

∫ tn

0
∥Φh(s)v∥2L2 ds+ τ

n∑
j=1

∥Φ̄j
h,τv∥

2
L2 . (4.64)

The first term on the right-hand side of (4.64) can be estimated by using (4.23), i.e.,
n∑

j=1

∫ tj

tj−1

∥[Eh(s)− Eh(tj)]PXh
v∥2L2ds =

n∑
j=1

∫ tj

tj−1

∥(1− e−(tj−s)Ah)e−sAhPXh
v∥2L2ds

≲ τ

∫ tn

0
∥A

1
2
h e

−sAhPXh
v∥2L2ds

≲ τ∥v∥2L2 ∀ v ∈ L2(D)d. (4.65)

The last two terms on the right-hand side of (4.64) have been estimated in (4.26) and (4.63),
respectively, which imply (4.1).

Similarly, (4.2) can be proved by using (4.28), (4.63) and (4.65).
To prove (4.3), we rewrite it into∥∥∥ n∑

j=1

∫ tj

tj−1

∇[E(s)PX − Ēj
h,τPXh

] v ds
∥∥∥2
L2

≲
∥∥∥ n∑

j=1

∫ tj

tj−1

∇[Eh(s)− Eh(tj)]PXh
v ds

∥∥∥2
L2

+
∥∥∥∫ tn

0
∇Φh(s) v ds

∥∥∥2
L2

+
∥∥∥τ n∑

j=1

∇Φ̄j
h,τv

∥∥∥2
L2

≲ (τ + h2)∥v∥2L2 . (4.66)

The first term on the right-hand side of the last equation was estimated in [24, p. 236, with

ρ = 1 and Phx replaced by A
1
2
hPhx], i.e.,∥∥∥ n∑

j=1

∫ tj

tj−1

[Eh(s)− Eh(tj)](I +Ah)
1
2PXh

vds
∥∥∥2
L2

≲ τ∥PXh
v∥2L2 ≲ τ∥v∥2L2 .

The estimates for the last two terms follow from (4.28) and (4.63), respectively. The proof of
Lemma 4.1 is completed.

5. Error analysis for the stochastic problem

In this section, we first present some estimates of the noise term in the Hilbert–Schmidt
norm in Subsection 5.1 and then, the proof of our main theorem in Section 5.2.

5.1. Estimates in the Hilbert–Schmidt norm

Lemma 5.1. Under Assumptions 2.1–2.3, the operator B(v) : L2(D)d → L2(D)d satisfies

∥E(t)PX [B(u)−B(v)]∥2L0
2
≲ t−

1
2 ∥u− v∥2L2 ∀u, v ∈ L2(D)d, (5.1)

and

∥B(u)∥2L0
2
≲ 1 + ∥u∥2Hβ ∀ u ∈ Hβ(D)d, β ∈ (d2 , 2), (5.2)
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∥(I +A)
1
2PXB(u)∥2L0

2
≲ 1 + ∥u∥2Hβ ∀ u ∈ Hβ(D)d, β ∈ (d2 , 2). (5.3)

Proof. By using (4.16) with s = 1
2 , (4.17) with γ = 1

4 , (3.3) and (2.6), we have

∥E(t)PX(B(u)−B(v))∥2L0
2

=
∑
ℓ

µℓ∥E(t)PX [(B(u)−B(v))ϕℓ]∥2L2

≲
∑
ℓ

µℓ∥(I +A)
1
4E(t)(I +A)−

1
4PX [(B(u)−B(v))ϕℓ]∥2L2

≲ t−
1
2

∑
ℓ

µℓ ∥(B(u)−B(v))ϕℓ∥2
H− 1

2

≲ t−
1
2 ∥(B(u)−B(v))∥L0

2(L2,H−1/2)

≲ t−
1
2 ∥u− v∥2L2 , (5.4)

and by using (2.7), we have

∥B(u)∥2L0
2
≤ ∥B(u)∥2L0

2(L2,H1) ≲ 1 + ∥u∥2Hβ , (5.5)

which imply (5.1)–(5.2). Similarly,

∥(I +A)
1
2PXB(u)∥2L0

2
=
∑
ℓ

µℓ∥(I +A)
1
2PXB(u)ϕℓ∥2L2 (5.6)

≤ ∥B(u)∥2L0
2(L2,H1) ≲ 1 + ∥u∥2Hβ ,

This proves (5.3).

