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MAXIMUM-NORM STABILITY OF THE FINITE ELEMENT

METHOD FOR THE NEUMANN PROBLEM IN NONCONVEX

POLYGONS WITH LOCALLY REFINED MESH

BUYANG LI

Abstract. The Galerkin finite element solution uh of the Poisson equation
−Δu = f under the Neumann boundary condition in a possibly nonconvex
polygon Ω, with a graded mesh locally refined at the corners of the domain,
is shown to satisfy the following maximum-norm stability:

‖uh‖L∞(Ω) ≤ C�h‖u‖L∞(Ω),

where �h = ln(2 + 1/h) for piecewise linear elements and �h = 1 for higher-
order elements. As a result of the maximum-norm stability, the following best
approximation result holds:

‖u− uh‖L∞(Ω) ≤ C�h‖u− Ihu‖L∞(Ω),

where Ih denotes the Lagrange interpolation operator onto the finite element
space. For a locally quasi-uniform triangulation sufficiently refined at the
corners, the above best approximation property implies the following optimal-
order error bound in the maximum norm:

‖u− uh‖L∞(Ω) ≤
{
C�hh

k+2− 2
p ‖f‖Wk,p(Ω) if r ≥ k + 1,

C�hh
k+1‖f‖Hk(Ω) if r = k,

where r ≥ 1 is the degree of finite elements, k is any nonnegative integer no
larger than r, and p ∈ [2,∞) can be arbitrarily large.

1. Introduction

This article concerns the maximum-norm stability of Galerkin finite element
approximations to the Neumann boundary value problem{

−Δu = f in Ω,

∂nu = 0 on ∂Ω,
(1.1)

under the condition
∫
Ω
f dx = 0 (for the existence of solution) with the normal-

ization condition
∫
Ω
u dx = 0 (for the uniqueness of the solution), where Ω is a

two-dimensional polygon. The Galerkin finite element solution of (1.1) is defined
by the weak formulation:

(∇uh,∇vh) = (f, vh) ∀ vh ∈ Sh,(1.2)
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with the normalization condition
∫
Ω
uh dx = 0, where Sh is the Lagrange finite

element subspace of H1(Ω) consisting of all piecewise polynomials of degree r ≥ 1
subject to a locally quasi-uniform triangulation.

It is well known that the finite element approximation to (1.1) is stable in the
H1 norm on a general polygon with general triangulation, i.e.,

‖uh‖H1(Ω) ≤ C‖u‖H1(Ω),(1.3)

where the constant C is independent of the solution u and the mesh size h. The
result can be interpreted as the H1 stability of the Ritz projection. Since the Ritz
projection of u − Ihu is uh − Ihu, where Ih denotes the Lagrange interpolation
operator onto the finite element space, replacing u by u − Ihu in (1.3) yields the
following best approximation property in the H1 norm:

‖u− uh‖H1(Ω) ≤ C‖u− Ihu‖H1(Ω).(1.4)

The objective of this article is to establish the following analogous stability result
in the L∞ norm on a general polygon (possibly nonconvex) with locally refined
triangulation at the corners:

‖uh‖L∞(Ω) ≤ C�h‖u‖L∞(Ω),(1.5)

where

�h =

{
ln(2 + 1/h) if r = 1,

1 if r ≥ 2.
(1.6)

Such maximum-norm stability results have important applications in resolvent es-
timates of discretized elliptic operators [6, 28], discrete maximal Lp regularity of
parabolic equations [13, 14, 23, 24], and pointwise error estimates of finite element
solutions for elliptic, parabolic and optimal control problems [19, 21, 22, 33]. In
particular, the maximum-norm stability result in (1.5) would completely reduce
pointwise error estimation to interpolation errors, i.e.,

‖u− uh‖L∞(Ω) ≤ C�h‖u− Ihu‖L∞(Ω).(1.7)

The maximum-norm stability result in (1.5) has been established for convex poly-
gons and polyhedra with globally quasi-uniform mesh in [20], and for smooth do-
mains in [18,31]. It is known that the logarithmic factor ln(2+1/h) in the piecewise
linear case r = 1 cannot be removed in general; see [11]. For the Dirichlet boundary
condition, the maximum-norm stability has been established in [29] for nonconvex
polygons by utilizing a weak maximum principle of finite element methods under
globally quasi-uniform mesh. However, the argument using weak maximum prin-
ciple of finite element methods cannot be extended to the Neumann problem in
nonconvex polygons, or Dirichlet/Neumann problems in nonconvex polyhedra, or
locally refined mesh. Whether the maximum-norm stability (1.5) can hold, under
either globally quasi-uniform mesh or locally refined mesh, is still an open ques-
tion for the Neumann problem in nonconvex polygons/polyhedra and the Dirichlet
problem in nonconvex polyhedra (except for the special case of piecewise linear
finite elements with nonobtuse quasi-uniform tetrahedral mesh [12]).

In contrast to the maximum-norm stability result in (1.5), the almost optimal-
order error estimate

‖u− uh‖L∞(Ω) ≤ Chr+1−ε (ε > 0 is any fixed number)(1.8)
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was shown in [30] for sufficiently smooth f and general polygons, with triangulations
locally refined at the corners, i.e.,

�(x) ∼ min
j

|x− zj |1−γjh,(1.9)

where �(x) denotes the mesh size at point x, and zj denotes the jth corner of
the polygon Ω. It is assumed that the local refinement parameter γj ∈ (0, 1]
corresponding to the corner zj satisfies the condition γj < βj/r, where βj = π/θj
and θj is the interior angle at the corner zj . The convergence order for piecewise
linear finite elements was improved in [2] for the Dirichlet problem with explicit
dependence on a Hölder norm of f , i.e.,

‖u− uh‖L∞(Ω) ≤ Ch2 ln(2 + 1/h)‖f‖Cσ(Ω)(1.10)

under the condition γj < βj/2 and σ > 0. More recently, an optimal-order error
estimate

‖u− uh‖L∞(Ω) ≤ Ch2 ln(2 + 1/h)‖u‖W 2,∞
σ

(1.11)

was shown in [1] under the condition γj < βj/2, for the Neumann problem with
piecewise linear finite elements, with explicit dependence on some weighted W 2,∞

norm of the solution u.
The W 1,∞ stability of finite element approximations was shown for convex poly-

gons and polyhedra under mildly graded meshes in [10], i.e.,

‖uh‖W 1,∞(Ω) ≤ C‖u‖W 1,∞(Ω).(1.12)

The W 1,p stability

‖uh‖W 1,p(Ω) ≤ C‖u‖W 1,p(Ω)(1.13)

was shown in [25] for convex polygons with mesh satisfying (1.9). Such W 1,∞

stability estimates were also established for the Stokes equation in convex polyhedra
[17]. The extension of these results to nonconvex polygons or polyhedra still remains
open, similarly as the L∞ stability result in (1.5).

In this article, we prove the maximum-norm stability (1.5) for general polygons,
with finite elements of arbitrary degree and locally refined mesh satisfying (1.9);
see Theorem 2.1. The local refinement parameter γj is only required to satisfy
γj ∈ (0, βj) ∩ (0, 1], which is weaker than the condition γj < βj/2 required to ob-
tain the maximum-norm error estimates in the literature. Some new techniques
are developed to prove such maximum-norm stability results in nonconvex poly-
gons and with graded mesh. In particular, in the literature of maximum-norm
stability and error estimates for finite element methods, people often use a “dyadic
decomposition” corresponding to a point x0 where uh attains its maximum, i.e.,

Ω=
J⋃

j=0

Ωj with Ωj={x ∈ Ω : ρj+1≤|x− x0|<ρj} and ρj=2−jdiameter(Ω),

and reduce the problem to some technical estimates on the subdomains Ωj , in order
to derive estimates of |uh(x0)| or |uh(x0) − u(x0)|. In this article, we introduce
a “double dyadic decomposition” corresponding to both x0 and a corner z0, as
described in Section 4.1. In this way, different estimates can be obtained on the
subdomains closer to x0 and the subdomains closer to z0, respectively. Therefore,
such a double dyadic decomposition is convenient for analysis of the maximum-norm
stability of finite element methods with graded mesh locally refined at a corner.
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As a consequence of (1.5) and a local regularity result to be established in this
article, we also obtain the following maximum-norm error estimates:

‖u− uh‖L∞(Ω) ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C�hh

k+2− 2
p ‖f‖Wk,p(Ω)

if r ≥ k + 1 and γj ∈
(
0,

min(1,βj)
k+2−2/p

]
at corners,

C�hh
k+1‖f‖Hk(Ω)

if r = k and γj ∈
(
0,

min(1,βj)
k+1

]
at corners,

(1.14)

where k is any nonnegative integer and p ∈ [2,∞) can be arbitrarily large; see
Corollary 2.1. In particular, if f is sufficiently smooth compared with the degree
of finite elements (in the case r = k), then the order of convergence is optimal with
respect to the degree of finite elements (up to a factor �h); if f is not sufficiently
smooth compared with the degree of finite elements (in the case r ≥ k + 1), then
the order of convergence is optimal with respect to the regularity of f .

The rest of this article is organized as follows. In Section 2 we present the
notation, assumptions and main theorems. In Section 3 we present local H1+s,
W 2,p and H2+α estimates of Green’s function in nonconvex polygons. These results
are used in Section 4 to prove the maximum-norm stability of the Ritz projection.
The proof of is presented in Section 5. Some technical estimates are presented
in Appendices A–C. Throughout this article, we denote by C a generic positive
constant, which may be different at different occurrences but will be independent
of the mesh size h.

2. Main results

2.1. Triangulation locally refined at the corners. Let Ω be a nonconvex poly-
gon, with vertices zj , j = 0, . . . , m− 1, oriented counter clockwise, and denote by
Γj the edge between the vertices zj and zj+1, with zm = z0. Let θj be the interior
angle of the polygon Ω at the vertex zj , and define βj := π/θj . We assume that
the domain Ω is triangulated with the following properties.

(1) Local quasi-uniformity: The ratio between the radius of circumcircle and
the radius of inscribed circle of each triangle is bounded, and the ratios
between the diameters of adjacent triangles are bounded.

(2) Local refinement at the corners: Let h denote the mesh size of the triangula-
tion (maximal diameter of the triangles). Let h∗,j ∼ h1/γj for some constant
γj ∈ (0, βj) ∩ (0, 1] represent the diameter (up to a constant multiple) of
triangles near the corner zj , and let �(x) denote the maximal diameter of
triangles which contain x. We assume that �(x) is equivalent to h away
from (when x is outside a neighborhood of) the corners and satisfies the
following conditions near the corners zj , j = 0, . . . , m− 1:

�(x) ∼ |x− zj |1−γjh, if |x− zj | > 2h∗,j ,(2.1a)

�(x) ∼ h∗,j , if |x− zj | ≤ 2h∗,j .(2.1b)

Hence, the mesh is locally refined at the corners zj , j = 0, . . . , m− 1, and
is quasi-uniform away from the corners. In particular, the mesh size near

the corner zj is h
1−γj

∗,j h ∼ h∗,j , with h∗,j ∼ h1/γj .
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If we denote by N the number of degrees of freedom in the triangulation above,
then the following inequality can be shown:

N ≤ Ch−2.(2.2)

Namely, the number of degrees of freedom in the above locally refined triangulation
is equivalent to the number of degrees of freedom in a quasi-uniform triangulation
with mesh size h.

Let Th denote the set of triangles in the triangulation of the domain Ω, and let
Sh be the finite element space of degree r ≥ 1 subject to the triangulation, i.e.,

Sh = {vh ∈ H1(Ω) : vh|τ is a polynomial of degree r for all τ ∈ Th}.

2.2. Main results.

Theorem 2.1. Let Ω be a polygon which is triangulated as described in Section
2.1. Then the Ritz projection Rh : H1(Ω) → Sh defined by

(∇(u−Rhu),∇vh) = 0, ∀ vh ∈ Sh,(2.3)

with the normalization condition
∫
Ω
Rhu dx =

∫
Ω
u dx, satisfies the following sta-

bility estimate:

‖Rhu‖L∞(Ω) ≤ C�h‖u‖L∞(Ω) ∀u ∈ C(Ω) ∩H1(Ω),(2.4)

where �h is defined in (1.6).

Remark 2.1. Since C(Ω) ∩H1(Ω) is dense in C(Ω), the stability inequality (2.4)
implies that the Ritz projection has an extension Rh : C(Ω) → Sh. The maximum-
norm stability of the Ritz projection in Theorem 2.1 immediately implies (1.5) for
the solutions of (1.1)–(1.2).

The L∞ stability of the Ritz projection in Theorem 2.1 immediately implies that
the solutions of (1.1)–(1.2) have the following property:

‖Ihu− uh‖L∞(Ω) = ‖Rh(Ihu− u)‖L∞(Ω) ≤ C�h‖Ihu− u‖L∞(Ω),(2.5)

and therefore

‖u− uh‖L∞(Ω) ≤ C�h‖u− Ihu‖L∞(Ω).(2.6)

The inequality above is called the best approximation property in maximum norm.
By using this best approximation property (2.6) and the regularity result in Lemma
5.1, we can prove the following maximum-norm error estimate, which is optimal
with respect to regularity of f .

Corollary 2.1. Let f ∈ W k,p(Ω), where k is a nonnegative integer and p ≥ 2 is a

real number such that (k, p) �= (0, 2) and (1− 1
p )

2θj
π is not an integer for j = 0, 1,

. . . , m− 1. Then the solutions of (1.1)–(1.2) satisfy the error bound in (1.14).

The rest part of this paper is devoted to the proof of Theorem 2.1 and Corollary
2.1. For simplicity, in the proof of Theorem 2.1 we assume that there is only one
reentrant corner at z0 with θ0 ∈ (π, 2π), with θj ∈ (0, π) for j = 1, . . . , m − 1,
and assume that the mesh is locally refined only at the reentrant corner z0 with
a parameter γ = γ0. The proof would be similar if there are multiple reentrant
corners or the mesh is refined at multiple corners.
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3. Local estimates of Green’s function in nonconvex polygons

In this section we present local W 2,p and H2+α estimates for the solution of the
Neumann problem

(3.1)

{
−Δu = f in Ω,

∂nu = g on ∂Ω.

Note that the compatibility condition

(3.2)

∫
Ω

f dx =

∫
∂Ω

g d s

is automatically satisfied once u is a solution of (3.1). Conversely, this compatibility
condition also guarantees the existence and uniqueness of solutions to (3.1) under
the normalization condition

∫
Ω
u dx = 0 (for uniqueness).

Throughout this paper, we denote by s a number satisfying the following condi-
tion (unless otherwise specified):

s ∈
(1
2
, β

)
with β =

π

θ0
∈
(1
2
, 1

)
.(3.3)

We denote by Hs−1(Ω) the dual space of H1−s(Ω). Then Lps(Ω) ↪→ Hs−1(Ω) for
ps = 2/(2− s).

3.1. H1+s estimates in a polygon.

Lemma 3.1 (Existence of lifted functions in Hs+1(Ω)). Let φ ∈ H
s+ 1

2

piecewise(∂Ω)

and g ∈ H
s− 1

2

piecewise(∂Ω). There exists a lifted function w ∈ Hs+1(Ω) satisfying

w = φ ∈ Hs+ 1
2 (∂Ω) and ∂nw = g ∈ H

s− 1
2

piecewise(∂Ω) on ∂Ω,

if and only if the following condition holds:

φ is continuous at the corners zj, j = 0, 1, . . . , m− 1.(3.4)

In this case, the lifted function w satisfies the following estimate:

(3.5) ‖w‖Hs+1(Ω) ≤ C
(
‖φ‖

H
s+1

2
piecewise(∂Ω)

+ ‖g‖
H

s− 1
2

piecewise(∂Ω)

)
.

