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Abstract. The parametric finite element methods of the Barrett–Garcke–
Nürnberg (BGN) type have been successful in preventing mesh distortion/
degeneration in approximating the evolution of surfaces under various geomet-
ric flows, including mean curvature flow, Willmore flow, Helfrich flow, surface
diffusion, and so on. However, the rigorous justification of convergence of
the BGN-type methods and the characeterization of the particle trajectories
produced by these methods still remain open since this class of methods was
proposed in 2007. The main difficulty lies in the stability of the artificial tan-
gential velocity implicitly determined by the BGN methods. In this paper,
we give the first proof of convergence of a stabilized BGN method for curve
shortening flow, with optimal-order convergence in L2 norm for finite elements
of degree k ≥ 2 under the stepsize condition τ ≤ chk+1 (for any fixed constant
c). Moreover, we give the first rigorous characterization of the particle trajec-
tories produced by the BGN-type methods for one-dimensional curves, i.e., we
prove that the particle trajectories produced by the stabilized BGN methods
converge to the particle trajectories determined by a system of geometric par-
tial differential equations which differs from the standard curve shortening flow
by a tangential motion. The characterization of the particle trajectories also
rigorously explains, for one-dimensional curves, why the BGN-type methods
could maintain the quality of the underlying evolving mesh.

1. Introduction

Parametric finite element methods for approximating surface evolution under
geometric flows were firstly proposed by Dziuk in his 1990 paper [19] for mean
curvature flow. For a given approximate surface Γm

h at time level t = tm, Dziuk
proposed to determine the surface Γm+1

h at time level t = tm+1 as the image of a
finite element parametrization function Xm+1

h : Γm
h → R3, satisfying the following

weak formulation:
∫

Γm
h

Xm+1
h − id

τ
· χh +

∫

Γm
h

∇Γm
h

Xm+1
h · ∇Γm

h
χh = 0 ∀χh ∈ Sh(Γm

h ),(1.1)
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2 GENMING BAI AND BUYANG LI

where τ is the size of the time step, and Sh(Γm
h ) denotes the space of vector-

valued finite element space on the surface Γm
h . At every time level, Dziuk’s semi-

implicit parametric FEM only requires solving a linear elliptic partial differential
equation on a given surface. Since Dziuk’s paper was published, parametric FEMs
have become successful and widely used for approximating the evolution of surfaces
and interfaces in various different geometric flows and related problems, including
mean curvature flow, Willmore flow, Helfrich flow, surface diffusion, and so on; see
[3, 12, 16, 19, 21].

In practical computations, the accuracy of parametric FEMs in approximating
an evolving surface can be greatly influenced by the mesh quality of the triangu-
lation which constitutes the approximate surface. One of the main difficulties in
approximating surface evolution under geometric flows, which were not addressed
by Dziuk’s parametric FEMs, is that the mesh which forms the approximate surface
often becomes distorted and degenerate as time grows. One popular approach to
overcome this difficulty is to artificially redistribute the mesh points more equally
when the mesh quality becomes bad (below some threshold), as proposed in [3].
Another popular approach is to introduce an artificial tangential velocity, which
could drive the nodes moving tangentially as a surface evolves to maintain good
mesh quality; see [6,7,9,27]. For example, the method proposed by Barrett, Garcke
& Nürnberg in [9, Eq. (2.25)] (i.e., the BGN method) for mean curvature flow seeks
a parametrization Xm+1

h : Γm
h → R2 satisfying the following weak formulation:

∫ h

Γm
h

Xm+1
h − id

τ
· n̄m

h φh · n̄m
h +

∫

Γm
h

∇Γm
h

Xm+1
h · ∇Γm

h
φh = 0 ∀φh ∈ Sh(Γm

h ),

(1.2)

where n̄m
h is a weighted averaging normal vector at the nodes of the piecewise

linear curve Γm
h (see [9, Eq. (2.7) and Remark 2.1] and [5, Eq. (47)]), and the

superscript h in the integral indicates that the mass lumping technique for piecewise
linear FEM is used. In this method, only the normal component of the velocity
is explicitly specified, while the tangential component of the velocity is implicitly
determined to make the map Xm+1

h : Γm
h → R2 approximately harmonic. It turns

out that the tangential velocity implicitly determined in this way could maintain
good mesh quality of the approximate evolving surfaces. The idea of the BGN
methods has become popular and widely used for approximating various geometric
flows, including mean curvature flow, Willmore flow, Helfrich flow, surface diffusion,
and so on; see [4, 8–10]. However, the convergence of such BGN methods has not
been proved for any geometric flow.

Convergence of some semidiscrete and fully discrete parametric FEMs for mean
curvature flow and Willmore flow of curves was proved by Dziuk [20], Deckelnick &
Dziuk [14,15], Bartels [11], Li [37], Ye & Cui [42], etc. For mean curvature flow and
Willmore flow of closed surfaces, convergence results are available in the literature
only in the following several cases:

• Evolving surface FEMs with finite elements of degree k ≥ 2 based on re-
formulations of mean curvature flow and Willmore flow in terms of the
evolution equations of normal vector and mean curvature; see [26,31,33,34].

• The semidiscrete version of Dziuk’s parametric FEM with finite elements
of degree k ≥ 6 based on H1 parabolicity of the normal components in the
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CONVERGENCE OF A STABILIZED BGN METHOD 3

framework of evolving surface FEM [22, 23] and matrix-vector techniques
[35]; see [1, 38].

• Dziuk’s semi-implicit parametric FEM with finite elements of degree k ≥ 3
based on a new approach which recovers the full H1 parabolicity of Dz-
iuk’s method by measuring the error in terms of the distance between the
approximate surface and exact surface; see [2].

The error and stability estimates in these articles all rely on corresponding con-
tinuous formulations of the tangential velocity or evolution equations of normal
vector and mean curvature, which are not available for the BGN type of methods.
Therefore, the convergence analyses in these article cannot be applied/extended to
the BGN type of methods.

Apart from the BGN methods, there are other approaches to constructing artifi-
cial tangential velocities for parametric finite element approximations of geometric
flows. One popular approach, originaly proposed by DeTurck in [18] in the context
of Ricci flow and firstly brought into the numerics world by Fritz in his dissertation
[28] (see also [27]), is to introduce a tangential reparametrization of the geometric
flow. It is also important to mention the work of Mikula and Ševčovič [41] where the
authors are able to construct a nontrivial tangential smoothing velocity via solving
a nonlocal equation. Error estimates of the evolving surface FEMs for curve short-
ening flow and related problems based on this approach were established in [6,27,40]
based on available continuous formulations of the tangential velocity. Another ap-
proach, proposed by Hu & Li in [31], is to construct an artificial tangential velocity
in the reformations of mean curvature flow and Willmore flow by Kovacs, Li & Lu-
bich [33, 34] to minimize the instantaneous rate of deformation caused by the flow
map. Error estimates for this type of methods are based on the H1 parabolicity in
the reformulations by Kovacs, Li & Lubich [33,34] as well as the stability estimates
of tangential velocity which further rely on the stability estimates of normal vector
and mean curvature from their evolution equations. These works provide insights
into the numerical importance of working with coupled systems. However, since
the continuous formulations of the tangential velocity produced by the BGN type
methods are not available yet, and the evolution equations of normal vector and
mean curvature are not available in the BGN type of methods, the convergence
analyses in these two approaches cannot be applied/extended to the BGN type of
methods.

The main difficulty in the analysis of the BGN type of methods is the lack of
stability estimates for the artificial tangential velocity. This is partly reflected by
the following aspect: The formal limiting equation of (1.2) as τ, h → 0, i.e.,

(∂tX · n)n = (∆Γ[X]id) ◦ X,(1.3)

does not have a unique solution (adding an arbitrary tangential motion to the
solution does not change the equation). Therefore, the convergence of the BGN
type methods to the original geometric flow, such as curve shortening flow, has not
been proved rigorously. Moreover, the question of why the BGN methods could
maintain good mesh quality of the evolving surfaces/curves has not been addressed
rigorously, though this has been demonstrated intuitively in [5,9]. These two open
questions are both addressed in the current paper.

In this paper, we construct a high-order and stabilized version of the BGN
method for curve shortening flow, with high-order accuracy in space and as good
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4 GENMING BAI AND BUYANG LI

performance as the original BGN method in improving the distribution of mesh
points, and provide rigorous analysis for the convergence of the numerical solu-
tions to the exact solution of curve shortening flow. The continuous formulation of
the artificial tangential velocity produced by the BGN method for curve shortening
flow is also derived rigorously. Correspondingly, the limit of the particle trajectories
produced by the BGN method is completely characterized.

Let Γm
h be a closed and continuous piecewise polynomial curve which approxi-

mates the smooth curve Γm := Γ(tm) evolving under curve shortening flow. Each
polynomial element K of Γm

h is the image of an element K0 ⊂ Γ0
h under the discrete

flow map. We denote by K0
f the unique flat segment which has the same endpoints

as K0, and denote by FK : K0
f → K the parametrization of K, i.e., FK is the

unique polynomial of degree k that maps K0
f onto K. The finite element space on

the approximate curve Γm
h is defined as

Sh(Γm
h ) = {vh ∈ C(Γm

h ) : vh ◦ FK ∈ Pk(K0
f )2 for every element K ⊂ Γm

h },

where Pk(K0
f ) denotes the space of polynomials of degree k ≥ 1 on the flat segment

K0
f .
Then we introduce the mass lumping integral for high-order finite elements de-

noted by the superscript h:

∫ h

Γm
h

u · nm
h v · nm

h :=
∑

K⊂Γm
h

∫

K0
f

IGL
h

[
(u◦FK ·nm

h ◦FK)(v◦FK ·nm
h ◦FK)|∇K0

f
FK |

]
,

(1.4)

where the summation extends over all elements of the curve Γm
h , and IGL

h denotes
the interpolation operator at the Gauss–Lobatto points of the flat element K0

f (cf.
[13, Eq. (10.2.3)]). In the special case of piecewise linear FEM (i.e., k = 1), the
definition in (1.4) coincides with the definition in [9, Eq. (2.2)].

Let tm = mτ , m = 0, 1, . . . , ⌊T/τ⌋, be a sequence of grid points in time with
stepsize τ > 0, where ⌊T/τ⌋ denotes the maximal integer not exceeding T/τ . We
propose the following high-order and stabilized BGN method for curve shortening
flow: For a given approximate curve Γm

h , find a parametrization Xm+1
h : Γm

h →
Γm+1

h such that Xm+1
h ∈ Sh(Γm

h ) and
∫ h

Γm
h

Xm+1
h − id

τ
· n̄m

h φh · n̄m
h +

∫

Γm
h

∇Γm
h

Xm+1
h · ∇Γm

h
φh

=

∫

Γm
h

∇Γm
h

id · ∇Γm
h

Ih[φh − (φh · n̄m
h )n̄m

h ] ∀φh ∈ Sh(Γm
h ),(1.5)

where the right-hand side of (1.5) is a (consistent) stabilization term which plays
an important role in proving the convergence of the numerical solutions as well as
characterizing the tangential motion produced by the method, and n̄m

h ∈ Sh(Γm
h )

is an averaged normal vector defined as the discrete L2 projection of the piecewise
unit normal vector nm

h onto the finite element space Sh(Γm
h ), i.e.,

∫ h

Γm
h

n̄m
h · φh =

∫ h

Γm
h

nm
h · φh ∀φh ∈ Sh(Γm

h ).(1.6)

In the case k = 1 (using piecewise linear finite elements), the numerical scheme
in (1.5) differs from the BGN method in (1.2) by the stabilization term on the
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CONVERGENCE OF A STABILIZED BGN METHOD 5

right-hand side of (1.5). The motivation of adding this stabilization term is stated
in the text between (1.8)–(1.10).

Using the definition in (1.6), expressing the mass lumping integrals in (1.6) as
the summation of the quadrature weights times the evaluations at the quadrature
points, and comparing the coefficients of each degree of freedom on the both sides
of (1.6), the following relations between n̄m

h and nm
h can be shown:

n̄m
h (p) = nm

h (p) if p is an interior node of an element,

n̄m
h (p) =

|wK1(p)||K0
1f | nm

h |K1(p)

|wK1(p)||K0
1f | + |wK2(p)||K0

2f |
+

|wK2(p)||K0
2f | nm

h |K2(p)

|wK1(p)||K0
1f | + |wK2(p)||K0

2f |
if p = K1 ∩ K2 for two elements K1 and K2,

(1.7)

where wK(p) = ∇K0
f
FK ◦ F−1

K (p) for p ∈ K and nm
h |K denotes the normal vector

on element K. Note that both the mass lumping in (1.4) and the averaged normal
vector in (1.7) are intrinsically defined in the sense that they are independent of
the choice of flat segment for parametrization.

The proof of convergence of the proposed stabilized BGN method is based on
the recently developed new approach in [2] for the analysis of parametric finite ele-
ment approximations to geometric flows, where the error of concern is the distance
projection from the numerically computed curve to the exact smooth curve, rather
than the error between particle trajectories of the curves as in [31, 33, 35]. It has
been shown in [2] that this approach (i.e., to estimate the error of distance pro-
jection) can recover the full H1 parabolicity of mean curvature flow and therefore
leads to better stability estimates.

The novel contributions of this article to the construction and analysis of para-
metric approximations to geometric flows include the following several aspects.

• Stabilization and averaged normal vector: We stabilize the BGN method
in two ways, including the use of an averaged normal vector n̄m

h defined in
(1.6) and the introduction of the stabilization term to the right-hand side
of (1.5). Since the proposed stabilization term vanishes in the continuous
case, i.e.,

∫

Γ
∇Γid ·∇Γ[φ−(φ ·n)n] =

∫

Γ
−∆Γid · [φ−(φ ·n)n] =

∫

Γ
Hn · [φ−(φ ·n)n] = 0,

the stabilization term is expected to vanish approximately at the discrete
level. The advantage of adding this stabilization term is that, for test
functions φh in the finite element tangential subspace

Sh(Γm
h )⊤ = {vh ∈ Sh(Γm

h ) : vh · n̄m
h = 0 at the finite element nodes of Γm

h },

the weak formulation in (1.5) reduces to the following relation:
∫

Γm
h

∇Γm
h

Xm+1
h − id

τ
· ∇Γm

h
φh = 0 ∀φh ∈ Sh(Γm

h )⊤,(1.8)

which will be used to establish estimates for the tangential velocity of the
approximate curve in the (stabilized) BGN method. Therefore, the stabi-
lization term on the right-hand side of (1.5) is to stabilize the tangential
velocity in the form of (1.8), rather than enforcing some energy stability.
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6 GENMING BAI AND BUYANG LI

• Characterization of the tangential motion and the particle trajectories: It
was formally shown in [31, Section 1] that the velocity of the approximate
curve given by the BGN method converges to the velocity governed by the
following elliptic system on the exact curve Γ:

v · n = −H,

−∆Γv = κn,
(1.9)

which is the Euler-Lagrange equation of the following minimization prob-
lem:

min
v∈H1(Γ)

∫

Γ
|∇Γv|2 under the pointwise constraint v · n = −H.

In this paper, we present rigorous justification of this convergence for
the stabilized BGN method by utilizing (1.8) (the derivation of this rela-
tion requires us to add the stabilization term to the BGN method). This
completely characterizes the underlying geometric PDEs to which the sta-
bilized BGN method converges, i.e., the particle trajectories of approximate
curve converge to the particle trajectories determined by the following geo-
metric PDEs:

∂tX = v ◦ X,

v · n = −H,

−∆Γv = κn,

H = −∆Γid · n.

(1.10)

As we shall see in the error estimation, the velocity v determined by the
elliptic system in (1.9) is compared with the velocity (Xm+1

h − Xm
h )/τ of

the approximate curve to establish stability estimates for the tangential
velocity. This is one of the reasons that we can prove the convergence of
numerical solutions for the stabilized BGN method.

Since the velocity v determined by (1.9) minimizes the rate of the change
of deformation at every time t ∈ [0, T ], as explained in [31, Section 1], and
the tangential velocity in the stabilized BGN method can be proved con-
vergent to the tangential component of v, this explains why the tangential
velocity generated by the stabilized BGN method could improve the mesh
quality.

• Stability of the tangential velocity: The key stability structure in the
tangential direction follows from testing (1.9) by the tangential vector
(I − nn⊤)v, i.e.,

∫

Γ
∇Γv · ∇Γ[(I − nn⊤)v] = 0.(1.11)

If we denote by Djv the jth component of ∇Γv in the ambient geome-
try, using integration by parts and Young’s inequality, we can obtain the
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CONVERGENCE OF A STABILIZED BGN METHOD 7

following relation:
∫

Γ
|∇Γ[(I − nn⊤)v]|2

= −
∫

Γ
∇Γ(nn⊤v) · ∇Γ[(I − nn⊤)v]

= −
∫

Γ
Dj(nn⊤v) · Dj [(I − nn⊤)(I − nn⊤)v]

= −
∫

Γ
Dj(nn⊤v) · (I − nn⊤)Dj [(I − nn⊤)v]

−
∫

Γ
Dj(nn⊤v) · [Dj(I − nn⊤)(I − nn⊤)v] (product rule)

= −
∫

Γ

(
Dj [(I − nn⊤)nn⊤v] − [Dj(I − nn⊤)]nn⊤v

)
· Dj [(I − nn⊤)v]

+

∫

Γ
(nn⊤v) ·

(
DjDj(I − nn⊤)(I − nn⊤)v + Dj(I − nn⊤)Dj [(I − nn⊤)v]

)

(integration by parts)

≤ ϵ

∫

Γ
|∇Γ[(I − nn⊤)v]|2 + Cϵ−1

∫

Γ
|v · n|2,

(1.12)

with an arbitrary small constant ϵ, where the last inequality uses the iden-
tity (I − nn⊤)nn⊤v = 0 and the following Poincaré type of inequality for
the tangential velocity field (I − nn⊤)v:

∫

Γ
|(I − nn⊤)v|2 ≤ C

∫

Γ
|∇Γ[(I − nn⊤)v]|2.(1.13)

By choosing a sufficiently small constant ϵ and absorbing the first term on
the right-hand side of (1.12) by its left-hand side, we obtain

∫

Γ
|∇Γ[(I − nn⊤)v]|2 ≤ C

∫

Γ
|v · n|2.(1.14)

Therefore, the H1 norm of the tangential velocity can be bounded by the
L2 norm of the normal velocity (one derivative is removed). With (1.13)
replaced by (see Lemma 3.10)

∫

Γ̂m
h,∗

|vh|2 !
∫

Γ̂m
h,∗

Ih(|vh · n̄m
h,∗|2) +

∫

Γ̂m
h,∗

|∇Γ̂m
h,∗

vh|2,

we manage to extend (1.14) to the discrete level in estimating the tangential
velocity generated by the stabilized BGN method. This is another reason
that we manage to prove the convergence of numerical solutions for the
stabilized BGN method.

• Optimal-order convergence of the numerical solution: By combining the
following techniques in the analysis, i.e.,
(i) the introduction of stabilization to the BGN method,
(ii) the underlying PDEs in (1.9) which characterizes the tangential mo-

tion,
(iii) the stability of the tangential velocity in light of (1.14),
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8 GENMING BAI AND BUYANG LI

(iv) the mass lumping techniques based on the Gauss–Lobatto quadrature
nodes and the averaged normal vector techniques,

(v) the super-approximation estimates in the consistency analysis,
(vi) the high-order a priori estimate for the shape regularity,
we manage to prove optimal-order convergence of the numerical solutions
under the stepsize condition τ ≤ chk+1 (for any fixed constant c) in the
L2 norm which measures the distance between the approximate curve and
the exact curve, for the stabilized BGN method. The stepsize condition is
required in part (vi) mentioned above (also see Remark 2.3). The use of the
Gauss–Lobatto quadrature is the main obstacle that prevents us to extend
our current proof from the case of curves to surfaces with triangular meshes.
Nevertheless, such extension is still possible if we use tensorial parametric
finite elements (for example, for approximating two-dimensional surfaces of
torus type), where the construction of the tensorial Gauss–Lobatto quad-
rature is straightforward.

The underlying framework and techniques developed in this paper (with the
above-mentioned ingredients) may be applied/extended to other geometric flows
and parametric finite element approximations which contain artificial tangential
motions of the BGN type.

The rest of this paper is organized as follows. The main theoretical results of
this paper are presented in Section 2. The notations and underlying framework
for proving the main theorems are presented in Section 3. The convergence of
numerical solutions given by the stabilized BGN method and the characterization of
the particle trajecteries (continuous formulation of the artificial tangential motion)
are presented in Sections 4 and 5, respectively. Finally, numerical examples and
conclusions are presented in Sections 6 and 7, respectively.

2. Statement of the main theoretical results

Let δ > 0 be a sufficiently small constant such that every point x in the δ-
neighborhood of the exact curve Γm = Γ(tm), denoted by Dδ(Γm) = {x ∈ R2 :
dist(x,Γm) ≤ δ}, has a unique smooth projection of distance retraction onto Γm,
denoted by am(x), satisfying the following relation:

x − am(x) = ±|x − am(x)|nm(am(x)),

where nm is the unit normal vector on Γm. It is known that such a constant δ
exists and only depends on the curvature of Γm (thus δ is independent of m, but
possibly dependent on T ); see [29, Lemma 14.17] and [36, Theorem 6.40].

We assume that each element K0 ⊂ Γ0
h interpolates the smooth initial curve Γ0

at k + 1 nodes and that the parametrization FK0 : K0
f → K0 is a polynomial of

degree≤ k with the following property:

max
K0⊂Γ0

h

(
∥FK0∥W k,∞(K0

f ) + ∥∇K0F−1
K0∥L∞(K0)

)
≤ κ0,(2.1)

where κ0 is some constant that is independent of h. This property holds for standard
parametric finite elements which interpolate the smooth curve Γ0 and guarantees
the following optimal-order approximation to Γ0 by Γ0

h:

max
K0⊂Γ0

h

∥a0 ◦ FK0 − FK0∥L∞(K0
f ) ≤ Chk+1.(2.2)
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CONVERGENCE OF A STABILIZED BGN METHOD 9

The projection a0(x) is well defined for points x in a neighborhood of Γ0 and
therefore well defined on Γ0

h for sufficiently small mesh size h.
Let xm

j , j = 1, . . . , J , be the nodes of the approximate curve Γm
h at the time

tm given by the stabilized BGN method in (1.5). The interpolated piecewise poly-
nomial curve Γ̂m

h,∗ is determined by the nodes which are obtained by projecting
the nodes of Γm

h onto Γm. We shall prove that the approximate curve Γm
h is in a

δ-neighborhood of the smooth curve Γm so that the projection of the nodes of Γm
h

onto Γm is well defined (thus the interpolated curve Γ̂m
h,∗ is well defined).

In view of the matrix-vector formulation which was firstly proposed in [35, Sec-
tion 2.5] in the context of numerical geometric flow and the notational conventions
introduced in [2, Section 1], we will always identify a finite element function as
a vector consisting of its nodal values. Such representation is unique if we have
specified the underlying domain. For example, the two integrands of

∫

Γ̂m
h,∗

vh and

∫

Γm
h

vh

have the same vector of nodal values, denoted by v, but are defined on different
domains Γ̂m

h,∗ and Γm
h . When the underlying domain is specified, v is automati-

cally substantialized to a finite element function vh on that domain. Since all of
the quantitative computations in this paper involve either integrals or norms, our
notations for finite element functions will always have a unique and clear meaning.
For another example, ∥vh∥Γ̂m

h,∗
and ∥vh∥Γm

h
denote the norms of a finite element

function (a nodal vector) on the two different curves Γ̂m
h,∗ and Γm

h , respectively.
Correspondingly, the interpolation operator Ih should be interpreted as the de-

termination of the nodal vector which uniquely corresponds to a finite element
function after specifying the underlying curve. The lift of a finite element function
vh onto the smooth curve Γm is defined as

vl
h = vh ◦ (am|Γ̂m

h,∗
)−1

by first identifying vh as a finite element function on the interpolated curve Γ̂m
h,∗;

see [17, Section 2.4] and [33, Section 3.4]. The inverse lift of v ∈ L2(Γm) onto Γ̂m
h,∗

is defined as v−l = v ◦ am.
Let Xm

h be the finite element function with nodal vector xm. When Xm
h is con-

sidered as a finite element function on Γ̂m
h,∗, it represents the piecewise polynomial

of degree≤ k which maps the nodes of Γ̂m
h,∗ to the nodes of Γm

h . In order to measure
the error between the approximate curve Γm

h and the smooth curve Γm, we define
the lifted error

êm =
(
Xm

h − Ihid−l
Γm

)l ∈ H1(Γm),

where Xm,l
h denotes the lift of Xm

h onto Γm through the interpolated curve Γ̂m
h,∗.

The main theoretical result of this article is Theorem 2.1.

Theorem 2.1 (Convergence of the stabilized BGN method). Suppose that the flow
map X : Γ0 × [0, T ] → R2 of the curve shortening flow of a closed curve and its
inverse map X(·, t)−1 : Γ(t) → Γ0 are both sufficiently smooth, uniformly with
respect to t ∈ [0, T ], and the initial approximation of the curve is sufficiently good,
i.e. Γ0

h is closed and satisfies (2.1) and ∥ê0∥Γ0 ≤ c0hk+1 for some constant c0 which
is independent of h. Let Xm

h be the finite element solution given by the stablized
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10 GENMING BAI AND BUYANG LI

BGN method in (1.5) with initial condition X0
h = id on Γ0

h. Then, for any given
constant c (independent of τ and h), there exists a positive constant h0 such that
for τ ≤ chk+1 and h ≤ h0 the following error estimate holds for finite elements of
degree k ≥ 2:

max
1≤m≤[T/τ ]

∥êm∥2
L2(Γm) +

[T/τ ]∑

m=1

τ∥∇Γm êm∥2
L2(Γm) ≤ Ch2(k+1),(2.3)

where the constant C is independent of τ and h (but may depend on c and T ).

Theorem 2.2 (Characterization of the particle trajectories). Under the assump-
tions of Theorem 2.1, the particle trajectories produced by the stabilized BGN method
in (1.5) converge to the particle trajectories determined by (1.10).

Remark 2.3. The stepsize condition τ ≤ chk+1 is required to prove the shape
regularity of the interpolated curve Γ̂m

h,∗ and the optimal-order approximation to

Γm by the interpolated curve Γ̂m
h,∗; see Section 4.9 and, more specifically, (4.119).

3. Notations and underlying framework

In this section, we present the notation and underlying framework for proving
Theorems 2.1 and 2.2. This includes the approximation properties of the interpo-
lated surface Γ̂m

h,∗ to the smooth surface Γm, the mathematical induction assump-
tions under which we establish the consistency and stability estimates, the super-
approximation properties of surface finite elements and Gauss–Lobatto quadrature,
the approximation properties of the averaged normal vectors to the original normal
vector, the Poincaré inequalities for vector-valued functions on triangulated sur-
faces, and the geometric relations among the several different definitions of errors.

The underlying framework in this section is a substantial refinement of the gen-
eral setting presented in [2] for geometric flow of curves with mass lumping para-
metric FEMs based on Gauss–Lobatto points, and provides a foundation for us
to establish optimal-order error estimates of the stabilized BGN method for curve
shortening flow.

3.1. Notations. The following notations will be frequently used in this article.
They are similar to the notations in [2, Section 3.1] and are listed below for the
convenience of the readers.

Γm: The exact smooth curve at time level t = tm.
Γm

h : The numerically computed curve at time level t = tm.
xm: The nodal vector xm = (xm

1 , . . . , xm
J )⊤ consisting of the positions of nodes on Γm

h .
x̂m
∗ : The distance projection of xm onto the exact curve Γm, i.e., x̂m

∗ = (x̂m
1,∗, . . . , x̂

m
J,∗)

⊤

with x̂m
j,∗ = am(xm

j ).
xm+1
∗ : The new position of x̂m

∗ evolving under curve shortening flow (without additional
tangential motion) from tm to tm+1.

Γ̂m
h,∗: The piecewise polynomial curve which interpolates Γm at the nodes in x̂m

∗ .
Γm+1

h,∗ : The piecewise polynomial curve which interpolates Γm+1 at the nodes in xm+1
∗ .

Xm
h : The finite element function with nodal vector xm. It coincides with the identity map,

i.e., id(x) = x, when it is considered as a function on Γm
h .

Xm+1
h : The finite element function with nodal vector xm+1. When it is considered as a

function on Γm
h , it represents the local flow map from Γm

h to Γm+1
h .
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CONVERGENCE OF A STABILIZED BGN METHOD 11

X̂m
h,∗: The finite element function with nodal vector x̂m

∗ . It coincides with the identity map,
i.e., id(x) = x, when it is considered as a function on Γ̂m

h,∗. It coincides with the

discrete flow map from Γ̂0
h,∗ to Γ̂m

h,∗ when it is considered as a function on Γ̂0
h,∗.

Xm+1
h,∗ : The finite element function with nodal vector xm+1

∗ . When it is considered as a
function on Γ̂m

h,∗, it represents the local flow map from Γ̂m
h,∗ to Γm+1

h,∗ .
Xm+1: The local flow map from Γm to Γm+1 under mean curvature flow.
êm
h : The finite element error function with nodal vector êm = xm − x̂m

∗ .
em+1
h : The auxiliary error function with nodal vector em+1 = xm+1 − xm+1

∗ .
nm: The unit normal vector on Γm.
nm
∗ : The unit normal vector of Γm inversely lifted to a neighborhood of Γm (including

Γ̂m
h,∗), i.e., nm

∗ = nm ◦ am.

n̂m
h,∗: The normal vector on Γ̂m

h,∗.

n̄m
h,∗: The averaged normal vector on Γ̂m

h,∗, which is not necessarily unit.
nm

h : The normal vector on Γm
h .

n̄m
h : The averaged normal vector on Γm

h , which is not necessarily unit.
µ̂m

h,∗: The co-normal vector (unit tangent vector) on Γ̂m
h,∗.