Remark 5.1. As a result of the estimates in Lemma 5.1, the regularity results in Proposi-
tion 3.1 imply that

sup
t∈[0,T ]

E∥B(u(t))∥2L0
2
+ sup

t∈[0,T ]
E∥(I +A)

1
2PXB(u(t))∥2L0

2
≲ 1. (5.7)

The following stability estimates for the numerical solution can be proved by using Lemma
5.1. The proof can be found in [29, Proof of Lemma 5.2].

Lemma 5.2. Under Assumptions 2.1–2.3, the numerical solution of the fully discrete method
(2.27) satisfies the following energy inequality:

max
1≤n≤N

E∥unh∥2
H

1
2
+

N∑
n=1

E∥unh − un−1
h ∥2L2 + τ

N∑
n=1

E∥unh∥2H1 ≲ 1. (5.8)

5.2. The proof of Theorem 2.4

By iterating (2.27) with respect to n, the full discrete method can be rewritten as

unh = Ēn
h,τPXh

u0 + τ

n−1∑
i=0

Ēn−i
h,τ PXh

f(ti+1) +

n−1∑
i=0

Ēn−i
h,τ PXh

[B(uih)∆Wi+1]. (5.9)

Then, after subtracting (5.9) from (3.13), we obtain the following error equation:

u(tn)− unh =(E(tn)PX − Ēn
h,τPXh

)u0

+

n−1∑
i=0

∫ ti+1

ti

[E(tn − s)PXf(s)− Ēn−i
h,τ PXh

f(ti+1)]ds

+

n−1∑
i=0

∫ ti+1

ti

[E(tn − s)PXB(u(s))− Ēn−i
h,τ PXh

B(uih)]dW (s)

=: T1 + T2 + T3, (5.10)
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which implies that

E∥u(tn)− unh∥2L2 ≲
3∑

j=1

E∥Tj∥2L2 . (5.11)

The three terms are estimated below one by one.
Since T1 = Φh(tn)u

0+Φ̄n
h,τu

0, by applying (4.29) and (4.61) with ρ = 1 and v = u0 ∈ D(A),
we obtain

E∥T1∥2L2 ≲ E∥Φh(tn)u
0∥2L2 + E∥Φ̄n

h,τu
0∥2L2 ≲ (τ + h4)E∥u0∥2H2 . (5.12)

To estimate E∥T2∥L2 , we rewrite it into

E∥T2∥2L2 ≲E
∥∥∥ n−1∑

i=0

∫ ti+1

ti

E(tn − s)PX [f(s)− f(ti+1)]ds
∥∥∥2
L2

(5.13)

+ E
∥∥∥ n−1∑

i=0

∫ ti+1

ti

[E(tn − s)PX − Ēn−i
h,τ PXh

]f(ti+1)ds
∥∥∥2
L2

=: T21 + T22.