Proof. Condition (3.4) with s ∈ ( 12 , 1) is exactly the condition (5.3) in [3, Theorem
5.2] in the case n = 0 andm = 2. As a result, the existence of the lifted function and
its boundedness in Hs+1(Ω) follow from [3, Theorem 5.2 and Corollary 5.3]. �

The following regularity result can be proved by using Lemma 3.1.

Lemma 3.2. Let s be any number satisfying (3.3). For any given f ∈ Hs−1(Ω)

and g ∈ H
s− 1

2

piecewise(∂Ω), the solution of (3.1) is in Hs+1(Ω), and

(3.6) ‖u‖Hs+1(Ω) ≤ C(‖f‖Hs−1(Ω) + ‖g‖
H

s− 1
2

piecewise(∂Ω)
).

Proof. Let φ = 0. Then condition (3.4) is fulfilled, and Lemma 3.1 implies that
there exists a function w ∈ Hs+1(Ω) satisfying

∂nw = g on ∂Ω and ‖w‖Hs+1(Ω) ≤ C‖g‖
H

s− 1
2

piecewise(∂Ω)
.(3.7)
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If u is the solution of (3.1) then u− w is the solution of

(3.8)

{
−Δ(u− w) = f +Δw in Ω,

∂n(u− w) = 0 on ∂Ω,

with the homogeneous Neumann boundary condition. Since w ∈ Hs+1(Ω), it
follows that f + Δw ∈ Hs−1(Ω). In [8, (23.3)] it is shown that, when 0 < s < β
as shown in (3.3), the solution to the Neumann problem (3.8) has the following
regularity result:

‖u− w‖Hs+1(Ω) ≤ C‖f +Δw‖Hs−1(Ω)

≤ C‖f‖Hs−1(Ω) + C‖w‖Hs+1(Ω)

≤ C‖f‖Hs−1(Ω) + C‖g‖
H

s− 1
2

piecewise(∂Ω)
.(3.9)

The two estimates in (3.7) and (3.9) imply the desired result in Lemma 3.2. �

For a subdomain D ⊂ Ω we define the fractional-order Sobolev space on D by

‖v‖Hα+k(D) = inf
ṽ
‖ṽ‖Hα+k(Ω) when α ∈ (0, 1) and k is a nonnegative integer,

(3.10)

where the infimum extends over all possible extensions ṽ ∈ Hα+k(Ω) such that
ṽ = v on D. The definition in (3.10) is equivalent to the usual definition of Sobolev
spaces when D is a fixed Lipschitz domain (see [32, p. 181, Theorem 5]), but is
more convenient for analysis when the subdomain D is nonsmooth and not fixed.
By using the regularity result in Lemma 3.2, we prove the following local Hs+1

estimate.

Lemma 3.3. Let D = Bd(z)∩Ω and D′ = B2d(z)∩Ω be subdomains of Ω, where
z ∈ Ω and 0 < d < diameter(Ω), and let ω be a smooth cut-off function satisfying

ω(x) ≡ 1, x ∈ Bd(z),(3.11a)

ω(x) ≡ 0, x ∈ R
2\B3d/2(z),(3.11b)

|∇kω| ≤ Ckd
−k, k = 1, 2, . . . .(3.11c)

Then for any given f ∈ Lps(Ω) and g = 0, with
∫
Ω
f dx = 0 and ps := 2/(2 − s),

the solution of (3.1) satisfies

(3.12) ‖u− uD‖Hs+1(D) ≤ C‖f‖Lps (D′) + Cd−s(‖u‖L2,∞(Ω) + ‖∇u‖L2,∞(Ω)),

where uD is some constant depending on both u and the subdomain D, satisfying
|uD| ≤ Cd−2‖u‖L1(Ω), and ‖ · ‖Lp,∞(Ω) denotes the weak Lp norm defined by

‖w‖Lp,∞(Ω) :=
√
sup
λ>0

λ|{x ∈ Ω : |w(x)|p ≥ λ}|,(3.13)

where |{x ∈ Ω : |w(x)|p ≥ λ}| denotes the measure of the set {x ∈ Ω : |w(x)|p ≥ λ}.

Proof. Since ps = 2/(2− s), the following two Sobolev embedding results hold and
will be used frequently:

Lps(Ω) ↪→ Hs−1(Ω) and W 1,ps(Ω) ↪→ Hs(Ω).(3.14)
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Let Lp,q(Ω) be the Lorentz space (see [15, §1.4]), and let W 1,p,q(Ω) be the space
of functions w such that

‖w‖W 1,p,q(Ω) :=
(
‖u‖pLp,q(Ω) + ‖∇u‖pLp,q(Ω)

) 1
p < ∞.

In the case q = ∞, the Lp,q(Ω) norm is equivalent to the definition in (3.13).
Let E : L1(Ω) → L1(R2) be Stein’s extension operator as described in [32, p.

181, Theorem 5], which is bounded from W k,p(Ω) to W k,p(R2) for 1 ≤ p ≤ ∞
and k ≥ 0. According to [26, Example 7], the real interpolation space between
W 1,p1(Ω) and W 1,p2(Ω) is

(W 1,p1(Ω),W 1,p1(Ω))θ,q = W 1,p,q(Ω) with
1

p
=

1− θ

p1
+

θ

p2
and 1 ≤ q ≤ ∞.

By choosing q = ∞ and using the real interpolation result, we obtain that Stein’s
extension operator is bounded from W 1,p,∞(Ω) to W 1,p,∞(R2) for 1 < p < ∞. We
denote ū = Eu so that ū = u in Ω and

‖ū‖L2,∞(R2) + ‖∇ū‖L2,∞(R2) ≤ C(‖u‖L2,∞(Ω) + ‖∇u‖L2,∞(Ω)).(3.15)

Since f ∈ Lps(Ω) ↪→ Hs−1(Ω), with
∫
Ω
f dx = 0 and g = 0, it follows that (3.1) has

a unique solution in H1(Ω) and therefore the right-hand side of (3.15) is bounded
(L2,∞ norm is weaker than L2 norm).

Let ūd be the average of ū on B2d(z). Then ũ := ω(ū− ūd) is the solution of{
−Δũ = f̃ in Ω,

∂nũ = g̃ · n on ∂Ω,
(3.16)

where

f̃ = fω − 2∇ū · ∇ω − (ū− ūd)Δω,(3.17)

g̃ = (ū− ūd)∇ω and g̃ · n = (ū− ūd)∇ω · n.(3.18)

Since f ∈ Lps(Ω) ↪→ Hs−1(Ω) and ∇ū ∈ L2(Ω) ↪→ Hs−1(Ω), it follows that

f̃ ∈ Hs−1(Ω). Since ū ∈ H1(Ω) ↪→ W 1,ps(Ω) ↪→ Hs(Ω), it follows that

g̃ ∈ W 1,ps(Ω) ↪→ Hs(Ω) and g̃ · n = (ū− ūd)∇ω · n ∈ H
s− 1

2

piecewise(∂Ω).

Then Lemma 3.2 implies that

‖ũ‖Hs+1(Ω) ≤ C(‖f̃‖Hs−1(Ω) + ‖g̃ · n‖
H

s− 1
2

piecewise(∂Ω)
)

≤ C(‖f̃‖Hs−1(Ω) + ‖g̃‖Hs(Ω))

≤ C(‖f̃‖Hs−1(Ω) + ‖g̃‖W 1,ps (Ω))

≤ C‖ωf‖Lps (Ω) + C‖∇ū · ∇ω‖Lps (Ω)

+ C‖(ū− ūd)Δω‖Lps (Ω) + C‖(ū− ūd)∇ω‖W 1,ps (Ω).(3.19)

By using (3.11c) to estimate ∇ω and Δω on the right-hand side of (3.19), we have

‖ũ‖Hs+1(Ω) ≤ C‖ωf‖Lps (Ω) + Cd−2‖ū− ūd‖Lps (B2d(z)) + Cd−1‖∇ū‖Lps (B2d(z))

≤ C‖f‖Lps (D′) + Cd−1‖∇ū‖Lps (B2d(z)) (by Poincaré’s inequality)

≤ C‖f‖Lps (D′) + Cd−2+ 2
ps ‖∇ū‖L2,∞(R2) ([15, Exercise 1.1.15])

≤ C‖f‖Lps (D′) + Cd−2+ 2
ps (‖u‖L2,∞(Ω) + ‖∇u‖L2,∞(Ω)).(3.20)
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Since ps =
2

2−s implies −2 + 2
ps

= −s, and ũ = ω(ū− ūd) is an extension of u− ūd

from D to Ω, the last inequality implies (3.12) in view of the definition in (3.10),
with uD = ūd, i.e., the average of ū = Eu in B2d(z). Therefore,

|uD| = 1

|B2d(z)|

∣∣∣∣ ∫
B2d(z)

Eu dx

∣∣∣∣ ≤ Cd−2

∫
B2d(z)

|Eu| dx ≤ Cd−2‖u‖L1(Ω),

where the boundedness of the extension operator E : L1(Ω) → L1(R2) is used. �
3.2. A priori W 2,p and H2+α estimates in a polygon. It is well known that

in a nonconvex polygon, f ∈ Lp(Ω) and g ∈ W
1−1/p
piecewise(∂Ω) with p > 1 may not

imply u ∈ W 2,p(Ω) for the solution of (3.1). However, for a solution u which is a
priori in W 2,p(Ω), we still have the following W 2,p estimates.

Lemma 3.4 (A priori W 2,p estimates). Let u ∈ W 2,p(Ω), with p > 1, be a solution
of (3.1), and assume that the following conditions are satisfied:

2− 2

p
and

(
1− 1

p

)
2θj
π

are not integers for j = 0, 1, . . . ,m− 1.(3.21)

Then

(3.22) |u|W 1,p(Ω) + |u|W 2,p(Ω) ≤ C(‖f‖Lp(Ω) + ‖g‖
W

1−1/p,p
piecewise(∂Ω)

),

where

(3.23) W
1−1/p,p
piecewise(∂Ω) = {q ∈ Lp(∂Ω) : q ∈ W 1−1/p,p(Γj), j = 0, 1, . . . ,m− 1}.

In particular, if u ∈ H2(Ω) is a solution of (3.1) with g = 0, then

(3.24) |u|H1(Ω) + |u|H2(Ω) ≤ C‖f‖L2(Ω).

Proof. From [16, Corollary 4.4.4.14] we know that for the given f ∈ Lp(Ω) and g ∈
W

1−1/p
piecewise(∂Ω) satisfying the compatibility condition

∫
Ω
f dx =

∫
∂Ω

g d s (which

must be true if u ∈ W 2,p(Ω) is the solution of (3.1)), there exist some constants
cj,n, n = 1, . . . , Kj and j = 0, . . . , m− 1, such that

u−
m−1∑
j=0

Kj∑
n=1

cj,nSj,n ∈ W 2,p(Ω),(3.25)

where Sj,n, n = 1, . . . , Kj , are some weakly singular functions (independent of f
and g) not in W 2,p(Ω), but ΔSj,n ∈ Lp(Ω) and ∂nSj,n = 0 on ∂Ω. The number of
such singular terms depends only on Ω and p. In fact, we have

Sj,n(x) = φ(|x− zj |)|x− zj |
nπ
θj cos

(nπ
θj

Θj(x)
)
,(3.26)

where Θj(x) denotes the angle between the two vectors x− zj and zj+1 − zj , and
φ : R → R is some smooth cut-off function such that φ(|x − zj |) = 0 when x is
outside a small neighborhood of the corner zj , and Kj is the largest integer such

that Kj <
(
1− 1

p

) 2θj
π .

Let X be the Banach space spanned by W 2,p(Ω) and Sj,n, with n = 1, . . . ,
Kj and j = 0, 1, . . . , m − 1, and define X0 = {v ∈ X :

∫
Ω
v dx = 0}. Let

Y = {(f, g) ∈ Lp(Ω) × W
1−1/p,p
piecewise(∂Ω) :

∫
Ω
f dx =

∫
∂Ω

g d s}. Then the above-
mentioned regularity result implies that the operator

(Δ, ∂n) : X0 → Y
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is one-to-one, bounded and onto. Therefore, there exists a bounded right inverse
of the above operator. This implies that

(3.27)
m−1∑
j=0

Kj∑
n=1

|cj,n|+
∥∥∥∥u−c−

m−1∑
j=0

Kj∑
n=1

cj,nSj,n

∥∥∥∥
W 2,p(Ω)

≤ C(‖f‖Lp(Ω)+‖g‖
W

1−1/p
piecewise(∂Ω)

)

for some constant c = 1
|Ω|

∫
Ω
u dx. If u is a priori in W 2,p(Ω) then cj,n = 0 for

n = 1, . . . , Kj and j = 0, . . . , m − 1. In this case, the above inequality implies
(3.22).

In the case p = 2 and g = 0, it is shown in [16, Theorem 4.3.1.4] that any solution
u ∈ H2(Ω) of (3.1) with g = 0 satisfies the following estimate:

‖u‖H2(Ω) ≤ C(‖f‖L2(Ω) + ‖u‖L2(Ω)).

Let uΩ = 1
|Ω|

∫
Ω
u dx be the average of u over Ω. Then u−uΩ is also a solution of

(3.1) with g = 0. Replacing u by u− uΩ in the inequality above yields

‖u− uΩ‖H2(Ω) ≤ C(‖f‖L2(Ω) + ‖u− uΩ‖L2(Ω)) ≤ C(‖f‖L2(Ω) + ‖∇u‖L2(Ω)).

By substituting the standard energy estimate ‖∇u‖L2(Ω) ≤ C‖f‖L2(Ω) into the
inequality above, we obtain (3.24). �

Similar as Lemma 3.4, for a solution which is a priori in H2+α(Ω), the standard
H2+α estimates still hold. The proof of this result requires using the existence of

a function w ∈ H2+α(Ω) satisfying ∂nw = g, for any g ∈ H
α+ 1

2

piecewise(∂Ω). This is
guaranteed by Lemma 3.5.

Lemma 3.5 (Existence of lifted functions in H2+α(Ω)). Let α ∈ (0, 1), and let φ ∈
H

3
2+α
piecewise(∂Ω) and g ∈ H

1
2+α
piecewise(∂Ω). There exists a lifted function w ∈ H2+α(Ω)

satisfying

w = φ and ∂nw = g on ∂Ω,

if and only if the following conditions hold:

φ and (∂τφ)τ + gn are both continuous at the corners zj, j = 0, 1, . . . , m− 1,

(3.28)

where τ and n denote the unit tangential and normal vectors on the boundary ∂Ω,
respectively. In this case, the lifted function w satisfies the following estimate:

(3.29) ‖w‖H2+α(Ω) ≤ C
(
‖φ‖

H
3
2
+α

piecewise(∂Ω)
+ ‖g‖

H
1
2
+α

piecewise(∂Ω)

)
.