µm
h : The co-normal vector (unit tangent vector) on Γm

h .
Nm

∗ : The normal projection operator Nm
∗ = nm

∗ (nm
∗ )⊤ on Γ̂m

h,∗.
Nm: The normal projection operator Nm = nm(nm)⊤ on Γm. Thus Nm is the lift of Nm

∗
onto Γm, and Nm

∗ is the extension of Nm to a neighborhood of Γm.
N̂m

h,∗: The normal projection operator N̂m
h,∗ = n̂m

h,∗(n̂
m
h,∗)

⊤ on Γ̂m
h,∗.

N̄m
h,∗: The averaged normal projection operator N̄m

h,∗ =
n̄m

h,∗
|n̄m

h,∗| (
n̄m

h,∗
|n̄m

h,∗| )
⊤ on Γ̂m

h,∗.

Tm
∗ : The tangential projection operator Tm

∗ = I − nm
∗ (nm

∗ )⊤ on Γ̂m
h,∗.

Tm: The tangential projection operator Tm = I − nm(nm)⊤ on Γm. Thus Tm is the lift
of Tm

∗ onto Γm.
T̂m

h,∗: The tangential projection operator T̂m
h,∗ = I − n̂m

h,∗(n̂
m
h,∗)

⊤ on Γ̂m
h,∗.

T̄m
h,∗: The averaged tangential projection operator T̄m

h,∗ = I − n̄m
h,∗

|n̄m
h,∗| (

n̄m
h,∗

|n̄m
h,∗| )

⊤ on Γ̂m
h,∗.

N (Γm
h ): The collection of nodes of Γm

h .
Nb(Γm

h ): The collection of endpoints (boundary points) of the elements of Γm
h .

For the simplicity of notation, we shall denote by IhN̄m
h,∗φh and IhT̄m

h,∗φh the

abbreviations of Ih(N̄m
h,∗φh) and Ih(T̄m

h,∗φh), respectively. Similar notations are also

adopted for IhN̂m
h,∗φh, IhNm

∗ φh, IhT̂m
h,∗φh, IhTm

∗ φh, and so on.

If K is an element of Γ̂m
h,∗ then we denote by K0 ⊂ Γ0

h the element which is

mapped to K by the discrete flow map X̂m
h,∗ : Γ0

h → Γ̂m
h,∗, and denote by FK0 :

K0
f → K0 the parametrization of the element K0 ⊂ Γ0

h, where K0
f is the flat line

segment which has the same endpoints as K0. The flat line segments K0
f form a

piecewise linear curve

Γ0
h,f =

⋃

K0⊂Γ0
h

K0
f .

We still denote by X̂m
h,∗ : Γ0

h,f → Γ̂m
h,∗ the unique piecewise polynomial of degree k

(with nodal vector x̂m
∗ as before) which maps the Gauss–Lobatto points of every

flat segment K0
f ⊂ Γ0

h,f to the corresponding nodes of element K ⊂ Γ̂m
h,∗. Therefore,

X̂m
h,∗ : Γ0

h,f → Γ̂m
h,∗ is a piecewise polynomial parametrization of Γ̂m

h,∗. We denote
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12 GENMING BAI AND BUYANG LI

by ∥X̂m
h,∗∥W j,∞

h (Γ0
h,f )

the piecewise Sobolev norms on Γ0
h,f , i.e.,

∥X̂m
h,∗∥W j,∞

h (Γ0
h,f )

:= max
K0

f ⊂Γ0
h,f

∥X̂m
h,∗∥W j,∞(K0

f ).

Since each piece K ∈ Γ̂m
h,∗ can be endowed with a canonical smooth structure, the

piecewise Sobolev norms can be also defined on Γ̂m
h,∗.

We denote by IK the interpolation operator on the flat segment K0
f . Since

FK = am ◦ FK at the nodes of K0
f , it follows that IK [am ◦ FK ] = FK . The

interpolation of the distance projection am|Γ̂m
h,∗

: Γ̂m
h,∗ → Γm onto the curved surface

Γ̂m
h,∗ is defined as

Iham := IK [am ◦ FK ] ◦ F−1
K = id on an element K ⊂ Γ̂m

h,∗.

For a smooth function f on the smooth curve Γm, we denote by Ihf the interpolation
of the inversely lifted function f−l = f ◦ am onto Γ̂m

h,∗, i.e.,

Ihf := IK [f ◦ am ◦ FK ] ◦ F−1
K on an element K ⊂ Γ̂m

h,∗.

We denote by (Ihf)l = (Ihf) ◦ (am|Γ̂m
h,∗

)−1 the lift of Ihf onto Γm. For a piecewise

smooth function f on Γ̂m
h,∗ (instead of Γm), we use the same notation Ihf denotes

the following interpolated function on Γ̂m
h,∗:

Ihf := IK [f ◦ FK ] ◦ F−1
K on an element K ⊂ Γ̂m

h,∗.

3.2. Approximation properties of the interpolated surface Γ̂m
h,∗. For the

discrete flow map X̂m
h,∗ : Γ0

h,f → Γ̂m
h,∗, we denote

κl := max
0≤m≤l

(
∥X̂m

h,∗∥W k,∞
h (Γ0

h,f )
+ ∥(X̂m

h,∗)
−1∥W 1,∞(Γ̂m

h,∗)

)

= max
0≤m≤l

max
K⊂Γ̂m

h,∗

(
∥FK∥W k,∞(K0

f ) + ∥F−1
K ∥W 1,∞(K)

)
.

(3.1)

By pulling functions on Γ̂m
h,∗ back to Γ0

h,f via the map X̂m
h,∗ : Γ0

h,f → Γ̂m
h,∗ (and vice

visa), one can see that the W 1,p, p ∈ [1,∞], norms of a finite element function (with
a fixed nodal vector) on Γ0

h,f and Γ̂m
h,∗ are equivalent up to constants which depend

on κl, i.e.,

C−1
κl

∥vh∥W 1,p(Γ̂m
h,∗) ≤ ∥vh∥W 1,p(Γ0

h,f )
≤ Cκl∥vh∥W 1,p(Γ̂m

h,∗),

for 0 ≤ m ≤ l. Since X̂m
h,∗ : Γ0

h,f → Γ̂m
h,∗ is the Lagrange interpolation of am ◦ X̂m

h,∗ :

Γ0
h,f → Γm on the piecewise flat curve Γ0

h,f , it follows that

∥am ◦ X̂m
h,∗ − X̂m

h,∗∥L∞(Γ0
h,f )

+ h∥am ◦ X̂m
h,∗ − X̂m

h,∗∥W 1,∞(Γ0
h,f )

≤ Cκlh
k+1.(3.2)

Since Iham = id on Γ̂m
h,∗, inequality (3.2) can be equivalently written as follows by

using the norm equivalence on Γ0
h,f and Γ̂m

h,∗:

∥am − Iham∥L∞(Γ̂m
h,∗) + h∥am − Iham∥W 1,∞(Γ̂m

h,∗) ≤ Cκlh
k+1.(3.3)
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CONVERGENCE OF A STABILIZED BGN METHOD 13

Moreover, the following estimates hold for any smooth function f on Γm:

∥f−l − Ihf∥L2(Γ̂m
h,∗) + h∥f−l − Ihf∥H1(Γ̂m

h,∗) ≤ Cκl∥f∥Hk+1(Γm)h
k+1,(3.4)

∥f − (Ihf)l∥L2(Γm) + h∥f − (Ihf)l∥H1(Γm) ≤ Cκl∥f∥Hk+1(Γm)h
k+1.(3.5)

Similar estimates have been shown in [2, inequalities (3.3) and (3.4)]. The bound-
edness of κl (independent of τ , h and l) will be proved in Section 4.9.

We denote by nm and Hm the unit normal vector and the mean curvature on
Γm, respectively, and denote by nm

∗ = nm ◦ am and Hm
∗ = Hm ◦ am the smooth

extensions of nm and Hm to a neighborhood Dδ(Γm) of Γm. In particular, nm
∗

and Hm
∗ are well defined on Γ̂m

h,∗ as the inverse lift of nm and Hm via the distance
projection am, respectively, with

∥nm
∗ ∥W j,∞(Dδ(Γm)) + ∥Hm

∗ ∥W j,∞(Dδ(Γm)) ≤ Cj for all j ≥ 0.

Moreover, the normal vectors on Γ̂m
h,∗ and Γm (inversely lifted to Γ̂m

h,∗) have the

following expressions (using the parametrizations X̂m
h,∗ : Γ0

h,f → Γ̂m
h,∗ and am◦X̂m

h,∗ :

Γ0
h,f → Γm, respectively):

n̂m
h,∗ =

(∇Γ0
h,f

X̂m
h,∗)

⊥

|∇Γ0
h,f

X̂m
h,∗|

◦ (X̂m
h,∗)

−1 and nm
∗ =

[∇Γ0
h,f

(am ◦ X̂m
h,∗)]

⊥

|∇Γ0
h,f

(am ◦ X̂m
h,∗)|

◦ (X̂m
h,∗)

−1,

(3.6)

where v⊥ := (−v2, v1) for any vector v = (v1, v2). These expressions lead to the
following estimates as a result of (3.2):

∥n̂m
h,∗ − nm

∗ ∥L∞(Γ̂m
h,∗) ≤ Cκlh

k.(3.7)

The expression of n̂m
h,∗ also implies that

∥n̂m
h,∗∥W j,∞

h (Γ̂m
h,∗) ≤ Cκl,j ∀ j ≥ 0,(3.8)

which is due to the fact that the (k +1)th-order partial derivatives of X̂m
h,∗ are zero

on Γ0
h,f .

Lemma 3.1 was proved in [35, Lemma 4.3]. It shows that norms of the finite
element functions with same nodal vectors on the family of surfaces

Γ̂m
h,θ = (1 − θ)Γ̂m

h,∗ + θΓm
h , θ ∈ [0, 1],

are equivalent, provided that the distance between Γ̂m
h,∗ and Γm

h is small in the

W 1,∞ norm.

Lemma 3.1. If ∥∇Γ̂m
h,∗

êm
h ∥L∞(Γ̂m

h,∗) ≤
1
2 for θ ∈ [0, 1] then the following equivalence

of norms hold for 1 ≤ p ≤ ∞:

∥vh∥Lp(Γ̂m
h,∗) ! ∥vh∥Lp(Γ̂m

h,θ) ! ∥vh∥Lp(Γ̂m
h,∗),

∥∇Γ̂m
h,∗

vh∥Lp(Γ̂m
h,∗) ! ∥∇Γ̂m

h,θ
vh∥Lp(Γ̂m

h,θ) ! ∥∇Γ̂m
h,∗

vh∥Lp(Γ̂m
h,∗).

Lemma 3.2 concerns the difference between integrals on the smooth curve Γm

and the interpolated curve Γ̂m
h,∗.
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14 GENMING BAI AND BUYANG LI

Lemma 3.2 ([32, Lemma 5.6]). The following estimates hold for f1, f2 ∈ H1(Γ̂m
h,∗)

and their lifts f l
1, f

l
2 ∈ H1(Γm):

∣∣∣
∫

Γ̂m
h,∗

f1f2 −
∫

Γm

f l
1f

l
2

∣∣∣ ≤ Cκlh
k+1∥f1∥L2(Γ̂m

h,∗)∥f2∥L2(Γ̂m
h,∗),

∣∣∣
∫

Γ̂m
h,∗

∇Γ̂m
h,∗

f1 · ∇Γ̂m
h,∗

f2 −
∫

Γm

∇Γmf l
1 · ∇Γmf l

2

∣∣∣

≤ Cκlh
k+1∥∇Γ̂m

h,∗
f1∥L2(Γ̂m

h,∗)∥∇Γ̂m
h,∗

f2∥L2(Γ̂m
h,∗).

In the rest of this article, we denote by C a generic positive constant which
may be different at different occurrences, possibly dependent on κl and T , but
is independent of τ , h and m. We denote by C0 generic positive constant which
is independent of κl. For the simplicity of notation, we denote by A ! B the
statement “A ≤ CB for some constant C”. The statement “for sufficiently small
h . . . ” means that “there exists a constant C, possibly depending on κl, such that
for h ≤ C−1 . . . ”.

3.3. Mathematical induction assumptions. We assume that the following con-
ditions hold for m = 0, . . . , l (and then prove that these conditions could be recov-
ered for m = l + 1):

(1) The numerically computed curve Γm
h is in a δ-neighborhood of the exact

curve Γm. Therefore, the distance projection of the nodes of Γm
h onto Γm

are well defined (thus the interpolated curve Γ̂m
h,∗ is well defined).

(2) The error êm
h = Xm

h − X̂m
h,∗ satisfies the following estimates:

∥êm
h ∥L2(Γ̂m

h,∗) + h∥êm
h ∥H1(Γ̂m

h,∗) ≤ h2.75.(3.9)

Remark 3.3. The exponent 2.75 is required in the derivation of the last inequality
in (4.91), which requires h−7/2∥∇Γ̂m

h,∗
êm
h ∥2

L2(Γ̂m
h,∗)

! 1.

Based on these induction assumptions, the following results can be obtained from
(3.9) by applying the inverse inequality of finite element functions:

∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗) ! h1.75, ∥êm
h ∥L∞(Γ̂m

h,∗) ! h2.25(3.10)

and ∥∇Γ̂m
h,∗

êm
h ∥L∞(Γ̂m

h,∗) ! h1.25,

which guarantee the equivalence of Lp and W 1,p norms, 1 ≤ p ≤ ∞, of finite
element functions vh with a common nodal vector on the family of curves

Γ̂m
h,θ = (1 − θ)Γ̂m

h,∗ + θΓm
h , θ ∈ [0, 1].

They are intermediate curves between the interpolated curve Γ̂m
h,∗ and the approxi-

mate curve Γm
h given by the numerical solution; see [35, Lemma 4.3]. In particular,

the Lp and W 1,p norms of a finite element function on Γ̂m
h,∗ and Γm

h (with a common
nodal vector) are equivalent.

3.4. Super-approximation, Gauss–Lobatto quadrature and discrete
norms. The following super-approximation estimates of products of finite element
functions were proved in [31, Lemma A] and [2, Lemma 4.4] for parametric finite
elements on a surface in the three-dimensional space. The same results and proofs
also hold for parametric finite elements on a curve in the two-dimensional plane.
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CONVERGENCE OF A STABILIZED BGN METHOD 15

Lemma 3.4 (Super-approximation estimates of type I). The following estimates
hold for any piecewise smooth function f and finite element functions φh, vh, wh ∈
Sh(Γ̂m

h,∗):

∥(1 − Ih)(fφh)∥L2(Γ̂m
h,∗) ! ∥f∥W k+1,∞

h (Γ̂m
h,∗)h∥φh∥L2(Γ̂m

h,∗),

∥∇Γ̂m
h,∗

(1 − Ih)(fφh)∥L2(Γ̂m
h,∗) ! ∥f∥W k+1,∞

h (Γ̂m
h,∗)h∥φh∥H1(Γ̂m

h,∗),

∥(1 − Ih)(vhwh)∥L2(Γ̂m
h,∗) ! h2∥vh∥W 1,∞(Γ̂m

h,∗)∥wh∥H1(Γ̂m
h,∗),

∥∇Γ̂m
h,∗

(1 − Ih)(vhwh)∥L2(Γ̂m
h,∗) ! h∥vh∥W 1,∞(Γ̂m

h,∗)∥wh∥H1(Γ̂m
h,∗).

Another super-approximation type of results which has application in the anal-
ysis of mass lumping FEMs is based on the Gauss–Lobatto quadrature on each
element. Lemma 3.5 is a direct generalization of [30, Lemma 3.6, Eq. (3.15)] to
finite element functions on a piecewise polynomial curve (which can be proved by
transforming the integrals from curved elements to flat elements).

Lemma 3.5 (Super-approximation estimates of type II). Let f be a function which
is smooth on every element K of Γ̂m

h,∗, and assume that the pull-back function f ◦FK

vanishes at all the Gauss–Lobatto points of the flat segment K0
f for every element

K of Γ̂m
h,∗. Then the following two types of estimates hold:

∣∣∣
∫

Γ̂m
h,∗

fdξ
∣∣∣ ! h2k∥f∥W 2k,1

h (Γ̂m
h,∗),(3.11)

where ∥ · ∥W 2k,1
h (Γ̂m

h,∗) denotes the piecewise W 2k,1 norm . If (fφh) ◦FK vanishes at

all the Gauss–Lobatto points of K0
f , then the following result follows from Leibniz

rule of differentiation and the inverse inequality of finite element functions:
∣∣∣
∫

Γ̂m
h,∗

fφhdξ
∣∣∣ ! ∥f∥H2k

h (Γ̂m
h,∗)h

k+1∥φh∥H1(Γ̂m
h,∗).(3.12)

The result below can be proved similarly as [30, Lemma 3.7] by using integration
by parts and the first result of Lemma 3.5.

Lemma 3.6 (Super-approximation estimates of type III). For a smooth function
f on Γm the following estimate holds:
∣∣∣
∫

Γm

∇Γm(f − (Ihf)l) · ∇Γmφl
h

∣∣∣ ! hk+1∥f∥H2k(Γm)∥φh∥H1(Γ̂m
h,∗) ∀φh ∈ Sh(Γ̂m

h,∗).

Since the weights of the Gauss–Lobatto quadrature are positive, the discrete Lp

norm defined by

∥v∥Lp
h(Γ̂m

h,∗) :=
(∫ h

Γ̂m
h,∗

|v|p
) 1

p
=

( ∑

K⊂Γ̂m
h,∗

∫

K0
f

IK

(
|v ◦ FK |p|∇K0

f
FK |

)) 1
p

is indeed a norm on the finite element space Sh(Γ̂m
h,∗) because ∥v∥Lp

h(Γ̂m
h,∗) = 0 iff

v = 0 at all the nodes of Γ̂m
h,∗. In addition, this discrete Lp norm is also well

defined for functions which are piecewise continuous on Γ̂m
h,∗. Its basic properties

are summarized below.
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16 GENMING BAI AND BUYANG LI

Lemma 3.7. The following relations hold for all finite element functions vh ∈
Sh(Γ̂m

h,∗) and piecewise continuous functions w1, w2, w3 on Γ̂m
h,∗:

∥vh∥Lp
h(Γ̂m

h,∗) ∼ ∥vh∥Lp(Γ̂m
h,∗),

∥∇Γ̂m
h,∗

vh∥Lp
h(Γ̂m

h,∗) ∼ ∥∇Γ̂m
h,∗

vh∥Lp(Γ̂m
h,∗),

∣∣∣
∫ h

Γ̂m
h,∗

w1w2w3

∣∣∣ ! ∥w1∥L∞(Γ̂m
h,∗)∥w2∥L2

h(Γ̂m
h,∗)∥w3∥L2

h(Γ̂m
h,∗).

The proof of Lemma 3.7 is omitted as these results follow directly from the
definition of the discrete Lp norm (analogous results on a bounded interval have
been proved in [30]). The first equivalence relation in Lemma 3.7 also holds for
piecewise polynomials (not necessarily globally continuous) of degree≤ k.

Since ∥∇Γ̂m
h,∗

êm
h ∥L∞(Γ̂m

h,∗) ! h1.25, as shown in (3.10), it follows from Lemma 3.1

that for sufficiently small h the quantities |∇K0
f
FK | are equivalent for the elements

on Γ̂m
h,∗ and Γm

h . Therefore, for any piecewise continuous function v on Γm
h the

following equivalence relation holds:

∥v∥q
Lq

h(Γm
h ) ∼ h

∑

K⊂Γm
h

∑

p∈N (Γm
h )∩K

|v(p)|q for 1 ≤ q < ∞.(3.13)

Moreover, the following result will be used for finite element functions vh, wh ∈
Sh(Γ̂m

h,∗):

∥Ih(vhwh)∥Lp(Γ̂m
h,∗) ∼ ∥vhwh∥Lp

h(Γ̂m
h,∗)

! ∥vh∥L
p1
h (Γ̂m

h,∗)∥wh∥L
p2
h (Γ̂m

h,∗)

! ∥vh∥Lp1 (Γ̂m
h,∗)∥wh∥Lp2 (Γ̂m

h,∗)(3.14)

which holds for 1 ≤ p, p1, p2 ≤ ∞ such that
1

p
=

1

p1
+

1

p2
.

3.5. Estimates of the averaged normal vectors. On the interpolated curve
Γ̂m

h,∗ we can define the averaged normal vector n̄m
h,∗ similarly as n̄m

h on Γm
h , which is

defined in (1.6). Namely, we define n̄m
h,∗ ∈ Sh(Γ̂m

h,∗) to be the unique finite element
function satisfying the following relation:

∫ h

Γ̂m
h,∗

n̄m
h,∗ · φh =

∫ h

Γ̂m
h,∗

n̂m
h,∗ · φh ∀φh ∈ Sh(Γ̂m

h,∗).(3.15)

Since (3.15) only involves nodal values, it follows that
∫ h

Γ̂m
h,∗

n̄m
h,∗ · φ =

∫ h

Γ̂m
h,∗

n̂m
h,∗ · φ ∀φ ∈ C(Γ̂m

h,∗)
2.(3.16)

It is straightforward to verify the following relations:

n̄m
h,∗(p) = n̂m

h,∗(p) if p is an interior node of an element,

n̄m
h,∗(p) =

|wK1(p)||K0
1f | n̂m

h,∗(p−)

|wK1(p)||K0
1f | + |wK2(p)||K0

2f |
+

|wK2(p)||K0
2f | n̂m

h,∗(p+)

|wK1(p)||K0
1f | + |wK2(p)||K0

2f |

(3.17)

if p = K1 ∩ K2 for two elements K1 and K2,
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CONVERGENCE OF A STABILIZED BGN METHOD 17

where wK(p) = ∇K0
f
FK ◦ F−1

K (p) for p ∈ K, with n̂m
h,∗(p−) and n̂m

h,∗(p+) denoting
the left (from K1) and right (from K2) values of the piecewisely defined normal
vector n̂m

h,∗ on Γ̂m
h,∗. Therefore, the amplitude of n̄m

h,∗ at the nodes satisfies the
following estimates:

|n̄m
h,∗(p)| = 1 if p is an interior node of an element,

|n̄m
h,∗(p)| ≤ 1,

∣∣|n̄m
h,∗(p)| − 1

∣∣ ≤ C|n̂m
h,∗(p+) − n̂m

h,∗(p−)|2 ≤ Cκlh
2k

if p = K1 ∩ K2 for two elements K1 and K2.

(3.18)

The estimate of
∣∣|n̄m

h,∗(p)| − 1
∣∣ in (3.18) is obtained by using the expression

n̄m
h,∗(p) = n̂m

h,∗(p−) + λ(n̂m
h,∗(p+) − n̂m

h,∗(p−)),

with λ = |wK2(p)||K0
2f |/(|wK1(p)||K0

1f | + |wK2(p)||K0
2f |), and then using the follow-

ing identity:

|n̄m
h,∗(p)|2 =1 + 2λn̂m

h,∗(p−) · (n̂m
h,∗(p+) − n̂m

h,∗(p−)) + λ2|n̂m
h,∗(p+) − n̂m

h,∗(p−)|2

=1 + λ|n̂m
h,∗(p+) − n̂m

h,∗(p−)|2 + λ2|n̂m
h,∗(p+) − n̂m

h,∗(p−)|2

where we have used the orthogonality between n̂h,∗(p+)+ n̂h,∗(p−) and n̂h,∗(p+)−
n̂h,∗(p−).

From the expressions of nm
h (the normal vector on Γm

h ) and n̂m
h,∗ (the normal

vector on Γ̂m
h,∗), as shown in (3.6), one can estimate nm

h − n̂m
h,∗ in terms of the

derivative of êm
h = Xm

h − X̂m
h,∗, i.e.,

∥nm
h − n̂m

h,∗∥L2(Γ̂m
h,∗) + ∥nm

h − n̂m
h,∗∥L2

h(Γ̂m
h,∗) ! ∥∇Γ̂m

h,∗
êm
h ∥L2(Γ̂m

h,∗),(3.19)

where we have used the equivalence between continuous and discrete L2 norms in
Lemma 3.7. Since ∥n̄m

h −n̄m
h,∗∥L2(Γ̂m

h,∗) can be converted to ∥nm
h −n̂m

h,∗∥L2
h(Γ̂m

h,∗) using

the nodal expressions of n̄m
h and n̂m

h,∗ in (1.7) and (3.17), it follows that

∥n̄m
h − n̄m

h,∗∥L2(Γ̂m
h,∗) ! ∥nm

h − n̂m
h,∗∥L2

h(Γ̂m
h,∗) ! ∥∇Γ̂m

h,∗
êm
h ∥L2(Γ̂m

h,∗).(3.20)

Lemma 3.8 shows that the averaged normal vectors approximate the normal
vector of Γm with the same order of accuracy as the piecewisely defined normal
vectors.

Lemma 3.8. The following approximation properties of n̄m
h,∗ and n̄m

h hold:

∥n̄m
h,∗ − Ihnm

∗ ∥L∞(Γ̂m
h,∗) ! hk,

∥n̄m
h − Ihnm

∗ ∥L2(Γ̂m
h,∗) ! hk + ∥∇Γ̂m

h,∗
êm
h ∥L2(Γ̂m

h,∗),

∥n̄m
h,∗ − n̂m

h,∗∥L∞(Γ̂m
h,∗) ! hk.

(3.21)

Proof. Since n̄m
h,∗ is defined as the weighted sum of n̂m

h,∗, the L∞ approximation
property

∥n̂m
h,∗ − Ihnm

∗ ∥L∞(Γ̂m
h,∗) ! hk(3.22)

implies the first and the third results.
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18 GENMING BAI AND BUYANG LI

The second result of Lemma 3.8 follows from the application of the triangle
inequality, i.e.,

∥n̄m
h − Ihnm

∗ ∥L2(Γ̂m
h,∗) ≤ ∥n̄m

h,∗ − Ihnm
∗ ∥L2(Γ̂m

h,∗) + ∥n̄m
h − n̄m

h,∗∥L2(Γ̂m
h,∗),(3.23)

where the first term on the right-hand side of (3.23) is bounded by Cκlh
k according

to the first result, and the second term on the right-hand side of (3.23) follows from
(3.20). "

Lemma 3.8 and the boundedness of nm
∗ imply the boundedness of n̄m

h,∗ and n̄m
h

via the triangle inequality, i.e.,

∥n̄m
h,∗∥Hk

h(Γ̂m
h,∗) ! 1,

∥n̄m
h,∗∥W 1,∞(Γ̂m

h,∗) ! 1 + hk−1 ! 1,

∥n̄m
h ∥W 1,∞(Γ̂m

h,∗) ! 1 + hk−1 + h−1∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗) ! 1,

(3.24)

where the last inequality follows from the induction assumption in (3.9).
As an application of the discrete norms and the estimates of the normal vectors,

we can estimate the following type of endpoint terms arising from integration by
parts on each element:

h
∑

p∈Nb(Γm
h )

|µm
h (p+) + µm

h (p−)||ϕh(p)|,

where µm
h is the co-normal vector (tangent vector) at an endpoint of an element

(pointing to the outward direction) and ϕh is a finite element function on the curve
Γm

h . Since |µm
h (p+) + µm

h (p−)| = |nm
h (p+) − nm

h (p−)|, the following result holds:

h
∑

p∈Nb(Γm
h )

|µm
h (p+) + µm

h (p−)||ϕh(p)|

≤ h
∑

p∈Nb(Γm
h )

(|nm
h (p+) − Ihnm

∗ (p+)| + |Ihnm
∗ (p−) − nm

h (p−)|)|ϕh(p)|

(since Ihnm
∗ (p+) = Ihnm

∗ (p−))

! ∥nm
h − Ihnm

∗ ∥L2
h(Γm

h )∥ϕh∥L2
h(Γm

h ) (the equivalence relation in (3.13) is used)

! (∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗) + hk)∥ϕh∥L2(Γ̂m
h,∗),

(3.25)

where the last inequality uses (3.7) and (3.19).

3.6. Poincaré inequalities for vector-valued functions. The following
Poincaré type of inequality on a closed finite element curve/surface was proved
in [31, Lemma 3.4]:

∫

Γ̂m
h,∗

|v|2 !
∫

Γ̂m
h,∗

|v · Ihnm
∗ |2 +

∫

Γ̂m
h,∗

|∇Γ̂m
h,∗

v|2 ∀ v ∈ H1(Γ̂m
h,∗)

2,

which basically says that the full L2 norm of a vector field can be controlled by
the normal component’s L2 norm plus the H1 semi-norm. By replacing Ihnm

∗ with
n̄m

h,∗ and using the first result of Lemma 3.8, we immediately obtain the following
Poincaré type inequality with the averaged normal vector n̄m

h,∗.
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CONVERGENCE OF A STABILIZED BGN METHOD 19

Lemma 3.9 (The Poincaré inequality). For sufficiently small h, the following
Poincaré type inequality holds:

∫

Γ̂m
h,∗

|v|2 !
∫

Γ̂m
h,∗

|v · n̄m
h,∗|2 +

∫

Γ̂m
h,∗

|∇Γ̂m
h,∗

v|2 ∀ v ∈ H1(Γ̂m
h,∗)

2.(3.26)

In addition, we can replace the normal component’s L2 norm in the Poincaré
inequality by its discrete L2 norm corresponding to the mass lumping method. This
is presented in Lemma 3.10.