By using the Hölder continuity of f(t) in (2.9), we have

T21 ≲
n−1∑
i=0

∫ ti+1

ti

E∥f(s)− f(ti+1)∥2L2ds ≲
n−1∑
i=0

∫ ti+1

ti

(ti+1 − s)ds ≲ τ. (5.14)

Through a change of variables σ = tn − s and j = n− i, we further split T22 into

T22 =E
∥∥∥ n∑

j=1

∫ tj

tj−1

[E(σ)PX − Ēj
h,τPXh

]f(tn−j+1)dσ
∥∥∥2
L2

≲E
∥∥∥ n∑

j=1

∫ tj

tj−1

[E(σ)− E(tj)]PX [f(tn−j+1)− f(tn)]dσ
∥∥∥2
L2

+ E
∥∥∥ n∑

j=1

∫ tj

tj−1

[E(tj)PX − Ēj
h,τPXh

][f(tn−j+1)− f(tn)]dσ
∥∥∥2
L2

+ E
∥∥∥ n∑

j=1

∫ tj

tj−1

[E(σ)PX − Ēj
h,τPXh

]f(tn)dσ
∥∥∥2
L2

=: T a
22 + T b

22 + T c
22. (5.15)

Using (4.17) with γ = 1
2 , (4.18) with µ = 1

2 , and the Hölder continuity of f in (2.9), we have
the following bound for T a

22

T a
22 ≲

n∑
j=1

∫ tj

tj−1

∥(I +A)
1
2E(σ)(I +A)−

1
2 [I − E(tj − σ)]PX [f(tn−j+1)− f(tn)]∥2L2dσ

≲
n∑

j=1

∫ tj

tj−1

σ−1(tj − σ)∥f(tn−j+1)− f(tn)∥2L2dσ (5.16)

≲ τ
n∑

j=1

∫ tj

tj−1

σ−1(tn − tn−j+1)dσ ≲ τ
n∑

j=1

∫ tj

tj−1

σ−1σdσ ≲ τ,

where the conditions tj − σ ≤ τ and tn − tn−j+1 = tj−1 ≤ σ are satisfied for σ ∈ [tj−1, tj ],
ensuring the integrability in the last line.

By using (4.27), (4.62) and the Assumption 2.9, we have the bound

T b
22 ≲E

( n∑
j=1

∫ tj

tj−1

∥[Φh(tj) + Φ̄j
h,τ ][f(tn−j+1)− f(tn)]∥L2dσ

)2
(5.17)
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≲E
( n∑

j=1

∫ tj

tj−1

(t−1
j h2 + t

− 1
2

j τ
1
2 )∥f(tn−j+1)− f(tn)∥L2dσ

)2
≲ (τ + h4)

( n∑
j=1

∫ tj

tj−1

t−1
j (tn − tn−j+1)

1
2dσ

)2
≲ (τ + h4)

( n∑
j=1

∫ tj

tj−1

σ−1σ
1
2dσ

)2
≲ τ + h4.

for T b
22. Moreover, by (4.2) it is easy to see

T c
22 ≲ (τ + h4)∥f(tn)∥2L2 ≲ τ + h4. (5.18)

Substituting (5.14)–(5.18) into (5.13) yields

E∥T2∥2L2 ≲ τ + h4. (5.19)

It remains to estimate the term E∥T3∥L2 in (5.10). Taking the same approach as above, by
using (2.4) and a change of variables σ = tn − s and j = n− i, we first rewrite the bound of
E∥T3∥L2 into three parts as follows:

E∥T3∥2L2 =E
n−1∑
i=0

∫ ti+1

ti

∥E(tn − s)PXB(u(s))− Ēn−i
h,τ PXh

B(uih)∥2L0
2
ds

=E
n∑

j=1

∫ tj

tj−1

∥[E(σ)PXB(u(tn − σ))− Ēj
h,τPXh

B(un−j
h )∥2L0

2
dσ

≲E
n∑

j=1

∫ tj

tj−1

∥E(σ)PX [B(u(tn − σ))−B(u(tn−j))]∥2L0
2
dσ

+ E
n∑

j=1

∫ tj

tj−1

∥[E(σ)PX − Ēj
h,τPXh

]B(u(tn−j))∥2L0
2
dσ

+ τE
n∑

j=1

∥Ēj
h,τPXh

[B(u(tn−j))−B(un−j
h )]∥2L0

2

=: T31 + T32 + T33. (5.20)