Proof. Condition (3.4) is exactly the condition (5.3) in [3, Theorem 5.2] in the case
n = 0, 1 and m = 2 therein. As a result, the existence of the lifted function and its
boundedness in H2+α(Ω) follow from [3, Theorem 5.2 and Corollary 5.3]. �
Lemma 3.6 (A priori H2+α estimate). Let u ∈ H2+α(Ω) be a solution of (3.1),
with

α ∈ (0, 1) and
(1 + α)θj

π
is not an integer for j = 0, 1, . . . , m− 1.(3.30)

Then there exist constants c and C such that

‖u− c‖H2+α(Ω) ≤ C(‖f‖Hα(Ω) + ‖g‖
H

1
2
+α

piecewise(∂Ω)
),
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where

H
1
2+α
piecewise(∂Ω) = {q ∈ L2(∂Ω) : q ∈ H

1
2+α(Γj), j = 0, 1, . . . ,m− 1},

|c| ≤ C‖u‖L1(Ω) and the constant C is independent of u, f and g.

Proof. We define φ to be a cubic polynomial on each side Γj , j = 0, 1, . . . , m− 1,
such that

φ = 0, ∂τ+φ =
g− − g+n+ · n−

τ+ · n−
and ∂τ−φ =

g+ − g−n− · n+

τ− · n+
,

at every corner zj from both sides of the corner, where τ− and n− denote the
tangential and normal vectors on the left side of the corner, τ+ and n+ denote the
normal vectors on the right side of the corner, and g− and g+ denote the values of
g on the left and right sides of the corner. Then φ and g satisfy the conditions in
(3.28). In fact, the above expressions of ∂τ+φ and ∂τ−φ at a corner can be solved
from the following two equations:

[(∂τ+φ+)τ+ + g+n+] · n− = [(∂τ−φ−)τ− + g−n−] · n− = g− ,

[(∂τ−φ−)τ− + g−n−] · n+ = [(∂τ+φ+)τ+ + g+n+] · n+ = g+ .

Therefore, Lemma 3.5 implies that there exists a lifted function w ∈ Hα+2(Ω)
satisfying

∂nw = g ∈ H
α+ 1

2

piecewise(∂Ω) on ∂Ω and ‖w‖H2+α(Ω) ≤ C‖g‖
H

1
2
+α

piecewise(∂Ω)
.(3.31)

If u is the solution of (3.1) then u− w is the solution of

(3.32)

{
−Δ(u− w) = f +Δw in Ω,

∂n(u− w) = 0 on ∂Ω,

with the homogeneous Neumann boundary condition. Since w ∈ Hα+2(Ω), it
follows that f +Δw ∈ Hα(Ω). In [8, (5.11) and p. 210] (also see [7, page 24]) it is
shown that the solution of the PDE problem (3.32) with f +Δw ∈ Hα(Ω) can be
written as a singular part plus a regular part (similarly as in the proof of Lemma
3.4), i.e.,

u− w −
m−1∑
j=0

Kj∑
n=1

cj,nSj,n ∈ H2+α(Ω) with Sj,n(x) = |x− zj |
nπ
θj cos

(nπ
θj

Θj(x)
)
,

(3.33)

where Kj is the largest integer such that Kj <
(
1− 1

p

)2θj
π

. Moreover, the following

estimate holds (similarly as in the proof of Lemma 3.4):

m−1∑
j=0

Kj∑
n=1

|cj,n|+
∥∥∥∥u− w − c0 −

m−1∑
j=0

Kj∑
n=1

cj,nSj,n

∥∥∥∥
H2+α(Ω)

≤ C‖f +Δw‖Hα(Ω)

≤ C‖f‖Hα(Ω) + ‖w‖H2+α(Ω),
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where c0 = 1
|Ω|

∫
Ω
(u−w) dx =: c+c1, where c =

1
|Ω|

∫
Ω
u dx and c1 = 1

|Ω|
∫
Ω
w dx.

By using the triangle inequality and (3.31), the inequality above implies that

m−1∑
j=0

Kj∑
n=1

|cj,n|+
∥∥∥∥u− c−

m−1∑
j=0

Kj∑
n=1

cj,nSj,n

∥∥∥∥
H2+α(Ω)

≤ C‖f‖Hα(Ω) + C‖w‖H2+α(Ω) + Cc1

≤ C(‖f‖Hα(Ω) + ‖g‖
H

1
2
+α

piecewise(∂Ω)
).

If u is a priori in H2+α(Ω) then cj,n = 0 for n = 1, . . . , Kj and j = 0, . . . , m− 1.
In this case, the above inequality implies the desired result in Lemma 3.6. �

3.3. W 2,p and H2+α estimates away from the reentrant corner. As men-
tioned at the end of Section 2, we assume that there is only one reentrant corner
at z0 with θ0 ∈ (π, 2π), with θj ∈ (0, π) for j = 1, . . . , m− 1. We define

α0 := min

(
2π

θ0
− 1 , min

1≤j≤m−1

(
π

θj

)
− 1

)
∈ (0, 1),(3.34)

p0 :=
2

1− α0
.(3.35)

Then any p ∈ (2, p0) and α ∈ (0, α0) satisfy the conditions in (3.21) and (3.30).
Moreover, we have the following qualitative regularity results away from the reen-
trant corner as a result of the decomposition in (3.25) and (3.33).

Lemma 3.7. For any 0 < d < diameter(Ω), the solution of (3.1) has the following
properties:

(1) If f ∈ Lp(Ω) and g ∈ W
1−1/p,p
piecewise(∂Ω), then u ∈ W 2,p(Ω\Bd(z0));

(2) If f ∈ Hα(Ω) and g ∈ H
1/2+α
piecewise(∂Ω), then u ∈ H2+α(Ω\Bd(z0)).

For the Neumann problem (3.1) with g = 0, by using Lemmas 3.4 and 3.6 we
have the following local quantitative estimates away from the reentrant corner.

Lemma 3.8 (Local W 2,p and H2+α estimates away from the reentrant corner).
Let p ∈ [2, p0) and α ∈ (0, α0), and let u be a solution of (3.1) with g = 0. Let
D = Bd(z)∩Ω and D′ = Bd+d�

(z)∩Ω, with z ∈ Ω, be subdomains of Ω such that

d ≤ Kd� and d+ d� < |z − z0|.
Then

|u|H1(D) ≤ CK(d�‖f‖L2(D′) + ‖∇u‖L2,∞(D′)), if f ∈ L2(D′),(3.36a)

|u|W 1,p(D) + |u|W 2,p(D)≤CK

(
‖f‖Lp(D′) + d

−2+2/p
� ‖∇u‖L2,∞(D′)

)
, if f ∈Lp(D′).

(3.36b)

Moreover, there exists β ∈ (0, 1) such that D can be covered by a bounded number
of smaller subdomains Dj = Bβd/2(ζj) ∩Ω (with some points ζj ∈ D), j = 1, . . . ,
Jβ, such that

‖u− uD′
j
‖H2+α(D′

j)
≤ CKd−α

�

(
‖f‖L2(D′) + d�‖∇f‖L2(D′) + d−1

� ‖∇u‖L2,∞(D′)

)
,

(3.37)

if f ∈ H1(D′),
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where D′
j = Bβd(ζj)∩Ω and uD′

j
are some constants depending on both u and Dj,

satisfying |uD′
j
| ≤ Cd−2

� ‖u‖L1(D′).

Remark 3.1. In Section 4, we will decompose the domain into some subdomains
and cover each subdomain by a finite number of balls Bd(z) (with several different
z in the subdomain). Then we apply the estimates on each Bdj/8(z) to obtain
Lemma 4.2.

In the estimation of the Green function and the regularized Green function (see
Lemmas 3.9, 4.1 and 4.2), and in the proof of Theorem 2.1, we have to frequently
use some H2+α estimates of the Green function. Since we cannot directly prove
such H2+α estimates on the subdomain D = Bd(z) ∩ Ω (which may intersect two
adjacent sides of Ω and therefore nonconvex), we have to cover D by some smaller
convex subdomains Dj = Bβd/2(ζj)∩Ω which intersect at most one edge of Ω (and
therefore convex) and use the estimates on these convex subdomains Dj . This is
the motivation of dividing D into subdomains Dj , j = 1, . . . , Jβ .

Proof. Without loss of generality, we can assume that f is qualitatively smooth
enough, provided our quantitative estimates presented below are independent of
the assumed extra smoothness of f .

Let ζ ∈ D be any fixed point and consider Dζ := Bβd(ζ) ∩ Ω and D′
ζ :=

Bβd+βd�
(ζ) ∩ Ω, with β = 1

2(1+K) sin(2π − θ0). Then we have βd + βd� < 1
2 |ζ −

z0| sin(2π−θ0), which guarantees that the disk Bβd+βd�
(ζ) can intersect at most one

side of the wedge at corner z0. As a result, the subdomain D′
ζ is convex and |D′

ζ | ≥
d2�/C. In this case, the following Poincaré’s inequality holds (cf. [4, Theorems
1.1–1.2]):

‖u− uD′
ζ
‖Lq(D′

ζ)
≤ Cd�‖∇u‖Lq(D′

ζ)
∀ 1 ≤ q ≤ ∞,(3.38)

where uD′
ζ
denotes the average of u on D′

ζ .

Since D = Bd(z) ∩ Ω can be covered by a finite number of subdomains of the
type Bβd/2(ζ) ∩ Ω with ζ ∈ D (the number depends only on β, independent of z,
d, d�), we only need to prove the following estimates in Dζ = Bβd(ζ) ∩Ω:

|u|H1(Dζ) ≤ CK

(
d�‖f‖L2(D′

ζ)
+ ‖∇u‖L2,∞(D′

ζ)

)
,

(3.39a)

|u|W 1,p(Dζ) + |u|W 2,p(Dζ)≤CK

(
‖f‖Lp(D′

ζ)
+d

−2+2/p
� ‖∇u‖L2,∞(D′

ζ)

)
for p∈ [2, p0),

(3.39b)

‖u− c‖H2+α(Dζ) ≤ CKd−α
�

(
‖f‖L2(D′

ζ)
+ d�‖∇f‖L2(D′

ζ)
+ d−1

� ‖∇u‖L2,∞(D′
ζ)

)
,

(3.39c)

where c is some constant depending on u andDζ , satisfying that |c|≤Cd−2
� ‖u‖L1(D′

ζ)
.

Then (3.36)–(3.37) follow from (3.39).

To prove (3.39a)–(3.39c), we introduce a convex subdomain D̃′
ζ := Bβd+βd�/2(ζ)

∩Ω, which satisfies Dζ ⊂ D̃′
ζ ⊂ D′

ζ , and define a smooth cut-off function ω(x) such
that

ω(x) ≡ 1, x ∈ Bβd(ζ),(3.40a)

ω(x) ≡ 0, x ∈ R
2\Bβd+βd�/2(ζ),(3.40b)

|∇kω| ≤ Ckd
−k
� , k = 1, 2, . . . .(3.40c)



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

1546 BUYANG LI

In view of Lemma 3.7, we have ũ = ω(u − u
˜D′
ζ
) ∈ W 2,p(Ω), and it is the solution

of the equation {
−Δũ = f̃ in Ω,

∂nũ = g̃ · n on ∂Ω,
(3.41)

where

f̃ = fω − 2∇u · ∇ω − (u− u
˜D′
ζ
)Δω and g̃ = (u− u

˜D′
ζ
)∇ω.(3.42)

For p ∈ (2, p0), we choose q ∈ (1, 2) satisfying 1 = 2/q− 2/p so that W 1,q(Ω) ↪→
Lp(Ω) and W 2,q(Ω) ↪→ W 1,p(Ω). Since 1 < q ≤ p < p0, it follows that q also
satisfies the condition (3.21), as explained below (3.35). Then Lemma 3.4 implies
that

‖∇ũ‖W 1,q(Ω) ≤ C‖f̃‖Lq(Ω) + C‖g̃ · n‖
W

1−1/q,q
piecewise(∂Ω)

≤ C‖f̃‖Lq(Ω) + C‖g̃‖W 1,q(Ω)

≤ C(‖f‖Lq( ˜D′
ζ)
+ d−1

� ‖∇u‖Lq( ˜D′
ζ)
+ d−2

� ‖u− u
˜D′
ζ
‖Lq( ˜D′

ζ)
)

≤ C(‖f‖Lq( ˜D′
ζ)
+ d−1

� ‖∇u‖Lq( ˜D′
ζ)
)

(the Poincaré inequality (3.38) is used)

≤ C(d
−1+2/q
� ‖f‖L2( ˜D′

ζ)
+ d

−2+2/q
� ‖∇u‖L2,∞( ˜D′

ζ)
)(3.43)

and so

‖∇ũ‖Lp(Ω) ≤ C‖∇ũ‖W 1,q(Ω)

≤ C(d
−1+2/q
� ‖f‖L2( ˜D′

ζ)
+ d

−2+2/q
� ‖∇u‖L2,∞( ˜D′

ζ)
)

≤ C(d
2/p
� ‖f‖L2( ˜D′

ζ)
+ d

−1+2/p
� ‖∇u‖L2,∞( ˜D′

ζ)
),(3.44)

where 1 = 2/q − 2/p is used in the last inequality. Since ω = 1 on Dζ and
ũ = ω(u− u

˜D′
ζ
), the last inequality implies that

‖∇u‖Lp(Dζ) ≤ C(d
2/p
� ‖f‖L2( ˜D′

ζ)
+ d

−1+2/p
� ‖∇u‖L2,∞( ˜D′

ζ)
).(3.45)

By using Hölder’s inequality, we can further derive the following two inequalities:

‖∇u‖L2(Dζ) ≤ d
1−2/p
� ‖∇u‖Lp(Dζ) ≤ C(d�‖f‖L2( ˜D′

ζ)
+ ‖∇u‖L2,∞( ˜D′

ζ)
),(3.46)

‖∇u‖Lp(Dζ) ≤ C(d�‖f‖Lp( ˜D′
ζ)
+ d

−1+2/p
� ‖∇u‖L2,∞( ˜D′

ζ)
).(3.47)

This proves (3.39a).

Similarly as (3.46)–(3.47), replacing Dζ and D̃′
ζ by D̃′

ζ and D′
ζ , respectively, we

also have the following estimates:

‖∇u‖L2( ˜D′
ζ)

≤ C(d�‖f‖L2(D′
ζ)
+ ‖∇u‖L2,∞(D′

ζ)
),(3.48)

‖∇u‖Lp( ˜D′
ζ)

≤ C(d�‖f‖Lp(D′
ζ)
+ d

−1+2/p
� ‖∇u‖L2,∞(D′

ζ)
).(3.49)
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The last inequality and Lemma 3.4 imply

|ũ|W 1,p(Ω) + |ũ|W 2,p(Ω)

≤ C‖f̃‖Lp(Ω) + C‖g̃ · n‖
W

1−1/p,p
piecewise(∂Ω)

≤ C‖f̃‖Lp(Ω) + C‖g̃‖W 1,p(Ω)

≤ C(‖f‖Lp( ˜D′
ζ)
+ d−1

� ‖∇u‖Lp( ˜D′
ζ)
+ d−2

� ‖u− u
˜D′
ζ
‖Lp( ˜D′

ζ)
)

≤ C(‖f‖Lp( ˜D′
ζ)
+ d−1

� ‖∇u‖Lp( ˜D′
ζ)
)

≤ C
(
‖f‖Lp( ˜D′

ζ)
+ d−1

� (d�‖f‖Lp(D′
ζ)
+ d

−1+2/p
� ‖∇u‖L2,∞(D′

ζ)
)
)

≤ C(‖f‖Lp(D′
ζ)
+ d

−2+2/p
� ‖∇u‖L2,∞(D′

ζ)
).