Lemma 3.10 (The Poincaré inequality with discrete L2 norm). For sufficiently
small h, the following Poincaré type inequalitie holds for vh ∈ Sh(Γ̂m

h,∗):
∫

Γ̂m
h,∗

|vh|2 !
∫

Γ̂m
h,∗

Ih(|vh · n̄m
h,∗|2) +

∫

Γ̂m
h,∗

|∇Γ̂m
h,∗

vh|2,(3.27)

∫

Γ̂m
h,∗

|IhT̄m
h,∗vh|2 !

∫

Γ̂m
h,∗

|∇Γ̂m
h,∗

IhT̄m
h,∗vh|2,(3.28)

∥vh∥L∞(Γ̂m
h,∗) ! ∥vh · n̄m

h,∗∥L2
h(Γ̂m

h,∗) + ∥∇Γ̂m
h,∗

vh∥L2(Γ̂m
h,∗).(3.29)

Proof. From Lemma 3.9 and (3.24) we obtain

∥vh∥2
L2(Γ̂m

h,∗)
! ∥vh · n̄m

h,∗∥2
L2(Γ̂m

h,∗)
+∥∇Γ̂m

h,∗
vh∥2

L2(Γ̂m
h,∗)

= ∥vh · n̄m
h,∗∥2

L2
h(Γ̂m

h,∗)
+∥∇Γ̂m

h,∗
vh∥2

L2(Γ̂m
h,∗)

(∥ · ∥L2 is changed to ∥ · ∥L2
h
)

+ ∥vh · n̄m
h,∗∥2

L2(Γ̂m
h,∗)

− ∥vh · n̄m
h,∗∥2

L2
h(Γ̂m

h,∗)

! ∥vh · n̄m
h,∗∥2

L2
h(Γ̂m

h,∗)
+∥∇Γ̂m

h,∗
vh∥2

L2(Γ̂m
h,∗)

+ h2k∥|(n̄m
h,∗ · vh) ◦ X̂m

h,∗|2|∇Γ0
h,f

X̂m
h,∗|∥W 2k,1

h (Γ0
h,f )

(first result of Lemma 3.5)

! ∥vh · n̄m
h,∗∥2

L2
h(Γ̂m

h,∗)
+ ∥∇Γ̂m

h,∗
vh∥2

L2(Γ̂m
h,∗)

+ h2∥n̄m
h,∗∥2

W 1,∞(Γ̂m
h,∗)

∥vh∥2
H1(Γ̂m

h,∗)
(inverse inequality)

! ∥vh · n̄m
h,∗∥2

L2
h(Γ̂m

h,∗)
+ ∥∇Γ̂m

h,∗
vh∥2

L2(Γ̂m
h,∗)

+ h2∥vh∥2
L2(Γ̂m

h,∗)
(3.30)

+ h2∥∇Γ̂m
h,∗

vh∥2
L2(Γ̂m

h,∗)
,

where the second to last term can be absorbed by the left-hand side. This leads to
inequality (3.27).

Inequality (3.28) follows from (3.27) once we note that IhT̄m
h,∗vh · n̄m

h,∗ = 0 at the
nodes. Inequality (3.29) also follows from the Sobolev embedding

∥vh∥L∞(Γ̂m
h,∗) ! ∥vh∥L2(Γ̂m

h,∗) + ∥∇Γ̂m
h,∗

vh∥L2(Γ̂m
h,∗),

and that ∥vh∥L2(Γ̂m
h,∗) can be estimated by (3.27). "

Remark 3.11. Since n̄m
h differs from n̄m

h,∗ by a small quantity in the L∞ norm as
a result of Lemma 3.8 and the induction assumption in (3.9), we can replace n̄m

h,∗
by n̄m

h in (3.27) and absorb the remainder by the left-hand side. This leads to the
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20 GENMING BAI AND BUYANG LI

following version of Poincaré inequalities in terms of the averaged normal vector
n̄m

h :

∫

Γ̂m
h,∗

|vh|2 !
∫

Γ̂m
h,∗

Ih(|vh · n̄m
h |2) +

∫

Γ̂m
h,∗

|∇Γ̂m
h,∗

vh|2,(3.31)

∫

Γ̂m
h,∗

|IhT̄m
h vh|2 !

∫

Γ̂m
h,∗

|∇Γ̂m
h,∗

IhT̄m
h vh|2.(3.32)

3.7. Geometric relations. The geometric setting in this article is the same as
[2, Section 3.4], including the following relations in (3.33)–(3.38) and Lemma 3.12.

Firstly, by the definition of êm+1
h we have the following nodal relation

êm+1
h = Ih

[
(em+1

h · nm+1
∗ )nm+1

∗
]
+ fh,(3.33)

with

|fh| ! |[1 − nm+1
∗ (nm+1

∗ )⊤]em+1
h |2 at the nodes of Γ̂m+1

h,∗ ,(3.34)

which means that êm+1
h differs from (em+1

h ·nm+1
∗ )nm+1

∗ by a much smaller quantity.

Secondly, we denote by Xm+1
h,∗ : Γ̂m

h,∗ → Γm+1
h,∗ the local flow map under which the

nodes of Γ̂m
h,∗ move exactly according to curve shortening flow without tangential

motion, and denote by Xm+1 : Γm → Γm+1 the local flow map of curve shortening
flow. Since Xm+1

h,∗ − X̂m
h,∗ = Xm+1− id at the finite element nodes on Γm, it follows

that

Xm+1
h,∗ − X̂m

h,∗ = Ih(Xm+1 − id) on Γ̂m
h,∗,(3.35)

Xm+1 − id = τ (−Hmnm + gm) on Γm,(3.36)

where −Hmnm is the exact velocity of curve shortening flow without tangential
motion at time level t = tm, and gm is the smooth correction from the Taylor
expansion, satisfying the following estimate:

∥gm∥W 1,∞(Γm) ≤ Cτ.(3.37)

Therefore, we obtain

Xm+1
h − Xm

h = em+1
h − êm

h + Xm+1
h,∗ − X̂m

h,∗

= em+1
h − êm

h + τIh(−Hmnm + gm).
(3.38)

This relation plays an important role in estimating the numerical displacement
Xm+1

h − Xm
h .

The definition of êm
h (i.e., orthogonal to Γm at the nodes) guarantees that the

tangential component of êm
h (at points which are not nodes) is much smaller than its

normal component in the L2 and H1 norms. As a result, the full L2 and H1 norms
of êm

h can be controlled by the normal component’s L2 and H1 norms, respectively.
These results are presented in Lemma 3.12 and will play important roles in the
recovery of H1 full parabolicity of the curve shortening flow. The proof of this
lemma can be found in [2, Section 3.5].
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CONVERGENCE OF A STABILIZED BGN METHOD 21

Lemma 3.12. For sufficiently small h, the following estimates hold:

∥(I − nm
∗ (nm

∗ )⊤)êm
h ∥L2(Γ̂m

h,∗) ! h∥(êm
h · nm

∗ )nm
∗ ∥L2(Γ̂m

h,∗),(3.39)

∥(I − nm
∗ (nm

∗ )⊤)êm
h ∥H1(Γ̂m

h,∗) ! h∥(êm
h · nm

∗ )nm
∗ ∥H1(Γ̂m

h,∗),(3.40)

∥êm
h ∥L2(Γ̂m

h,∗) ≤ 2∥(êm
h · nm

∗ )nm
∗ ∥L2(Γ̂m

h,∗),(3.41)

∥êm
h ∥H1(Γ̂m

h,∗) ≤ 2∥(êm
h · nm

∗ )nm
∗ ∥H1(Γ̂m

h,∗).(3.42)

The similar results hold if nm
∗ is replaced by the averaged normal vector n̄m

h,∗ on

Γ̂m
h,∗ (thus Tm

∗ = I − nm
∗ (nm

∗ )⊤ is replaced by T̄m
h,∗ = I − n̄m

h,∗
|n̄m

h,∗| (
n̄m

h,∗
|n̄m

h,∗| )
⊤), as shown

in Lemma 3.13.

Lemma 3.13. For sufficiently small h, the following estimates hold:

∥IhT̄m
h,∗ê

m
h ∥L2(Γ̂m

h,∗) ! h∥êm
h · n̄m

h,∗∥L2
h(Γ̂m

h,∗),(3.43)

∥êm
h ∥L2(Γ̂m

h,∗) ≤ 2∥êm
h · n̄m

h,∗∥L2
h(Γ̂m

h,∗).(3.44)

Proof. Since Tm
∗ = I − nm

∗ (nm
∗ )⊤ is piecewise smooth on Γ̂m

h,∗, the first super-
approximation result in Lemma 3.4 implies that

∥(1 − Ih)Tm
∗ êm

h ∥L2(Γ̂m
h,∗) ! h∥êm

h ∥L2(Γ̂m
h,∗).

By using the two results above and the smoothness of nm
∗ in a neighborhood of Γm

and the first result of Lemma 3.8, as well as the L∞-stability of the interpolation
operator Ih, we have

∥Ih(T̄m
h,∗ − Tm

∗ )êm
h ∥L2(Γ̂m

h,∗)

! ∥T̄m
h,∗ − Tm

∗ ∥L∞(Γ̂m
h,∗)∥ê

m
h ∥L2(Γ̂m

h,∗) ((3.14) is used)

≤ ∥n̄m
h,∗(n̄

m
h,∗)

⊤ − nm
∗ (nm

∗ )⊤∥L∞(Γ̂m
h,∗)∥ê

m
h ∥L2(Γ̂m

h,∗)

+ ∥n̄m
h,∗(n̄

m
h,∗)

⊤ −
n̄m

h,∗
|n̄m

h,∗|
(

n̄m
h,∗

|n̄m
h,∗|

)⊤∥L∞(Γ̂m
h,∗)∥ê

m
h ∥L2(Γ̂m

h,∗)

≤ ∥(n̄m
h,∗ − Ihnm

∗ )(n̄m
h,∗)

⊤∥L∞(Γ̂m
h,∗)∥ê

m
h ∥L2(Γ̂m

h,∗)

+ ∥(Ihnm
∗ )(n̄m

h,∗ − Ihnm
∗ )⊤∥L∞(Γ̂m

h,∗)∥ê
m
h ∥L2(Γ̂m

h,∗)

+ ∥(Ihnm
∗ )(Ihnm

∗ )⊤ − nm
∗ (nm

∗ )⊤∥L∞(Γ̂m
h,∗)∥ê

m
h ∥L2(Γ̂m

h,∗)

+ ∥n̄m
h,∗(n̄

m
h,∗)

⊤ −
n̄m

h,∗

|n̄m
h,∗|

(
n̄m

h,∗

|n̄m
h,∗|

)⊤∥L∞(Γ̂m
h,∗)∥ê

m
h ∥L2(Γ̂m

h,∗)

! hk− 1
2 ∥êm

h ∥L2(Γ̂m
h,∗) + hk− 1

2 ∥êm
h ∥L2(Γ̂m

h,∗) + hk+1∥êm
h ∥L2(Γ̂m

h,∗) + h2k∥êm
h ∥L2(Γ̂m

h,∗)

! hk− 1
2 ∥êm

h ∥L2(Γ̂m
h,∗).
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22 GENMING BAI AND BUYANG LI

By using the three results above and the triangle inequality, as well as the first
result of Lemma 3.12, we obtain

∥IhT̄m
h,∗ê

m
h ∥L2(Γ̂m

h,∗)

! ∥Ih(T̄m
h,∗ − Tm

∗ )êm
h ∥L2(Γ̂m

h,∗) + ∥(1 − Ih)Tm
∗ êm

h ∥L2(Γ̂m
h,∗) + ∥Tm

∗ êm
h ∥L2(Γ̂m

h,∗)

! hk− 1
2 ∥êm

h ∥L2(Γ̂m
h,∗) + h∥êm

h ∥L2(Γ̂m
h,∗) + h∥êm

h ∥L2(Γ̂m
h,∗)

! h∥IhT̄m
h,∗ê

m
h ∥L2(Γ̂m

h,∗) + h∥IhN̄m
h,∗ê

m
h ∥L2(Γ̂m

h,∗)

! h∥IhT̄m
h,∗ê

m
h ∥L2(Γ̂m

h,∗) + h∥êm
h · n̄m

h,∗∥L2
h(Γ̂m

h,∗),

(3.45)

where, in the last inequality, we have used the following norm equivalence

∥IhN̄m
h,∗ê

m
h ∥L2(Γ̂m

h,∗) ∼ ∥IhN̄m
h,∗ê

m
h ∥L2

h(Γ̂m
h,∗) =

∥∥∥êm
h ·

n̄m
h,∗

|n̄m
h,∗|

∥∥∥
L2

h(Γ̂m
h,∗)

∼ ∥êm
h · n̄m

h,∗∥L2
h(Γ̂m

h,∗),(3.46)

and the last equivalence follows from (3.18). Since the first term on the right-hand
side of (3.45) can be absorbed by its left-hand side, we obtain the first result of
Lemma 3.13. The second result of Lemma 3.13 follows immediately. "

3.8. Surface calculus formulas. Given a smooth curve Γ (with or without bound-
ary) in R2 and u ∈ C∞(Γ), we denote by Diu, i = 1, 2, the ith component of the
tangent vector ∇Γu in R2. The corresponding Leibniz rule, chain rule, integration-
by-parts formula, commutators, and the evolution equation of normal vector are
summarized below.

Lemma 3.14. Let Γ and Γ′ be two smooth curves that are possibly open, such
as smooth pieces of some finite element curves, and let f, h ∈ C∞(Γ) and g ∈
C∞(Γ′;Γ) be given functions. Then the following results hold.

(1) Di(fh) = Difh + fDih on Γ.
(2) Di(g ◦ f) = (Djg ◦ f) Dif on Γ′.
(3)

∫
Γ fDih = −

∫
Γ Difh +

∫
Γ fhHni +

∫
∂Γ fhµi where n, µ are the normal

and co-normal (tangential) direction, respectively, and H := Dini (with
the Einstein notation) is the mean curvature, i.e. the trace of the second
fundamental form.

(4) DiDjf = DjDif + niHjlDlf − njHilDlf , where Hij := Dinj = Djni.
(5) If Γ evolves under the velocity field v, and GT :=

⋃
t∈[0,T ] Γ(t) × {t}, then

∂•
t (Dif) = Di(∂

•
t f) − (Divj − ninlDjvl)Djf ∀ f ∈ C2(GT ),

where ∂•
t to denote the material derivative with respect to v.

(6) If f, h ∈ C2(GT ) then

d

dt

∫

Γ
fh =

∫

Γ
∂•

t fh +

∫

Γ
f∂•

t h +

∫

Γ
fh(∇Γ · v).

The divergence is defined as ∇Γ · v := Divi, which coincides with the in-
trinsic divergence on the curve if v is a tangential vector field on Γ. Since
the Lagrange interpolation commutes with the material time derivative, it
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CONVERGENCE OF A STABILIZED BGN METHOD 23

is straightforward to check in the local coordinates that an analogous result
also holds for the mass lumping integral, i.e.,

d

dt

∫ h

Γh

f̃ h̃ =

∫ h

Γh

∂•
t f̃ h̃ +

∫ h

Γh

f̃∂•
t h̃ +

∫ h

Γh

f̃ h̃(∇Γh · vh),

where Γh is a finite element curve moving with polynomial velocity vh ∈
Sh(Γh) (mass lumping is well defined on Γh), and f̃ , h̃ are continuous func-
tions defined on

⋃
t∈[0,T ] Γh(t) × {t}.

(7) The evolution of the unit normal vector n of the curve Γ with respect to the
velocity field v satisfies the following relation:

∂•
t ni = −Divjnj .

Proof. The first two relations are obvious from the local formula of D (cf. [2, Eq.
(5.1)]). The third relation is shown in [24, Theorem 2.10]. The fourth and fifth
equalities are proved in [25, Lemma 2.4 and 2.6], and the proof of the sixth and
last formulae can be found in [22, Appendix A] and [39, p. 33] respectively. "

The following formula can be derived by using the fundamental theorem of cal-
culus and the formulas in Lemma 3.14, item 5 and item 6 (proof is straightforward
and omitted). In the case ∂•

θwθ
h = ∂•

θzθh = 0, this formula was proved in [33, Lemma
7.1].

Lemma 3.15. For two family of finite element functions wθ
h and zθh defined on the

intermediate curve Γ̂m
h,θ = (1 − θ)Γ̂m

h,∗ + θΓm
h , the following identity holds:

∫

Γm
h

∇Γm
h

wθ
h · ∇Γm

h
zθh −

∫

Γ̂m
h,∗

∇Γ̂m
h,∗

wθ
h · ∇Γ̂m

h,∗
zθh

=

∫ 1

0

∫

Γ̂m
h,θ

∇Γ̂m
h,θ

wθ
h · (Dêm

h )∇Γ̂m
h,θ

zθhdθ +

∫ 1

0

∫

Γ̂m
h,θ

∇Γ̂m
h,θ

∂•
θwθ

h · ∇Γ̂m
h,θ

zθhdθ

+

∫ 1

0

∫

Γ̂m
h,θ

∇Γ̂m
h,θ

wθ
h · ∇Γ̂m

h,θ
∂•
θzθhdθ,(3.47)

where (Dv)rl := −Dlvr − Drvl + δrlDmvm.

4. Convergence of the stabilized BGN method (Proof of Theorem
2.1)

4.1. Consistency error. The optimal-order consistency estimates in this section
use the following result.

Lemma 4.1. For any R2-valued function f on Γ̂m
h,∗ which is smooth on each ele-

ment of Γ̂m
h,∗, the following estimate holds:

∣∣∣
∫

Γ̂m
h,∗

f · (n̂m
h,∗ − nm

∗ )
∣∣∣ ! hk+1∥f∥H1(Γ̂m

h,∗).(4.1)
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24 GENMING BAI AND BUYANG LI

Proof. By using the triangle inequality, we have
∣∣∣
∫

Γ̂m
h,∗

f · (n̂m
h,∗ − nm

∗ )
∣∣∣(4.2)

≤
∣∣∣
∫

Γm

f l · ((n̂m
h,∗)

l − nm)
∣∣∣

+
∣∣∣
∫

Γ̂m
h,∗

f · (n̂m
h,∗ − nm

∗ ) −
∫

Γm

f l · (n̂m
h,∗ − nm

∗ )l
∣∣∣

!
∣∣∣
∫

Γm

f l · ((n̂m
h,∗)

l − nm)
∣∣∣ + hk+1∥n̂m

h,∗ − nm
∗ ∥L2(Γ̂m

h,∗)∥f∥L2(Γ̂m
h,∗)

!
∣∣∣
∫

Γm

f l · ((n̂m
h,∗)

l − nm)
∣∣∣ + hk+1∥f∥H1(Γ̂m

h,∗).

In order to estimate the first term on the right-hand side above, we define the
intermediate curve Γ̂m,θ

h,∗ = (1−θ)Γm +θΓ̂m
h,∗, which can be parametrized by X̂m,θ

h,∗ :

Γm → Γ̂m,θ
h,∗ with X̂m,θ

h,∗ = (1 − θ)am + θ(Iham)l and transport velocity ∂θX̂
m,θ
h,∗ =

(Iham)l−am, where Ih denotes the interpolation onto Γ̂m
h,∗. We denote by n̂m,θ

h,∗ the

unit normal vector of Γ̂m,θ
h,∗ , and denote by vlθ (and v−lθ ) the lift (and the inverse

lift) of a function v from Γ̂m,θ
h,∗ to Γm (and Γm to Γ̂m,θ

h,∗ ) via this transport velocity.
Then

(n̂m
h,∗)

l − nm =

∫ 1

0
∂•
θ (n̂m,θ

h,∗ )lθdθ

and Lemma 3.14 (item 7) implies that

∂•
θ (n̂m,θ

h,∗ )lθ =
(
−∇Γ̂m,θ

h,∗
((Iham)l − am)−lθ n̂m,θ

h,∗
)lθ .(4.3)

By using the fundamental theorem of calculus and the commutator formula in
Lemma 3.14, we have
∫

Γm

f l · ((n̂m
h,∗)

l − nm)

=

∫

Γm

f l ·
∫ 1

0
∂•
θ (n̂m,θ

h,∗ )lθdθ

=

∫

Γm

f l ·
∫ 1

0

(
−∇Γ̂m,θ

h,∗
((Iham)l − am)−lθ n̂m,θ

h,∗

)lθ
dθ

= −
∫

Γm

f l ·
(
∇Γm((Iham)l − am) nm

)

−
∫

Γm

f l ·
∫ 1

0

[(
∇Γ̂m,θ

h,∗
((Iham)l − am)−lθ n̂m,θ

h,∗

)lθ
−∇Γm((Iham)l − am) nm

]
dθ

= −
∫

Γm

f l ·
(
∇Γm((Iham)l − am) nm

)

−
∫

Γm

f l ·
∫ 1

0

∫ θ

0
∂•
α

(
∇Γ̂m,α

h,∗
((Iham)l − am)−lα n̂m,α

h,∗

)lα
dαdθ

= −
∫

Γm

f l ·
(
∇Γm((Iham)l − am) nm

)
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CONVERGENCE OF A STABILIZED BGN METHOD 25

+2

∫

Γm

f l ·
∫ 1

0

∫ θ

0

(
∇Γ̂m,α

h,∗
((Iham)l−am)−lα∇Γ̂m,α

h,∗
((Iham)l−am)−lα n̂m,α

h,∗

)lα
dαdθ

(Lemma 3.14, item 7 is used)

−
∫

Γm

f l ·
∫ 1

0

∫ θ

0

(
n̂m,α

h,∗

∣∣∣∇Γ̂m,α
h,∗

((Iham)l − am)−lα n̂m,α
h,∗

∣∣∣
2)lα

dαdθ

(Lemma 3.14, item 5 is used)

=: D1 + D2 + D3.

Via integration by parts on each piece where Iham is smooth, and using Lemma
3.14 (item 3) as well as the property that (Iham)l − am vanishes at the endpoints
of these smooth piecewises, we have the following estimate of D1:

|D1| =
∣∣∣−

∫

Γm

(∇Γm · f l)((Iham)l − am) · nm

−
∫

Γm

f l ·
(
∇Γmnm ((Iham)l − am)

)

+

∫

Γm

Hmnm · f l ((Iham)l − am) · nm
∣∣∣

! hk+1∥f∥H1(Γ̂m
h,∗).(4.4)

The two terms D2 and D3 contain squares of the interpolation errors and therefore
can be estimated to higher-order, i.e.,

|D2| + |D3| ! ∥∇Γm((Iham)l − am)∥2
L2(Γm)∥f∥L∞(Γ̂m

h,∗) ! h2k∥f∥H1(Γ̂m
h,∗).(4.5)

The estimates of D1, D2 and D3 lead to
∣∣∣
∫

Γm

f l · ((n̂m
h,∗)

l − nm)
∣∣∣ ! hk+1∥f∥H1(Γ̂m

h,∗).

The result of Lemma 4.1 can be obtained by substituting the above inequality into
(4.2). "

In view of the stabilized BGN method in (1.5), we define the remainder (consis-
tency error) at the time level tm to be the following linear functional on Sh(Γ̂m

h,∗):

dm(φh) :=

∫ h

Γ̂m
h,∗

Xm+1
h,∗ − id

τ
· n̄m

h,∗ n̄m
h,∗ · φh +

∫

Γ̂m
h,∗

∇Γ̂m
h,∗

Xm+1
h,∗ · ∇Γ̂m

h,∗
φh

−
∫

Γ̂m
h,∗

∇Γ̂m
h,∗

X̂m
h,∗ · ∇Γ̂m

h,∗
Ih[(I − n̄m

h,∗(n̄
m
h,∗)

⊤)φh]

=

∫ h

Γ̂m
h,∗

Xm+1
h,∗ − id

τ
· n̄m

h,∗ n̄m
h,∗ · φh +

∫

Γm

Hmnm · φl
h

−
∫

Γm

∇Γm id · ∇Γmφl
h +

∫

Γ̂m
h,∗

∇Γ̂m
h,∗

Xm+1
h,∗ · ∇Γ̂m

h,∗
φh

−
∫

Γ̂m
h,∗

∇Γ̂m
h,∗

X̂m
h,∗ · ∇Γ̂m

h,∗
Ih[(I − n̄m

h,∗(n̄
m
h,∗)

⊤)φh]

=: dm
1 (φh) + dm

2 (φh) + dm
3 (φh),(4.6)
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26 GENMING BAI AND BUYANG LI

where we have used the identity

∫

Γm

∇Γm id · ∇Γmφl
h =

∫

Γm

Hmnm · φl
h.

Proposition 4.2. The remainder defined in (4.6) satisfies the following estimate:

|dm(φh)| ! τ∥φh∥L2(Γ̂m
h,∗) + hk+1∥φh∥H1(Γ̂m

h,∗) ∀φh ∈ Sh(Γ̂m
h,∗).(4.7)

Proof. By using relation (Xm+1
h,∗ − id)/τ = Ih(Xm+1 − id)/τ , the first term on the

right-hand side of (4.6) can be decomposed into six parts as follows:

dm
1 (φh) =

∫ h

Γ̂m
h,∗

Xm+1
h,∗ − id

τ
· n̄m

h,∗ n̄m
h,∗ · φh +

∫

Γm

Hmnm · φl
h

=

∫ h

Γ̂m
h,∗

Ih

(Xm+1 − id

τ
+ Hmnm

)
· n̄m

h,∗ n̄m
h,∗ · φh

−
∫ h

Γ̂m
h,∗

(Ih(Hmnm) − Hm,−lnm,−l) · n̄m
h,∗ n̄m

h,∗ · φh

−
∫ h

Γ̂m
h,∗

(Hm,−lnm,−l · n̄m
h,∗ n̄m

h,∗ − Hm,−lnm,−l · n̂m
h,∗ n̂m

h,∗) · φh

−
(∫ h

Γ̂m
h,∗

−
∫

Γ̂m
h,∗

)
Hm,−lnm,−l · n̂m

h,∗ n̂m
h,∗ · φh

−
∫

Γ̂m
h,∗

(Hm,−lnm,−l · n̂m
h,∗ n̂m

h,∗ − Hm,−lnm,−l) · φh

−
∫

Γ̂m
h,∗

Hm,−lnm,−l · φh +

∫

Γm

Hmnm · φl
h

=:
6∑

i=1

dm
1i(φh),(4.8)

where we have used the abbreviation
( ∫ h

Γ̂m
h,∗

−
∫
Γ̂m

h,∗

)
f =

∫ h
Γ̂m

h,∗
f −

∫
Γ̂m

h,∗
f for any

function f defined on Γ̂m
h,∗. The first and second terms on the right-hand side

of (4.8) can be estimated by using relations (3.36)–(3.37) and the nodal relation,
respectively, i.e.,

|dm
11(φh)| ! τ∥φh∥L2(Γ̂m

h,∗),

dm
12(φh) = 0.
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CONVERGENCE OF A STABILIZED BGN METHOD 27

The third term on the right-hand side of (4.8) can be rewritten as

dm
13(φh)

= −
∫ h

Γ̂m
h,∗

Hm,−lnm,−l · n̄m
h,∗(n̄

m
h,∗ − n̂m

h,∗) · φh

−
∫ h

Γ̂m
h,∗

Hm,−lnm,−l · (n̄m
h,∗ − n̂m

h,∗) n̂m
h,∗ · φh

= −
∫ h

Γ̂m
h,∗

Hm,−lnm,−l · n̄m
h,∗(n̄

m
h,∗ − n̂m

h,∗) · φh

−
∫ h

Γ̂m
h,∗

Hm,−lnm,−l · (n̄m
h,∗ − n̂m

h,∗)n̄
m
h,∗ · φh

+

∫ h

Γ̂m
h,∗

Hm,−lnm,−l · (n̄m
h,∗ − n̂m

h,∗) (n̄m
h,∗ − n̂m

h,∗) · φh

=

∫ h

Γ̂m
h,∗

Hm,−lnm,−l · (n̄m
h,∗ − n̂m

h,∗) (n̄m
h,∗ − n̂m

h,∗) · φh,

where we have used the following identities:

∫ h

Γ̂m
h,∗

Hm,−lnm,−l · n̄m
h,∗(n̄

m
h,∗ − n̂m

h,∗) · φh = 0

and

∫ h

Γ̂m
h,∗

Hm,−lnm,−l · (n̄m
h,∗ − n̂m

h,∗)n̄
m
h,∗ · φh = 0,

which follow from property (3.16). Therefore, dm
13(φh) can be estimated by using

the third result of Lemma 3.8, which implies that

|dm
13(φh)| ! h2k∥φh∥L2(Γ̂m

h,∗).

The fourth term on the right-hand side of (4.8) can be estimated by the super-
convergence of Gauss–Lobatto quadrature in Lemma 3.5, i.e.,

|dm
14(φh)| ! hk+1∥Hm,−lnm,−l · n̂m

h,∗ n̂m
h,∗∥H2k

h (Γ̂m
h,∗)∥φh∥H1(Γ̂m

h,∗) ! hk+1∥φh∥H1(Γ̂m
h,∗),

where we have used the result ∥n̂m
h,∗∥W 2k,∞

h (Γ̂m
h,∗) ! 1, which is shown in (3.8).