By (5.1) and Hölder continuity (3.15), T31 is bounded by

T31 ≤
n∑

j=1

∫ tj

tj−1

σ− 1
2E∥u(tn − σ)− u(tn−j)∥2L2dσ ≤C

(
1 + E∥u0∥2H2

)
E

n∑
j=1

∫ tj

tj−1

σ− 1
2 (tj − σ)dσ

≤Cτ
(
1 + E∥u0∥2H2

)
. (5.21)

To estimate T32, we make a decomposition again

T32 ≲E
n∑

j=1

∫ tj

tj−1

∥[E(σ)− E(tj)]PX [B(u(tn−j))−B(u(tn−1))]∥2L0
2
dσ (5.22)

+ E
n∑

j=1

∫ tj

tj−1

∥[E(tj)PX − Ēj
h,τPXh

][B(u(tn−j))−B(u(tn−1))]∥2L0
2
dσ

+ E
n∑

j=1

∫ tj

tj−1

∥[E(σ)PX − Ēj
h,τPXh

]B(u(tn−1))∥2L0
2
dσ

=: T a
32 + T b

32 + T c
32.



22

By using (2.6), (4.17) with γ = 3
4 , (4.18) with µ = 1

2 and Hölder continuity (3.15), we have
the following bound for T a

32

T a
32 ≲

n∑
j=1

∫ tj

tj−1

E∥E(σ)[I − E(tj − σ)]PX [B(u(tn−j))−B(u(tn−1))]∥2L0
2
dσ

≲
n∑

j=1

∫ tj

tj−1

E
∑
ℓ

µℓ∥(I +A)
3
4E(σ)(I +A)−

3
4 [I − E(tj − σ)]PX [B(u(tn−j))−B(u(tn−1))]ϕℓ∥2L2dσ

≲
n∑

j=1

∫ tj

tj−1

σ− 3
2E
∑
ℓ

µℓ∥(I +A)−
1
2 [I − E(tj − σ)](I +A)−

1
4PX [B(u(tn−j))−B(u(tn−1))]ϕℓ∥2L2dσ

≲
n∑

j=1

∫ tj

tj−1

σ− 3
2 (tj − σ)E

∑
ℓ

µℓ∥B(u(tn−j))−B(u(tn−1))ϕℓ∥2
H− 1

2
dσ

≲
n∑

j=1

∫ tj

tj−1

σ− 3
2 (tj − σ)E∥u(tn−j)− u(tn−1)∥2L2dσ

≲ τ
(
1 + E∥u0∥2H2

) n∑
j=1

∫ tj

tj−1

σ− 3
2 (tn−1 − tn−j)dσ

≲ τ
(
1 + E∥u0∥2H2

) n∑
j=1

∫ tj

tj−1

σ− 3
2σdσ

≲ τ
(
1 + E∥u0∥2H2

)
. (5.23)

where (2.6) is used in the derivation of the fourth to last inequality, inequalities tj−σ ≤ τ and
(3.15) are used in deriving the third to last inequality, and estimate tn−1 − tn−j = tj−1 ≤ σ
for σ ∈ [tj−1, tj ] is used in deriving the second to last inequality.

By noting E(tj)PX − Ēj
h,τPXh

= Φh(tj) + Φ̄j
h,τ , T

b
32 is bounded by

T b
32 =

n∑
j=1

∫ tj

tj−1

E∥[Φh(tj) + Φ̄j
h,τ ][B(u(tn−j))−B(u(tn−1))]∥2L0

2
dσ (5.24)

≲
n∑

j=1

∫ tj

tj−1

t−1
j h4 E∥(I +A)