This proves (3.39b) in the case p ∈ (2, p0).
For p = 2 we have ũ = ũ1 + ũ2, where ũ1 and ũ2 are solutions of{

−Δũ1 = f̃ in Ω,

∂nũ1 = 0 on ∂Ω,
and

{
−Δũ2 = 0 in Ω,

∂nũ2 = g̃ · n on ∂Ω.

By applying (3.24) and (3.22) to ũ1 and ũ2, respectively, we obtain

|ũ1|H1(Ω) + |ũ1|H2(Ω) ≤ C‖f̃‖L2(Ω)

≤ C(‖f‖L2( ˜D′
ζ)
+ d−1

� ‖∇u‖L2( ˜D′
ζ)
+ d−2

� ‖u− u
˜D′
ζ
‖L2( ˜D′

ζ)
)

≤ C(‖f‖L2( ˜D′
ζ)
+ d−1

� ‖∇u‖L2( ˜D′
ζ)
)

and
|ũ2|W 1,p(Ω) + |ũ2|W 2,p(Ω) ≤ C‖g̃ · n‖

W
1−1/p,p
piecewise(∂Ω)

≤ C‖g̃‖W 1,p(Ω)

≤ Cd−1
� ‖∇u‖Lp( ˜D′

ζ)

≤ C(d
−1+ 2

p
� ‖f‖L2(D′

ζ)
+ d

−2+ 2
p

� ‖∇u‖L2,∞(D′
ζ)
),

where (3.45) is used in the last inequality. By using Hölder’s inequality, we have

|ũ2|H1(Ω) + |ũ2|H2(Ω) ≤ Cd
1− 2

p
� (|ũ2|W 1,p(Ω) + |ũ2|W 2,p(Ω))

≤ C(‖f‖L2(D′
ζ)
+ d−1

� ‖∇u‖L2,∞(D′
ζ)
).

Combining the estimates of ũ1 and ũ2, we obtain

|ũ|H1(Ω) + |ũ|H2(Ω) ≤ C(‖f‖L2(D′
ζ)
+ d−1

� ‖∇u‖L2,∞(D′
ζ)
).(3.50)

This proves (3.39b) in the case p = 2.
Next, we prove (3.39c). In view of the qualitative regularity results in Lemma

3.7, we have ũ = ω(u − u
˜D′
ζ
) ∈ H2+α(Ω), which is the solution of (3.41). For the

given α ∈ (0, α0), we choose p = 2/(1 − α) so that Hα(Ω) ↪→ Lp(Ω). Let ω̃ be a
smooth cut-off function such that

ω̃(x) ≡ 1, x ∈ Bβd+βd�/2(ζ),(3.51a)

ω̃(x) ≡ 0, x ∈ R
2\Bβd+βd�

(ζ),(3.51b)

|∇kω̃| ≤ Ckd
−k
� , k = 1, 2, . . . ,(3.51c)

so that ω̃ = 1 on D̃′
ζ and ω̃ = 0 outside D′

ζ .
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Since

‖fω̃‖L2(Ω) ≤ C‖f‖L2(D′
ζ)
,

‖fω̃‖H1(Ω) ≤ Cd−1
� ‖f‖L2(D′

ζ)
+ C‖∇f‖L2(D′

ζ)
,

it follows from the interpolation and Young’s inequalities that

‖fω̃‖Hα(Ω) ≤ ‖fω̃‖1−α
L2(Ω)‖fω̃‖

α
H1(Ω) ≤ Cd−α

� ‖f‖L2(D′
ζ)
+ C‖f‖1−α

L2(D′
ζ)
‖∇f‖αL2(D′

ζ)

≤ Cd−α
� ‖f‖L2(D′

ζ)
+ Cd1−α

� ‖∇f‖L2(D′
ζ)
.(3.52)

Similarly, for the smooth cut-off function ω defined in (3.40), the following result
holds:

‖fω‖Hα(Ω) ≤ ‖fω‖1−α
L2(Ω)‖fω‖

α
H1(Ω) ≤ Cd−α

� ‖f‖L2( ˜D′
ζ)
+ C‖f‖1−α

L2( ˜D′
ζ)
‖∇f‖α

L2( ˜D′
ζ)

≤ Cd−α
� ‖f‖L2( ˜D′

ζ)
+ Cd1−α

� ‖∇f‖L2( ˜D′
ζ)
.(3.53)

By an obvious change of domain from D′
ζ to D̃′

ζ , (3.39b) implies

|ũ|W 1,p(Ω) + |ũ|W 2,p(Ω)

≤ C(‖f‖Lp( ˜D′
ζ)
+ d

−2+2/p
� ‖∇u‖L2,∞( ˜D′

ζ)
)

≤ C(‖ω̃f‖Lp(Ω) + d
−2+2/p
� ‖∇u‖L2,∞( ˜D′

ζ)
)

≤ C(‖ω̃f‖Hα(Ω) + d
−2+2/p
� ‖∇u‖L2,∞( ˜D′

ζ)
)

≤ C(d−α
� ‖f‖L2(D′

ζ)
+ d1−α

� ‖∇f‖L2(D′
ζ)
+ d

−2+2/p
� ‖∇u‖L2,∞(D′

ζ)
),(3.54)

which reduces to

|u|W 1,p(Dζ) + |u|W 2,p(Dζ)(3.55)

≤ C(d−α
� ‖f‖L2(D′

ζ)
+ d1−α

� ‖∇f‖L2(D′
ζ)
+ d

−2+2/p
� ‖∇u‖L2,∞(D′

ζ)
).

Again, by an obvious change of domain from Dζ to D̃′
ζ , we can rewrite the last

inequality as

|u|W 1,p( ˜D′
ζ)
+ |u|W 2,p( ˜D′

ζ)

≤ C(d−α
� ‖f‖L2(D′

ζ)
+ d1−α

� ‖∇f‖L2(D′
ζ)
+ d

−2+2/p
� ‖∇u‖L2,∞(D′

ζ)
).

Since 1− 2/p = α, by using Hölder’s inequality we get

|u|H1( ˜D′
ζ)
+ |u|H2( ˜D′

ζ)
≤ Cd

1−2/p
� (|u|W 1,p( ˜D′

ζ)
+ |u|W 2,p( ˜D′

ζ)
)

≤ C(‖f‖L2(D′
ζ)
+ d�‖∇f‖L2(D′

ζ)
+ d−1

� ‖∇u‖L2,∞(D′
ζ)
).(3.56)

In order to obtain H2+α estimate for ũ, we first estimate ‖f̃‖Hα(Ω) below, where

f̃ is defined in (3.42). By the properties of ω and the Hölder inequality, we have

‖(u− u
˜D′
ζ
)Δω‖L2(Ω) ≤ Cd−2

� ‖u− u
˜D′
ζ
‖L2( ˜D′

ζ)
≤ Cd−1

� ‖∇u‖L2( ˜D′
ζ)
,
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‖(u− u
˜D′
ζ
)Δω‖H1(Ω)

≤ ‖(u− u
˜D′
ζ
)Δω‖L2(Ω) + ‖∇uΔω‖L2(Ω) + ‖(u− u

˜D′
ζ
)∇Δω‖L2(Ω)

≤ Cd−2
� ‖u− u

˜D′
ζ
‖L2( ˜D′

ζ)
+ Cd−2

� ‖∇u‖L2( ˜D′
ζ)
+ Cd−3

� ‖u− u
˜D′
ζ
‖L2( ˜D′

ζ)

≤ Cd−2
� ‖∇u‖L2( ˜D′

ζ)
.

By the interpolation inequality between L2(Ω) and H1(Ω), we have

‖(u− u
˜D′
ζ
)Δω‖Hα(Ω) ≤ ‖(u− u

˜D′
ζ
)Δω‖1−α

L2(Ω)‖(u− u
˜D′
ζ
)Δω‖αH1(Ω)

≤ Cd−1−α
� ‖∇u‖L2( ˜D′

ζ)
.(3.57)

Similarly, we have

‖∇u · ∇ω‖L2(Ω) ≤Cd−1
� ‖∇u‖L2( ˜D′

ζ)
,

‖∇u · ∇ω‖H1(Ω) ≤Cd−2
� ‖∇u‖L2( ˜D′

ζ)
+ Cd−1

� (|u|H1( ˜D′
ζ)
+ |u|H2( ˜D′

ζ)
)

≤Cd−2
� ‖∇u‖L2( ˜D′

ζ)
+ Cd−1

� |u|H2( ˜D′
ζ)
,

which imply the following result by the Sobolev interpolation inequality and Young’s
inequality:

‖∇u · ∇ω‖Hα(Ω) ≤ ‖∇u · ∇ω‖1−α
L2(Ω)‖∇u · ∇ω‖αH1(Ω)

≤ Cd
−(1−α)
� ‖∇u‖1−α

L2( ˜D′
ζ)
(Cd−2

� ‖∇u‖L2( ˜D′
ζ)
+ Cd−1

� |u|H2( ˜D′
ζ)
)α

≤ Cd
−(1−α)
� ‖∇u‖1−α

L2( ˜D′
ζ)
(Cd−2

� ‖∇u‖α
L2( ˜D′

ζ)
+ Cd−1

� |u|α
H2( ˜D′

ζ)
)

≤ Cd−1−α
� ‖∇u‖L2( ˜D′

ζ)
+ Cd−1

� ‖∇u‖1−α

L2( ˜D′
ζ)
|u|α

H2( ˜D′
ζ)
.(3.58)

The estimates in (3.53) and (3.57)–(3.58) imply that

‖f̃‖Hα(Ω) ≤Cd−α
� ‖f‖L2( ˜Dζ)

+ Cd1−α
� ‖∇f‖L2( ˜D′

ζ)

+ Cd−1−α
� ‖∇u‖L2( ˜D′

ζ)
+ Cd−1

� ‖∇u‖1−α

L2( ˜D′
ζ)
|u|α

H2( ˜D′
ζ)
.(3.59)

By applying Lemma 3.6 to equation (3.41) and using (3.59), we obtain

‖ũ− c1‖H2+α(Ω)

≤ C‖f̃‖Hα(Ω) + C‖g̃ · n‖
H

1/2+α
piecewise(∂Ω)

≤ C‖f̃‖Hα(Ω) + C‖g̃‖H1+α(Ω)

≤ Cd−α
� ‖f‖L2( ˜D′

ζ)
+ Cd1−α

� ‖∇f‖L2( ˜D′
ζ)

+ Cd−1−α
� ‖∇u‖L2( ˜D′

ζ)
+ Cd−1

� ‖∇u‖1−α

L2( ˜D′
ζ)
|u|α

H2( ˜D′
ζ)

≤ Cd−α
� ‖f‖L2( ˜D′

ζ)
+ Cd1−α

� ‖∇f‖L2( ˜D′
ζ)
+ Cd−1−α

� ‖∇u‖L2( ˜D′
ζ)
+ Cd−α

� |u|H2( ˜D′
ζ)
,

where c1 is some constant satisfying |c1| ≤ C
∫
Ω
|ũ| dx ≤ C

∫
˜D′
j
|u| dx. Then,
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substituting (3.48) and (3.56) into the inequality above, we have

‖u− u
˜D′
ζ
− c1‖H2+α(Dζ)

≤ CK

(
d−α
� ‖f‖L2(D′

ζ)
+ d1−α

� ‖∇f‖L2(D′
ζ)
+ d−1−α

� ‖∇u‖L2,∞(D′
ζ)

)
,

where the constant c := u
˜D′
ζ
+c1 satisfies |c| ≤ Cd−2

j

∫
˜D′
j
|u| dx. This proves (3.39c).

The proof of Lemma 3.8 is complete. �

3.4. Local estimates of the Green function. Let Γ(x, y) be the Green function
of the Neumann problem, defined by⎧⎨⎩−ΔΓ(·, y) = δy − 1

|Ω| in Ω,

∂nΓ(·, y) = 0 on ∂Ω,
(3.60)

where δy(x) is the delta function satisfying
∫
Ω
δy(x)φ(x) dx = φ(y) for any φ ∈

C(Ω). For uniqueness of the Green function, we impose the normalization condition∫
Ω
Γ(x, y) dx = 0. The Green function satisfies the basic weak L2 estimate [27,

Theorem 1.3]:

‖∇Γ(·, y)‖L2,∞(Ω) ≤ C.(3.61)

Since
∫
Ω
Γ(x, y) dx = 0, the above estimate also implies (via the Sobolev embedding

inequality)

‖Γ(·, y)‖Lq(Ω) ≤ C‖∇Γ(·, y)‖L2,∞(Ω) ≤ C for 1 < q < ∞.(3.62)

We will need the following local estimates of the Green function in the next
section.

Lemma 3.9 (Local estimates of the Green function). Let p ∈ (2, p0) and α ∈
(0, α0), and let D = Bd(z) ∩Ω with

d ≤ Kd� and d+ d� < min(|z − z0|, |z − y|).

Then the Green function Γ(x, y) satisfies

‖Γ(·, y)‖H1(D) ≤ CK ,(3.63a)

‖Γ(·, y)‖H2(D) ≤ CKd−1
� ,(3.63b)

‖Γ(·, y)‖W 2,p(D) ≤ CKd
−2+2/p
� .(3.63c)

Moreover, there exists β ∈ (0, 1) such that D can be covered by a bounded number
of subdomains Dj = Bβd/2(ζj) ∩Ω, j = 1, . . . , Jβ, with

‖Γ(·, y)− cDj
(y)‖H2+α(D′

j)
≤ CKd−1−α

� ,(3.64)

where D′
j = Bβd(ζj) ∩ Ω and cDj

(y) is some constant depending on Dj and y,

satisfying |cDj
(y)| ≤ Cd−2

� .
If d+d� ≤ Kd# and d+d�+d# < |z−y|, then the following improved estimates

hold:

‖Γ(·, y)‖H2(D) ≤ CKds−1
� d−s

# ,(3.65a)

‖Γ(·, y)‖W 2,p(D) ≤ CKd
−2+ 2

p+s
� d−s

# .(3.65b)
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Proof. The condition d+ d� < min(|z− z0|, |z− y|) guarantees that the subdomain
D′ = Bd+d�

(z) ∩Ω is away from the reentrant corner and the singularity point y.
As a result, the solution Γ(·, y) of equation (3.60) has W 2,p and H2+α regularity in
the subdomain D′.

By applying Lemma 3.8 and using the basic estimate (3.61), we have

|Γ(·, y)|H1(D) ≤ CK

(
d�‖1/|Ω|‖L2(D′) + ‖∇Γ(·, y)‖L2,∞(D′)

)
≤ CK ,

|Γ(·, y)|W 1,p(D) + |Γ(·, y)|W 2,p(D) ≤ CK

(
‖ 1

|Ω| ‖Lp(D′) + d
−2+2/p
� ‖∇Γ(·, y)‖L2,∞(D′)

)
≤ CKd

−2+2/p
� ,

|Γ(·, y)|H1(D) + |Γ(·, y)|H2(D) ≤ CKd
1−2/p
� (|Γ(·, y)|W 1,p(D) + |Γ(·, y)|W 2,p(D))

≤ CKd−1
� .