Prepublication copy provided to Buyang Li for publication MCOM 4019

Please review carefully and submit corrections to emd@ams.org within 10 business days

Not for print or electronic distribution; see http://www.ams.org/journal-terms-of-use



28 GENMING BAI AND BUYANG LI

Since nm,−l = nm ◦ am = nm
∗ and Hm,−l = Hm ◦ am = Hm

∗ , the fifth term on
the right-hand side of (4.8) can bedecomposed into the following three parts:

dm
15(φh) = −

∫

Γ̂m
h,∗

(Hm
∗ nm

∗ · n̂m
h,∗ n̂m

h,∗ − Hm
∗ nm

∗ · nm
∗ nm

∗ ) · φh

= −
∫

Γ̂m
h,∗

Hm
∗ nm

∗ · (n̂m
h,∗ − nm

∗ ) (n̂m
h,∗ − nm

∗ ) · φh

−
∫

Γ̂m
h,∗

Hm
∗ nm

∗ · (n̂m
h,∗ − nm

∗ ) nm
∗ · φh

−
∫

Γ̂m
h,∗

Hm
∗ nm

∗ · nm
∗ (n̂m

h,∗ − nm
∗ ) · φh,

which can be estimated by using (3.7) (for the first part) and Lemma 4.1 (for the
second and third parts), i.e.,

|dm
15(φh)| ! h2k∥φh∥L2(Γ̂m

h,∗) + hk+1∥φh∥H1(Γ̂m
h,∗).

The last term on the right-hand side of (4.8) can be estimated by using the geomet-
ric perturbation estimate in Lemma 3.2 and the norm equivalence, which implies
that

|dm
16(φh)| ! hk+1∥φh∥L2(Γ̂m

h,∗).

The estimates of dm
1i(φh), i = 1, . . . , 6, lead to the following result:

|dm
1 (φh)| ! τ∥φh∥L2(Γ̂m

h,∗) + hk+1∥φh∥H1(Γ̂m
h,∗).

We can decompose dm
2 (φh), which is defined in (4.6), into three parts in the same

way as [2, Lemma 4.3], i.e.,

dm
2 (φh) =

∫

Γ̂m
h,∗

∇Γ̂m
h,∗

Xm+1
h,∗ · ∇Γ̂m

h,∗
φh −

∫

Γm

∇Γm id · ∇Γmφl
h

=

∫

Γ̂m
h,∗

∇Γ̂m
h,∗

(Xm+1
h,∗ − X̂m

h,∗) · ∇Γ̂m
h,∗

φh

+

∫

Γ̂m
h,∗

∇Γ̂m
h,∗

X̂m
h,∗ · ∇Γ̂m

h,∗
φh −

∫

Γm

∇Γm(X̂m
h,∗)

l · ∇Γmφl
h

+

∫

Γm

∇Γm [(Iham)l − am] · ∇Γmφl
h

= dm
21(φh) + dm

22(φh) + dm
23(φh),(4.9)

where we have used the following relations in the derivation of the second to last
equality:

(X̂m
h,∗)

l = (Iham)l and id = am on Γm.

The two terms dm
21(φh) and dm

22(φh) are estimated in [2, Lemma 4.3] with the fol-
lowing results:

|dm
21(φh)| ! τ∥φh∥L2(Γ̂m

h,∗) and |dm
22(φh)| ! hk+1∥φh∥H1(Γ̂m

h,∗).

By using the super-convergence result in Lemma 3.6, we can obtain the following
estimate of dm

23 (which is better than the result in [2, Lemma 4.3]):

|dm
23(φh)| ! hk+1∥φh∥H1(Γ̂m

h,∗).
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The estimates of dm
2i(φh), i = 1, 2, 3, lead to the following result:

|dm
2 (φh)| ! τ∥φh∥L2(Γ̂m

h,∗) + hk+1∥φh∥H1(Γ̂m
h,∗).

We can decompose dm
3 (φh), which is defined in (4.6), into several parts by using

integration by parts (Lemma 3.14, item 3) and identity ∆Γ̂m
h,∗

X̂m
h,∗ = −Ĥm

h,∗n̂
m
h,∗ on

any element of Γ̂m
h,∗, as well as the mass lumping approximation of the integral, i.e.,

|dm
3 (φh)| =

∣∣∣
∫

Γ̂m
h,∗

∇Γ̂m
h,∗

X̂m
h,∗ · ∇Γ̂m

h,∗
Ih[(I − n̄m

h,∗(n̄
m
h,∗)

⊤)φh]
∣∣∣

≤
∣∣∣
∫ h

Γ̂m
h,∗

Ĥm
h,∗n̂

m
h,∗ · (I − n̄m

h,∗(n̄
m
h,∗)

⊤)φh

∣∣∣

+
∣∣∣
( ∫

Γ̂m
h,∗

−
∫ h

Γ̂m
h,∗

)
Ĥm

h,∗n̂
m
h,∗ · Ih[(I − n̄m

h,∗(n̄
m
h,∗)

⊤)φh]
∣∣∣

+
∣∣∣

∑

p∈Nb(Γ̂m
h,∗)

(
µ̂m

h,∗(p+)⊤∇Γ̂m
h,∗

X̂m
h,∗(p+) + µ̂m

h,∗(p−)⊤∇Γ̂m
h,∗

X̂m
h,∗(p−)

)

· Ih

[
(I − n̄m

h,∗(n̄
m
h,∗)

⊤)φh(p)
]∣∣∣.

The first term on the right-hand side of the inequality above can be rewritten as

∫ h

Γ̂m
h,∗

Ĥm
h,∗n̂

m
h,∗ · (I − n̄m

h,∗(n̄
m
h,∗)

⊤)φh

=

∫ h

Γ̂m
h,∗

(Ĥm
h,∗ − Hm

∗ )(n̂m
h,∗ − n̄m

h,∗) · (I − n̄m
h,∗(n̄

m
h,∗)

⊤)φh

+

∫ h

Γ̂m
h,∗

(Ĥm
h,∗ − Hm

∗ )n̄m
h,∗ · (I − n̄m

h,∗(n̄
m
h,∗)

⊤)φh

+

∫ h

Γ̂m
h,∗

Hm
∗ n̂m

h,∗ · (I − n̄m
h,∗(n̄

m
h,∗)

⊤)φh

=

∫ h

Γ̂m
h,∗

(Ĥm
h,∗ − Hm

∗ )(n̂m
h,∗ − n̄m

h,∗) · (I − n̄m
h,∗(n̄

m
h,∗)

⊤)φh,

where the last equality uses n̄m
h,∗ ·(I− n̄m

h,∗(n̄
m
h,∗)

⊤)φh = 0 and the following relation
as a result of (3.16):

∫ h

Γ̂m
h,∗

Hm
∗ n̂m

h,∗ · (I − n̄m
h,∗(n̄

m
h,∗)

⊤)φh =

∫ h

Γ̂m
h,∗

Hm
∗ n̄m

h,∗ · (I − n̄m
h,∗(n̄

m
h,∗)

⊤)φh.
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Therefore, using the identity µ̂m
h,∗(p±)⊤∇Γ̂m

h,∗
X̂m

h,∗(p±) = µ̂m
h,∗(p±)⊤, we have

|dm
3 (φh)| ≤

∣∣∣
∫ h

Γ̂m
h,∗

(Ĥm
h,∗ − Hm

∗ )(n̂m
h,∗ − n̄m

h,∗) · (I − n̄m
h,∗(n̄

m
h,∗)

⊤)φh

∣∣∣

+
∣∣∣
( ∫

Γ̂m
h,∗

−
∫ h

Γ̂m
h,∗

)
Ĥm

h,∗n̂
m
h,∗ · Ih[(I − n̄m

h,∗(n̄
m
h,∗)

⊤)]φh

∣∣∣

+
∣∣∣

∑

p∈Nb(Γ̂m
h,∗)

(
µ̂m

h,∗(p+) + µ̂m
h,∗(p−)

)
· (I − n̄m

h,∗(n̄
m
h,∗)

⊤)φh(p)
∣∣∣

! h2k−1∥φh∥L2(Γ̂m
h,∗) + hk+1∥φh∥H1(Γ̂m

h,∗)

+
∣∣∣

∑

p∈Nb(Γ̂m
h,∗)

(
µ̂m

h,∗(p+) + µ̂m
h,∗(p−)

)
· (I − n̄m

h,∗(n̄
m
h,∗)

⊤)φh(p)
∣∣∣,

where the the second term on the right-hand side of the inequality above is obtained
by using the second super-approximation result in Lemma 3.5, and the first term
on the right-hand side follows from the estimates ∥Ĥm

h,∗ − Hm
∗ ∥L∞(Γ̂m

h,∗) ! hk−1

(property of approximating Γm by Γ̂m
h,∗) and ∥n̂m

h,∗ − n̄m
h,∗∥L∞(Γ̂m

h,∗) ! hk (the third

result of Lemma 3.8).
Since µ̂m

h,∗(p+) + µ̂m
h,∗(p−) is the jump of tangential vector at the endpoint p of

an element, it has magnitude O(hk) and in the direction of (n̂m
h,∗(p+)+n̂m

h,∗(p−))/2.
Therefore,

∣∣∣
∑

p∈Nb(Γ̂m
h,∗)

(
µ̂m

h,∗(p+) + µ̂m
h,∗(p−)

)
· (I − n̄m

h,∗(n̄
m
h,∗)

⊤)φh(p)
∣∣∣

! hk
∣∣∣

∑

p∈Nb(Γ̂m
h,∗)

(n̂m
h,∗(p+) + n̂m

h,∗(p−)) · (I − n̄m
h,∗(n̄

m
h,∗)

⊤)φh(p)
∣∣∣

= hk
∣∣∣

∑

p∈Nb(Γ̂m
h,∗)

(n̂m
h,∗(p+) + n̂m

h,∗(p−) − 2n̄m
h,∗) · (I − n̄m

h,∗(n̄
m
h,∗)

⊤)φh(p)
∣∣∣

! hk−1∥n̂m
h,∗ − n̄m

h,∗∥L2
h(Γ̂m

h,∗)∥φh∥L2
h(Γ̂m

h,∗)

! h2k−1∥φh∥L2(Γ̂m
h,∗),

where we have used the estimate ∥n̂m
h,∗ − n̄m

h,∗∥L∞(Γ̂m
h,∗) ! hk (third result of

Lemma 3.8) and the norm equivalence in Lemma 3.7. This proves |dm
3 (φh)| !

hk+1∥φh∥H1(Γ̂m
h,∗) for k ≥ 2.

Finally, combining the estimates of dm
1 (φh), dm

2 (φh) and dm
3 (φh), we obtain the

result of Proposition 4.2. "
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4.2. The error equation and the H1 parabolicity. The following error equa-
tion is obtained by subtracting (4.6) from (1.5):

∫ h

Γm
h

Xm+1
h − Xm

h

τ
· n̄m

h n̄m
h · φh −

∫

Γ̂m
h,∗

Xm+1
h,∗ − X̂m

h,∗

τ
· n̄m

h,∗ n̄m
h,∗ · φh

+

∫

Γm
h

∇Γm
h

Xm+1
h · ∇Γm

h
φh −

∫

Γ̂m
h,∗

∇Γ̂m
h,∗

Xm+1
h,∗ · ∇Γ̂m

h,∗
φh

−
∫

Γm
h

∇Γm
h

Xm
h · ∇Γm

h
Ih[I − n̄m

h (n̄m
h )⊤)φh]

+

∫

Γ̂m
h,∗

∇Γ̂m
h,∗

Xm
h,∗ · ∇Γ̂m

h,∗
Ih[(I − n̄m

h,∗(n̄
m
h,∗)

⊤)φh]

= −dm(φh),(4.10)

where the first two terms on the left-hand side can be written as
∫ h

Γm
h

Xm+1
h − Xm

h

τ
· n̄m

h n̄m
h · φh −

∫ h

Γ̂m
h,∗

Xm+1
h,∗ − X̂m

h,∗

τ
· n̄m

h,∗ n̄m
h,∗ · φh

=:

∫ h

Γ̂m
h,∗

em+1
h − êm

h

τ
· n̄m

h,∗ n̄m
h,∗ · φh + Jm(φh),(4.11)

with

Jm(φh) =

∫ h

Γm
h

Xm+1
h − Xm

h

τ
· n̄m

h n̄m
h · φh −

∫ h

Γ̂m
h,∗

Xm+1
h − Xm

h

τ
· n̄m

h,∗ n̄m
h,∗ · φh.

(4.12)

In [2, Section 5.2] we see that the third and fourth terms on the left-hand side
of (4.10) can be rewritten into a H1 bilinear form plus lower-order terms by using
the following notations for any two R2-valued functions u and v on Γ:

AΓ(u, v) :=

∫

Γ
∇Γu · ∇Γv,

AN
Γ (u, v) :=

∫

Γ
[(∇Γu)n] · [(∇Γv)n],

AT
Γ (u, v) :=

∫

Γ
tr
[
(∇Γu)(I − nn⊤)(∇Γv)T

]
,

BΓ(u, v) :=

∫

Γ
(∇Γ · u)(∇Γ · v) − tr(∇Γu∇Γv),(4.13)

with AΓ(u, v) = AN
Γ (u, v) + AT

Γ (u, v). These bilinear forms can also be defined on
the approximate curves Γ̂m

h,∗, Γ
m
h and Γ̂m

h,θ. The following identity was shown in
[2, Eq. (5.8)]:

∫

Γ
∇Γid · (DΓu)∇Γv = −AT

Γ (u, v) + BΓ(u, v),(4.14)

which also holds for the approximate curves Γ̂m
h,∗, Γm

h and Γ̂m
h,θ. It is shown in

[1, Eq. (2.1)] that (with integration by parts), if the underlying curve is sufficiently
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32 GENMING BAI AND BUYANG LI

smooth, then the symmetric bilinear form BΓ(u, v) can be written as

BΓ(u, v) =

∫

Γ
ujDiviHnj −

∫

Γ
ujDjviHni

+

∫

Γ
ujDkviniHjk −

∫

Γ
ujDkviHiknj ∀u, v ∈ H1(Γ).(4.15)

We define X̂m
h,θ := (1 − θ)X̂m

h,∗ + θXm
h and Xm+1

h,θ := (1 − θ)Xm+1
h,∗ + θXm+1

h in
the sense of nodal vectors. Then the third and fourth terms on the left-hand side
of (4.10) can be decomposed as follows (as shown in [2, Eq. (5.10)])

∫

Γm
h

∇Γm
h

Xm+1
h · ∇Γm

h
φh −

∫

Γ̂m
h,∗

∇Γ̂m
h,∗

Xm+1
h,∗ · ∇Γ̂m

h,∗
φh

= AN
h,∗(e

m+1
h ,φh) + AT

h,∗(e
m+1
h − êm

h ,φh) + Bm(êm
h ,φh) + Km(φh),(4.16)

where we have used the following notations for simplicity:

AN
h,∗(uh, vh) := AN

Γ̂m
h,∗

(uh, vh) and AT
h,∗(uh, vh) := AT

Γ̂m
h,∗

(uh, vh),

(4.17)

Ah,∗(uh, vh) := AN
h,∗(uh, vh) + AT

h,∗(uh, vh) and Bm(uh, vh) = BΓm(ul
h, vl

h)

(4.18)

Km(φh) =

∫ 1

0

[
AN

Γ̂m
h,θ

(em+1
h ,φh) − AN

Γ̂m
h,∗

(em+1
h ,φh)

]
dθ

+

∫ 1

0

[
AT

Γ̂m
h,θ

(em+1
h − êm

h ,φh) − AT
Γ̂m

h,∗
(em+1

h − êm
h ,φh)

]
dθ

+

∫ 1

0

[
BΓ̂m

h,θ
(êm

h ,φh) − BΓ̂m
h,∗

(êm
h ,φh)

]
dθ

+ BΓ̂m
h,∗

(êm
h ,φh) − BΓm(êm

h ,φh)

+

∫ 1

0

∫

Γ̂m
h,θ

∇Γ̂m
h,θ

(Xm+1
h,θ − X̂m

h,θ) · DΓ̂m
h,θ

êm
h ∇Γ̂m

h,θ
φhdθ.(4.19)

The last two terms on the left-hand side of (4.10), which arise from the sta-
bilization introduced in this article, can be decomposed into the following several
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parts:

−
∫

Γm
h

∇Γm
h

Xm
h · ∇Γm

h
Ih[(I − n̄m

h (n̄m
h )⊤)φh]

+

∫

Γ̂m
h,∗

∇Γ̂m
h,∗

Xm
h,∗ · ∇Γ̂m

h,∗
Ih[(I − n̄m

h,∗(n̄
m
h,∗)

⊤)φh]

= −
∫

Γm
h

∇Γm
h

Xm
h · ∇Γm

h
Ih[(I − n̄m

h (n̄m
h )⊤ − T̄m

h )φh]

+

∫

Γ̂m
h,∗

∇Γ̂m
h,∗

Xm
h,∗ · ∇Γ̂m

h,∗
Ih[(I − n̄m

h,∗(n̄
m
h,∗)

⊤ − T̄m
h,∗)φh]

−
∫

Γm
h

∇Γm
h

Xm
h · ∇Γm

h
Ih[(T̄m

h − T̄m
h,∗)φh]

−
∫

Γm
h

∇Γm
h

Xm
h · ∇Γm

h
Ih(T̄m

h,∗φh) +

∫

Γ̂m
h,∗

∇Γ̂m
h,∗

Xm
h,∗ · ∇Γ̂m

h,∗
Ih(T̄m

h,∗φh)

=: Fm
1 (φh) + Fm

2 (φh) + Fm
3 (φh)

− AN
h,∗(ê

m
h , IhT̄m

h,∗φh) − Bm(êm
h , IhT̄m

h,∗φh) − Qm(IhT̄m
h,∗φh),(4.20)

where T̄m
h = I − n̄m

h (n̄m
h )⊤/|n̄m

h |2 and T̄m
h,∗ = I − n̄m

h,∗(n̄
m
h,∗)

⊤/|n̄m
h,∗|2, and the last

three terms are obtained from the following relation (cf. [2, Eq. (5.10)]):

∫

Γm
h

∇Γm
h

Xm
h · ∇Γm

h
IhT̄m

h,∗φh −
∫

Γ̂m
h,∗

∇Γ̂m
h,∗

Xm
h,∗ · ∇Γ̂m

h,∗
IhT̄m

h,∗φh

=

∫ 1

0

∫

Γ̂m
h,θ

∇Γ̂m
h,θ

êm
h · ∇Γ̂m

h,θ
IhT̄m

h,∗φhdθ

+

∫ 1

0

∫

Γ̂m
h,θ

∇Γ̂m
h,θ

X̂m
h,θ · DΓ̂m

h,θ
êm
h ∇Γ̂m

h,θ
IhT̄m

h,∗φhdθ

(Lemma 3.15 is used)

= Ah,∗(ê
m
h , IhT̄m

h,∗φh) − AT
h,∗(ê

m
h , IhT̄m

h,∗φh) + Bm(êm
h , IhT̄m

h,∗φh) + Qm(IhT̄m
h,∗φh)

(relation (4.14) and notations (4.17)–(4.18) are used)

= AN
h,∗(ê

m
h , IhT̄m

h,∗φh) + Bm(êm
h , IhT̄m

h,∗φh) + Qm(IhT̄m
h,∗φh),

with

Qm(φh) :=

∫ 1

0

[
AN

Γ̂m
h,θ

(êm
h ,φh) − AN

Γ̂m
h,∗

(êm
h ,φh)

]
dθ

+

∫ 1

0

[
BΓ̂m

h,θ
(êm

h ,φh) − BΓ̂m
h,∗

(êm
h ,φh)

]
dθ

+ BΓ̂m
h,∗

(êm
h ,φh) − BΓm(êm

h ,φh).
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34 GENMING BAI AND BUYANG LI

In summary, by substituting (4.11), (4.16) and (4.20) into (4.10), we can rewrite
the error equation into the following form:

∫ h

Γ̂m
h,∗

em+1
h − êm

h

τ
· n̄m

h,∗ φh · n̄m
h,∗ + Jm(φh)

+ AN
h,∗(e

m+1
h ,φh) + AT

h,∗(e
m+1
h − êm

h ,φh) + Bm(êm
h ,φh) + Km(φh)

+
3∑

i=1

Fm
i (φh) − AN

h,∗(ê
m
h , IhT̄m

h,∗φh) − Bm(êm
h , IhT̄m

h,∗φh) − Qm(IhT̄m
h,∗φh)

= −dm(φh).
(4.21)

By choosing φh = em+1
h in the error equation we can obtain the following in-

equality (which is proved in [2, Eq. (5.15)]):
(4.22)

AN
h,∗(e

m+1
h , em+1

h )+AT
h,∗(e

m+1
h − êm

h , em+1
h )≥ 1

2
Ah,∗(e

m+1
h , em+1

h ) − 1

2
AT

h,∗(ê
m
h , êm

h ).

The full H1 parabolicity stems from the property that 1
2AT

h,∗(ê
m
h , êm

h ) is much

smaller than 1
2Ah,∗(e

m+1
h , em+1

h ) due to the orthogonality between êm
h and the tan-

gent plane of Γm at the nodes. This means on the left-hand side of the error
equation (4.22) we have a very good H1 positive definite term. In particular, the
following estimates were shown in [2, Eqs. (5.16), (5.17), (5.22)]:

|AT
h,∗(ê

m
h , êm

h )| ! ϵ−1∥êm
h ∥2

L2(Γ̂m
h,∗)

+ ϵ∥∇Γ̂m
h,∗

êm
h ∥2

L2(Γ̂m
h,∗)

,

(4.23)

|Bm(êm
h , em+1

h )| ! ϵ−1∥êm
h ∥2

L2(Γ̂m
h,∗)

+ ϵ∥∇Γ̂m
h,∗

em+1
h ∥2

L2(Γ̂m
h,∗)

,

(4.24)

|Km(φh)| ! ∥∇Γ̂m
h,∗

êm
h ∥L∞(Γ̂m

h,∗)∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗)∥∇Γ̂m
h,∗

φh∥L2(Γ̂m
h,∗)

+ ∥∇Γ̂m
h,∗

êm
h ∥L∞(Γ̂m

h,∗)∥∇Γ̂m
h,∗

em+1
h ∥L2(Γ̂m

h,∗)∥∇Γ̂m
h,∗

φh∥L2(Γ̂m
h,∗)

+ (τ + hk)∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗)∥∇Γ̂m
h,∗

φh∥L2(Γ̂m
h,∗).(4.25)

Remark 4.3. The factor (τ + hk) in the last term of (4.25) is better than the
the factor (τ + hk−1) in [2, Eq. (5.22)] because we can use a better geometric
perturbation estimate (i.e., Lemma 3.2 with L2 norms on both f1 and f2) than
that in [2, Lemma 4.2] (with L∞ norm on f1 and L2 norm on f2). The reason
that we have a better geometric perturbation estimate in Lemma 3.2 to use in this
article is that we allow the generic constant C to depend on the W k,∞

h norm of the

map X̂m
h,∗ : Γ0

h,f → Γ̂m
h,∗ defined in (3.1), while [2] only allows the generic constant

C to depend on the Hk
h norm of this map.

Moreover, from the expression of Bm(·, ·) in (4.15) and the geometric pertur-
bation estimates, we can obtain the following estimates similarly as [2, inequality
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(5.20)]:

|Bm(êm
h , IhT̄m

h,∗φh)| ! ∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗)∥IhT̄m
h,∗φh∥L2(Γ̂m

h,∗)

! ϵ−1∥φh∥2
L2(Γ̂m

h,∗)
+ ϵ∥∇Γ̂m

h,∗
êm
h ∥2

L2(Γ̂m
h,∗)

,(4.26)

|Qm(IhT̄m
h,∗φh)| ! (∥∇Γ̂m

h,∗
êm
h ∥L∞(Γ̂m

h,∗)+hk)∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗)∥∇Γ̂m
h,∗

φh∥L2(Γ̂m
h,∗)

! ϵ−1∥φh∥2
L2(Γ̂m

h,∗)
+ ϵ∥∇Γ̂m

h,∗
êm
h ∥2

L2(Γ̂m
h,∗)

,(4.27)

where the last inequality uses (3.10) and the inverse inequality to remove the de-
rivative from φh. The estimation of Jm(φh), Fm

i (φh) and AN
h,∗(ê

m
h , IhT̄m

h,∗φh) in
(4.21) is presented in the next subsection.

Remark 4.4. By choosing φh = em+1
h in the error equation and a sufficiently small

ϵ, the terms ϵ∥∇Γ̂m
h,∗

êm
h ∥2

L2(Γ̂m
h,∗)

arising from (4.23)–(4.27) can be absorbed by the

first term on the right-hand side of (4.22). This benefits from the recovery of full
H1 parabolicity in (4.22)–(4.23).

4.3. Estimates for Jm(φh), Fm
i (φh) and AN

h,∗(ê
m
h , IhT̄m

h,∗φh). Let n̄m
h,θ be the

averaged normal vector on curve Γ̂m
h,θ = (1 − θ)Γ̂m

h,∗ + θΓm
h , with θ ∈ [0, 1], defined

in the same way as (3.15) in terms of the piecewise normal vector n̂m
h,θ on Γ̂m

h,θ. Thus

n̄m
h,θ is not necessarily of unit length. The curve Γ̂m

h,θ moves with velocity êm
h as θ

increases, and any finite element function vh with a fixed nodal vector independent
of θ ∈ [0, 1] has the transport property ∂•

θvh = 0 on Γ̂m
h,θ. The functional Jm(φh)

defined in (4.12) can be rewritten into the following form using the fundamental
theorem of calculus:

Jm(φh) =

∫ h

Γ̂m
h,θ

Xm+1
h − Xm

h

τ
· n̄m

h,θ φh · n̄m
h,θ

∣∣∣∣
θ=1

θ=0

=

∫ 1

0

d
dθ

∫ h

Γ̂m
h,θ

Xm+1
h − Xm

h

τ
· n̄m

h,θ φh · n̄m
h,θdθ

=

∫ 1

0

∫ h

Γ̂m
h,θ

Xm+1
h − Xm

h

τ
· ∂•

θ n̄m
h,θ φh · n̄m

h,θdθ

(4.28)

+

∫ 1

0

∫ h

Γ̂m
h,θ

Xm+1
h − Xm

h

τ
· n̄m

h,θ φh · ∂•
θ n̄m

h,θdθ

+

∫ 1

0

∫ h

Γ̂m
h,θ

Xm+1
h − Xm

h

τ
· n̄m

h,θ φh · n̄m
h,θ(∇Γ̂m

h,θ
· êm

h )dθ (Lemma 3.14, item 6).

From Lemma 3.14, item 7, we know that

∂•
θ n̂m

h,θ = −∇Γm
h,θ

êm
h · n̂m

h,θ (piecewisely defined on each element).(4.29)
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36 GENMING BAI AND BUYANG LI

The relation between n̄m
h,θ(p) and n̂m

h,θ(p) at a node p, as shown in (3.17), implies
the following results:

|∂•
θ n̄m

h,θ(p)| = |∇Γm
h,θ

êm
h (p) · nm

h,θ(p)| if p is an interior node of an element,
(4.30)

|∂•
θ n̄m

h,θ(p)| ! |∇Γm
h,θ

êm
h (p+) · nm

h,θ(p+)| + |∇Γm
h,θ

êm
h (p+)|

+ |∇Γm
h,θ

êm
h (p−) · nm

h,θ(p−)| + |∇Γm
h,θ

êm
h (p−)|(4.31)

if p = K1 ∩ K2 for two elements K1 and K2,

where the first and third terms on the right-hand side of (4.31) are generated
from taking material derivative of n̂m

h,θ|K1(p) and n̂m
h,θ|K2(p), respectively, while the

second and the fourth terms arise from taking material derivative of the weights
wK(p) = ∇K0

f
FK ◦ F−1

K (p) for K = K1 and K = K2, respectively. Hence, by using
Hölder’s inequality, we obtain the following estimate:

|Jm(φh)| ! ∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗)∥φh∥L2(Γ̂m
h,∗)

! ϵ∥∇Γ̂m
h,∗

êm
h ∥2

L2(Γ̂m
h,∗)

+ ϵ−1∥φh∥2
L2(Γ̂m

h,∗)
,(4.32)

where ϵ is an arbitrary small number arising from Young’s inequality.
By using the expression of n̄m

h in (1.7), we can estimate the amplitude of n̄m
h at

the nodes similarly as (3.18), i.e.,

|n̄m
h (p)| = 1 if p is an interior node of an element,

|n̄m
h (p)| ≤ 1,

∣∣|n̄m
h (p)| − 1

∣∣ ! |nm
h (p+) − nm

h (p−)|2

if p is an endpoint of an element.

(4.33)

This implies, in view of the norm equivalence relation in (3.13),

∥|n̄m
h | − 1∥L1

h(Γ̂m
h,∗) !