1
2PX [B(u(tn−j))−B(u(tn−1))]∥2L0

2
dσ

+
n∑

j=1

∫ tj

tj−1

t−1
j τ E∥B(u(tn−j))−B(u(tn−1))∥2L0

2
dσ

≲ (τ + h4)
n∑

j=1

∫ tj

tj−1

t−1
j E∥u(tn−j)− u(tn−1)∥2Hβdσ

≲ (τ + h4)
(
1 + E∥u0∥2H2

) n∑
j=1

∫ tj

tj−1

t−1
j (tn−1 − tn−j)

2−βdσ

≲ (τ + h4)
(
1 + E∥u0∥2H2

) ∫ tn

0
σ1−βdσ

≲ (τ + h4)
(
1 + E∥u0∥2H2

)
,

where (4.25) and (4.62) are used in the derivation of the fifth to last inequality, (2.7) is used
in the fourth to last inequality, (3.16) is used in the third to last inequality, and tn−1− tn−j =
tj−1 ≤ σ for σ ∈ [tj−1, tj ] is used in the second to last inequality. Directly applying (4.1) and
(5.7) shows that

T c
32 ≲ (τ + h4) sup

t∈[0,T ]
E∥(I +A)

1
2PXB(u(t))∥2L0

2
≲ τ + h4. (5.25)
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Moreover, by (4.58) with γ = 1
2 and (2.6), we further have

E∥T33∥2L2 ≲ τ
n∑

j=1

E∥(I +Ah)
1
4 Ēj

h,τ (I +Ah)
− 1

4PXh
[B(u(tn−j))−B(un−j

h )]∥2L0
2

≲ τ
n∑

j=1

t
− 1

2
j E

∑
ℓ

µℓ ∥PXh
[(B(u(tn−j))−B(un−j

h ))ϕℓ]∥2
H− 1

2

≲ τ
n∑

j=1

t
− 1

2
j E∥B(u(tn−j))−B(un−j

h )∥2L0
2(L2,H−1/2)

≲ τ
n∑

j=1

t
− 1

2
j E∥u(tn−j)− un−j

h ∥2L2

≲ τ

n−1∑
i=0

(tn − ti)
− 1

2E∥u(ti)− uih∥2L2 . (5.26)

In view of (5.20)–(5.26), we see that

E∥T3∥2L2 ≲ τ + h4 + τ
n−1∑
i=0

(tn − ti)
− 1

2E∥u(ti)− uih∥2L2 . (5.27)

Finally, substituting (5.12), (5.19) and (5.27) into (5.11) yields

E∥u(tn)− unh∥2L2 ≲ τ + h4 + τ
n−1∑
i=0

(tn − ti)
− 1

2E∥u(ti)− uih∥2L2 . (5.28)

By using the discrete version of generalized Gronwall’s inequality in [25, Lemma A.4], we
obtain the error estimate (2.29) for the velocity.

The error estimates for the pressure can be obtained by following classic approach and
utilizing the result above. We omit the details and refer to [29, Section 4.3].

6. Numerical experiments

In this section, we present numerical tests to support the theoretical analysis in Theorem
2.4 by illustrating the convergence of the fully discrete finite element solutions. For a stable
discretization in space, we use the prototypical MINI element; cf. [2, 20] for details. All the
computations are performed using the software package NGSolve (https://ngsolve.org/).

We solve the stochastic Stokes equations (1.1) in the two-dimensional square D = [0, 1] ×
[0, 1] under the stress boundary condition by the proposed scheme (2.24) up to time T , with
initial value u0 = (0, 0) and source term f = (1, 1)⊤. The noise term B(u)dW determined by

B(u) =
1

2

( √
u21 + 1

√
u21 + 1√

u22 + 1
√
u22 + 1

)
, (6.1)

W (t,x) =
∞∑

ℓ1=1

∞∑
ℓ2=1

√
µℓ1ℓ2

(
ϕℓ1ℓ2(x)

ϕℓ1ℓ2(x)