Moreover, according to Lemma 3.8, D can be covered by a bounded number of
subdomains Dj = Bβd/2(ζj) ∩Ω, j = 1, . . . , Jβ, with

‖Γ(·, y)− cDj
‖H2+α(D′

j)
≤ CK

(
d−α
� ‖1/|Ω|‖L2(D′) + d−1−α

� ‖∇Γ(·, y)‖L2,∞(D′)

)
≤ Cd−1−α

� ,

where cDj
(y) is some constant which satisfies |cDj

(y)| ≤ Cd−2
� ‖Γ(·, y)‖L1(D′

j)
≤

Cd−2
� . The above semi-norm estimates and the Lq-norm estimate in (3.62) together

imply the desired results in (3.63)–(3.64).
Let D′′ = Bd+d�+d#

(z) ∩Ω. Let ω be a smooth cut-off function such that

ω(x) ≡ 1, x ∈ Bd+d�
(z),(3.66a)

ω(x) ≡ 0, x ∈ Ω\Bd+d�+d#
(z),(3.66b)

|∇kω| ≤ Ckd
−k
# , k = 1, 2, . . . .(3.66c)

Hence, ω = 1 on D′ and ω = 0 outside D′′. Then applying Lemma 3.8 yields

|Γ(·, y)|W 1,p(D) + |Γ(·, y)|W 2,p(D)

≤ CK

(
‖1/|Ω|‖Lp(D′) + d

−2+ 2
p

� ‖∇Γ(·, y)‖L2,∞(D′)

)
≤ CK

(
C + d

−2+ 2
p

� d
1− 2

q
� ‖∇Γ(·, y)‖Lq(D′)

)
(Hölder inequality with q > 2 satisfying s = 1− 2

q
)

≤ CK

(
C + d

−2+ 2
p+s

� ‖ω(Γ(·, y)− c)‖Hs+1(Ω)

)
(with Hs+1(Ω) ↪→ W 1,q(Ω))

≤ CK

[
C + d

−2+ 2
p+s

�

(
‖1/|Ω|‖Lps (D′′)+d−s

# (‖Γ(·, y)‖L2,∞(Ω)+‖∇Γ(·, y)‖L2,∞(Ω))
)]

≤ CKd
−2+ 2

p+s
� d−s

# ,

where c can be an arbitrary constant in the third to last inequality, and we have
used (3.20) in estimating ‖ω(Γ(·, y)−c)‖Hs+1(Ω) with u = Γ(·, y), c = ūd, f = 1/|Ω|
and ps = 2/(2 − s). By using Hölder’s inequality, we further derive the following
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result:

|Γ(·, y)|H1(D) + |Γ(·, y)|H2(D) ≤ Cd
1− 2

p
� (|Γ(·, y)|W 1,p(D) + |Γ(·, y)|W 2,p(D))

≤ CKds−1
� d−s

# .

The two semi-norm estimates above and the Lq-norm (3.62) together imply the
desired results in (3.65). The proof of Lemma 3.9 is complete. �

4. Proof of Theorem 2.1

We only need to prove the following result for any given point x0 ∈ Ω in the
interior of some triangle τ0:

|Rhu(x0)| ≤ C‖u‖L∞(Ω) for any given x0 ∈ Ω.

We first focus on the case |x0−z0| > 16κh∗, where κ ≥ 1 is a parameter to be deter-
mined later. From now on, we keep the generic positive constant C independent of
κ until it is determined, and keep C independent of x0. The case |x0− z0| ≤ 16κh∗
will be discussed after the parameter κ is determined.

4.1. Double dyadic decomposition of the domain. We decompose the domain
Ω into disjoint subsets

Ω = O∗
⋃

∪J∗
j=0Oj

⋃
Õ∗

⋃
∪Jx0
j=0Õj

⋃
∪J+1
j=0Ωj ,(4.1)

where

O∗ := {x ∈ Ω : |x− z0| < dJ∗+1},(4.2a)

Oj := {x ∈ Ω : dj+1 ≤ |x− z0| < dj}, j = 0, 1, . . . , J∗,(4.2b)

Õ∗ := {x ∈ Ω : |x− x0| < dJx0
+1},(4.2c)

Õj := {x ∈ Ω : dj+1 ≤ |x− x0| < dj}, j = 0, 1, . . . , Jx0
,(4.2d)

Ωj := {x ∈ Ω : ρj+1 ≤ |x− z0| < ρj}, j = 0, 1, . . . , J,(4.2e)

ΩJ+1 := {x ∈ Ω : |x− x0| ≥ d0, d0 ≤ |x− z0| < ρJ+1},(4.2f)

with dj = 2−j−2|x0−z0|, J∗ =
[
log2

(
|x0−z0|
16κh∗

) ]
and Jx0

=
[
log2

(
|x0−z0|

16κγσ�(x0)

) ]
for

some σ ∈ (0, 1), and ρj = 2−jdiameter(Ω) and J =
[
log2

(
diameter(Ω)
16|x0−z0|

) ]
, so that

2κh∗ ≤ dJ∗+1 ≤ 4κh∗,(4.3a)

2κγσ
�(x0) ≤ dJx0

+1 ≤ 4κγσ
�(x0),(4.3b)

8|x0 − z0| ≤ ρJ+1 ≤ 16|x0 − z0|,(4.3c)

dist(Oj , Õi) ∼ |x0 − z0|,(4.3d)

dist(Oj , Ωi) ∼ dist(Õk, Ωi) ∼ ρi,(4.3e)
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where dist(Oj , Õi) denotes the distance between the two sets Oj and Õi. Moreover,
we have

K−1h∗ ≤ �(x) ≤ 2Kκ1−γh∗ ∀x ∈ O∗,(4.4a)

�(x) ∼ d1−γ
j h ∀x ∈ Oj ,(4.4b)

�(x) ∼ �(x0) ∀x ∈ Õj ∪ Õ∗,(4.4c)

�(x) ∼ ρ1−γ
j h ∀x ∈ Ωj ,(4.4d)

for some positive constant K (independent of κ). We denote by hj the mesh size
in Oj and hj the mesh size in Ωj .

Let

O′
j = Oj−1/2 ∪Oj ∪Oj+1/2,(4.5)

Õ′
j = Õj−1/2 ∪ Õj ∪ Õj+1/2,(4.6)

Ω′
j = Ωj−1/2 ∪Ωj ∪Ωj+1/2,(4.7)

(4.8)

with

Oj−1/2 := {x ∈ Ω : dj+1/2 ≤ |x− z0| < dj−1/2},(4.9a)

Õj−1/2 := {x ∈ Ω : dj+1/2 ≤ |x− x0| < dj−1/2},(4.9b)

Ωj−1/2 := {x ∈ Ω : ρj+1/2 ≤ |x− z0| < ρj−1/2},(4.9c)

O−1 = Õ−1 := ΩJ+1,(4.9d)

ΩJ+2 := O0 ∪ Õ0,(4.9e)

(4.9f)

and

Oz0 := {Oj : 0 ≤ j ≤ J∗}, O′
z0

:= Oz0 ∪ {O∗},(4.10a)

Ox0
:= {Õj : 0 ≤ j ≤ Jx0

}, O′
x0

:= Ox0
∪ {Õ∗},(4.10b)

O := {Ωj : 0 ≤ j ≤ J + 1}, O′ := O ∪ {ΩJ+2}.(4.10c)

Then we have Ω = O∗
⋃
Õ∗

⋃(
∪Oj∈Oz0

Oj

)⋃ (
∪

˜Oj∈Ox0
Õj

)⋃ (
∪Ωj∈O Ωj

)
.

Remark 4.1. In the case |x0 − z0| > 16κh∗ ∼ 16κh1/γ we have |x0 − z0|γ > 16γκγh
and

|x0 − z0|
κγσ�(x0)

∼ |x0 − z0|
κγσ|x0 − z0|1−γh

∼ |x0 − z0|γ
κγσh

≥ κγ(1−σ)

C
.

Hence, for the fixed σ ∈ (0, 1), we can choose κ sufficiently large to make sure that
|x0 − z0| ≥ 16κγσ

�(x0).

Remark 4.2. The double dyadic decompositions Oj := {x ∈ Ω : dj+1 ≤ |x− z0| <
dj} and Õj := {x ∈ Ω : dj+1 ≤ |x− x0| < dj} are defined for dj = 2−j−2|x0 − z0|,
j = 1, . . . , J∗, and therefore with radius dj smaller than |x0 − z0|. They reduce
to the single dyadic decomposition Ωj := {x ∈ Ω : ρj+1 ≤ |x − z0| < ρj} when
the radius exceeds |x0 − z0|. We use ρj to denote the radius when it is bigger than
|x0 − z0|.
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4.2. Regularized Green’s function. Recall that τ0 is the triangle which contains
x0. We denote by δ̃x0

∈ C3(τ0) a regularized Delta function which has the following
properties:

δ̃x0
is compactly supported in τ0,(4.11a)

(δ̃x0
, vh)τ0 = vh(x0), ∀ vh ∈ Sh,(4.11b) ∫

Ω

δ̃x0
(x) dx = 1,(4.11c)

‖δ̃x0
‖W l,p(Ω) ≤ C�(x0)

−l−2(1− 1
p ) for 1 ≤ p ≤ ∞, l = 0, 1, 2, 3.(4.11d)

It is known that such a smoothed Delta function exists; see [34, Lemma 2.2].
The regularized Green’s function G(x, x0) is defined by using the regularized

Delta function, as the solution of⎧⎨⎩−ΔG(·, x0) = δ̃x0
(·)− 1

|Ω| in Ω,

∂nG(·, x0) = 0 on ∂Ω.
(4.12)

Since
∫
Ω
(δ̃(x) − 1

|Ω| ) dx = 0, the equation above admits a unique solution up to

a constant. The discrete Green’s function Gh(·, x0) ∈ Sh is defined as the finite
element solution of the problem

(∇Gh(·, x0),∇vh) = vh(x0)−
1

|Ω|

∫
Ω

vh(x) dx, ∀ vh ∈ Sh,(4.13)

which is also well defined up to a constant. For uniqueness, we further impose the
condition ∫

Ω

G(x, x0) dx =

∫
Ω

Gh(x, x0) dx = 0.

Similarly as the local estimates of Green’s function in Lemma 3.9, the following
local estimates of the regularized Green’s function hold.

Lemma 4.1 (Local estimates of the regularized Green’s function). Let p ∈ (2, p0)
and α ∈ (0, α0). Let D = Bd(z) ∩Ω and assume that

d ≤ Kd� and Bd+d�
(z) ∩ {z0} = Bd+d�

(z) ∩ supp(δ̃x0
) = ∅.

Then the regularized Green’s function G(x, x0) satisfies the following estimates:

‖G(·, x0)‖H1(D) ≤ CK ,(4.14a)

‖G(·, x0)‖H2(D) ≤ CKd−1
� ,(4.14b)

‖G(·, x0)‖W 2,p(D) ≤ CKd
−2+2/p
� .(4.14c)

Moreover, there exists β ∈ (0, 1) such that D can be covered by a bounded number
of subdomains Dj = Bβd/2(ζj) ∩Ω, j = 1, . . . , Jβ, with ζj ∈ D, and

‖G(·, x0)− cDj
‖H2+α(D′

j)
≤ CKd−1−α

� ,(4.15)

where D′
j = Bβd(ζj) ∩Ω and cDj

is some constant depending on G and Dj.
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If d+d� ≤ Kd# and d+d�+d# < dist(z, supp(δ̃x0
)), then the following estimates

hold:

‖G(·, x0)‖H2(D) ≤ CKds−1
� d−s

# ,(4.16)

‖G(·, x0)‖W 2,p(D) ≤ CKd
−2+ 2

p+s
� d−s

# .(4.17)

Proof. By representing G(x, x0) in terms of the continuous Green function, i.e.

G(x, x0) =

∫
Ω

Γ(x, ξ)δ̃x0
(ξ) d ξ,

we see that |x − ξ| ≥ d� when x ∈ D and ξ ∈ supp(δ̃x0
). Therefore, the following

estimate holds as a result of Lemma 3.9:

‖G(·, x0)‖W 2,p(D) ≤
∫
Ω

‖Γ(·, ξ)‖W 2,p(D)|δ̃x0
(ξ)| d ξ

≤
∫
Ω

Cd
−2+2/p
� |δ̃x0

(ξ)| d ξ ≤ Cd
−2+2/p
� .

The other estimates in (4.14) and (4.16)–(4.17) can be proved in the same way.
The local H2+α estimate in (4.15) needs to be proved in a slightly different way,

by considering the following expression:

G(x, x0)− c =

∫
Ω

(Γ(x, y)− cDj
(y))δ̃x0

(y) d y,

where c =
∫
Ω
cDj

(y)δ̃x0
(y) d y satisfies |c| ≤

∫
Ω
Cd−2

� δ̃x0
(y) d y ≤ Cd−2

� . By using
(3.64) we obtain

‖G(·, x0)− c‖H2+α(D′
j)

≤
∫
Ω

‖Γ(·, y)− cDj
(y)‖H2+α(D′

j)
|δ̃x0

(y)| d y

≤
∫
Ω

Cd−1−α
� |δ̃x0

(y)| d y ≤ Cd−1−α
� .

�

Each Oj can be covered by a finite number of balls Bdj/8(z) with z ∈ Oj , and
the number of balls are independent of dj , where each ball Bdj+2

(z) satisfies the

condition of Lemma 4.1 with d = d� = dj/8. Similarly, Õj and Ωj can also be cov-
ered by balls of radius dj/8 and ρj/8, respectively. Hence, Lemma 4.1 immediately
implies the following results.
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Lemma 4.2 (Local estimates in Oj , Õj and Ωj). Let p ∈ (2, p0) and α ∈ (0, α0).
Then we have

‖G(·, x0)‖H1(Oj) ≤ C,(4.18a)

‖G(·, x0)‖H2(Oj) ≤ Cd−1
j ,(4.18b)

‖G(·, x0)‖W 2,p(Oj) ≤ Cd
−2+2/p
j ,(4.18c)

‖G(·, x0)‖H1( ˜Oj)
≤ C,(4.18d)

‖G(·, x0)‖H2( ˜Oj)
≤ Cd−1

j ,(4.18e)

‖G(·, x0)‖W 2,p( ˜Oj)
≤ Cd

−2+2/p
j ,(4.18f)

‖G(·, x0)‖H1(Ωj) ≤ C,(4.18g)

‖G(·, x0)‖H2(Ωj) ≤ Cρ−1
j ,(4.18h)

‖G(·, x0)‖W 2,p(Ωj) ≤ Cρ
−2+2/p
j .(4.18i)

Moreover, there exists β ∈ (0, 1) such that Oj can be covered by a bounded number
of subdomains Dj,i = Bβdj/2(ζj,i) ∩Ω, i = 1, . . . , Jβ, with ζj,i ∈ Oj, and

‖G(·, x0)− cDj,i
‖H2+α(D′

j,i)
≤ Cd−1−α

j ,(4.19)

where D′
j,i = Bβdj

(ζj,i) ∩Ω and cDj
is some constant depending on G and Dj,i.

Similarly, there exists β ∈ (0, 1) such that Õj can be covered by a bounded number

of subdomains D̃j,i = Bβdj/2(ζj,i) ∩Ω, i = 1, . . . , Jβ, with ζj,i ∈ Õj, and

‖G(·, x0)− c
˜Dj,i

‖H2+α( ˜D′
j)

≤ Cd−1−α
j ,(4.20)

where D̃′
j,i = Bβdj

(ζj,i) ∩Ω and c
˜Dj,i

is some constant depending on G and D̃j,i.