∑

p∈Nb(Γ̂m
h,∗)

h|nm
h (p+) − nm

h (p−)|2

!
∑

p∈Nb(Γ̂m
h,∗)

h(|nm
h (p+) − Ihnm

∗ (p)|2 + |nm
h (p−) − Ihnm

∗ (p)|2)

! ∥nm
h − Ihnm

∗ ∥2
L2

h(Γ̂m
h,∗)

! ∥∇Γ̂m
h,∗

êm
h ∥2

L2
h(Γ̂m

h,∗)
+ h2k,

where (3.7), (3.19) and the triangle inequality are used in deriving the last inequal-
ity. By using this result and the inverse inequality, we obtain the following result
for the Fm

1 (φh) defined in (4.20):

|Fm
1 (φh)| =

∣∣∣
∫

Γm
h

∇Γm
h

Xm
h · ∇Γm

h
Ih[(I − n̄m

h (n̄m
h )⊤ − T̄m

h )φh]
∣∣∣

! h−1∥|n̄m
h | − 1∥L1

h(Γ̂m
h,∗)∥φh∥L∞(Γ̂m

h,∗) (inverse inequality)

! h−1(∥∇Γ̂m
h,∗

êm
h ∥2

L2
h(Γ̂m

h,∗)
+ h2k)(ϵ−1∥φh∥L2(Γ̂m

h,∗) + ϵ∥∇Γ̂m
h,∗

φh∥L2(Γ̂m
h,∗)).(4.34)
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CONVERGENCE OF A STABILIZED BGN METHOD 37

Similarly, using the estimate in (3.18), we have

|Fm
2 (φh)| = |

∫

Γ̂m
h,∗

∇Γ̂m
h,∗

Xm
h,∗ · ∇Γ̂m

h,∗
Ih(1 − n̄m

h,∗(n̄
m
h,∗)

⊤ − T̄m
h,∗)φh|

! h2k−1(ϵ−1∥φh∥L2(Γ̂m
h,∗) + ϵ∥∇Γ̂m

h,∗
φh∥L2(Γ̂m

h,∗)).(4.35)

The term |Fm
3 (φh)| can be estimated by using integration by parts similarly as

dm
3 (φh), i.e.,

F m
3 (φh) =

∫

Γm
h

∇Γm
h

Xm
h · ∇Γm

h
Ih[(T̄ m

h − T̄ m
h,∗)φh]

= −
∫

Γm
h

∆Γm
h

Xm
h · Ih[(T̄ m

h − T̄ m
h,∗)φh]

+
∑

p∈Nb(Γm
h

)

(
µm

h (p+) · (∇Γm
h

Xm
h )(p+)+µm

h (p−) · (∇Γm
h

Xm
h )(p−)

)
(T̄ m

h (p) − T̄ m
h,∗(p))φh(p)

=

∫

Γm
h

Hm
h nm

h · Ih[(T̄ m
h − T̄ m

h,∗)φh]+
∑

p∈Nb(Γm
h

)

(µm
h (p+) + µm

h (p−)) · (T̄ m
h (p) − T̄ m

h,∗(p))φh(p),

where the first term on the right-hand side can be estimated by using the equivalence
between the discrete and continuous norms, i.e.,

∣∣∣
∫

Γm
h

Hm
h nm

h · Ih[(T̄m
h − T̄m

h,∗)φh]
∣∣∣

! ∥Ih[(T̄m
h − T̄m

h,∗)φh]∥L1(Γ̂m
h,∗)

! ∥(T̄m
h − T̄m

h,∗)φh∥L1
h(Γ̂m

h,∗)

! ∥(T̄m
h − T̄m

h,∗)φh∥L1(Γ̂m
h,∗)

! ∥T̄m
h − T̄m

h,∗∥L2Γ̂m
h,∗)∥φh∥L2(Γ̂m

h,∗)

! ∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗)∥φh∥L2(Γ̂m
h,∗) (here (3.20) is used).

The second term in the expression of Fm
3 (φh) can be estimated by using (3.25) with

ϕh = Ih(T̄m
h − T̄m

h,∗) and (3.20). This leads to the following estimate:
∑

p∈Nb(Γm
h )

(µm
h (p+) + µm

h (p−)) · (T̄m
h (p) − T̄m

h,∗(p))φh(p)

! h−1∥∇Γ̂m
h,∗

êm
h ∥L2(Γm

h )∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗)∥φh∥L∞(Γ̂m
h,∗)

! h− 3
2 ∥∇Γ̂m

h,∗
êm
h ∥L2(Γm

h )∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗)∥φh∥L2(Γ̂m
h,∗).

Therefore,

|Fm
3 (φh)| ! (1 + h− 3

2 ∥∇Γ̂m
h,∗

êm
h ∥L2(Γm

h ))∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗)∥φh∥L2(Γ̂m
h,∗).(4.36)

Analogous to [2, Eqs. (5.41), (5.49)], the following estimate can be established
by using the nodal orthogonality relation (the details are omitted):

|AN
h,∗(ê

m
h , IhT̄m

h,∗φh)| ≤ |AN
h,∗(ê

m
h , IhTm

∗ φh)| + |AN
h,∗(ê

m
h , Ih(T̄m

h,∗ − Tm
∗ )φh)|

! ∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗)∥IhT̄m
h,∗φh∥L2(Γ̂m

h,∗)

+ hk−1∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗)∥φh∥L2(Γ̂m
h,∗).
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38 GENMING BAI AND BUYANG LI

4.4. Stability of the tangential motion. For an arbitrarily prescribed smooth
velocity field u on Γ which is not necessarily tangential, we consider the velocity v
whose tangential motion is specified by the following elliptic system on Γ

v · n = u · n,(4.37a)

−∆Γv = κn.(4.37b)

This system can be reformulated as the Euler-Lagrange equation of the energy
functional

∫
Γ |∇Γv|2 under the pointwise constraint v · n = u · n. Formally the

elliptic system (4.37) with u = −Hn is underlying the PDE to which the BGN
method converges; see [31, Section 1]. Since

∫
Γ |∇Γ · |2 indicates the infinitesimal

distortion of the mesh and v is the minimizer of this functional, this correspondence
explains why the tangential velocity endowed by the BGN method helps to improve
the mesh quality.

Lemma 4.5. If the underlying closed surface Γ is smooth, then the elliptic velocity
system (4.37) has a unique solution (v,κ) ∈ H1(Γ) × H−1(Γ) with v · n = u · n
almost everywhere, and moreover this solution (v,κ) is smooth.

Proof. We first consider the following energy functional I : H1(Γ) → R

I(v) =

∫

Γ
|∇Γv|2(4.38a)

with v in the convex admissible set

H = {v ∈ H1(Γ) : v · n = u · n a.e.}.(4.38b)

We know H ̸= ∅ because u is in H. Then we define I0 = infv∈H I(v) ≥ 0 and
pick out a minimizing sequence vi ∈ H such that I(vi) → I0. From the vectorial
Poincaré inequality, it follows that {vi} is bounded in H1(Γ). Therefore, by the
compactness, we can extract a subsequence, also denoted by {vi} for simplicity,
such that vi → v in L2(Γ), vi ⇀ v in H1(Γ) and v · n = u · n a.e.. According to the
weak lower semi-continuity of the norm, it holds that I(v) ≤ infi I(vi) = I0, which
means the infimum of energy I0 can be indeed reached at v.

For the uniqueness of the minimizer, if I(v1) = I(v2) = I0 for some v1 ̸= v2, by
the strict convexity of I, we have I( v1+v2

2 ) < 1
2I(v1) + 1

2I(v2) = I0 contradicting
the minimality.

To obtain the Euler-Lagrange equation for the variational problem (4.38), we
take the variation v + ϵϕ with ϕ ∈ C∞(Γ; TΓ) being any smooth vector field on Γ.
Since ϕ is tangential, v + ϵϕ ∈ H is also admissible. Using the minimality of v, we
derive

0 =
d

dϵ
|ϵ=0I(v + ϵϕ)

=
d

dϵ
|ϵ=0

∫

Γ
|∇Γ(v + ϵϕ)|2

= 2

∫

Γ
∇Γv · ∇Γϕ.

Then we differentiate the constraint v · n = u · n twice and get the following distri-
butional identity

∆Γv · n = ∆Γ(u · n) − 2∇Γv · ∇Γn − v · ∆Γn ∈ L2(Γ).
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CONVERGENCE OF A STABILIZED BGN METHOD 39

If we define κ := −∆Γv · n ∈ L2(Γ) and denote by P := I − nn⊤ the pointwise
orthogonal tangential projection, then it follows that for any ϕ ∈ H1(Γ)

(−∆Γv,ϕ) =

∫

Γ
∇Γv · ∇Γϕ

=

∫

Γ
∇Γv · ∇Γ(Pϕ + n(n · ϕ))

=

∫

Γ
∇Γv · ∇Γ(n(n · ϕ))

= (−∆Γv · n, n · ϕ)

= (κn,ϕ).

Thus −∆Γv = κn ∈ L2(Γ) holds in the sense of distribution. By the elliptic
regularity theory of the Laplace-Beltrami operator ∆Γ, we know v ∈ H2(Γ) and
hence κ = −∆Γv · n = −∆Γ(u · n) + 2∇Γv · ∇Γn + v · ∆Γn ∈ H1(Γ). Therefore, by
applying this procedure recursively, we conclude that (v,κ) is smooth.

To complete the proof, it remains to show that the PDE system (4.37) has a
unique solution. If (ṽ, κ̃) ∈ H1(Γ)×H−1(Γ) with ṽ ̸= v is another solution of (4.37),
then by testing arbitrary smooth vector field we know ṽ is the local minimizer of
(4.38). By the convexity of I and the fact that v is the unique minimality of I, we
have

I((1 − θ)ṽ + θv) < (1 − θ)I(ṽ) + θI(v) < I(ṽ)

for all θ ∈ (0, 1], which contradicts the local minimality of ṽ when θ is sufficiently
small. So we have ṽ = v and κ̃ = −∆Γṽ · n = −∆Γv · n = κ, and the proof is
complete. "

Applying the above lemma with u = −Hn, let (v,κ) be the unique smooth
solution to the following elliptic system on the smooth curve Γ = Γ(t):

v · n = −H,(4.39a)

−∆Γv = κn.(4.39b)

In this subsection we present the stability estimates for the tangential velocity
produced by the stabilized BGN method by comparing the velocity vm

h := (Xm+1
h −

Xm
h )/τ of the numerical solution with the velocity vm = v(tm) determined by the

elliptic system (4.39). The estimates of the function wm
h := vm

h −Ihvm ∈ Sh(Γm
h ) in

this subsection essentially characterize the limit of the tangential motion produced
by the stabilized BGN method.

Since (4.39a) implies that vm = −Hmnm + Tmvm, where Tm = I −nm(nm)⊤ is
the tangential projection matrix on Γm, the following relation follows from (3.38)
and the nodal relation Tm = Tm

∗ :

Xm+1
h − Xm

h − τIhvm = Xm+1
h − Xm

h − τIh(−Hmnm) − τIhTm
∗ vm

= em+1
h − êm

h − τIhTm
∗ vm + τIhgm on Γ̂m

h,∗.(4.40)
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40 GENMING BAI AND BUYANG LI

The following relation can be obtained by subtracting integral τ
∫
Γm

h
∇Γm

h
Ihvm ·

∇Γm
h
φh from the both sides of the numerical scheme in (1.5):

∫

Γm
h

∇Γm
h

(Xm+1
h − Xm

h − τIhvm) · ∇Γm
h
φh

= −
∫ h

Γm
h

Xm+1
h − id

τ
· n̄m

h φh · n̄m
h −

∫

Γm
h

∇Γm
h

Xm
h · ∇Γm

h
Ih[(φh · n̄m

h )n̄m
h ]

− τ

∫

Γm
h

∇Γm
h

Ihvm · ∇Γm
h
φh

= −
∫ h

Γm
h

Xm+1
h − id

τ
· n̄m

h φh · n̄m
h

−
∫

Γm
h

∇Γm
h

Xm
h · ∇Γm

h
Ih[(φh · n̄m

h )n̄m
h ]

− τ

∫

Γm

∇Γmvm · ∇Γmφl
h

+ τ

∫

Γm

∇Γm(vm − (Ihvm)l) · ∇Γmφl
h

− τ

∫

Γ̂m
h,∗

∇Γ̂m
h,∗

Ihvm · ∇Γ̂m
h,∗

φh + τ

∫

Γm

∇Γm(Ihvm)l · ∇Γmφl
h

− τ

∫

Γm
h

∇Γm
h

Ihvm · ∇Γm
h
φh + τ

∫

Γ̂m
h,∗

∇Γ̂m
h,∗

Ihvm · ∇Γ̂m
h,∗

φh

=:
6∑

i=1

Li(φh).(4.41)

For any function φh ∈ Sh(Γ̂m
h,∗), due to the orthogonality between n̄m

h and IhT̄m
h φh

at the nodes, the two terms L1(IhT̄m
h φh) and L2(IhT̄m

h φh) vanish. The three
terms L4(φh), L5(φh) and L6(φh) can be estimated by using the superconvergence
of Gauss–Lobatto quadrature (Lemma 3.6), the geometric perturbation estimate
(Lemma 3.2), and the fundamental theorem of calculus (Lemma 3.15), respectively:

|L4(φh)| ! τhk+1∥φh∥H1(Γ̂m
h,∗),(4.42)

|L5(φh)| ! τhk+1∥∇Γ̂m
h,∗

Ihvm∥L2(Γ̂m
h,∗)∥∇Γ̂m

h,∗
φh∥L2(Γ̂m

h,∗),(4.43)

|L6(φh)| ! τ∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗)∥∇Γ̂m
h,∗

Ihvm∥L∞(Γ̂m
h,∗)∥∇Γ̂m

h,∗
φh∥L2(Γ̂m

h,∗).(4.44)
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We can estimate L3(IhT̄m
h φh) with integration by parts and relation (4.39b) as

follows, using the identities IhT̄m
h φh = IhT̄m

h IhT̄m
h φh:

L3(IhT̄m
h φh) = τ

∫

Γm

∆Γmvm · (IhT̄m
h IhT̄m

h φh)l (integration by parts)

= −τ

∫

Γm

κmnm · (IhT̄m
h IhT̄m

h φh)l (relation (4.39b) is used)

= τ

∫

Γm

(1 − I l
h)
(
κmnm ·

(
(1 − Ih)Tm

∗ IhT̄m
h φh

)l
)

− τ

∫

Γm

κmnm · (Ih(T̄m
h − T̄m

h,∗)IhT̄m
h φh)l

− τ

∫

Γm

κmnm · (Ih(T̄m
h,∗ − Tm

∗ )IhT̄m
h φh)l(4.45)

where the first term on the right-hand side is obtained by using the following
identity:

−κmnm ·
(
IhTm

∗ IhT̄m
h φh

)l
= (1 − I l

h)
(
κmnm ·

(
(1 − Ih)Tm

∗ IhT̄m
h φh

)l)
.

We can further decompose L3(IhT̄m
h φh) into the following seven parts:

L3(IhT̄m
h φh) = τ

∫

Γm

(1 − I l
h)
(
κmnm ·

(
(1 − Ih)Tm

∗ IhT̄m
h φh

)l
)

− τ

∫

Γm

κmnm · (Ih(T̄m
h − T̄m

h,∗)IhT̄m
h φh)l

− τ
(∫

Γm

κmnm · (Ih(T̄m
h,∗ − Tm

∗ )IhT̄m
h φh)l

−
∫

Γ̂m
h,∗

κm,−lnm,−l · Ih(T̄m
h,∗ − Tm

∗ )IhT̄m
h φh

)

− τ
(∫

Γ̂m
h,∗

−
∫ h

Γ̂m
h,∗

)
κm,−lnm,−l · Ih(T̄m

h,∗ − Tm
∗ )IhT̄m

h φh

− τ

∫ h

Γ̂m
h,∗

κm,−lnm,−l · (T̄m
h,∗ − T̂m

h,∗)IhT̄m
h φh

− τ
(∫ h

Γ̂m
h,∗

−
∫

Γ̂m
h,∗

)
κm,−lnm,−l · (T̂m

h,∗ − Tm
∗ )IhT̄m

h φh

− τ

∫

Γ̂m
h,∗

κm,−lnm,−l · (T̂m
h,∗ − Tm

∗ )IhT̄m
h φh

=:
7∑

i=1

L3i(φh).(4.46)

The super-convergence result of the Gauss–Lobatto quadrature (i.e., Lemma 3.5)
can be used to prove the following estimates (the details are omitted):

|L31(φh)| + |L34(φh)| + |L36(φh)| ! τhk+1∥IhT̄m
h φh∥H1(Γ̂m

h,∗).
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L32(φh) can be estimated by using the expressions T̄m
h = I − n̄m

h (n̄m
h )⊤/|n̄m

h |2 and
T̄m

h,∗ = I − n̄m
h,∗(n̄

m
h,∗)

⊤/|n̄m
h,∗|2 and (3.20), which lead to the following result:

|L32(φh)| ! τ∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗)∥IhT̄m
h φh∥L2(Γ̂m

h,∗).

L33(φh) can be estimated by the geometric perturbation estimate in Lemma 3.2
and Lemma 3.8:

|L33(φh)| ! τhk+1∥Ih(T̄m
h,∗ − Tm

∗ )∥L2(Γ̂m
h,∗)∥IhT̄m

h φh∥L2(Γ̂m
h,∗)

! τh2k+1∥IhT̄m
h φh∥L2(Γ̂m

h,∗).

We can rewrite L35(φh) as

L35(φh) = τ

∫ h

Γ̂m
h,∗

κm,−lnm,−l ·
( n̄m

h,∗(n̄
m
h,∗)

⊤

|n̄m
h,∗|2

− n̂m
h,∗(n̂

m
h,∗)

⊤
)
IhT̄m

h φh

= 2τ

∫ h

Γ̂m
h,∗

κm,−lnm,−l · (n̄m
h,∗ − n̂m

h,∗)
1

|n̄m
h,∗|2

n̄m
h,∗ · IhT̄m

h φh

− τ

∫ h

Γ̂m
h,∗

κm,−lnm,−l · (n̄m
h,∗ − n̂m

h,∗)
1

|n̄m
h,∗|2

(n̄m
h,∗ − n̂m

h,∗) · IhT̄m
h φh

+ τ

∫ h

Γ̂m
h,∗

κm,−lnm,−l · n̂m
h,∗

( 1

|n̄m
h,∗|2

− 1
)
n̂m

h,∗ · IhT̄m
h φh

= −τ

∫ h

Γ̂m
h,∗

κm,−lnm,−l · 1

|n̄m
h,∗|2

(n̄m
h,∗ − n̂m

h,∗)(n̄
m
h,∗ − n̂m

h,∗) · IhT̄m
h φh

+ τ

∫ h

Γ̂m
h,∗

κm,−lnm,−l · n̂m
h,∗

( 1

|n̄m
h,∗|2

− 1
)
n̂m

h,∗ · IhT̄m
h φh,

where the last equality follows from (3.15). Then we can estimate ∥n̄m
h,∗−n̂m

h,∗∥L2
h(Γ̂m

h,∗)

by using the equivalence between discrete and continuous norms as well as the esti-
mates in (3.7) and Lemma 3.8 with the triangle inequality, and estimate |n̄m

h,∗| − 1
by using (3.18). This leads to the following estimate:

|L35(φh)| ! τh2k∥IhT̄m
h φh∥H1(Γ̂m

h,∗).

Similarly, we can rewrite L37(φh) as

L37(φh) = τ

∫

Γ̂m
h,∗

κm,−lnm,−l · (n̂m
h,∗(n̂

m
h,∗)

⊤ − nm
∗ (nm

∗ )⊤)IhT̄m
h φh

= 2τ

∫ h

Γ̂m
h,∗

κm,−lnm,−l · (n̂m
h,∗ − nm

∗ )nm
∗ · IhT̄m

h φh

+ τ

∫ h

Γ̂m
h,∗

κm,−lnm,−l · (n̂m
h,∗ − nm

∗ )(n̂m
h,∗ − nm

∗ ) · IhT̄m
h φh,

where the last term is the same as the right-hand side of L35(φh) and therefore
has already been estimated, and the second to last term can be estimated by using
Lemma 4.1. This leads to the following result:

|L37(φh)| ! τhk+1∥IhT̄m
h φh∥H1(Γ̂m

h,∗) + τh2k∥IhT̄m
h φh∥H1(Γ̂m

h,∗).
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In summary, since 2k ≥ k + 1, we have

|L3(IhT̄m
h φh)| ! τ (hk+1 + ∥∇Γ̂m

h,∗
êm
h ∥L2(Γ̂m

h,∗))∥IhT̄m
h φh∥H1(Γ̂m

h,∗).(4.47)

By using the above estimates of |Lj(IhT̄m
h φh)|, j = 1, . . . , 6, choosing φh =

IhT̄m
h (Xm+1

h − Xm
h − τIhvm) in (4.41) leads to

∫

Γm
h

∇Γm
h

(Xm+1
h − Xm

h − τIhvm) · ∇Γm
h

IhT̄m
h (Xm+1

h − Xm
h − τIhvm)

=
6∑

i=1

Li(IhT̄m
h (Xm+1

h − Xm
h − τIhvm))

! τ (∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗) + hk+1)∥IhT̄m
h (Xm+1

h − Xm
h − τIhvm)∥H1(Γ̂m

h,∗).(4.48)

Utilizing the orthogonality between N̄m
h and T̄m

h , we can prove the following
result, which essentially controls the H1 bilinear form

∫
Γm

h
∇Γm

h
N̄m

h fh,1 ·∇Γm
h

T̄m
h fh,2

by the L2 norm of fh,1 and the H1 seminorm of fh,2 for any two functions fh,1, fh,2 ∈
Sh(Γm

h ).

Lemma 4.6. The following estimate for the displacement Xm+1
h − Xm

h − τIhvm

holds:
∣∣∣
∫

Γm
h

∇Γm
h

[IhN̄m
h (Xm+1

h − Xm
h − τIhvm)] · ∇Γm

h
[IhT̄m

h (Xm+1
h − Xm

h − τIhvm)]
∣∣∣

! ϵ−1(1 + h−4∥∇Γ̂m
h,∗

êm
h ∥2

L2(Γ̂m
h,∗)

)∥IhN̄m
h (Xm+1

h − Xm
h − τIhvm)∥2

L2(Γ̂m
h,∗)

+ (ϵ + ϵ−1h2)∥∇Γ̂m
h,∗

IhT̄m
h (Xm+1

h − Xm
h − τIhvm)∥2

L2(Γ̂m
h,∗)

∀ ϵ > 0.

(4.49)

Proof. For the simplicity of notation, we denote the displacement δXm
h := Xm+1

h −
Xm

h − τIhvm ∈ Sh(Γm
h ). From the fundamental theorem of calculus, geometric

perturbation estimates and the mathematical induction assumptions, we have
∣∣∣
∫

Γm
h

∇Γm
h

IhN̄m
h δXm

h · ∇Γm
h

IhT̄ m
h δXm

h

∣∣∣

=
∣∣∣
( ∫

Γm
h

∇Γm
h

IhN̄m
h δXm

h · ∇Γm
h

IhT̄ m
h δXm

h −
∫

Γ̂m
h,∗

∇Γ̂m
h,∗

IhN̄m
h δXm

h · ∇Γ̂m
h,∗

IhT̄ m
h δXm

h

)

+
(∫

Γ̂m
h,∗

∇Γ̂m
h,∗

IhN̄m
h δXm

h · ∇Γ̂m
h,∗

IhT̄ m
h δXm

h −
∫

Γm
∇Γm(IhN̄m

h δXm
h )l · ∇Γm(IhT̄ m

h δXm
h )l

)

+

∫

Γm
∇Γm(IhN̄m

h δXm
h )l · ∇Γm (IhT̄ m

h δXm
h )l

∣∣∣

! (hk+1 + ∥∇Γ̂m
h,∗

êm
h ∥L∞(Γ̂m

h,∗))∥∇Γ̂m
h,∗

IhN̄m
h δXm

h ∥L2(Γ̂m
h,∗)∥∇Γ̂m

h,∗
IhT̄ m

h δXm
h ∥L2(Γ̂m

h,∗)

+
∣∣∣
∫

Γm
∇Γm (IhN̄m

h δXm
h )l · ∇Γm(IhT̄ m

h δXm
h )l

∣∣∣

! ϵ−1∥IhN̄m
h δXm

h ∥2
L2(Γ̂m

h,∗)
+ ϵ∥∇Γ̂m

h,∗
IhT̄ m

h δXm
h ∥2

L2(Γ̂m
h,∗)

+
∣∣∣
∫

Γm
∇Γm (IhN̄m

h δXm
h )l · ∇Γm(IhT̄ m

h δXm
h )l

∣∣∣,

(4.50)

where the last inequality uses the induction assumption ∥∇Γ̂m
h,∗

êm
h ∥L∞(Γ̂m

h,∗) ! h in

(3.10) and the inverse inequality which removes the gradient in front of IhN̄m
h δXm

h .
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By the super-convergence estimates (Lemma 3.4) and (3.24), it follows that
∣∣∣
∫

Γm

∇Γm(IhN̄m
h δXm

h )l · ∇Γm(IhT̄m
h IhT̄m

h δXm
h )l

∣∣∣

=
∣∣∣
∫

Γm

∇Γm(N̄m
h δXm

h )l · ∇Γm(T̄m
h IhT̄m

h δXm
h )l

−
∫

Γm

∇Γm((1 − Ih)N̄m
h δXm

h )l · ∇Γm(IhT̄m
h δXm

h )l

−
∫

Γm

∇Γm(IhN̄m
h δXm

h )l · ∇Γm((1 − Ih)T̄m
h IhT̄m

h δXm
h )l

−
∫

Γm

∇Γm((1 − Ih)N̄m
h δXm

h )l · ∇Γm((1 − Ih)T̄m
h IhT̄m

h δXm
h )l

∣∣∣

!
∣∣∣
∫

Γm

∇Γm(N̄m
h δXm

h )l · ∇Γm(T̄m
h IhT̄m

h δXm
h )l

∣∣∣

+ h∥δXm
h ∥H1(Γ̂m

h,∗)∥∇IhT̄m
h δXm

h ∥L2(Γ̂m
h,∗)

+ h∥∇Γ̂m
h,∗

IhN̄m
h δXm

h ∥L2(Γ̂m
h,∗)∥IhT̄m

h δXm
h ∥H1(Γ̂m

h,∗)

+ h2∥δXm
h ∥H1(Γ̂m

h,∗)∥IhT̄m
h δXm

h ∥H1(Γ̂m
h,∗),(4.51)

where we have used the following estimates (which follow from Lemma 3.4):

∥∇Γm((1 − Ih)N̄m
h δXm

h )l∥L2(Γm) ! h∥n̄m
h ∥W 1,∞(Γ̂m

h,∗)∥δX
m
h ∥H1(Γ̂m

h,∗),

∥∇Γm((1 − Ih)T̄m
h IhT̄m

h δXm
h )l∥L2(Γm) ! h∥n̄m

h ∥W 1,∞(Γ̂m
h,∗)∥IhT̄m

h δXm
h ∥H1(Γ̂m

h,∗).

(4.52)

(In our notation, IhT̄m
h δXm

h = Ih[T̄m
h δXm

h ] is a finite element function and therefore
satisfies the requirement of Lemma 3.4.) The boundedness of ∥N̄m

h ∥W 1,∞(Γ̂m
h,∗) and

∥T̄m
h ∥W 1,∞(Γ̂m

h,∗) follows from the definitions of N̄m
h and T̄m

h in terms of n̄m
h as well

as the W 1,∞ estimate of n̄m
h in (3.24).