)
wℓ1ℓ2(t) ∀ t ∈ [0, T ], (6.2)

for x = (x1, x2) ∈ D, where

{wℓ1ℓ2(t) : ℓ1, ℓ2 = 0, 1, 2, . . . }
is a set of independent R-valued Wiener processes,

{ϕℓ1ℓ2(x) = cos(ℓ1πx1) cos(ℓ2πx2) : ℓ1, ℓ2 = 0, 1, 2, . . . } (6.3)

is an orthonormal basis of L2(D), and

µℓ1ℓ2 =

{
0 for (ℓ1, ℓ2) = (0, 0),

(ℓ21 + ℓ22)
−(r+ε) for (ℓ1, ℓ2) ∈ Z2/{(0, 0)},

(6.4)

https://ngsolve.org/
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with ε = 0.1 and r ∈ (0, 2] determining the regularity of the noise.
The noise term B(u)dW determined by (6.1)–(6.2) can be written as

B(u)dW (t) =
∞∑

ℓ1=1

∞∑
ℓ2=1

√
µℓ1ℓ2

( √
u21 + 1√
u22 + 1

)
ϕℓ1ℓ2(x)wℓ1ℓ2(t), (6.5)

which is non-solenoidal and was used to measure the effectiveness of numerical methods for the
stochastic Stokes/NS equation (with ϕℓ1ℓ2(x) = 2 sin(ℓ1πx1) sin(ℓ2πx2) therein); see [15, 17].
Based on the coefficients µℓ1ℓ2 given in (6.4), the regularity of the series W (t) presented in
(6.2) can be characterized as follows:∥∥(−∆)

r−1
2

∥∥
L0
2
=
∥∥(−∆)

r−1
2 Q

1
2

∥∥
L2(L2,L2)

=
∞∑

ℓ1=0

∞∑
ℓ2=0

λr−1
ℓ1ℓ2

µℓ1ℓ2 ≲ 1 for r ∈ (0, 2], (6.6)

where λℓ1,ℓ2 = π2(ℓ21 + ℓ22) represents eigenvalues of −∆. In the case r = 2, the series given
in (6.2) constitutes a Q-Wiener process which satisfies Assumption 2.1, and the noise in (6.5)
fulfills the conditions (2.6)–(2.7) in Assumption 2.2. In particular, the Wiener processes in
(6.2) is in L2(Ω, H1(D)) but not in L2(Ω, H1+ε(D)).

We consider three cases in the numerical experiments:

Case I : r = 2. In this case, the Assumption 2.1 is satisfied.
Case II : r = 1. The noise is trace-class, but Assumption 2.1 is not satisfied.
Case III : r = 0.5. The noise is not trace-class.
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Figure 1. Time discretization errors at T = 1 for Case I with h = 2−6.

10
-2

10
-1

10
-4

10
-3

10
-2

10
-1

1

2

10
-2

10
-1

10
-3

10
-2

10
-1

1

1

Figure 2. Spatial discretization errors at T = 1 for Case I with τ = 2−8.

The errors of the numerical solutions in Case I are presented in Figures 1 and 2. The expec-
tations of the errors are computed as averages over M samples, where M = 1024, 2048, 4096,
respectively. The numerical results in Figures 1 and 2 indicate that the numerical solutions
have half-order convergence in time for both velocity and pressure, second-order convergence
in space for the velocity, and first-order convergence in space for the pressure. Therefore, the
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convergence orders observed in the numerical experiments are consistent with the theoretical
results proved in Theorem 2.4.
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Figure 3. Spatial discretization errors at T = 1 for Cases I, II and III.

The spatial discretization errors for noises in Cases I, II, and III are presented in Figure
3, where the expectations are approximated by computing averages over M = 1024 samples.
Notably, Figures 1 and 2 demonstrate that the number of samples, M = 1024, is already
sufficiently large to capture the influence of the noise on the convergence rate. The numerical
results in Figure 3 indicate that order reduction may occur if Assumption 2.1 is not satisfied.
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