There exists β ∈ (0, 1) such that Ωj can be covered by a bounded number of

subdomains D̂j,i = Bβρj/2(ζj,i) ∩Ω, i = 1, . . . , Jβ, with ζj,i ∈ Ωj , and

‖G(·, x0)− cD̂j,i
‖H2+α(D̂′

j,i)
≤ Cρ−1−α

j ,(4.21)

where D̂′
j,i = Bβρj/(ζj,i) ∩Ω and cD̂j,i

is some constant depending on G and D̂j,i.

If Ωj ∈ O and Õi ∈ Ox0
\{Õ0}, then

sup
y∈Ωj

‖G(·, y)‖H2( ˜O′
i)
≤ C|x0 − z0|s−1ρ−s

j .(4.22)

Proof. (4.18) is a consequence of (4.14); (4.19)–(4.21) follow from (4.15); (4.22) is
a consequence of (4.16). �

Since Gh is piecewisely defined in the elements and therefore not in H2(Ω), we
denote by ∇2

T Gh the elementwise second-order derivative (Hessian) of Gh. For the
simplicity of notation, we denote

‖∇2
T (Gh −G)‖L1(D) :=

∑
τ∩D �=∅

‖∇2(Gh −G)‖L1(τ)
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and

‖G(·, x0)‖H2+α
∗ (Oj)

:=
∑
i

‖G(·, x0)− cDj,i
‖H2+α(D′

j,i)
,(4.23)

‖G(·, x0)‖H2+α
∗ ( ˜Oj)

:=
∑
i

‖G(·, x0)− c̃Dj,i
‖H2+α( ˜D′

j,i)
,(4.24)

‖G(·, x0)‖H2+α
∗ (Ωj)

:=
∑
i

‖G(·, x0)− ĉDj,i
‖H2+α(D̂′

j,i)
,(4.25)

where the number of terms in the three summations above is bounded (independent
of h), as mentioned in Lemma 4.2. Then we have the following estimates:

‖∇[G(·, x0)− IhG(·, x0)]‖L2(Oj)

≤
∑
i

‖∇[G(·, x0)− IhG(·, x0)]‖L2(Dj,i)

=
∑
i

‖∇[(G(·, x0)− cDj,i
)− Ih(G(·, x0)− cDj,i

)]‖L2(Dj,i)

≤
∑
i

Ch1+α‖G(·, x0)− cDj,i
‖H2+α(D′

j,i)
(if r ≥ 2)

= Ch1+α‖G(·, x0)‖H2+α
∗ (Oj)

,(4.26)

‖∇2
T [G(·, x0)− IhG(·, x0)]‖L2(Oj)

≤
∑
i

‖∇2
T [G(·, x0)− IhG(·, x0)]‖L2(Dj,i)

=
∑
i

‖∇2
T [(G(·, x0)− cDj,i

)− Ih(G(·, x0)− cDj,i
)]‖L2(Dj,i)

≤
∑
i

Chα‖G(·, x0)− cDj,i
‖H2+α(D′

j,i)
(if r ≥ 2)

= Chα‖G(·, x0)‖H2+α
∗ (Oj)

,(4.27)

and similarly, the following estimates hold for r ≥ 2:

‖∇[G(·, x0)− IhG(·, x0)]‖L2( ˜Oj)
≤ Ch1+α‖G(·, x0)‖H2+α

∗ ( ˜Oj)
,(4.28)

‖∇2
T [G(·, x0)− IhG(·, x0)]‖L2( ˜Oj)

≤ Chα‖G(·, x0)‖H2+α
∗ ( ˜Oj)

,(4.29)

‖∇[G(·, x0)− IhG(·, x0)]‖L2(Ωj) ≤ Ch1+α‖G(·, x0)‖H2+α
∗ (Ωj)

,(4.30)

‖∇2
T [G(·, x0)− IhG(·, x0)]‖L2(Ωj) ≤ Chα‖G(·, x0)‖H2+α

∗ (Ωj)
.(4.31)
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For r = 1 the estimates in (4.26)–(4.31) should be replaced by the following
standard estimates:

‖∇[G(·, x0)− IhG(·, x0)]‖L2(Oj) ≤ Ch‖G(·, x0)‖H2(O′
j)
,

‖∇2
T [G(·, x0)− IhG(·, x0)]‖L2(Oj) ≤ C‖G(·, x0)‖H2(O′

j)
,

‖∇[G(·, x0)− IhG(·, x0)]‖L2( ˜Oj)
≤ Ch‖G(·, x0)‖H2( ˜O′

j)
,

‖∇2
T [G(·, x0)− IhG(·, x0)]‖L2( ˜Oj)

≤ C‖G(·, x0)‖H2( ˜O′
j)
,

‖∇[G(·, x0)− IhG(·, x0)]‖L2(Ωj) ≤ Ch‖G(·, x0)‖H2(Ω′
j)
,

‖∇2
T [G(·, x0)− IhG(·, x0)]‖L2(Ωj) ≤ C‖G(·, x0)‖H2(Ω′

j)
.

4.3. Reduction to the estimation of ‖∇2
T (Gh−G)‖L1(Ω)+‖�−1∇(Gh−G)‖L1(Ω).

The standard Lagrange interpolation operator Ih : C(Ω) → Sh has the following
approximation properties (cf. [5, Theorem 3.1.5])

‖u− Ihu‖Lq(D) ≤ Ch2+2( 1
q−

1
p )|u|W 2,p(D′), for 1 < p ≤ q ≤ ∞,(4.32)

where D ⊂ D′ ⊂ Ω can be any subdomain such that {τ : τ ∩D �= ∅} ⊂ D′.
Then we have∣∣∣∣Rhu(x0)− Ihu(x0)−

1

|Ω|

∫
Ω

(Rhu− Ihu) dx

∣∣∣∣
= |(∇Gh,∇(Rhu− Ihu))|
= |(∇Gh,∇(u− Ihu))|
= |(∇(Gh −G),∇(u− Ihu)) + (∇G,∇(u− Ihu))|

=

∣∣∣∣(∇(Gh −G),∇(u− Ihu)) + (δ̃x0
, u)− Ihu(x0)−

1

|Ω|

∫
Ω

(u− Ihu) dx

∣∣∣∣
=

∣∣∣∣ ∑
τ∈Th

(−Δ(Gh −G), u− Ihu)τ +
∑
e∈Eh

([∂n(Gh −G)], u− Ihu)e

+ (δ̃x0
, u)− Ihu(x0)−

1

|Ω|

∫
Ω

(u− Ihu) dx

∣∣∣∣
≤

( ∑
τ∈Th

‖Δ(Gh −G)‖L1(τ) +
∑
e∈Eh

‖[∂n(Gh −G)]‖L1(e) + C

)
‖u‖L∞(Ω)

≤ C
(
‖∇2

T (Gh −G)‖L1(Ω) + ‖�−1∇(Gh −G)‖L1(Ω) + 1
)
‖u‖L∞(Ω),

(4.33)

where we have used the following trace inequality in the last inequality of (4.33) (e
is an edge of τ ):

‖∇(Gh −G)‖L1(e) ≤ C
(
‖�−1∇(Gh −G)‖L1(τ) + ‖∇2

T (Gh −G)‖L1(τ)

)
.(4.34)

It remains to prove

‖∇2
T (Gh −G)‖L1(Ω) + ‖�−1∇(Gh −G)‖L1(Ω) ≤ C�h,(4.35)
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where �h is defined in (1.6). Once the above inequality is proved, (4.33) would
reduce to

|Rhu(x0)− Ihu(x0)| ≤ C�h‖u‖L∞(Ω) +

∣∣∣∣ 1

|Ω|

∫
Ω

(Rhu− Ihu) dx

∣∣∣∣
= C�h‖u‖L∞(Ω) +

∣∣∣∣ 1

|Ω|

∫
Ω

(u− Ihu) dx

∣∣∣∣
≤ C�h‖u‖L∞(Ω),

where we have used the normalization condition
∫
Ω
Rhu dx =

∫
Ω
u dx for the Ritz

projection. By using the triangle inequality, we obtain from the inequality above

|Rhu(x0)| ≤ C�h‖u‖L∞(Ω) + |Ihu(x0)| ≤ C�h‖u‖L∞(Ω).(4.36)

Since the constant C is independent of x0, the inequality above implies (2.4) and
therefore complete the proof of Theorem 2.1.

It remains to prove the key estimate (4.35), which is presented in the next two
subsections.

4.4. Reduction to the estimation of ‖�−1∇(Gh − G)‖L1(Ω). By using the in-
verse inequality, we have
(4.37)
‖∇2

T (Gh −G)‖L1(Ω) + ‖�−1∇(Gh −G)‖L1(Ω)

≤ ‖∇2
T (Gh − IhG)‖L1(Ω) + ‖∇2

T (IhG−G)‖L1(Ω) + ‖�−1∇(Gh −G)‖L1(Ω)

≤ C‖�−1∇(Gh − IhG)‖L1(Ω) + ‖∇2
T (IhG−G)‖L1(Ω) + ‖�−1∇(Gh −G)‖L1(Ω)

≤ C‖�−1∇(Gh −G)‖L1(Ω) + C‖�−1∇(G− IhG)‖L1(Ω) + ‖∇2
T (G− IhG)‖L1(Ω).

The last two terms on the right-hand side are estimated in Lemma 4.3.

Lemma 4.3. There exists a constant C, independent of h, such that

‖�−1∇(G− IhG)‖L1(Ω) + ‖∇2
T (G− IhG)‖L1(Ω) ≤ C�h.(4.38)

Proof. By using the decomposition (4.1), we have

‖∇2
T (G− IhG)‖L1(Ω) + ‖�−1∇(G− IhG)‖L1(Ω)

≤ ‖∇2
T (G− IhG)‖L1(O∗) + ‖�−1∇(G− IhG)‖L1(O∗)

+
∑

Oj∈Oz0

‖∇2
T (G− IhG)‖L1(Oj) +

∑
Oj∈Oz0

‖�−1∇(G− IhG)‖L1(Oj)

+ ‖∇2
T (G− IhG)‖L1( ˜O∗)

+ ‖�−1∇(G− IhG)‖L1( ˜O∗)

+
∑

˜Oj∈Ox0

‖∇2
T (G− IhG)‖L1( ˜Oj)

+
∑

˜Oj∈Ox0

‖�−1∇(G− IhG)‖L1( ˜Oj)

+
∑

Ωj∈O
‖∇2

T (G− IhG)‖L1(Ωj) +
∑

Ωj∈O
‖�−1∇(G− IhG)‖L1(Ωj).

To estimate the integrals on O∗, we use the following result: for sufficiently small
q ∈ (1, 2) the W 2,q estimate ‖G‖W 2,q(Ω) ≤ C‖δ̃ − 1/|Ω|‖Lq(Ω) holds; see [16]. By
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applying this result and the Hs+1 estimate in Lemma 3.2, we obtain
(4.39)
‖�−1∇(G− IhG)‖L1(O∗) + ‖∇2

T (G− IhG)‖L1(O∗)

≤ Ch−1
∗ dJ∗‖∇(G− IhG)‖L2(O∗) + Cd

2/q′

J∗
‖∇2

T (G− IhG)‖Lq(O∗)

≤ Cκ(κ1−γh∗)
s‖G‖Hs+1(Ω) + Cκ2/q′h

2/q′

∗ ‖G‖W 2,q(Ω)

≤ Cκ(κ1−γh∗)
s‖δ̃x0

− 1/|Ω|‖Hs−1(Ω) + Cκ2/q′h
2/q′

∗ ‖δ̃x0
− 1/|Ω|‖Lq(Ω)

≤ Cκ(κ1−γh∗)
s‖δ̃x0

− 1/|Ω|‖Lps (Ω) + Cκ2/q′h
2/q′

∗ ‖δ̃x0
− 1/|Ω|‖Lq(Ω)

≤ Cκ(κ1−γh∗)
s
�(x0)

−2+2/ps + Cκ2/q′h
2−2/q
∗ �(x0)

−2+2/q (here (4.11d) is used)

≤ Cκ+ Cκ2γ/q′ ,

where we have chosen ps := 2/(2 − s), which satisfies Lps(Ω) ↪→ Hs−1(Ω) and
−2 + 2/ps = −s, and we have also used the following relation in the derivation of
the last inequality:

�(x0) ∼ |x0 − z0|1−γh ≥ C(κh∗)
1−γhγ

∗ ∼ Cκ1−γh∗.

Similarly, the following estimate holds:
(4.40)

‖�−1∇(G− IhG)‖L1( ˜O∗)
+ ‖∇2

T (G− IhG)‖L1( ˜O∗)

≤ C�(x0)
−1dJx0

‖∇(G− IhG)‖L2( ˜O∗)
+ Cd

2/q′

Jx0
‖∇2

T (G− IhG)‖Lq( ˜O∗)

≤ Cκγσ
�(x0)

s‖G‖Hs+1(Ω) + C(κγσ
�(x0))

2/q′‖G‖W 2,q(Ω)

≤ Cκγσ
�(x0)

s‖δ̃x0
− 1/|Ω|‖Hs−1(Ω) + C(κγσ

�(x0))
2/q′‖δ̃x0

− 1/|Ω|‖Lq(Ω)

≤ Cκγσ
�(x0)

s‖δ̃x0
− 1/|Ω|‖Lps (Ω) + C(κγσ

�(x0))
2/q′‖δ̃x0

− 1/|Ω|‖Lq(Ω)

≤ Cκγσ
�(x0)

s
�(x0)

−2+2/ps

+ Cκγσ2/q′
�(x0)

2−2/q
�(x0)

−2+2/q (here (4.11d) is used)

≤ C(κγσ + κγσ2/q′)

≤ Cκγσ.

We estimate the integrals on Oj below by using Lemma 4.2:
(4.41)
‖�−1∇(G− IhG)‖L1(Oj) + ‖∇2

T (G− IhG)‖L1(Oj)

≤ C
(
djh

−1
j ‖∇(G− IhG)‖L2(Oj) + dj‖∇2

T (G− IhG)‖L2(Oj)

)
≤

⎧⎨⎩Cdj‖G‖H2(Oj) if r = 1,

Cdjh
α
j ‖G‖H2+α

∗ (Oj)
if r ≥ 2,

(here the notation in (4.26)–(4.31) is used)

≤

⎧⎨⎩C if r = 1,

Chα
j d

−α
j if r ≥ 2.

Since h ∼ hγ
∗ , dJ∗+1 ≥ 2κh∗ and κ ≥ 1, it follows that∑

j

hα
j d

−α
j ∼

∑
j

(d1−γ
j h)αd−α

j =
∑
j

hαd−γα
j ≤ Chγα

∗ (2κh∗)
−γα ≤ C.
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By using the inequality above in the case r ≥ 2, and using the inequality J∗ ≤
C ln(2 + 1/h) in the case r = 1, we obtain

(4.42)

∑
Oj∈Oz0

‖�−1∇(G− IhG)‖L1(Oj) +
∑

Oj∈Oz0

‖∇2
T (G− IhG)‖L1(Oj)

≤

⎧⎨⎩C ln(2 + 1/h) if r = 1,

C if r ≥ 2,

= C�h.