By decomposing δXm
h into IhN̄m

h δXm
h plus IhT̄m

h δXm
h on the right-hand side

of (4.51), applying the inverse inequality to ∥IhN̄m
h δXm

h ∥H1(Γ̂m
h,∗) and the Poincaré

inequality (3.32), we obtain
∣∣∣
∫

Γm

∇Γm(IhN̄m
h δXm

h )l · ∇Γm(IhT̄m
h δXm

h )l
∣∣∣

!
∣∣∣
∫

Γm

∇Γm(N̄m
h δXm

h )l · ∇Γm(T̄m
h IhT̄m

h δXm
h )l

∣∣∣

+ ϵ−1∥IhN̄m
h δXm

h ∥2
L2(Γ̂m

h,∗)
+ ϵ∥∇Γ̂m

h,∗
IhT̄m

h δXm
h ∥2

L2(Γ̂m
h,∗)

,(4.53)

where the L2 norm of IhT̄m
h δXm

h (arising from decomposing δXm
h into IhN̄m

h δXm
h

plus IhT̄m
h δXm

h ) is converted to its H1 semi-norm by using the Poincaré type of
inequality in (3.32). The first term on the right-hand side of (4.53) can be further
decomposed into
∣∣∣
∫

Γm

∇Γm(N̄m
h δXm

h )l · ∇Γm(T̄m
h IhT̄m

h δXm
h )l

∣∣∣

=
∣∣∣
∫

Γm

∇Γm(Nm
∗ N̄m

h δXm
h )l · ∇Γm(Tm

∗ T̄m
h IhT̄m

h δXm
h )l
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+

∫

Γm

∇Γm((N̄m
h − Nm

∗ )N̄m
h δXm

h )l · ∇Γm(Tm
∗ T̄m

h IhT̄m
h δXm

h )l

+

∫

Γm

∇Γm(N̄m
h N̄m

h δXm
h )l · ∇Γm((T̄m

h − Tm
∗ )T̄m

h IhT̄m
h δXm

h )l
∣∣∣

!
∣∣∣
∫

Γm

∇Γm(Nm
∗ N̄m

h δXm
h )l · ∇Γm(Tm

∗ T̄m
h IhT̄m

h δXm
h )l

∣∣∣

+
(
∥∇Γ̂m

h,∗
(N̄m

h − Nm
∗ )∥L2(Γ̂m

h,∗)∥N̄
m
h δXm

h ∥L∞(Γ̂m
h,∗)

+ ∥N̄m
h − Nm

∗ ∥L∞(Γ̂m
h,∗)∥∇Γ̂m

h,∗
N̄m

h δXm
h ∥L2(Γ̂m

h,∗)

)
∥T̄m

h IhT̄m
h δXm

h ∥H1(Γ̂m
h,∗)

+
(
∥∇Γ̂m

h,∗
(T̄m

h − Tm
∗ )∥L2(Γ̂m

h,∗)∥T̄
m
h IhT̄m

h δXm
h ∥L∞(Γ̂m

h,∗)

+ ∥T̄m
h − Tm

∗ ∥L∞(Γ̂m
h,∗)∥∇Γ̂m

h,∗
T̄m

h IhT̄m
h δXm

h ∥L2(Γ̂m
h,∗)

)
∥N̄m

h δXm
h ∥H1(Γ̂m

h,∗)

(product rule of differentiation is used)

!
∣∣∣
∫

Γm

∇Γm(Nm
∗ N̄m

h δXm
h )l · ∇Γm(Tm

∗ T̄m
h IhT̄m

h δXm
h )l

∣∣∣

+ h−1(hk + ∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗))∥N̄
m
h δXm

h ∥H1(Γ̂m
h,∗)∥T̄

m
h IhT̄m

h δXm
h ∥H1(Γ̂m

h,∗)

!
∣∣∣
∫

Γm

∇Γm [Nm(N̄m
h δXm

h )l] · ∇Γm [Tm(T̄m
h IhT̄m

h δXm
h )l]

∣∣∣

+ ϵ−1h−2(hk + ∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗))
2∥IhN̄m

h δXm
h ∥2

H1(Γ̂m
h,∗)

+ ϵ∥IhT̄m
h δXm

h ∥2
H1(Γ̂m

h,∗)
+ h2∥δXm

h ∥2
H1(Γ̂m

h,∗)
(here (4.52) is used)

!
∣∣∣
∫

Γm

∇Γm [Nm(N̄m
h δXm

h )l] · ∇Γm [Tm(T̄m
h IhT̄m

h δXm
h )l]

∣∣∣

+ ϵ−1h−4(hk + ∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗))
2∥IhN̄m

h δXm
h ∥2

L2(Γ̂m
h,∗)

+ (ϵ + h2)∥∇Γ̂m
h,∗

IhT̄m
h δXm

h ∥2
L2(Γ̂m

h,∗)
+ ∥IhN̄m

h δXm
h ∥2

L2(Γ̂m
h,∗)

(inverse inequality and Poincaré inequality in (3.32) are used)

!
∣∣∣
∫

Γm

∇Γm [Nm(N̄m
h δXm

h )l] · ∇Γm [Tm(T̄m
h IhT̄m

h δXm
h )l]

∣∣∣

+ ϵ−1(1 + h−4∥∇Γ̂m
h,∗

êm
h ∥2

L2(Γ̂m
h,∗)

)∥IhN̄m
h δXm

h ∥2
L2(Γ̂m

h,∗)

+ (ϵ + h2)∥∇Γ̂m
h,∗

IhT̄m
h δXm

h ∥2
L2(Γ̂m

h,∗)
(k ≥ 2 is used).

(4.54)

For the first term on the right-hand side of (4.54), we consider the following further
decomposition:

∣∣∣
∫

Γm

∇Γm [Nm(N̄m
h δXm

h )l] · ∇Γm [Tm(T̄m
h IhT̄m

h δXm
h )l]

∣∣∣

=
∣∣∣
∫

Γm

(∇ΓmNm)Nm(N̄m
h δXm

h )l · (∇ΓmTm)Tm(T̄m
h IhT̄m

h δXm
h )l

+

∫

Γm

Nm∇Γm [Nm(N̄m
h δXm

h )l] · Tm∇Γm [Tm(T̄m
h IhT̄m

h δXm
h )l]
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+

∫

Γm

(∇ΓmNm)Nm(N̄m
h δXm

h )l · Tm∇Γm [Tm(T̄m
h IhT̄m

h δXm
h )l]

+

∫

Γm

Nm∇Γm [Nm(N̄m
h δXm

h )l] · (∇ΓmTm)Tm(T̄m
h IhT̄m

h δXm
h )l

∣∣∣,

where the second term on the right-hand side is zero due to the orthogonality
between the two projections Nm and Tm. For the last term on the right-hand side,
we can remove the gradient from Nm(N̄m

h δXm
h )l via integration by parts. This

leads to the following estimate:
∣∣∣
∫

Γm

∇ΓmNm(N̄m
h δXm

h )l · ∇ΓmTm(T̄m
h IhT̄m

h δXm
h )l

∣∣∣

! ϵ−1∥N̄m
h δXm

h ∥2
L2(Γ̂m

h,∗)
+ ϵ∥T̄m

h IhT̄m
h δXm

h ∥2
H1(Γ̂m

h,∗)

! ϵ−1∥IhN̄m
h δXm

h ∥2
L2(Γ̂m

h,∗)
+ ε−1h2∥δXm

h ∥2
L2(Γ̂m

h,∗)

+ ϵ∥∇Γ̂m
h,∗

IhT̄m
h δXm

h ∥2
L2(Γ̂m

h,∗)
+ ϵh2∥δXm

h ∥2
H1(Γ̂m

h,∗)
,(4.55)

where the last inequality follows from the triangle inequality and (4.52), as well as
the following result which is similar as (4.52):

∥(1 − Ih)N̄m
h δXm

h ∥L2(Γm) ! h∥δXm
h ∥L2(Γ̂m

h,∗).

The terms h2∥δXm
h ∥2

L2(Γ̂m
h,∗)

and h2∥δXm
h ∥2

H1(Γ̂m
h,∗)

on the right-hand side of (4.55)

can be furthermore decomposed into the normal and tangential parts, respectively,
e.g.,

h2∥δXm
h ∥2

H1(Γ̂m
h,∗)

! h2∥IhN̄m
h δXm

h ∥2
H1(Γ̂m

h,∗)
+ h2∥IhT̄m

h δXm
h ∥2

H1(Γ̂m
h,∗)

! ∥IhN̄m
h δXm

h ∥2
L2(Γ̂m

h,∗)
+ h2∥∇Γ̂m

h,∗
IhT̄m

h δXm
h ∥2

L2(Γ̂m
h,∗)

,

where the inverse inequality and the Poincaré inequality in (3.32) are used. There-
fore, (4.55) can be reduced to the following one:

∣∣∣
∫

Γm

∇ΓmNm(N̄m
h δXm

h )l · ∇ΓmTm(T̄m
h IhT̄m

h δXm
h )l

∣∣∣

! ϵ−1∥IhN̄m
h δXm

h ∥2
L2(Γ̂m

h,∗)
+ (ϵ + ϵ−1h2)∥∇Γ̂m

h,∗
IhT̄m

h δXm
h ∥2

L2(Γ̂m
h,∗)

.(4.56)

The result of Lemma 4.6 follows from (4.50)–(4.56). "

Remark 4.7. The same proof leads to the following result, with N̄m
h and T̄m

h replaced

by N̄m
h,∗ and T̄m

h,∗, respectively, and Γm
h replaced by Γ̂m

h,∗:
∣∣∣
∫

Γ̂m
h,∗

∇Γ̂m
h,∗

IhN̄m
h,∗(X

m+1
h − Xm

h − τIhvm) · ∇Γ̂m
h,∗

IhT̄m
h,∗(X

m+1
h − Xm

h − τIhvm)
∣∣∣

! ϵ−1∥IhN̄m
h,∗(X

m+1
h − Xm

h − τIhvm)∥2
L2(Γ̂m

h,∗)

(4.57)

+ (ϵ + ϵ−1h2)∥∇Γ̂m
h,∗

IhT̄m
h,∗(X

m+1
h − Xm

h − τIhvm)∥2
L2(Γ̂m

h,∗)
.

Compared with (4.49), the right-hand side of the above inequality does not contain
the term ϵ−1h−4∥∇Γ̂m

h,∗
êm
h ∥2

L2(Γ̂m
h,∗)

because only the consistency error is involved

here.
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By using the estimates in (4.48) and (4.49), we have

∫

Γm
h

∇Γm
h

IhT̄m
h (Xm+1

h − Xm
h − τIhvm) · ∇Γm

h
IhT̄m

h (Xm+1
h − Xm

h − τIhvm)

=

∫

Γm
h

∇Γm
h

(Xm+1
h − Xm

h − τIhvm) · ∇Γm
h

IhT̄m
h (Xm+1

h − Xm
h − τIhvm)

−
∫

Γm
h

∇Γm
h

IhN̄m
h (Xm+1

h − Xm
h − τIhvm) · ∇Γm

h
IhT̄m

h (Xm+1
h − Xm

h − τIhvm)

! τ (∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗) + hk+1)∥IhT̄m
h (Xm+1

h − Xm
h − τIhvm)∥H1(Γ̂m

h,∗)

+ ϵ−1(1 + h−4∥∇Γ̂m
h,∗

êm
h ∥2

L2(Γ̂m
h,∗)

)∥IhN̄m
h (Xm+1

h − Xm
h − τIhvm)∥2

L2(Γ̂m
h,∗)

+ ϵ∥∇Γ̂m
h,∗

IhT̄m
h (Xm+1

h − Xm
h − τIhvm)∥2

L2(Γ̂m
h,∗)

! ϵ−1τ2h2k+2 + ϵ−1τ2∥∇Γ̂m
h,∗

êm
h ∥2

L2(Γ̂m
h,∗)

+ ϵ−1(1 + h−4∥∇Γ̂m
h,∗

êm
h ∥2

L2(Γ̂m
h,∗)

)∥IhN̄m
h (Xm+1

h − Xm
h − τIhvm)∥2

L2(Γ̂m
h,∗)

+ ϵ∥∇Γ̂m
h,∗

IhT̄m
h (Xm+1

h − Xm
h − τIhvm)∥2

L2(Γ̂m
h,∗)

.

(4.58)

Since the L2 norms of a finite element function on Γ̂m
h,∗ and Γm

h are equivalent, by
choosing a sufficiently small ϵ, the last term on the right-hand side of (4.58) can be
absorbed by its left-hand side. As a result, we obtain the following inequality:

∥∇Γ̂m
h,∗

IhT̄m
h (Xm+1

h − Xm
h − τIhvm)∥L2(Γ̂m

h,∗)

! τhk+1 + τ∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗)

+ (1 + h−2∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗))∥IhN̄m
h (Xm+1

h − Xm
h − τIhvm)∥L2(Γ̂m

h,∗).(4.59)

Hence, by using the relation em+1
h − êm

h −τIhTm
∗ vm = Xm+1

h −Xm
h −τIhvm−τIhgm

from (4.40) and the estimate in (4.59), we have

∥∇Γ̂m
h,∗

IhT̄m
h,∗(e

m+1
h − êm

h − τIhTm
∗ vm)∥L2(Γ̂m

h,∗)

! τ (τ + hk+1) + τ∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗)

+ (1 + h−2∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗))∥IhN̄m
h (em+1

h − êm
h − τIhTm

∗ vm)∥L2(Γ̂m
h,∗)

+ ∥∇Γ̂m
h,∗

Ih[(T̄m
h − T̄m

h,∗)(e
m+1
h − êm

h − τIhTm
∗ vm)]∥L2(Γ̂m

h,∗)

! τ (τ + hk+1) + τ∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗)

+ (1 + h−2∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗))∥IhN̄m
h (em+1

h − êm
h − τIhTm

∗ vm)∥L2(Γ̂m
h,∗)

+ h−1∥T̄m
h − T̄m

h,∗∥L2(Γ̂m
h,∗)∥e

m+1
h − êm

h − τIhTm
∗ vm∥L∞(Γ̂m

h,∗)

(inverse inequality and equivalence between discrete and continuous norms)

! τ (τ + hk+1) + τ∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗)

+ (1 + h−2∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗))∥IhN̄m
h,∗(e

m+1
h − êm

h − τIhTm
∗ vm)∥L2(Γ̂m

h,∗)
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+ h−1∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗)∥∇Γ̂m
h,∗

IhT̄m
h,∗(e

m+1
h − êm

h − τIhTm
∗ vm)∥L2(Γ̂m

h,∗),

(4.60)

where we have estimated ∥T̄m
h − T̄m

h,∗∥L2(Γ̂m
h,∗) by using (3.20) and decomposed

the term ∥em+1
h − êm

h − τIhTm
∗ vm∥L∞(Γ̂m

h,∗) into its normal and tangential parts,

respectively, and have changed N̄m
h to N̄m

h,∗ by using estimate

∥N̄m
h − N̄m

h,∗∥L2(Γ̂m
h,∗) ! ∥∇Γ̂m

h,∗
êm
h ∥L2(Γ̂m

h,∗) ! h1.75.

This estimate follows from (3.20) and (3.10), and can be used to absorb the addi-
tional perturbation term caused by changing N̄m

h to N̄m
h,∗. Since ∥∇Γ̂m

h,∗
êm
h ∥L2(Γ̂m

h,∗)

! h1.75, as shown in (3.10), the last term on the right-hand side of (4.60) can be
absorbed by the left-hand side. This leads to the following result:

∥∇Γ̂m
h,∗

IhT̄m
h,∗(e

m+1
h − êm

h − τIhTm
∗ vm)∥L2(Γ̂m

h,∗)

! τ (τ + hk+1) + τ∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗)

+ (1 + h−2∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗))∥IhN̄m
h,∗(e

m+1
h − êm

h − τIhTm
∗ vm)∥L2(Γ̂m

h,∗).

(4.61)

Then, by applying the Poincaré inequality with vh = IhT̄m
h,∗(e

m+1
h − êm

h −τIhTm
∗ vm)

satisfying Ih(vh · n̄m
h,∗) = 0 in Lemma 3.10, we can control the L2 norm of the

tangential component IhT̄m
h,∗(e

m+1
h − êm

h −τIhTm
∗ vm) by the left-hand side of (4.61).

Since the L2 norm of the normal component IhN̄m
h,∗(e

m+1
h − êm

h −τIhTm
∗ vm) already

appears on the right-hand side of (4.61), by summing up the L2 norms of the
tangential and normal components of em+1

h −êm
h −τIhTm

∗ vm we obtain the following
result:

∥em+1
h − êm

h − τIhTm
∗ vm∥L2(Γ̂m

h,∗)

! τ (τ + hk+1) + τ∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗)

+ (1 + h−2∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗))∥IhN̄m
h,∗(e

m+1
h − êm

h − τIhTm
∗ vm)∥L2(Γ̂m

h,∗).

(4.62)

4.5. Velocity estimates. The last term on the right-hand side (4.62) can be es-
timated by testing the error equation (4.21) with φh = em

v,h := 1
τ (em+1

h − êm
h ) −
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IhTm
∗ vm. This leads to the following estimate:

∫ h

Γ̂m
h,∗

(em+1
h − êm

h

τ
− IhT m

∗ vm
)

· n̄m
h,∗

(em+1
h − êm

h

τ
− IhT m

∗ vm
)

· n̄m
h,∗

= −
∫ h

Γ̂m
h,∗

IhT m
∗ vm · n̄m

h,∗

(em+1
h − êm

h

τ
− IhT m

∗ vm
)

· n̄m
h,∗

+

∫ h

Γ̂m
h,∗

em+1
h − êm

h

τ
· n̄m

h,∗

(em+1
h − êm

h

τ
− IhT m

∗ vm
)

· n̄m
h,∗

= −
∫ h

Γ̂m
h,∗

IhT m
∗ vm · n̄m

h,∗

(em+1
h − êm

h

τ
− IhT m

∗ vm
)

· n̄m
h,∗

− dm(em
v,h) − Jm(em

v,h) − Bm(êm
h , em

v,h) − Km(em
v,h)

− AN
h,∗

(
em+1

h ,
em+1

h − êm
h

τ
− IhT m

∗ vm
)
− AT

h,∗

(
em+1

h − êm
h ,

em+1
h − êm

h

τ
− IhT m

∗ vm
)

−
3∑

i=1

F m
i (em

v,h) + AN
h,∗(ê

m
h , IhT̄ m

h,∗e
m
v,h) + Bm(êm

h , IhT̄ m
h,∗e

m
v,h) + Qm(IhT̄ m

h,∗e
m
v,h)

≤ −
∫ h

Γ̂m
h,∗

(em+1
h − êm

h

τ
− IhT m

∗ vm
)

· n̄m
h,∗ IhT m

∗ vm · n̄m
h,∗

− dm(em
v,h) − Jm(em

v,h) − Bm(êm
h , em

v,h) − Km(em
v,h)

− AN
h,∗

(
êm

h + τIhT m
∗ vm,

em+1
h − êm

h

τ
− IhT m

∗ vm
)

− AT
h,∗

(
τIhT m

∗ vm,
em+1

h − êm
h

τ
− IhT m

∗ vm
)

−
3∑

i=1

F m
i (em

v,h) + AN
h,∗(ê

m
h , IhT̄ m

h,∗e
m
v,h) + Bm(êm

h , IhT̄ m
h,∗e

m
v,h) + Qm(IhT̄ m

h,∗e
m
v,h),

(4.63)

where we have dropped the following two non-positive terms from the right-hand
side of the last inequality:

− τAN
h,∗

(em+1
h − êm

h

τ
− IhTm

∗ vm,
em+1
h − êm

h

τ
− IhTm

∗ vm
)

and − τAT
h,∗

(em+1
h − êm

h

τ
− IhTm

∗ vm,
em+1
h − êm

h

τ
− IhTm

∗ vm
)
.

The first term on the right-hand side of (4.63) can be estimated by using the
orthogonality between IhT̄m

h,∗v
m and n̄m

h,∗ at the nodes, which implies that IhTm
∗ vm ·

n̄m
h,∗ = (IhTm

∗ vm − T̄m
h,∗v

m) · n̄m
h,∗ at nodes and therefore

∣∣∣
∫ h

Γ̂m
h,∗

(em+1
h − êm

h

τ
− IhTm

∗ vm
)

· n̄m
h,∗ IhTm

∗ vm · n̄m
h,∗

∣∣∣

! ∥IhTm
∗ − T̄m

h,∗∥L2
h(Γ̂m

h,∗)

∥∥∥
(em+1

h − êm
h

τ
− IhTm

∗ vm
)

· n̄m
h,∗

∥∥∥
L2

h(Γ̂m
h,∗)

! hk
∥∥∥
(em+1

h − êm
h

τ
− IhTm

∗ vm
)

· n̄m
h,∗

∥∥∥
L2

h(Γ̂m
h,∗)

,(4.64)

where the last inequality follows from Lemma 3.8. The second and third terms on
the right-hand side of (4.63) can be estimated by using the results in (4.7) and
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(4.32), i.e.,

∣∣∣dm
(em+1

h − êm
h

τ
− IhTm

∗ vm
)∣∣∣

! τ
∥∥∥

em+1
h − êm

h

τ
− IhTm

∗ vm
∥∥∥

L2(Γ̂m
h,∗)

+ hk+1
∥∥∥

em+1
h − êm

h

τ
− IhTm

∗ vm
∥∥∥

H1(Γ̂m
h,∗)

,

(4.65)

∣∣∣Jm
(em+1

h − êm
h

τ
− IhTm

∗ vm
)∣∣∣

! ∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗)

∥∥∥
em+1
h − êm

h

τ
− IhTm

∗ vm
∥∥∥

L2(Γ̂m
h,∗)

.

(4.66)

The following result can be obtained by using the triangle inequality and the
boundedness of IhTm

∗ vm:

∥∇Γ̂m
h,∗

em+1
h ∥L2(Γ̂m

h,∗) ! ∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗)

+ τ
∥∥∥∇Γ̂m

h,∗

(em+1
h − êm

h

τ
− IhTm

∗ vm
)∥∥∥

L2(Γ̂m
h,∗)

+ τ.

By substituting the above inequality into the right-hand side of (4.25) and (4.27),
the following estimates of Km and Qm can be verified:
∣∣∣Km

(em+1
h − êm

h

τ
− IhT m

∗ vm
)∣∣∣ +

∣∣∣Qm
(
IhT̄ m

h,∗

(em+1
h − êm

h

τ
− IhT m

∗ vm
))∣∣∣

!∥∇Γ̂m
h,∗

êm
h ∥L∞(Γ̂m

h,∗)

(
∥∇Γ̂m

h,∗
êm

h ∥L2(Γ̂m
h,∗)+τ

∥∥∥∇Γ̂m
h,∗

(em+1
h − êm

h

τ
− IhT m

∗ vm
)∥∥∥

L2(Γ̂m
h,∗)

+τ
)

×
∥∥∥∇Γ̂m

h,∗

(em+1
h − êm

h

τ
− IhT m

∗ vm
)∥∥∥

L2(Γ̂m
h,∗)

+ (τ + hk)∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗)

∥∥∥∇Γ̂m
h,∗

(em+1
h − êm

h

τ
− IhT m

∗ vm
)∥∥∥

L2(Γ̂m
h,∗)

!(h−1/2τ+hk+∥∇Γ̂m
h,∗

êm
h ∥L∞(Γ̂m

h,∗))∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗)

∥∥∥
em+1

h − êm
h

τ
− IhT m

∗ vm
∥∥∥

H1(Γ̂m
h,∗)

+ τ∥∇Γ̂m
h,∗

êm
h ∥L∞(Γ̂m

h,∗)

∥∥∥∇Γ̂m
h,∗

(em+1
h − êm

h

τ
− IhT m

∗ vm
)∥∥∥

2

L2(Γ̂m
h,∗)

.

(4.67)

By the definitions of the bilinear forms AN
h,∗(·, ·), AT

h,∗(·, ·) and Bm(·, ·) in (4.17)–(4.18),
we have

|AN
h,∗(uh, vh)| + |AT

h,∗(uh, vh)| + |Bm(uh, vh)| ! ∥∇Γ̂m
h,∗

uh∥L2(Γ̂m
h,∗)∥vh∥H1(Γ̂m

h,∗),(4.68)

for any uh, vh ∈ Sh(Γ̂m
h,∗). By substituting these estimates together with the esti-

mates of Fm
i (em

v,h) from (4.34)–(4.36) into the right-hand side of (4.63), and then
using the estimate in (4.61), we obtain

∥∥∥
( em+1

h − êm
h,∗

τ
− IhT m

∗ vm
)

· n̄m
h,∗

∥∥∥
2

L2
h(Γ̂m

h,∗)

! (τ + hk+1 + ∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗))
∥∥∥

em+1
h − êm

h,∗
τ

− IhT m
∗ vm

∥∥∥
H1(Γ̂m

h,∗)
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+ τ∥∇Γ̂m
h,∗

êm
h ∥L∞(Γ̂m

h,∗)

∥∥∥∇Γ̂m
h,∗

( em+1
h − êm

h

τ
− IhT m

∗ vm
)∥∥∥

2

L2(Γ̂m
h,∗)

+ hk
∥∥∥
( em+1

h − êm
h

τ
− IhT m

∗ vm
)

· n̄m
h,∗

∥∥∥
L2

h(Γ̂m
h,∗)

! h−1
(
τ + hk+1 + ∥∇Γ̂m

h,∗
êm
h ∥L2(Γ̂m

h,∗)

)∥∥∥IhN̄m
h,∗(

em+1
h − êm

h,∗
τ

− IhT m
∗ vm)

∥∥∥
L2(Γ̂m

h,∗)

+ (τ + hk+1 + ∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗))
∥∥∥∇Γ̂m

h,∗
IhT̄ m

h,∗

( em+1
h − êm

h,∗
τ

− IhT m
∗ vm

)∥∥∥
L2(Γ̂m

h,∗)

+ τ∥∇Γ̂m
h,∗

êm
h ∥L∞(Γ̂m

h,∗)

∥∥∥∇Γ̂m
h,∗

IhT̄ m
h,∗

( em+1
h − êm

h

τ
− IhT m

∗ vm
)∥∥∥

2

L2(Γ̂m
h,∗)

+ h−2τ∥∇Γ̂m
h,∗

êm
h ∥L∞(Γ̂m

h,∗)

∥∥∥IhN̄m
h,∗

( em+1
h − êm

h

τ
− IhT m

∗ vm
)∥∥∥

2

L2(Γ̂m
h,∗)

(inverse inequality)

+ hk
∥∥∥
( em+1

h − êm
h

τ
− IhT m

∗ vm
)

· n̄m
h,∗

∥∥∥
L2

h(Γ̂m
h,∗)

! (h−1τ + hk + h−1∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗))
∥∥∥IhN̄m

h,∗

( em+1
h − êm

h,∗
τ

− IhT m
∗ vm

)∥∥∥
L2(Γ̂m

h,∗)

+ (τ + hk+1 + ∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗))
[
(τ + hk+1) + ∥∇Γ̂m

h,∗
êm
h ∥L2(Γ̂m

h,∗)

+ (1 + h−2∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗))
∥∥∥IhN̄m

h,∗

( em+1
h − êm

h,∗
τ

− IhT m
∗ vm

)∥∥∥
L2(Γ̂m

h,∗)

]

+ τ∥∇Γ̂m
h,∗

êm
h ∥L∞(Γ̂m

h,∗)

[
(τ + hk+1)2 + ∥∇Γ̂m

h,∗
êm
h ∥2

L2(Γ̂m
h,∗)

+ (1 + h−2∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗))
2
∥∥∥IhN̄m

h,∗

( em+1
h − êm

h,∗
τ

− IhT m
∗ vm

)∥∥∥
2

L2(Γ̂m
h,∗)

]

+ h−2∥∇Γ̂m
h,∗

êm
h ∥L∞(Γ̂m

h,∗)τ
∥∥∥IhN̄m

h,∗

( em+1
h − êm

h

τ
− IhT m

∗ vm
)∥∥∥

2

L2(Γ̂m
h,∗)

! ϵ−1
(
h−1τ + hk + h−1∥∇Γ̂m

h,∗
êm
h ∥L2(Γ̂m

h,∗) + h−2∥∇Γ̂m
h,∗

êm
h ∥2

L2(Γ̂m
h,∗)

)2

+ (τ + hk+1)2 + ∥∇Γ̂m
h,∗

êm
h ∥2

L2(Γ̂m
h,∗)

+ (ϵ + h−2τ∥∇Γ̂m
h,∗

êm
h ∥L∞(Γ̂m

h,∗))
∥∥∥IhN̄m

h,∗

( em+1
h − êm

h

τ
− IhT m

∗ vm
)∥∥∥

2

L2(Γ̂m
h,∗)

! ϵ−1h−2(τ + hk+1)2 + ϵ−1h−2∥∇Γ̂m
h,∗

êm
h ∥2

L2(Γ̂m
h,∗)

+ ϵ−1h−4∥∇Γ̂m
h,∗

êm
h ∥4

L2(Γ̂m
h,∗)

+ (ϵ + h−2τ∥∇Γ̂m
h,∗

êm
h ∥L∞(Γ̂m

h,∗))
∥∥∥
( em+1

h − êm
h,∗

τ
− IhT m

∗ vm
)

· n̄m
h,∗

∥∥∥
2

L2
h(Γ̂m

h,∗)
,

where, in the derivation of the last inequality, we have used the equivalence between
continuous and discrete norms for finite element functions, as shown in (3.46).
Under the stepsize condition τ ≤ chk+1, for sufficiently small h and ϵ, the last term
on the right-hand side above can be absorbed by the left-hand side. Then we obtain

∥∥∥
(em+1

h − êm
h,∗

τ
− IhTm

∗ vm
)

· n̄m
h,∗

∥∥∥
2

L2
h(Γ̂m

h,∗)

! h−2(τ + hk+1)2 + h−2∥∇Γ̂m
h,∗

êm
h ∥2

L2(Γ̂m
h,∗)

,(4.69)

where we have absorbed h−4∥∇Γ̂m
h,∗

êm
h ∥4

L2(Γ̂m
h,∗)

into h−2∥∇Γ̂m
h,∗

êm
h ∥2

L2(Γ̂m
h,∗)

by using

the estimate ∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗) ! h in (3.10). By considering the square root
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52 GENMING BAI AND BUYANG LI

of (4.69) and using the norm equivalence relation in (3.46) again, we obtain the
following result:

∥∥∥IhN̄m
h,∗

(em+1
h − êm

h,∗

τ
− IhTm

∗ vm
)∥∥∥

L2(Γ̂m
h,∗)

(4.70)

! h−1(τ + hk+1) + h−1∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗).

From (4.61) and (4.70), we get an H1 estimate for the tangential velocity, i.e.,

∥∇Γ̂m
h,∗

IhT̄m
h,∗(e

m+1
h − êm

h − τIhTm
∗ vm)∥L2(Γ̂m

h,∗)

! h−1τ (τ + hk+1) + h−1τ∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗)

+ h−3∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗)τ (τ + hk+1) + h−3τ∥∇Γ̂m
h,∗

êm
h ∥2

L2(Γ̂m
h,∗)

! h−1τ (τ + hk+1) + h−1τ∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗) + h−3τ∥∇Γ̂m
h,∗

êm
h ∥2

L2(Γ̂m
h,∗)

,(4.71)

where we have used h−2(τ + hk+1) ! 1 in the last inequality.
Furthermore, by decomposing the velocity into its normal and tangential com-

ponents, we can obtain an H1 estimate of the full velocity, i.e.,

∥em+1
h − êm

h − τIhT m
∗ vm∥H1(Γ̂m

h,∗)

! h−1∥IhN̄m
h,∗(em+1

h − êm
h − τIhT m

∗ vm)∥L2(Γ̂m
h,∗) + ∥IhT̄ m

h,∗(em+1
h − êm

h − τIhT m
∗ vm)∥H1(Γ̂m

h,∗)

! h−2τ(τ + hk+1) + h−2τ∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗),

(4.72)

where the last inequality follows from (4.71), the Poincaré inequality in Lemma
3.10 and the estimate ∥∇Γ̂m

h,∗
êm
h ∥L2(Γ̂m

h,∗) ! h1.75.

An important application of the velocity estimates in (4.62) and (4.70)–(4.71) is
the following estimate of ∥em+1

h ∥L2(Γ̂m
h,∗):

∥em+1
h ∥L2(Γ̂m

h,∗)

≤ ∥êm
h ∥L2(Γ̂m

h,∗) + ∥em+1
h − êm

h ∥L2(Γ̂m
h,∗)

! ∥êm
h · n̄m

h,∗∥L2
h(Γ̂m

h,∗) + ∥em+1
h − êm

h − τIhTm
∗ vm∥L2(Γ̂m

h,∗) + τ

((3.44) and the triangle inequality are used)

! ∥êm
h · n̄m

h,∗∥L2
h(Γ̂m

h,∗) + h−1τ∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗) + h−3τ∥∇Γ̂m
h,∗

êm
h ∥2

L2(Γ̂m
h,∗)

+ τ

! ∥êm
h · n̄m

h,∗∥L2
h(Γ̂m

h,∗) + τ,
(4.73)

where we have used the induction assumption ∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗) ! h1.75 in the

last inequality. Inequality (4.73) will help us to convert ∥em+1
h ∥2

L2(Γ̂m
h,∗)

to ∥êm
h ·

n̄m
h,∗∥2

L2(Γ̂m
h,∗)

on the right-hand side of the error estimates. The latter will be ab-

sorbed by the left-hand side by using the discrete version of Grönwall’s inequality.
Via the inverse inequality and the stepsize condition τ ≤ chk+1, inequality (4.73)

also implies that

∥em+1
h ∥L∞(Γ̂m

h,∗) ! h1.25.(4.74)
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From (3.33)–(3.34) we also see that

∥êm+1
h ∥L∞(Γ̂m

h,∗) ! ∥em+1
h ∥L∞(Γ̂m

h,∗) + ∥em+1
h ∥2

L∞(Γ̂m
h,∗)

! h1.25.(4.75)

Furthermore, the following inequalities can be proved by using (3.33)–(3.34) and
(4.74):

∥êm+1
h ∥L2(Γ̂m

h,∗) ! ∥em+1
h ∥L2(Γ̂m

h,∗),

∥êm+1
h ∥H1(Γ̂m

h,∗) ! ∥em+1
h ∥L2(Γ̂m

h,∗) + ∥∇Γ̂m
h,∗

em+1
h ∥L2(Γ̂m

h,∗).
(4.76)

By substituting (4.73) into the right-hand side of (4.76), we can obtain the
following result:

∥êm+1
h ∥H1(Γ̂m

h,∗) ! τ + ∥êm
h · n̄m

h,∗∥L2
h(Γ̂m

h,∗) + ∥∇Γ̂m
h,∗

em+1
h ∥L2(Γ̂m

h,∗).(4.77)

We can also prove the stability in the other way round (cf. [2, Eqs. (5.68), (5.69)]):

∥em+1
h ∥L2(Γ̂m

h,∗) ! ∥êm
h ∥L2(Γ̂m

h,∗) + τ,(4.78)

∥em+1
h ∥H1(Γ̂m

h,∗) ! ∥êm
h ∥H1(Γ̂m

h,∗) + τ.(4.79)

They can be shown by the velocity estimate (4.72) and the stepsize condition τ ≤
chk+1:

∥em+1
h − êm

h ∥H1(Γ̂m
h,∗) ! τ + ∥em+1

h − êm
h − τIhTm

∗ vm∥H1(Γ̂m
h,∗)

! τ + h−2τ (τ + hk+1) + h−2τ∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗)

! ∥êm
h ∥L2(Γ̂m

h,∗) + τ,

and then (4.78)–(4.79) follow imminently from the triangle inequality.

4.6. Norm equivalence on the curves Γm
h , Γm+1

h , Γ̂m
h,∗, Γ̂m+1

h,∗ and Γm+1
h,∗ . In

this subsection, we show the equivalence of Lp and W 1,p norms on the curves
Γm

h ,Γm+1
h , Γ̂m

h,∗, Γ̂
m+1
h,∗ and Γm+1

h,∗ by using the velocity estimates established in the
previous subsection. In view of the norm equivalence results in Lemma 3.1, it
suffices to show that the distance between these curves are small in the W 1,∞

norm.
From the velocity estimate (4.72) we can derive the following result by using the

stepsize condition τ ≤ chk+1:

∥em+1
h − êm

h − τIhTm
∗ vm∥H1(Γ̂m

h,∗) ! h2.(4.80)

Then, using the triangle inequality and (4.73)–(4.76), we get

∥em+1
h ∥H1(Γ̂m

h,∗) ! ∥em+1
h − êm

h − τIhTm
∗ vm∥H1(Γ̂m

h,∗) + ∥êm
h ∥H1(Γ̂m

h,∗) + τ ! h1.75,

(4.81)

∥êm+1
h ∥H1(Γ̂m

h,∗) ! ∥em+1
h ∥H1(Γ̂m

h,∗) ! h1.75.

(4.82)
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By utilizing relation (3.38) and the two estimates above, we have

∥X̂m+1
h,∗ − X̂m

h,∗∥L∞(Γ̂m
h,∗)

≤ ∥X̂m+1
h,∗ − Xm+1

h ∥L∞(Γ̂m
h,∗) + ∥Xm+1

h − Xm
h ∥L∞(Γ̂m

h,∗) + ∥Xm
h − X̂m

h,∗∥L∞(Γ̂m
h,∗)

= ∥êm+1
h ∥L∞(Γ̂m

h,∗) + ∥em+1
h − êm

h − τIh(Hmnm − gm)∥L∞(Γ̂m
h,∗) + ∥êm

h ∥L∞(Γ̂m
h,∗)

! ∥êm+1
h ∥L∞(Γ̂m

h,∗) + ∥em+1
h ∥L∞(Γ̂m

h,∗) + ∥êm
h ∥L∞(Γ̂m

h,∗) + τ

! h1.75.

(4.83)

From (3.35) we see that

∥Xm+1
h,∗ − X̂m

h,∗∥W 1,∞(Γ̂m
h,∗) ! τ.(4.84)

Lemma 4.8 essentially helps us to bound the Lp norm of the tangential part of
the error displacement, i.e. em+1

h − êm
h − τIhTm

∗ vm, by the Lp norm of its normal
part and the W 1,p semi-norm of the tangential part which can be furthermore
controlled by (4.70) and (4.71) respectively. This lemma is needed to estimate
∥X̂m+1

h,∗ − X̂m
h,∗∥W 1,∞(Γ̂m

h,∗).

Lemma 4.8. The following estimate for the error displacement em+1
h − êm

h −
τIhTm

∗ vm holds:

∥IhTm
∗ (em+1

h − êm
h − τIhTm

∗ vm)∥W 1,p(Γ̂m
h,∗)

! hk−1∥IhN̄m
h,∗(e

m+1
h − êm

h − τIhTm
∗ vm)∥Lp(Γ̂m

h,∗)

+ ∥∇Γ̂m
h,∗

IhT̄m
h,∗(e

m+1
h − êm

h − τIhTm
∗ vm)∥Lp(Γ̂m

h,∗), ∀ p ∈ [2,∞].(4.85)

Proof. Using the triangle inequality, we have

∥IhT m
∗ (em+1

h − êm
h − τIhT m

∗ vm)∥W1,p(Γ̂m
h,∗)

≤ ∥IhT̄ m
h,∗(em+1

h − êm
h − τIhT m

∗ vm)∥W1,p(Γ̂m
h,∗)

+ ∥Ih(T̄ m
h,∗ − IhT m

∗ )(em+1
h − êm

h − τIhT m
∗ vm)∥W1,p(Γ̂m

h,∗)

! ∥IhT̄ m
h,∗(em+1

h − êm
h − τIhT m

∗ vm)∥W1,p(Γ̂m
h,∗)

+ h−1∥T̄ m
h,∗ − IhT m

∗ ∥L∞(Γ̂m
h,∗)∥e

m+1
h − êm

h − τIhT m
∗ vm∥Lp(Γ̂m

h,∗) (here (3.14) is used)

! ∥IhT̄ m
h,∗(em+1

h − êm
h − τIhT m

∗ vm)∥W1,p(Γ̂m
h,∗)

+ hk−1∥em+1
h − êm

h − τIhT m
∗ vm∥Lp(Γ̂m

h,∗) (Lemma 3.8 is used)

! ∥IhT̄ m
h,∗(em+1

h − êm
h − τIhT m

∗ vm)∥W1,p(Γ̂m
h,∗)

+ hk−1∥IhN̄m
h,∗(em+1

h − êm
h − τIhT m

∗ vm)∥Lp(Γ̂m
h,∗)

! ∥∇Γ̂m
h,∗

IhT̄ m
h,∗(em+1

h − êm
h − τIhT m

∗ vm)∥Lp(Γ̂m
h,∗)

+ hk−1∥IhN̄m
h,∗(em+1

h − êm
h − τIhT m

∗ vm)∥Lp(Γ̂m
h,∗),

(4.86)

where, in the last inequality, we have applied Poincaré inequality (Lemma 3.10). "
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The following identities have been proved in [2, Eqs. (A.15) and (A.17)]:

Nm
∗ (X̂m+1

h,∗ − X̂m
h,∗) = (Xm+1 − id) ◦ am + ρh at the nodes,

(4.87)

where |ρh| ≤ C0τ
2 + C0|Tm

∗ (X̂m+1
h,∗ − X̂m

h,∗)|2 at the nodes,(4.88)

Tm
∗ (X̂m+1

h,∗ − X̂m
h,∗) = Tm

∗ (Xm+1
h − Xm

h ) + Tm
∗ (Nm+1

∗ − Nm
∗ )êm+1

h at the nodes,

(4.89)

where C0 is a constant that is independent of κl.
Note that nm+1

∗ is a smooth extension of n(·, tm+1) from Γm+1 to a neigh-
borhood of Γm+1 which contains Γm for sufficiently small τ , and the gradient
of nm+1

∗ is bounded uniformly with respect to m and τ . By considering both
nm+1
∗ = n(·, tm+1) ◦ X̂m+1

h,∗ and nm
∗ = n(·, tm) ◦ X̂m

h,∗ as functions defined on Γ̂m
h,∗,

and using estimates in (4.92) and (4.84), we have

|nm+1
∗ − nm

∗ | = |n(X̂m+1
h,∗ , tm+1) − n(X̂m

h,∗, tm)|

= |nm+1
∗ (X̂m+1

h,∗ ) − nm+1
∗ (X̂m

h,∗) + nm+1
∗ (X̂m

h,∗) − nm+1
∗ (Xm+1

h,∗ )

+ n(Xm+1
h,∗ , tm+1) − n(X̂m

h,∗, tm)|

! |X̂m+1
h,∗ − X̂m

h,∗| + |X̂m
h,∗ − Xm+1

h,∗ | + τ at the nodes

! |X̂m+1
h,∗ − X̂m

h,∗| + τ at the nodes,(4.90)

where the second to last inequality uses the smoothness of nm+1
∗ in a neighborhood

of Γm+1, and the last inequality uses (4.84).
Combining (4.87)–(4.89) with the velocity estimates, we derive

∥X̂m+1
h,∗ − X̂m

h,∗∥W1,∞(Γ̂m
h,∗)

≤ ∥IhNm
∗ (X̂m+1

h,∗ − X̂m
h,∗)∥W1,∞(Γ̂m

h,∗) + ∥IhT m
∗ (X̂m+1

h,∗ − X̂m
h,∗)∥W1,∞(Γ̂m

h,∗)

! τ + h−1(τ2 + ∥IhT m
∗ (X̂m+1

h,∗ − X̂m
h,∗)∥2

L∞(Γ̂m
h,∗)) + ∥IhT m

∗ (X̂m+1
h,∗ − X̂m

h,∗)∥W1,∞(Γ̂m
h,∗)

(inverse inequality and (4.87)–(4.88) are used)

! τ + ∥IhT m
∗ (X̂m+1

h,∗ − X̂m
h,∗)∥W1,∞(Γ̂m

h,∗) ((4.83) is used)

≤ τ + ∥IhT m
∗ (Xm+1

h − Xm
h )∥W1,∞(Γ̂m

h,∗) + ∥IhT m
∗ ((Nm+1

∗ − Nm
∗ )êm+1

h )∥W1,∞(Γ̂m
h,∗)

((4.89) is used)

! τ + ∥IhT m
∗ (em+1

h − êm
h − τIhT m

∗ vm)∥W1,∞(Γ̂m
h,∗) ((4.40) is used)

+ h−1(τ + ∥X̂m+1
h,∗ − X̂m

h,∗∥L∞(Γ̂m
h,∗))∥ê

m+1
h ∥L∞(Γ̂m

h,∗) ((4.90) is used)

! τ + ∥∇Γ̂m
h,∗

IhT̄ m
h,∗(e

m+1
h − êm

h − τIhT m
∗ vm)∥L∞(Γ̂m

h,∗)

+ hk−1∥IhN̄m
h,∗(e

m+1
h − êm

h − τIhT m
∗ vm)∥L∞(Γ̂m

h,∗) (Lemma 4.8 is used)

+ h−1(τ + ∥X̂m+1
h,∗ − X̂m

h,∗∥L∞(Γ̂m
h,∗))∥ê

m+1
h ∥L∞(Γ̂m

h,∗)

! τ + h−3/2τ(τ + hk+1) + h−3/2τ∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗) + h−7/2τ∥∇Γ̂m
h,∗

êm
h ∥2

L2(Γ̂m
h,∗)

(inverse inequality, (4.70) and (4.71) are used)

+ h−1(τ + ∥X̂m+1
h,∗ − X̂m

h,∗∥L∞(Γ̂m
h,∗))∥ê

m+1
h ∥L∞(Γ̂m

h,∗)
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! τ + h0.75∥X̂m+1
h,∗ − X̂m

h,∗∥L∞(Γ̂m
h,∗),

(4.91)

where the last inequality follows from the induction assumption ∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗)

! h1.75 and the estimate ∥êm+1
h ∥L∞(Γ̂m

h,∗) ! h1.75 in (4.82). By absorbing

h0.75∥X̂m+1
h,∗ − X̂m

h,∗∥L∞(Γ̂m
h,∗) into the left-hand side, we get

∥X̂m+1
h,∗ − X̂m

h,∗∥W 1,∞(Γ̂m
h,∗) ! τ.(4.92)

This implies the norm equivalence between Γ̂m
h,∗ and Γ̂m+1

h,∗ according to Lemma
3.1. Moreover,

∥Xm+1
h − Xm

h ∥W 1,∞(Γ̂m
h,∗)

= ∥em+1
h − êm

h − τIh(Hmnm − gm)∥W 1,∞(Γ̂m
h,∗) (relation (3.38) is used)

! τ + h−1/2∥em+1
h ∥H1(Γ̂m

h,∗) + h−1/2∥êm
h ∥H1(Γ̂m

h,∗)

! h1.25,(4.93)

where the last inequality uses (3.10) and (4.81). This implies the norm equivalence
between Γm

h and Γm+1
h according to Lemma 3.1.

The norm equivalence between Γm
h and Γ̂m

h,∗ is a consequence of the induction

assumption ∥êm
h ∥W 1,∞(Γ̂m

h,∗) ! h1.25 in (3.10), and the norm equivalence between

Γm
h and Γm

h,∗ follows from (4.84). Therefore, the norms of finite element functions

on Γm
h ,Γm+1

h , Γ̂m
h,∗, Γ̂

m+1
h,∗ and Γm+1

h,∗ with a common nodal vector are all equivalent.
To distinguish the domain of definition more clearly, we temporarily denote by

X̂m+1
h,∗ : Γ0

h,f → Γ̂m+1
h,∗ and Ŷ m+1

h,∗ : Γ̂m
h,∗ → Γ̂m+1

h,∗ the finite element functions with

the same nodal vector but defined on Γ0
h,f and Γ̂m

h,∗, respectively. Then (4.92) can
be written as

∥Ŷ m+1
h,∗ − id∥W 1,∞(Γ̂m

h,∗) ! τ.

As a result, for sufficiently small τ , the map Ŷ m+1
h,∗ = id + (Ŷ m+1

h,∗ − id) is invertible

and satisfies that ∥(Ŷ m+1
h,∗ )−1∥W 1,∞(Γ̂m+1

h,∗ ) ! 1. From (4.92) we conclude that, by

using the triangle inequality and the inverse inequality,

∥X̂m+1
h,∗ ∥W k,∞

h (Γ0
h,f)

! ∥X̂m
h,∗∥W k,∞

h (Γ0
h,f)

+ h−k+1∥X̂m+1
h,∗ − X̂m

h,∗∥W 1,∞(Γ0
h,f )

! 1.

(4.94)

Since X̂m+1
h,∗ = Ŷ m+1

h,∗ ◦ X̂m
h,∗, it follows that

∥(X̂m+1
h,∗ )−1∥W 1,∞(Γ̂m+1

h,∗ ) = ∥(X̂m
h,∗)

−1 ◦ (Ŷ m+1
h,∗ )−1∥W 1,∞(Γ̂m+1

h,∗ )

≤ ∥(X̂m
h,∗)

−1∥W 1,∞(Γ̂m
h,∗)∥(Ŷ

m+1
h,∗ )−1∥W 1,∞(Γ̂m+1

h,∗ ) ! 1.(4.95)

The estimates in (4.94)–(4.95) imply that the constant κl defined in (3.1) satisfies
that

κl+1 ≤ Cκl .(4.96)

As a result, all the estimates in Section 3 proved for Γ̂m
h,∗ also hold for Γ̂m+1

h,∗ (with
some constants depending only on κl). In particular, (3.7) and Lemma 3.8 hold at
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time level m + 1, and therefore

∥n̄m+1
h,∗ − n̂m+1

h,∗ ∥L2(Γ̂m+1
h,∗ ) ! hk.(4.97)

4.7. Stability of orthogonal projection on the error. In this subsection we
establish the stability of converting ∥em+1

h · n̄m
h,∗∥2

L2
h(Γ̂m

h,∗)
to ∥êm+1

h · n̄m+1
h,∗ ∥2

L2
h(Γ̂m+1

h,∗ )

at each time level. We decompose their difference into the following five parts:

∥êm+1
h · n̄m+1

h,∗ ∥2
L2

h(Γ̂m+1
h,∗ )

− ∥em+1
h · n̄m

h,∗∥2
L2

h(Γ̂m
h,∗)

= ∥êm+1
h · n̄m+1

h,∗ ∥2
L2

h(Γ̂m+1
h,∗ )

− ∥êm+1
h · n̄m+1

h,∗ ∥2
L2

h(Γ̂m
h,∗)

(change of Γ̂m+1
h,∗ to Γ̂m

h,∗)

+ ∥êm+1
h · n̄m+1

h,∗ ∥2
L2

h(Γ̂m
h,∗)

− ∥êm+1
h · n̄m

h,∗∥2
L2

h(Γ̂m
h,∗)

(change of n̄m+1
h,∗ to n̄m

h,∗)

+ ∥êm+1
h · n̄m

h,∗∥2
L2

h(Γ̂m
h,∗)

− ∥em+1
h · n̄m

h,∗∥2
L2

h(Γ̂m
h,∗)

(change of êm+1
h to em+1

h )

=: Mm
1 + Mm

2 + Mm
3 .

(4.98)

By the fundamental theorem of calculus, (4.92) and the norm equivalence of curves
Γ̂m

h,∗ and Γ̂m+1
h,∗ in Section 4.6, we know

Mm
1 = ∥êm+1

h · n̄m+1
h,∗ ∥2

L2
h(Γ̂m+1

h,∗ )
− ∥êm+1

h · n̄m+1
h,∗ ∥2

L2
h(Γ̂m

h,∗)

! ∥∇Γ̂m
h,∗

(X̂m+1
h − X̂m

h )∥L∞(Γ̂m
h,∗)∥ê

m+1
h ∥L2(Γ̂m

h,∗)∥ê
m+1
h ∥L2(Γ̂m

h,∗)

! τ∥êm+1
h ∥2

L2(Γ̂m
h,∗)

(here (4.92) is used).(4.99)

The estimation of Mm
2 and Mm

3 requires Lemma 4.9 which tells us that the L∞

norms of the quantities nm
∗ , n̂m

h,∗ and n̄m
h,∗ at adjacent time levels differ at most

O(τ ) from each other. This additional O(τ ) will help us to eliminate the factor 1
τ

in the fourth line of (4.115).

Lemma 4.9. We have the following estimates for the difference between normal
vectors at two adjacent time levels:

|nm+1
∗ − nm

∗ | ! τ at the nodes,(4.100)

∥n̂m+1
h,∗ − n̂m

h,∗∥L∞(Γ̂m
h,∗) ! τ,(4.101)

∥n̄m+1
h,∗ − n̄m

h,∗∥L∞(Γ̂m
h,∗) ! τ.(4.102)

Proof. Note that nm+1
∗ is a smooth extension of n(·, tm+1) from Γm+1 to a neigh-

borhood of Γm+1 which contains Γm when τ is sufficiently small, and the gradient
of nm+1

∗ is bounded uniformly with respect to m and τ . From (4.90), (4.92) and
(4.84), it follows that

|nm+1
∗ − nm

∗ | ! |X̂m+1
h,∗ − X̂m

h,∗| + |X̂m
h,∗ − Xm+1

h,∗ | + τ at the nodes

! τ at the nodes.(4.103)

The second and the third results in Lemma 4.9 follow from Lemma 3.14 (item
7), (4.30)–(4.31) and the norm equivalences in Section 4.6, i.e.,

∥n̂m+1
h,∗ − n̂m

h,∗∥L∞(Γ̂m
h,∗) + ∥n̄m+1

h,∗ − n̄m
h,∗∥L∞(Γ̂m

h,∗)

! ∥∇Γ̂m
h,∗

(X̂m+1
h,∗ − X̂m

h,∗)∥L∞(Γ̂m
h,∗) ! τ,(4.104)

where the last inequality follows from (4.92). "
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The third result in Lemma 4.9 implies that

Mm
2 = ∥êm+1

h · n̄m+1
h,∗ ∥2

L2
h(Γ̂m

h,∗)
− ∥êm+1

h · n̄m
h,∗∥2

L2
h(Γ̂m

h,∗)
! τ∥êm+1

h ∥2
L2(Γ̂m

h,∗)
.(4.105)

We decompose Mm
3 into several parts as follows:

Mm
3 = ∥êm+1

h · n̄m
h,∗∥2

L2
h(Γ̂m

h,∗)
− ∥em+1

h · n̄m
h,∗∥2

L2
h(Γ̂m

h,∗)

=

∫ h

Γ̂m
h,∗

(êm+1
h − em+1

h ) · n̄m
h,∗(ê

m+1
h + em+1

h ) · n̄m
h,∗

=

∫ h

Γ̂m
h,∗

(
IhTm+1

∗ (êm+1
h − em+1

h ) + fh

)
· n̂m

h,∗(ê
m+1
h + em+1

h ) · n̄m
h,∗

= −
∫ h

Γ̂m
h,∗

IhTm+1
∗ em+1

h · (n̂m
h,∗ − nm

∗ )(êm+1
h + em+1

h ) · n̄m
h,∗

+

∫ h

Γ̂m
h,∗

IhTm+1
∗ em+1

h · (nm+1
∗ − nm

∗ )(êm+1
h + em+1

h ) · n̄m
h,∗

+

∫ h

Γ̂m
h,∗

fh · n̂m
h,∗(ê

m+1
h + em+1

h ) · n̄m
h,∗

= −
∫ h

Γ̂m
h,∗

Ih(Tm+1
∗ − Tm

∗ )em+1
h · (n̂m

h,∗ − nm
∗ )(êm+1

h + em+1
h ) · n̄m

h,∗

−
∫ h

Γ̂m
h,∗

IhTm
∗ (em+1

h − êm
h − τIhTm

∗ vm) · (n̂m
h,∗ − nm

∗ )(êm+1
h + em+1

h ) · n̄m
h,∗

−
(∫ h

Γ̂m
h,∗

−
∫

Γ̂m
h,∗

)
τIhTm

∗ vm · (n̂m
h,∗ − nm

∗ )(êm+1
h + em+1

h ) · n̄m
h,∗

−
∫

Γ̂m
h,∗

τIhTm
∗ vm · (n̂m

h,∗ − nm
∗ )(êm+1

h + em+1
h ) · n̄m

h,∗

+

∫ h

Γ̂m
h,∗

IhTm+1
∗ em+1

h · (nm+1
∗ − nm

∗ )(êm+1
h + em+1

h ) · n̄m
h,∗

+

∫ h

Γ̂m
h,∗

fh · n̂m
h,∗(ê

m+1
h + em+1

h ) · n̄m
h,∗

=:
6∑

i=1

Mm
3i ,

(4.106)

where we have applied (3.33) and (3.16) in the third equality, and have used the
nodal orthogonality relation in the fourth equality.

Lemma 4.9 directly implies

Mm
31 ! τ (∥êm+1

h ∥2
L2(Γ̂m

h,∗)
+ ∥em+1

h ∥2
L2(Γ̂m

h,∗)
),(4.107)

Mm
35 ! τ (∥êm+1

h ∥2
L2(Γ̂m

h,∗)
+ ∥em+1

h ∥2
L2(Γ̂m

h,∗)
).(4.108)
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By the velocity estimates in (4.70)–(4.71), we derive that

Mm
32 ! τhk

∥∥∥
em+1
h − êm

h

τ
− IhT m

∗ vm
∥∥∥

L2(Γ̂m
h,∗)

(∥êm+1
h ∥L2(Γ̂m

h,∗) + ∥em+1
h ∥L2(Γ̂m

h,∗))

! τhk−1(τ + hk+1)(∥êm+1
h ∥L2(Γ̂m

h,∗) + ∥em+1
h ∥L2(Γ̂m

h,∗))

+ τhk(h−1∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗)

+ h−3∥∇Γ̂m
h,∗

êm
h ∥2

L2(Γ̂m
h,∗)

)
(∥êm+1

h ∥L2(Γ̂m
h,∗) + ∥em+1

h ∥L2(Γ̂m
h,∗))

! τhk−1(τ + hk+1)(∥êm+1
h ∥L2(Γ̂m

h,∗) + ∥em+1
h ∥L2(Γ̂m

h,∗))

+ τ(hk−1∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗) + hk−3∥∇Γ̂m
h,∗

êm
h ∥2

L2(Γ̂m
h,∗)

)

(∥êm+1
h ∥L2(Γ̂m

h,∗) + ∥em+1
h ∥L2(Γ̂m

h,∗))

! τhk−1(τ + hk+1)

(∥êm+1
h ∥L2(Γ̂m

h,∗) + ∥em+1
h ∥L2(Γ̂m

h,∗))

+ τhk−1∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗)(∥ê
m+1
h ∥L2(Γ̂m

h,∗) + ∥em+1
h ∥L2(Γ̂m

h,∗))(4.109)

+ τhk−0.25∥∇Γ̂m
h,∗

êm
h ∥2

L2(Γ̂m
h,∗)

,

where we have used the estimate ∥êm+1
h ∥L2(Γ̂m

h,∗) + ∥em+1
h ∥L2(Γ̂m

h,∗) ! h2.75 which

follows from (4.76), (4.78) and the induction assumption in (3.9). The super-
convergence estimate in Lemma 3.5 leads to

Mm
33 ! τhk+1(∥êm+1

h ∥H1(Γ̂m
h,∗) + ∥em+1

h ∥H1(Γ̂m
h,∗)),(4.110)

and, applying Lemma 4.1, we obtain

Mm
34 ! τhk+1(∥êm+1

h ∥H1(Γ̂m
h,∗) + ∥em+1

h ∥H1(Γ̂m
h,∗)).(4.111)

Finally, by using the estimates in (3.34) and Lemma 4.9, as well as the relation
(1 − nm

∗ (nm
∗ )⊤)êm

h = 0 at the nodes, we have

Mm
36 =

∫ h

Γ̂m
h,∗

fh · n̂m
h,∗(ê

m+1
h + em+1

h ) · n̄m
h,∗

! ∥(1 − nm+1
∗ (nm+1

∗ )⊤)em+1
h ∥2

L2
h(Γ̂m

h,∗)(∥ê
m+1
h ∥L∞(Γ̂m

h,∗) + ∥em+1
h ∥L∞(Γ̂m

h,∗))

! ∥(1 − nm
∗ (nm

∗ )⊤)(em+1
h − êm

h )∥2
L2

h(Γ̂m
h,∗)(∥ê

m+1
h ∥L∞(Γ̂m

h,∗) + ∥em+1
h ∥L∞(Γ̂m

h,∗))

+ ∥(nm+1
∗ (nm+1

∗ )⊤ − nm
∗ (nm

∗ )⊤)em+1
h ∥2

L2
h(Γ̂m

h,∗)(∥ê
m+1
h ∥L∞(Γ̂m

h,∗) + ∥em+1
h ∥L∞(Γ̂m

h,∗))

! τ2
(∥∥∥

em+1
h − êm+1

h

τ
− IhT m

∗ vm
∥∥∥

2

L2
h(Γ̂m

h,∗)
+ 1

)
(∥êm+1

h ∥L∞(Γ̂m
h,∗) + ∥em+1

h ∥L∞(Γ̂m
h,∗))

! τ2(∥êm+1
h ∥L2(Γ̂m

h,∗) + ∥em+1
h ∥L2(Γ̂m

h,∗))

+ τ2(∥∇Γ̂m
h,∗

êm+1
h ∥L2(Γ̂m

h,∗) + ∥∇Γ̂m
h,∗

em+1
h ∥L2(Γ̂m

h,∗)),

where the boundedness of
∥∥ em+1

h −êm
h

τ − IhTm
∗ vm

∥∥
L2(Γ̂m

h,∗)
comes from a combination

of the velocity estimates (4.62) and (4.70) as well as the induction assumption
∥êm

h ∥H1(Γ̂m
h,∗) ! h1.75. Therefore, by using Young’s inequality, we have

Mm
36 ! τ2(∥êm+1

h ∥L2(Γ̂m
h,∗) + ∥em+1

h ∥L2(Γ̂m
h,∗))

+ ϵ−1τ3 + ϵτ (∥∇Γ̂m
h,∗

êm+1
h ∥2

L2(Γ̂m
h,∗)

+ ∥∇Γ̂m
h,∗

em+1
h ∥2

L2(Γ̂m
h,∗)

).(4.112)
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By collecting the estimates of Mm
3j , j = 1, . . . , 6, we obtain the following estimate:

Mm
3 ! ϵ−1τ3 + τ(∥êm+1

h ∥2
L2(Γ̂m

h,∗)
+ ∥em+1

h ∥2
L2(Γ̂m

h,∗)
+ ∥êm

h ∥2
L2(Γ̂m

h,∗)
)

+ (ϵ + hk−0.25 + h2k−2)τ

(∥∇Γ̂m
h,∗

êm+1
h ∥2

L2(Γ̂m
h,∗)

+ ∥∇Γ̂m
h,∗

em+1
h ∥2

L2(Γ̂m
h,∗)

+ ∥∇Γ̂m
h,∗

êm
h ∥2

L2(Γ̂m
h,∗)

)

+ τhk+1(∥êm+1
h ∥H1(Γ̂m

h,∗) + ∥em+1
h ∥H1(Γ̂m

h,∗)).