In the same way, one can prove that

(4.43)

∑
˜Oj∈Ox0

‖�−1∇(G− IhG)‖L1( ˜Oj)
+

∑
˜Oj∈Ox0

‖∇2
T (G− IhG)‖L1( ˜Oj)

+
∑

Ωj∈O
‖�−1∇(G− IhG)‖L1(Ωj) +

∑
Ωj∈O

‖∇2
T (G− IhG)‖L1(Ωj) ≤ C�h.

Summing up (4.39)–(4.40) and (4.42)–(4.43), we obtain the desired result (4.38).
�

Then, by substituting Lemma 4.3 into (4.37), we obtain
(4.44)
‖∇2

T (Gh −G)‖L1(Ω) + ‖�−1∇(Gh −G)‖L1(Ω) ≤ C‖�−1∇(Gh −G)‖L1(Ω) + C�h.

Now it remains to estimate ‖�−1∇(Gh −G)‖L1(Ω).

4.5. Estimation of ‖�−1∇(Gh −G)‖L1(Ω). We consider the decomposition

(4.45)

‖�−1∇(Gh −G)‖L1(Ω)

≤ Ch−1
∗ ‖∇(G−Gh)‖L1(O∗) + C�(x0)

−1‖∇(G−Gh)‖L1( ˜O∗)

+ C
∑

Oj∈Oz0

h−1
j ‖∇(G−Gh)‖L1(Oj)

+ C
∑

˜Oj∈Ox0

�(x0)
−1‖∇(G−Gh)‖L1( ˜Oj)

+ C
∑

Ωj∈O
h−1
j ‖∇(G−Gh)‖L1(Ωj)

≤ Cκ‖∇(G−Gh)‖L2(O∗) + Cκ‖∇(G−Gh)‖L2( ˜O∗)

+ C
∑

Oj∈Oz0

djh
−1
j ‖∇(G−Gh)‖L2(Oj)

+ C
∑

˜Oj∈Ox0

dj�(x0)
−1‖∇(G−Gh)‖L2( ˜Oj)

+ C
∑

Ωj∈O
ρjh

−1
j ‖∇(G−Gh)‖L2(Ωj).
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Again, we use the notation ps = 2/(2 − s), with Lps(Ω) ↪→ Hs−1(Ω). Then we
have

‖∇(G−Gh)‖L2(O∗) + ‖∇(G−Gh)‖L2( ˜O∗)

≤ 2‖∇(G−Gh)‖L2(Ω)

≤ 2‖∇(G− IhG)‖L2(Ω)

≤ 2‖∇(G− IhG)‖L2(O∗) + 2‖∇(G− IhG)‖L2( ˜O∗)

+ 2
∑

Oj∈Oz0

‖∇(G− IhG)‖L2(Oj) + 2
∑

˜Oj∈Ox0

‖∇(G− IhG)‖L2( ˜Oj)

+ 2
∑

Ωj∈O
‖∇(G− IhG)‖L2(Ωj)

≤ C(κ1−γh∗)
s‖G‖Hs+1(O′

∗)
+ C�(x0)

s‖G‖Hs+1( ˜O′
∗)

+ C
∑

Oj∈Oz0

hj‖G‖H2(O′
j)
+ C

∑
˜Oj∈Ox0

�(x0)‖G‖H2( ˜O′
j)
+ C

∑
Ωj∈O

hj‖G‖H2(Ω′
j)

≤ C(κ1−γh∗)
s‖δ̃x0

− 1/|Ω|‖Hs−1(Ω) + C�(x0)
s‖δ̃x0

− 1/|Ω|‖Hs−1(Ω)

+ C
∑

Oj∈O∗

hjd
−1
j + C

∑
˜Oj∈Ox0

�(x0)d
−1
j + C

∑
Ωj∈O

hjρ
−1
j (Lemma 4.2 is used)

≤ C(κ1−γh∗)
s‖δ̃x0

− 1/|Ω|‖Lps (Ω) + C�(x0)
s‖δ̃x0

− 1/|Ω|‖Lps (Ω) + C

≤ C(κ1−γh∗)
s
�(x0)

−2+2/ps + C�(x0)
s
�(x0)

−2+2/ps + C (here (4.11d) is used)

≤ C.
(4.46)

The estimates (4.45)–(4.46) imply

‖�−1∇(Gh −G)‖L1(Ω) ≤ C + CM,(4.47)

where

(4.48)

M :=
∑

Oj∈Oz0

djh
−1
j ‖∇(G−Gh)‖L2(Oj)

+
∑

˜Oj∈Ox0

dj�(x0)
−1‖∇(G−Gh)‖L2( ˜Oj)

+
∑

Ωj∈O
ρjh

−1
j ‖∇(G−Gh)‖L2(Ωj).

To estimate M, we need to use the following local energy error estimate (cf.
[9, Theorem 3.4]), which holds in general polygons.

Lemma 4.4. For any ξ ∈ Ω, let L0 and L1 be two concentric annuli such that
{x ∈ R

2 : dist(x, L0) < d} ⊂ L1, and consider the subdomains D = L0 ∩ Ω and
D′ = L1 ∩ Ω of Ω. Moreover, we assume that �(x) < d and �(x) ∼ �(y) for all
x, y ∈ D′. Then any function u ∈ W 1,1(Ω) ∩H1(D′) satisfies

‖u−Rhu‖H1(D)

≤ C
(
‖u− Ihu‖H1(D′) + d−1‖u− Ihu‖L2(D′) + d−1‖u−Rhu‖L2(D′)

)
.
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Since Gh = RhG, we can apply Lemma 4.4 with u = G(·, x0) and use the local
regularity estimates in Lemma 4.2. Then we obtain
(4.49)
djh

−1
j ‖∇(G−Gh)‖L2(Oj)

≤ C
(
djh

−1
j ‖∇(G− IhG)‖L2(O′

j)
+ h−1

j ‖G− IhG‖L2(O′
j)

)
+ Ch−1

j ‖G−Gh‖L2(O′
j)

≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C
(
dj‖G‖H2(O′′

j ) + hj‖G‖H2(O′′
j )

)
+ Ch−1

j ‖G−Gh‖L2(O′
j)

if r = 1,

C
(
djh

α
j ‖G‖H2+α

∗ (O′′
j ) + h1+α

j ‖G‖H2+α
∗ (O′′

j )

)
+Ch−1

j ‖G−Gh‖L2(O′
j)

if r ≥ 2,

≤

⎧⎨⎩C + Ch−1
j ‖G−Gh‖L2(O′

j)
if r = 1,

C
(
d−α
j hα

j + d−1−α
j h1+α

j

)
+ Ch−1

j ‖G−Gh‖L2(O′
j)

if r ≥ 2.

Since J∗ ≤ C ln(2 + 1/h) and
∑

Oj∈Oz0
d−α
j hα

j ≤ C, it follows that

(4.50)

∑
Oj∈Oz0

djh
−1
j ‖∇(G−Gh)‖L2(Oj) ≤ C�h + C

∑
Oj∈Oz0

h−1
j ‖G−Gh‖L2(O′

j)
.

In the same way, one can prove that

∑
˜Oj∈Ox0

dj�(x0)
−1‖∇(G−Gh)‖L2( ˜Oj)

≤ C�h + C
∑

˜Oj∈Ox0

�(x0)
−1‖G−Gh‖L2( ˜O′

j)
,

(4.51)

∑
Ωj∈O

ρjh
−1
j ‖∇(G−Gh)‖L2(Ωj) ≤ C�h + C

∑
Ωj∈O

h−1
j ‖G−Gh‖L2(Ω′

j)
.

(4.52)

Hence, by summing up (4.50)–(4.52), we have

(4.53)

M ≤ C�h + C
∑

Oj∈Oz0

h−1
j ‖G−Gh‖L2(O′

j)

+ C
∑

˜Oj∈Ox0

�(x0)
−1‖G−Gh‖L2( ˜O′

j)
+ C

∑
Ωj∈O

h−1
j ‖G−Gh‖L2(Ω′

j)

≤ C�h + C
∑

Oj∈O′
z0

h−1
j ‖G−Gh‖L2(Oj)

+ C
∑

˜Oj∈O′
x0

�(x0)
−1‖G−Gh‖L2( ˜Oj)

+ C
∑

Ωj∈O
h−1
j ‖G−Gh‖L2(Ωj),

where we have used (4.46) in the last inequality.
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The following three technical estimates can be proved for some σ ∈ (γ, β), and
their proofs are presented in Appendices A–C:∑

Oj∈O′
z0

h−1
j ‖G−Gh‖L2(Oj) ≤ Cκ(1−σ)γ + Cκ−γσM,(4.54)

∑
˜Oj∈O′

x0

�(x0)
−1‖G−Gh‖L2( ˜Oj)

≤ Cκγ(1−σ) + Cκ−γσ2M,(4.55)

∑
Ωj∈O

h−1
j ‖G−Gh‖L2(Ωj) ≤ Cκγ(1−σ) + Cκ−γσM.(4.56)

Substituting (4.54)–(4.56) into (4.53), we have

(4.57) M ≤ C�h + Cκγ(1−σ) + Cκ−γσ2M.

Then, by choosing κ sufficiently large, the last term of the above inequality would
be absorbed by its left-hand side, and therefore we obtain

(4.58) M ≤ C�h.

By substituting the above result into (4.47) and using (4.44), we obtain the key
estimate (4.35). This completes the proof of Theorem 2.1 in the case |x0 − z0| >
16κh∗.

4.6. The case |x0−z0| ≤ 16κh∗. Note that κ is a fixed constant already determined
below (4.57). In the case |x0 − z0| ≤ 16κh∗, we decompose the domain Ω into
disjoint subsets

Ω =

J+1⋃
j=0

Ωj ,(4.59)

where

Ωj := {x ∈ Ω : ρj+1 ≤ |x− z0| < ρj}, j = 0, 1, . . . , J,(4.60a)

ΩJ+1 := {x ∈ Ω : |x− z0| < ρJ+1},(4.60b)

with ρj = 2−jdiameter(Ω) and J =
[
log2

(
diameter(Ω)

16κh∗λ

) ]
, so that

8κh∗λ ≤ ρJ+1 ≤ 16κh∗λ,(4.61a)

where λ is a constant to be determined later (like the constant κ in the previous
subsections).

The rest of the proof is similar as the proof for the case |x0−z0| > 16κh∗, except
that the decomposition (4.1) is replaced by the simpler one (4.59). In particular,
inequality (4.33) still holds, i.e.,∣∣∣∣Rhu(x0)− Ihu(x0)−

1

|Ω|

∫
Ω

(Rhu− Ihu) dx

∣∣∣∣
≤ C

(
‖∇2

T (Gh −G)‖L1(Ω) + ‖�−1∇(Gh −G)‖L1(Ω) + 1
)
‖u‖L∞(Ω),(4.62)

and (4.47)–(4.48) would be replaced by

‖∇2
T (Gh −G)‖L1(Ω) + ‖�−1∇(Gh −G)‖L1(Ω) ≤ C�h + CM,(4.63)
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with

(4.64) M :=

J∑
j=0

ρjh
−1
j ‖∇(G−Gh)‖L2(Ωj).

The similar estimates as in the previous subsections would yield the following esti-
mate (similarly as (4.57)):

(4.65) M ≤ C�h + Cλγ(1−σ) + Cλ−γσM.

By choosing sufficiently large λ, the last term of (4.65) can be absorbed by its
left-hand side and therefore,

(4.66) M ≤ C�h.

Substituting (4.63) and (4.66) into (4.62) would yield the desired result, i.e.,

(4.67) |Rhu(x0)| ≤ C�h‖u‖L∞(Ω).

This completes the proof of Theorem 2.1.

5. Proof of Corollary 2.1

In this section, we prove Corollary 2.1 by applying the result of Theorem 2.1
and assuming that the triangulation satisfies the general conditions described in
Section 2.1.

We first prove the following local W k+2,p regularity for the solutions of the
Poisson equation and then use this result to prove Corollary 2.1.

Lemma 5.1 (Local W k+2,p estimates). Let k and p be nonnegative integer and

real number, respectively, such that p ≥ 2, (k, p) �= (0, 2), and (1 − 1
p )

2θj
π are not

integers for j = 0, 1, . . . , m − 1. Let f ∈ W k,p(Ω) (satisfying the compatibility
condition

∫
Ω
f dx = 0) and let u be the unique solution of (1.1), and let d > 0 be

small enough so that dist(Ω ∩ B3d(zi), zj) ≥ C when i �= j and i, j = 0, 1, . . . ,
m− 1. Then

(5.1) ‖u‖Wk+2,p(Ω∩B2d(zj)\Bd(zj)) ≤ Cd
−k−1+ 2

p−
2
qj ‖f‖Wk,p(Ω),

where qj = 2/(1− βj) if βj < 1 and qj = ∞ if βj > 1 and k ≥ 1.

Proof. Since we have assumed that k ≥ 0, p ≥ 2 and (k, p) �= (0, 2), there are two
cases: (1) If k = 0 then p > 2; (2) If k ≥ 1 then W k,p(Ω) ↪→ Lq(Ω) for some
q > 2. In either case, f ∈ W k,p(Ω) ↪→ Lq(Ω) for some q > 2. We can choose such
a fixed q > 2 such that condition (3.21) is satisfied. Then from (3.25)–(3.27) (or
[16, Corollary 4.4.4.11]) we know there exist some constants cj,n, n = 1, . . . , Kj

and j = 0, . . . , m− 1, such that

u−
m−1∑
j=0

Kj∑
n=1

cj,nSj,n ∈ W 2,q(Ω),

where the expression of Sj,n in (3.26) implies that

‖∇Sj,n‖Lqj,∞(Ω) ≤ C with qj = 2/(1− βj) if βj =
π

ωj
< 1, and qj = ∞ if βj > 1.
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Moreover, as explained in the text above (3.27), there exists c ∈ R such that

m−1∑
j=0

Kj∑
n=1

|cj,n|+
∥∥∥∥u− c−

m−1∑
j=0

Kj∑
n=1

cj,nSj,n

∥∥∥∥
W 2,q(Ω)

≤ C‖f‖Lq(Ω) ≤ C‖f‖Wk,p(Ω).

Since q > 2, it follows that W 2,q(Ω) ↪→ W 1,∞(Ω) ↪→ W 1,qj (Ω). As a result, the
two inequalities above and the triangle inequality imply that

‖∇u‖Lqj ,∞(Ω∩B2d(zj)) ≤ C‖f‖Wk,p(Ω) for j = 0, 1, . . . ,m− 1.

This is the basic estimate to be used in the following proof.
For any fixed β ∈ (0, 1), the circular region Ω ∩ B2d(z0)\Bd(z0) can be covered

by a bounded number of disks of radius βd (the number depends on β). We shall
present estimates of the solution in each of these disks. To this end, for ζ ∈
Ω ∩ B2d(zj)\Bd(zj) and k ≥ 0, we denote by ωk a smooth cut-off function such
that

ωk(x) ≡ 1, in Bβd/2k+3(ζ),(5.2a)

ωk(x) ≡ 0, outside Bβd/2k+2(ζ),(5.2b)

|∇lωk| ≤ Cld
−l, l = 1, 2, . . . ,(5.2c)

and let c be an arbitrary constant. Since u is the solution of (3.1), it follows that
ũ = ωk(u− c) is the solution of{

−Δũ = f̃ in Ω,

∂nũ = g̃ · n on ∂Ω,
(5.3)

with

f̃ = fωk − 2∇u · ∇ωk − (u− c)Δωk,(5.4)

g̃ = (u− c)∇ωk.(5.5)

Note that the functions ũ, f̃ and g̃ are all supported on Bβd/2k+2(ζ). If Bβd/2(ζ)∩
∂Ω = ∅ then the equation in (5.3) actually holds on R

2. Then the W k+2,p estimates
of ũ can be obtained similarly as (but simpler than) the following argument for the
more complicated case that Bβd/2(ζ) ∩ ∂Ω �= ∅.