(4.113)

4.8. Error estimates. Note that
1

τ
(∥êm+1

h · n̄m+1
h,∗ ∥2

L2
h(Γ̂m+1

h,∗ )
− ∥êm

h · n̄m
h,∗∥2

L2
h(Γ̂m

h,∗)
) + Ah,∗(e

m+1
h , em+1

h )

=
1

τ
(∥em+1

h · n̄m
h,∗∥2

L2
h(Γ̂m

h,∗)
− ∥êm

h · n̄m
h,∗∥2

L2
h(Γ̂m

h,∗)
) + Ah,∗(e

m+1
h , em+1

h )

+
1

τ
(∥êm+1

h · n̄m+1
h,∗ ∥2

L2
h(Γ̂m+1

h,∗ )
− ∥em+1

h · n̄m
h,∗∥2

L2
h(Γ̂m

h,∗)
),(4.114)

where the first line on the right-hand side above can be estimated by choosing
φh = em+1

h in the error equation (4.21) and using the estimates of the linear and
bilinear forms developed in Sections 4.1 and 4.2. The second line on the right-hand
side above can be estimated by using (4.98) and the estimates of Mm

j , j = 1, . . . , 3
in Section 4.7. This leads to the following result:
1

τ
(∥êm+1

h · n̄m+1
h,∗ ∥2

L2
h
(Γ̂m+1

h,∗ )
− ∥êm

h · n̄m
h,∗∥

2
L2

h
(Γ̂m

h,∗)
) + Ah,∗(em+1

h , em+1
h )

! AT
h,∗(êm

h , êm
h ) − Bm(êm

h , em+1
h ) − Jm(em+1

h ) − Km(em+1
h ) − dm(em+1

h )

−
3∑

i=1

F m
i (em+1

h ) + AN
h,∗(êm

h , IhT̄ m
h,∗em+1

h ) + Bm(êm
h , IhT̄ m

h,∗em+1
h ) + Qm(IhT̄ m

h,∗em+1
h )

+
1

τ

3∑

i=1

Mm
i (here (4.98) is used)

! ϵ−1(τ + hk+1)2 + ϵ−1(∥êm+1
h ∥2

L2(Γ̂m
h,∗) + ∥em+1

h ∥2
L2(Γ̂m

h,∗) + ∥êm
h ∥2

L2(Γ̂m
h,∗) + ∥em

h ∥2
L2(Γ̂m

h,∗)

)

+ ϵ
(
∥∇Γ̂m

h,∗
em

h ∥2
L2(Γ̂m

h,∗) + ∥∇Γ̂m
h,∗

êm
h ∥2

L2(Γ̂m
h,∗) + ∥∇Γ̂m

h,∗
em+1

h ∥2
L2(Γ̂m

h,∗) + ∥∇Γ̂m
h,∗

êm+1
h ∥2

L2(Γ̂m
h,∗)

)
.

(4.115)

Then, by using the results in (3.44), (4.73) and (4.77), we can simplify (4.115) to
the following inequality:

∥êm+1
h · n̄m+1

h,∗ ∥2
L2

h(Γ̂m+1
h,∗ )

− ∥êm
h · n̄m

h,∗∥2
L2

h(Γ̂m
h,∗)

2τ
+ C−1∥∇Γ̂m

h,∗
êm+1
h ∥2

L2(Γ̂m
h,∗)

! ϵ−1(τ + hk+1)2 + ϵ−1∥êm
h · n̄m

h,∗∥2
L2

h(Γ̂m
h,∗)

+ ϵ∥∇Γ̂m
h,∗

êm
h ∥2

L2(Γ̂m
h,∗)

,(4.116)

where ϵ is an arbitrary small constant. The last term in (4.116) can be absorbed by
its left-hand side. Then, by applying the discrete Grönwall’s inequality, the norm
equivalence in Section 4.6 and (3.44), we obtain the following error estimate:

max
0≤m≤l

∥êm+1
h ∥2

L2(Γ̂m
h,∗)

+
l∑

m=0

τ∥∇Γ̂m
h,∗

êm+1
h ∥2

L2(Γ̂m
h,∗)

≤ C(τ + hk+1)2.(4.117)

For h2k ! τ ! hk+1 and sufficiently small h, from (4.117) we can recover the
induction hypothesis (3.9) at time level tm+1. In view of (4.78)–(4.79), we also
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obtain the following result:

max
0≤m≤l

∥em+1
h ∥2

L2(Γ̂m
h,∗)

+
l∑

m=0

τ∥∇Γ̂m
h,∗

em+1
h ∥2

L2(Γ̂m
h,∗)

≤ C(τ + hk+1)2.(4.118)

Note that the constants C on the right-hand side of (4.117) and (4.118) depend
on the κl defined in (3.1), and the condition on the mesh size under which the error
estimates are established is h ≤ hκl (for some constant hκl which may depend on
κl). In order to conclude Theorem 2.1, it remains to show that the constant κl

defined in (3.1) is independent of τ and l (though possibly depending on T ). This
is presented in the next subsection.

4.9. Uniform boundedness of κl. For any j = 0, 1, . . . , k, we can prove that

max
0≤m≤l

∥X̂m
h,∗∥W j,∞

h (Γ0
h,f )

≤ C ′
0 if max

0≤m≤l
∥X̂m

h,∗∥W j−1,∞
h (Γ0

h,f )
≤ C0,

where C0 and C ′
0 are constants which are independent of τ , h and κl (with C ′

0

depending on C0). For illustration, however, we only prove ∥X̂m
h,∗∥W k,∞

h (Γ0
h,f )

≤ C ′
0

under the condition ∥X̂m
h,∗∥W k−1,∞

h (Γ0
h,f)

≤ C0. The case j ̸= k can be proved

similarly; see [2, Appendix].
In this subsection, we regard X̂m

h,∗ and Xm
h as the maps from the piecewise flat

curve Γ0
h,f to Γ̂m

h,∗ and Γm
h , respectively. Let vm

f = vm ◦ am ◦ X̂m
h,∗ and gm

f =

gm ◦ am ◦ X̂m
h,∗, which are functions defined on the piecewise flat curve Γ0

h,f . By
using relations (4.87)–(4.89), we have

∥X̂m+1
h,∗ − X̂m

h,∗∥W k,∞
h (Γ0

h,f )

≤ ∥Ih[(Xm+1 − id) ◦ am ◦ X̂m
h,∗]∥W k,∞

h (Γ0
h,f)

+ ∥ρh ◦ X̂m
h,∗∥W k,∞

h (Γ0
h,f)

+ ∥Ih[Ih(Tm
∗ ◦ X̂m

h,∗)Ih(Nm+1
∗ ◦ X̂m+1

h,∗ − Nm
∗ ◦ X̂m

h,∗)(ê
m+1
h ◦ X̂m

h,∗)]∥W k,∞
h (Γ0

h,f )

+ ∥Ih[(Tm
∗ ◦ X̂m

h,∗)(X
m+1
h − Xm

h )]∥W k,∞
h (Γ0

h,f )

=: Em
1 + Em

2 + Em
3 .

By using the stability of Ih on C0(Γ0
h,f) ∩ W k,∞

h (Γ0
h,f), chain rule, the inverse in-

equality and (4.88), we have

Em
1 ≤ C0∥(Xm+1 − id) ◦ am ◦ X̂m

h,∗∥W k,∞
h (Γ0

h,f )
+ ∥ρh ◦ X̂m

h,∗∥W k,∞
h (Γ0

h,f )

≤ C0∥∇Γ̂m
h,∗

[(Xm+1 − id) ◦ am] ◦ X̂m
h,∗ ∇k

Γ0
h,f

X̂m
h,∗∥L∞

h (Γ0
h,f )

+ C0

k−1∑

j=2

∥Xm+1 − id∥W j,∞(Γm) + C0h
−k∥ρh ◦ X̂m

h,∗∥L∞(Γ0
h,f )

≤ C0τ∥X̂m
h,∗∥W k,∞

h (Γ0
h,f )

+ C0τ + C0h
−k(τ2 + ∥IhT m

∗ (X̂m+1
h,∗ − X̂m

h,∗)∥2
L∞(Γ̂m

h,∗)

)

≤ C0τ∥X̂m
h,∗∥W k,∞

h (Γ0
h,f )

+ C0τ + C0h
−k∥IhT m

∗ (X̂m+1
h,∗ − X̂m

h,∗ − τIhT m
∗ vm)∥2

H1(Γ̂m
h,∗)

≤ C0τ∥X̂m
h,∗∥W k,∞

h (Γ0
h,f )

+ C0τ,
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where the last inequality follows from the velocity estimates (4.70), (4.71) and
Lemma 4.8. Furthermore, using the inverse inequality, we have

Em
2 ≤ C0h

−k− 1
2 ∥Ih[Ih(T m

∗ ◦ X̂m
h,∗)Ih(Nm+1

∗ ◦ X̂m+1
h,∗ − Nm

∗ ◦ X̂m
h,∗)(ê

m+1
h ◦ X̂m

h,∗)]∥L2
h(Γ0

h,f )

≤ C0h
−k− 1

2 CκlτCκl(τ + hk+1),

where we have used the estimate ∥Nm+1
∗ ◦ X̂m+1

h,∗ − Nm
∗ ◦ X̂m

h,∗∥L∞
h (Γ0

h,f )
≤ Cκlτ

which follows from (4.90) and (4.92), and the estimate ∥êm+1
h ◦ X̂m

h,∗∥L2
h(Γ0

h,f )
≤

Cκl(τ + hk+1) which follows from the error estimate (4.117). Under the condition
τ ≤ chk+1 we obtain

Em
2 ≤ Cκlh

1
2 τ ≤ C0τ under the condition Cκlh

1
2 ≤ 1.

With the above estimates of Em
1 and Em

2 , we have

∥X̂m+1
h,∗ − X̂m

h,∗∥W k,∞
h (Γ0

h,f)

≤ C0τ (1 + ∥X̂m
h,∗∥W k,∞

h (Γ0
h,f )

) + C0∥Ih[(Tm
∗ ◦ X̂m

h,∗)(X
m+1
h − Xm

h )]∥W k,∞
h (Γ0

h,f)
.

Using relation (4.40) we can estimate the last term in the above inequality as
follows:

∥Ih[(Tm
∗ ◦ X̂m

h,∗)(X
m+1
h − Xm

h )]∥W k,∞
h (Γ0

h,f )

≤ ∥Ih[(Tm
∗ ◦ X̂m

h,∗)(X
m+1
h − Xm

h − τIhvm
f )]∥W k,∞

h (Γ0
h,f )

+ τ∥Ih[(Tm
∗ ◦ X̂m

h,∗)v
m
f ]∥W k,∞

h (Γ0
h,f )

= ∥Ih[(Tm
∗ ◦ X̂m

h,∗)(e
m+1
h − êm

h − τIhTm
∗ vm

f + τIhgm
f )]∥W k,∞

h (Γ0
h,f)

+ τ∥Ih[(Tm
∗ ◦ X̂m

h,∗)v
m
f ]∥W k,∞

h (Γ0
h,f )

≤ ∥Ih[(Tm
∗ ◦ X̂m

h,∗)(e
m+1
h − êm

h − τIhTm
∗ vm

f )]∥W k,∞
h (Γ0

h,f )

+ C0τ (Cκlh
−k+1τ + 1 + ∥X̂m

h ∥W k,∞
h (Γ0

h,f )
),

where the last inequality follows from the following estimates:

∥Ihgm
f ∥

W k,∞
h (Γ0

h,f )
≤ h−k+1∥Ihgm

f ∥W1,∞(Γ0
h,f )

≤ Cκlh
−k+1τ (in view of (3.37)),

∥(T m
∗ ◦ X̂m

h,∗)vm
f ∥

W k,∞
h (Γ0

h,f )
≤ C0(1 + ∥X̂m

h,∗∥W k,∞
h (Γ0

h,f )
) (chain rule of differentation).

Therefore, by using the inverse inequality, under the condition τ ≤ chk+1 and
Cκlh

1
2 ≤ 1, we have

∥Ih[(Tm
∗ ◦ X̂m

h,∗)(X
m+1
h − Xm

h )]∥W k,∞
h (Γ0

h,f)

≤ C0h
−k+1/2∥Ih[(Tm

∗ ◦ X̂m
h,∗)(e

m+1
h − êm

h − τIhTm
∗ vm

f )]∥H1(Γ0
h,f )

+ C0τ (1 + ∥X̂m
h ∥W k,∞

h (Γ0
h,f )

)

≤ Cκlh
−k−1/2τ (τ + hk+1) + Cκlh

−k−1/2τ∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗)

+ Cκlh
−k−5/2τ∥∇Γ̂m

h,∗
êm
h ∥2

L2(Γ̂m
h,∗)

+ C0τ (1 + ∥X̂m
h ∥W k,∞(Γ0

h,f )
),

where Lemma 4.8 and (4.70)–(4.71) are used in the last inequality. Then, using the
error estimate in (4.117) and the stepsize condition τ≤chk+1, and ∥∇Γ̂m

h,∗
êm
h ∥L2(Γ̂m

h,∗)
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≤ Cκlh
1.75, we have

∥Ih[(Tm
∗ ◦ X̂m

h,∗)(X
m+1
h − Xm

h )]∥W k,∞
h (Γ0

h,f )

≤ Cκlh
−k−1/2τ∥∇Γ̂m

h,∗
êm
h ∥L2(Γ̂m

h,∗) + Cκlh
−k−5/2τ∥∇Γ̂m

h,∗
êm
h ∥2

L2(Γ̂m
h,∗)

(4.119)

+ C0τ (1 + ∥X̂m
h ∥W k,∞(Γ0

h,f )
),

where we have used the mesh size condition Cκlh
1
2 ≤ 1 again. In view of the

estimates above, we have proved the following result:

∥X̂m+1
h,∗ − X̂m

h,∗∥W k,∞
h (Γ0

h,f)

≤ Cκlh
−k−1/2τ∥∇Γ̂m

h,∗
êm
h ∥L2(Γ̂m

h,∗) + Cκlh
−k−5/2τ∥∇Γ̂m

h,∗
êm
h ∥2

L2(Γ̂m
h,∗)

(4.120)

+ C0τ (1 + ∥X̂m
h ∥W k,∞(Γ0

h,f )
).

Therefore, by using the triangle inequality,

∥X̂m+1
h,∗ ∥W k,∞

h (Γ0
h,f)

− ∥X̂0
h,∗∥W k,∞

h (Γ0
h,f )

≤
m∑

j=0

∥X̂j+1
h,∗ − X̂j

h,∗∥W k,∞
h (Γ0

h,f )

≤ Cκlh
−k−1/2

m∑

j=0

τ∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗) + Cκlh
−k−5/2

m∑

j=0

τ∥∇Γ̂m
h,∗

êm
h ∥2

L2(Γ̂m
h,∗)

+ C0 +
m∑

j=0

C0τ∥X̂j
h,∗∥W k,∞

h (Γ0
h,f )

≤ Cκlh
−k−1/2(τ + hk+1) + Cκlh

−k−5/2(τ + hk+1)2 (here (4.117) is used)

+ C0 +
m∑

j=0

C0τ∥X̂j
h,∗∥W k,∞

h (Γ0
h,f )

≤ C0 +
m∑

j=0

C0τ∥X̂j
h,∗∥W k,∞

h (Γ0
h,f )

(under condition Cκlh
1
2 ≤ 1).

(4.121)

By applying the discrete Grönwall’s inequality, we obtain the following result under
the condition Cκlh

1
2 ≤ 1:

max
0≤m≤l

∥X̂m+1
h,∗ ∥W k,∞

h (Γ0
h,f )

≤ C0.(4.122)

The proof of ∥(X̂m+1
h,∗ )−1∥W 1,∞(Γ̂m+1

h,∗ ) ≤ C0 is simpler, i.e., the same as [2, Appen-

dix], and therefore omitted. This proves that

κl+1 ≤ C0,

with a constant C0 which is independent of τ and l. This proves the boundedness
of the quantity κl defined in (3.1). Moreover, the condition Cκlh

1
2 ≤ 1 is essentially

requiring h ≤ h0 for some constant h0 independent of l. This completes the proof
of Theorem 2.1. "
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5. Characterization of particle trajectories (Proof of Theorem 2.2)

Let {xj,#(t) : t ∈ [0, T ]} be the trajectory of the particle under the flow de-
termined by (1.10), with initial position x0

j ∈ Γ0
h. Let Xm

h,# be the finite element

function with nodal vector (x1,#(tm), . . . , xJ,#(tm))⊤. Thus Xm
h,# maps the initial

curve Γ0
h to some finite element curve Γm

h,# which interpolates the smooth curve
Γm at the nodes xj,#(tm), j = 1, . . . , J .

Let Ih be the interpolation operator onto the initial approximate curve Γ0
h. Then

the following identity holds at the nodes of Γ0
h:

Xm+1
h,# = Xm

h,# + τIh[vm ◦ Xm
h,#] + O(τ2),

which is simply the Taylor expansion of the flow in (1.10) at the nodes. Therefore,
the error em

h,# = Xm
h,# − Xm

h satisfies the following relation:

em+1
h,# = em

h,# − (Xm+1
h − Xm

h − τIh[vm ◦ X̂m
h,∗]) + τIh[vm ◦ Xm

h,# − vm ◦ X̂m
h,∗] + O(τ2)

= em
h,# − (em+1

h − êm
h − τIh[(T m

∗ vm) ◦ X̂m
h,∗] + τIhgm) (here (4.40) is used)

+ τIh[vm ◦ Xm
h,# − vm ◦ X̂m

h,∗] + O(τ2).

By using the smoothness of vm on Γm, we have |vm◦Xm
h,#−vm◦X̂m

h,∗| ≤ C(|em
h,#|+

|êm
h |) and therefore the following inequality holds at the nodes of Γ0

h:

|em+1
h,# | ≤ (1 + Cτ )|em

h,#| + |em+1
h − êm

h − τIh[(Tm
∗ vm) ◦ X̂m

h,∗]| + Cτ2 + Cτ |êm
h |.

By taking the discrete L2 norm on Γ0
h and using the equivalence between discrete

and continuous L2 norms on Γ0
h, we have

∥em+1
h,# ∥L2

h(Γ0
h) ≤ (1+Cτ )∥em

h,#∥L2
h(Γ0

h)+C∥em+1
h − êm

h − τIh[(Tm
∗ vm) ◦ X̂m

h,∗]∥L2(Γ0
h)

+ Cτ2 + Cτ∥êm
h ∥L2

h(Γ0
h)

≤ (1 + Cτ )∥em
h,#∥L2

h(Γ0
h) + Ch−1τ (τ + hk+1)

+ Ch−1τ∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗) + Ch−3τ∥∇Γ̂m
h,∗

êm
h ∥2

L2(Γ̂m
h,∗)

,

where ∥êm
h ∥L2

h(Γ0
h) is estimated by using (4.117). By iterating the inequality above

with respect to m (equivalently, using the discrete Grönwall’s inequality), we obtain

∥em+1
h,# ∥L2

h(Γ0
h) ≤ Ch−1(τ + hk+1) + Ch−1

l∑

m=0

τ∥∇Γ̂m
h,∗

êm
h ∥L2(Γ̂m

h,∗)

+ Ch−3
l∑

m=0

τ∥∇Γ̂m
h,∗

êm
h ∥2

L2(Γ̂m
h,∗)

≤ Chk + Chk + Ch2k−1 ≤ Chk,

where we have used τ ≤ chk+1 and the error estimate in (4.117). This proves
that the particle trajectory produced by the stabilized BGN method converges
to the particle trajectory determined by (1.10). The latter minimizes the rate of
deformation while maintaining the shape of the curve under curve shortening flow at
every time t ∈ [0, T ]. This fully characterizes the particle trajectory produced by the
stabilized BGN method and gives the first rigorous explanation to why parametric
FEMs of the BGN type could maintain mesh quality of the surfaces/curves evolving
under curvature flows.
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Table 1. Rate of convergence of the error with τ ∼ hk+1

N
max

1≤m≤Nt

∥êm
h ∥L2(Γ̂m

h,∗)

k = 1 k = 2 k = 3
24 1.11e-1 4.55e-2 4.46e-2
25 3.30e-2 7.11e-3 3.60e-3
26 8.90e-3 9.18e-4 2.25e-4

Convergence rate 1.89 2.95 4.00

6. Numerical experiments

We test the convergence of the proposed stabilized BGN method in (1.5) for
approximating curve shortening flow with the following benchmark example (see
[6, Section 4]) of dumbbell shape curve as the initial data

(
x(ξ)
y(ξ)

)
=

(
cos(2πξ)

0.9(cos2(2πξ) + 0.1) sin(2πξ)

)
, ξ ∈ [0, 1].(6.1)

We solve the problem numerically by the stabilized BGN method on the time
interval [0, T ] with T = 0.15. Since there is no closed expression for the solution
with initial data (6.1), we instead compute the reference solution with very fine
time and space grids, i.e. N = 211, Nt = 222 and k = 1. Although our proof
of Theorem 2.1 only guarantees the convergence of numerical solutions for finite
elements of degree k ≥ 2, we perform numerical experiments for finite elements of
degree k = 1, 2, 3.

The time stepsize condition τ = O(hk+1) is imposed by choosing the number
of mesh points N and the number of time levels Nt in a consistent way. Namely,
for N = 24, 25, 26 we choose Nt = 25, 27, 29 for k = 1, Nt = 25, 28, 211 for k = 2,
and Nt = 25, 29, 213 for k = 3, respectively. The discrete L∞(0, T ; L2) errors of the
numerical solutions, i.e.,

max
0≤m≤Nt

∥êm
h ∥L2(Γ̂m

h,∗)

are presented in Table 1, where the convergence rates for finite elements of degree
k = 2, 3 are consistent with the theoretical result proved in Theorem 2.1. The
numerical results show that the stabilized BGN method has optimal-order conver-
gence also for piecewise linear finite elements. The proof of this result is different
from the current paper and therefore needs to be studied in future work.

It is also desirable to test the sharpness and necessity of the CFL condition
τ ≤ chk+1. To this end, we compute the errors and rate of convergence in the
regime of τ ∼ h (in the experiment we simply take N = Nt). The results are shown
in Table 2, which indicates a linear rate of convergence for all cases. This means
the convergence might hold for a larger regime of weaker CFL condition.

Besides, we examine the convergence of the stabilization term. Since the stabi-
lization term is in the weak form, we denote by Stab the Riesz representation of
the stabilization term, defined as follows:

∫

Γm
h

Stab · φh =

∫

Γm
h

∇Γm
h

id · ∇Γm
h

Ih[φh − (φh · n̄m
h )n̄m

h ] ∀φh ∈ Sh(Γm
h ).
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Table 2. Rate of convergence of the error with τ ∼ h

N
max

1≤m≤Nt

∥êm
h ∥L2(Γ̂m

h,∗)

k = 1 k = 2 k = 3
27 1.47e-2 1.34e-2 1.34e-2
28 7.34e-3 7.01e-3 7.01e-3
29 3.68e-3 3.59e-3 3.59e-5

Convergence rate 1.00 0.96 0.96

Table 3. Rate of convergence of the stabilization term

N
max

1≤m≤Nt

∥Stab∥L∞(Γm
h )

k = 1 k = 2 k = 3
27 7.57e-2 4.18e-2 1.62e-3
28 1.86e-2 1.18e-2 1.96e-4
29 4.67e-3 3.06e-3 2.41e-5

Convergence rate 1.99 1.95 3.02

The L∞
t L∞

x norm of Stab are presented in Table 3 with fixed Nt = 25, 25, 26 for
k = 1, 2, 3, respectively. The numerical results in Table 3 show that the stabilization
term is O(h2) for k = 1 and O(hk) for k = 2, 3.

(a) k = 1, N = 26 (b) k = 2, N = 25

Figure 1. Initial nodal distribution

Prepublication copy provided to Buyang Li for publication MCOM 4019

Please review carefully and submit corrections to emd@ams.org within 10 business days

Not for print or electronic distribution; see http://www.ams.org/journal-terms-of-use



CONVERGENCE OF A STABILIZED BGN METHOD 67

(a) Dziuk’s method
(k = 1)

(b) BGN method
(k = 1)

(c) Stabilized BGN method
(k = 1)

(d) Dziuk’s method
(k = 2)

(e) BGN method
(k = 2)

(f) Stabilized BGN method
(k = 2)

Figure 2. Mesh distributions of different methods at T = 0.15,
with N = 26 for finite elements of degree k = 1, and N = 25 for
finite elements of degree k = 2

In addition to testing the convergence rates of the proposed method, we test
the performance of the stabilized BGN method in improving the distribution of
mesh points of curve shortening flow with initial condition (6.1). For the initial
distribution of mesh points shown in Figure 1, we test the performance of Dziuk’s
method, the BGN method and the stabilized BGN method proposed in this paper.
The distribution of mesh points at T = 0.15, with number of time levels Nt = 27,
is presented in Figures 2 for finite elements of degree k = 1, 2, where N denotes the
total number of finite elements. The numerical results in Figure 2 show that, while
Dziuk’s method leads to clustering of mesh points, the stabilized BGN method can
keep the mesh quality (distribution of mesh points) good similarly as the BGN
method. To be more quantitative on the mesh quality, we present the mesh ratio
hmax/hmin in Figure 3, which shows that the stabilized BGN method has similar
mesh quality as the BGN method.

7. Conclusions

We have proposed a stabilized BGN method with possibly arbitrary high-order
finite elements based on mass lumping techniques using Gauss–Lobatto points, and
proved the optimal-order convergence of the method in the L2 norm under the
stepsize condition τ ≤ chk+1. The stabilized BGN method differs from the classical
BGN method from a stabilization term, with the same effect as the BGN method
in improving the mesh quality, with an additional stabilization term helping to es-
tablish stability estimates for the artificial tangential velocity. We have found the
underlying geometric PDEs to which the stabilized BGN method converges, i.e.,
the system of equations in (1.10), which is used to establish stability estimates for
the artificial tangential velocity and to characterize the limit of particle trajecto-
ries produced by the stabilized BGN method. The convergence of the method is
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(a) k = 1, N = 26 (b) k = 2, N = 25

Figure 3. Mesh ratio hmax/hmin

supported by the numerical results, which also show that the proposed stabilized
BGN method has the same effect as the original BGN method in maintaining good
mesh quality of the evolving curve.

Our analysis requires the projected normal vector n̄m
h to be defined as a con-

tinuous finite element function, which is essential for applying integration by parts
in many places throughout this article. Additionally, the quadrature points must
coincide with the nodes used to define n̄m

h to ensure that the terms L1(IhT̄m
h φh)

and L2(IhT̄m
h φh) vanish on the right-hand side of (4.41); see the text below (4.41).

These requirements necessitate that the quadrature points include the endpoints
of each finite element, thereby excluding Gauss quadrature. Instead, the Gauss–
Lobatto quadrature satisfies all these requirements. The underlying framework and
techniques established in this paper may be applied/extended to other geometric
flows and parametric finite element approximations which contain artificial tangen-
tial motions of the BGN type.
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[34] B. Kovács, B. Li, and C. Lubich, A convergent evolving finite element algorithm for Willmore
flow of closed surfaces, Numer. Math. 149 (2021), no. 3, 595–643, DOI 10.1007/s00211-021-
01238-z. MR4344594
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