Without loss of generality, we focus on the case Bβd/2(ζ) ∩ ∂Ω �= ∅ and, by
choosing β small enough, we can make sure that Bβd(ζ) does not intersect other
sides of Ω. Via a rotation we can assume that one side of ∂Ω∩Bβd/2(ζ) is contained
in R+ × {0}. Since ũ is supported in Bβd/2(ζ), it follows that (5.3) holds in the
upper half plane, i.e., {

−Δũ = f̃ in R× R+,

∂nũ = g̃ · n on R× {0},
(5.6)
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where g̃(x1, 0) = 0 for x1 ≤ 0. Let Bβd/2(ζ)+ = Bβd/2(ζ) ∩ (R×R+). By applying

the W k+1,p estimates on the upper half plane we obtain

|u|Wk+2,p(R×R+)

≤ C‖f̃‖Wk,p(R×R+) + C‖g̃ · n‖
W

k+1− 1
p
,p
(R×{0})

≤ C‖f̃‖Wk,p(R×R+) + C‖g̃‖Wk+1,p(R×R+)

≤ C
k∑

j=0

d−j‖f‖Wk−j,p(B
βd/2k+2 (ζ)+) + C

k∑
j=0

d−j−1‖u‖Wk+1−j,p(B
βd/2k+2 (ζ)+)

+ C

k∑
j=0

d−j−2‖u− c‖Wk−j,p(B
βd/2k+2 (ζ)+)

+ C
k+1∑
j=0

d−j−1‖u− c‖Wk+1−j,p(B
βd/2k+2 (ζ)+),

where we have substituted the expressions (5.4)–(5.5) in deriving the last inequality.
By choosing c to be the average of u on Bd/2k+2(ζ), we have

|u− c|Lp(B
βd/2k+2 (ζ)+) ≤ Cd|u|W 1,p(B

βd/2k+2 (ζ)+).

Since wk = 1 on Bβd/2k+3(ζ), it follows that

|u|Wk+2,p(B
βd/2k+3 (ζ)∩Ω)

≤ C

k∑
j=0

d−j‖f‖Wk−j,p(B
βd/2k+2 (ζ)∩Ω) + C

k∑
j=0

d−j−1‖u‖Wk+1−j,p(B
βd/2k+2 (ζ)∩Ω).

(5.7)

Since the right-hand side contains strictly lower-order norms of u than the left-hand
side, by iterating the inequality with respect to k we can obtain

|u|Wk+2,p(B
βd/2k+3 (ζ)∩Ω)

≤ C
k∑

j=0

d−j‖f‖Wk−j,p(Bβd/4(ζ)∩Ω) + Cd−k−1‖∇u‖Lp(Bβd/4(ζ)∩Ω).

Then, substituting the Lp estimate for ∇u in (3.49) into the above inequality, we
have

|u|Wk+2,p(B
βd/2k+3 (ζ)∩Ω)

≤ C

k∑
j=0

d−j‖f‖Wk−j,p(Bβd/2(ζ)∩Ω) + Cd−k−2+ 2
p ‖∇u‖L2(Bβd/2(ζ)∩Ω)

≤ C

k∑
j=0

d−j‖f‖Wk−j,p(Bβd/2(ζ)∩Ω) + Cd−k−1+ 2
p−

2
q ‖∇u‖Lq,∞(Bβd/2(ζ)∩Ω),

(5.8)

where the last inequality follows from using Hölder’s inequality with the weak Lq

norm, for arbitrary q ∈ [2,∞]. The proof of above inequality relies on the iteration
of (5.7). In fact, we can construct many intermediate disks between Bβd(ζ) and
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Bβd/2(ζ) and apply similar iterations as (5.7). In this way, we would obtain a similar
inequality as (5.8), but with Bβd/2k+3(ζ) replaced by Bβd/4(ζ) on the left-hand side,
i.e.,

|u|Wk+2,p(Bβd/4(ζ)∩Ω)

≤ C
k∑

j=0

d−j‖f‖Wk−j,p(Bβd/2(ζ)∩Ω) + Cd−k−1+ 2
p−

2
q ‖∇u‖Lq,∞(Bβd/2(ζ)∩Ω).

(5.9)

Since the circular region Ω∩B2d(zj)\Bd(zj) can be covered by a bounded number
of balls of radius βd, by summing up the W k+2,p estimates over these balls, we
obtain

‖u‖Wk+2,p(Ω∩B2d(zj)\Bd(zj))

≤ C
k∑

j=0

d−j‖f‖Wk−j,p(Ω) + Cd
−k−1+ 2

p−
2
qj ‖∇u‖Lqj,∞(Ω∩B3d(zj))

≤ Cd
−k−1+ 2

p−
2
qj ‖f‖Wk,p(Ω).(5.10)

This proves the desired result of Lemma 5.1. �

Let d be a sufficiently small constant such that dist(zi, zj) ≥ 4d for any two
different vertices zi and zj of the polygon Ω. For any j = 0, 1, . . . ,m−1, we denote
Dj,i = Ω ∩ B2di

(zj)\Bdi
(zj), with di = 2−i−2d for i = 0, 1, . . . , Ij , where Ij is

determined by 2−Ijd ∼ κh∗,j , where κ can be chosen to be large enough so that
di ≥ Cκγjhj,i is bigger than twice of the mesh size in Bdi

(zj).
Let Ω0 = {x ∈ Ω : dist(x, zj) ≥ d/4 for j = 0, 1, . . . ,m− 1}. We denote by hj,i

the mesh size in Dj,i. According to the mesh size choice in (2.1), we have

hj,i = d
1−γj

i h.

Then

Ω = Ω0 ∪
m−1⋃
j=0

∪Ij
i=0Di,j .

(1.2) implies that the finite element solution given by (1.2) satisfies the following
error estimate:

‖u− uh‖L∞(Ω) = ‖u− Ihu−Rh(u− Ihu)‖L∞(Ω)

≤ C�h‖u− Ihu‖L∞(Ω)

≤ C�h max
0≤j≤m−1

max
1≤i≤Ij

‖u− Ihu‖L∞(Ω∩B2di
(zj)\Bdi

(zj))

+ C�h‖u− Ihu‖L∞(Ω0).(5.11)

We consider two cases separately.
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Case 1: r ≥ k + 1. In this case, we have

‖u− Ihu‖L∞(Ω∩B2di
(zj)\Bdi

(zj)) ≤ Ch
k+2− 2

p

j,i ‖u‖Wk+2,p(Ω∩B4di
(zj)\Bdi/2

(zj))

≤ Ch
k+2− 2

p

j,i d
−k−1+ 2

p−
2
qj

i ‖f‖Wk,p(Ω)

≤ Cd
(1−γj)(k+2− 2

p )

i hk+2− 2
p d

−k−1+ 2
p−

2
qj

i ‖f‖Wk,p(Ω)

≤ Chk+2− 2
p d

(1−γj)(k+2− 2
p )−k−1+ 2

p−
2
qj

i ‖f‖Wk,p(Ω)

≤ Chk+2− 2
p d

−γj(k+2− 2
p )+1− 2

qj

i ‖f‖Wk,p(Ω).(5.12)

By choosing −γj(k+ 2− 2
p ) + 1− 2

qj
≥ 0, or equivalently γj ≤ 1−2/qj

k+2−2/p =
min(1,βj)
k+2−2/p

(as qj = ∞ when βj > 1), we obtain

‖u− Ihu‖L∞(Ω∩B2di
(zj)\Bdi

(zj)) ≤ Chk+2− 2
p ‖f‖Wk,p(Ω).(5.13)

Since the mesh size in Ω0 is O(h), it follows that

‖u− Ihu‖L∞(Ω0) ≤ Chk+2− 2
p ‖u‖Wk+2,p(Ω′

0)
≤ Chk+2− 2

p ‖f‖Wk,p(Ω),(5.14)

where Ω′
0 = {x ∈ Ω : dist(x, zj) ≥ d/8} ⊃ Ω0. By substituting the two estimates

above into (5.11), we obtain

‖u− uh‖L∞(Ω) ≤ C�hh
k+2− 2

p ‖f‖Wk,p(Ω).(5.15)

This proves the desired result of Corollary 2.1 in the case r ≥ k + 1.
Case 2: r = k ≥ 1. In this case, we choose p = 2 in Lemma 5.1 and replace

(5.12) by the following estimate:

‖u− Ihu‖L∞(Ω∩B2di
(zj)\Bdi

(zj)) ≤ Chr+1
j,i ‖u‖Hr+2(Ω∩B4di

(zj)\Bdi/2
(zj))

≤ Chr+1
j,i d

−r− 2
qj

i ‖f‖Hr(Ω)

≤ Chr+1d
(1−γj)(r+1)−r− 2

qj

i ‖f‖Hr(Ω).(5.16)

By choosing (1 − γj)(r + 1) − r − 2
qj

≥ 0, or equivalently γj ≤ 1−2/qj
r+1 =

min(1,βj)
r+1

(as qj = ∞ when βj > 1), we obtain

‖u− Ihu‖L∞(Ω∩B2di
(zj)\Bdi

(zj)) ≤ Chr+1‖f‖Hr(Ω).(5.17)

Since the mesh size in Ω0 is O(h), it follows that

‖u− Ihu‖L∞(Ω0) ≤ Chr+1‖u‖Hr+1(Ω′
0)

≤ Chr+1‖f‖Hr(Ω),(5.18)

where Ω′
0 = {x ∈ Ω : dist(x, zj) ≥ d/8} ⊃ Ω0. By substituting the two estimates

above into (5.11), we obtain

‖u− uh‖L∞(Ω) ≤ C�hh
r+1‖f‖Hr(Ω).(5.19)

This proves the desired result of Corollary 2.1 in the case r = k.
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6. Conclusions

We have proved the maximum-norm stability of finite element solutions to the
Poisson equation with the Neumann boundary condition in a polygon which is
possibly nonconvex. The use of graded mesh, with triangulations locally refined at
the reentrant corners, is essential to the proof. With the maximum-norm stability
result, the error estimation in the L∞ norm can be reduced to an interpolation
error estimate. By analyzing the interpolation error, the error estimate is derived
in terms of the smoothness f ∈ W k,p(Ω) of the right-hand side, with 2 ≤ p < ∞.
By using norms in Lorentz spaces Lp,q(Ω) (instead of the usual Lebesgue spaces)
for the singular functions, it is possible to choose the grading parameter in the
limit.

The analysis in this article may be extended to the Dirichlet boundary condi-
tion and more general elliptic equations with variable diffusion coefficients in two-
dimensional polygonal domains. The maximum-norm stability of finite element
solutions in three-dimensional nonconvex polyhedral domains still remains open.

Appendix A. Proof of (4.54)

For Oj ∈ O′
z0 , we estimate ‖G−Gh‖L2(Oj) via the duality

‖G−Gh‖L2(Oj) = sup
ψ∈C∞

0 (Oj)

‖ψ‖
L2(Oj)

≤1

(G−Gh, ψ).

For any given ψ ∈ C∞
0 (Oj) satisfying ‖ψ‖L2(Oj) ≤ 1, we define w as the solution of{

−Δw = ψ − ψ in Ω,

∂nw = 0 on ∂Ω,
(A.1)

where ψ := 1
|Ω|

∫
Ω
ψ(x)dx is the average of ψ in the domain Ω. The solution w

exists and is unique under the condition
∫
Ω
w(x) dx = 0. It is known that the

solution of (A.1) satisfies that

‖w‖Hs+1(Ω) ≤ C‖ψ‖Hs−1(Ω) for s = 0 and s ∈
(1
2
, β

)
;

see Lemma 3.2 with g = 0. By the complex interpolation, we have

‖w‖Hs+1(Ω) ≤ C‖ψ‖Hs−1(Ω) for s ∈ [0, β).(A.2)

Here we choose s > γ to be sufficiently close to γ so that (1 − γ)(1 + s) < 1, and
choose σ = s in the definition of Jx0

below (4.2). Inequality (A.2) will be used in
Appendices A–C.

By using the Sobolev embedding Lps(Ω) ↪→ Hs−1(Ω) with ps = 2/(2 − s) and
Hölder’s inequality, we have

‖ψ‖Hs−1(Ω) ≤ C‖ψ‖Lps (Ω) ≤ C|Oj |
1
ps

− 1
2 ‖ψ‖L2(Ω) ≤ Cd

2
ps

−1

j ‖ψ‖L2(Ω) = Cd1−s
j .

(A.3)

This inequality will be frequently used below.
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By using the normalization condition
∫
Ω
Gh dx =

∫
Ω
G dx, we have (G−Gh, ψ)

= 0 and therefore

(A.4)

(G−Gh, ψ) = (G−Gh, ψ − ψ) = (G−Gh,−Δw) = (∇(G−Gh),∇w)

= (∇(G−Gh),∇(w − Ihw))

= (∇(G−Gh),∇(w − Ihw))O∗

+ (∇(G−Gh),∇(w − Ihw)) ˜O∗

+
∑

Oi∈Oz0
∪{O−1}

(∇(G−Gh),∇(w − Ihw))Oi

+
∑

˜Oi∈Ox0

(∇(G−Gh),∇(w − Ihw)) ˜Oi

+
∑

Ωi∈O\{ΩJ+1}
(∇(G−Gh),∇(w − Ihw))Ωi

=:
5∑

j=1

Ej .

We estimate Ej , j = 1, . . . , 5, separately.
The first term on the right-hand side of (A.4) can be estimated by

(A.5)

|E1| = |(∇(G−Gh),∇(w − Ihw))O∗ |
≤ ‖∇(G−Gh)‖L2(O∗)‖∇(w − Ihw)‖L2(O∗)

≤ C(κ1−γh∗)
s‖∇(G−Gh)‖L2(O∗)‖w‖Hs+1(Ω)

≤ C(κ1−γh∗)
s‖∇(G−Gh)‖L2(O∗)‖ψ‖Hs−1(Ω)

≤ C(κ1−γh∗)
sd1−s

j ‖∇(G−Gh)‖L2(O∗)

≤ C(κ1−γh∗)
sd1−s

j ,

where we have used (A.3) in the second to last inequality, and (4.46) in the last
inequality.

The second term on the right-hand side of (A.4) can be estimated by

|E2| = |(∇(G−Gh),∇(w − Ihw)) ˜O∗
|

≤ C�(x0)‖w‖H2( ˜O∗)
‖∇(G−Gh)‖L2( ˜O∗)

≤ C�(x0)‖w‖H2( ˜O∗)
,(A.6)

where we have used (4.46). Note that ‖w‖H2( ˜O∗)
can be estimated by using Green’s

formula, i.e.,

w(x) =

∫
Ω

Γ(x, y)ψ(y) d y =

∫
Oj

Γ(x, y)ψ(y) d y.

Since ψ ∈ C∞
0 (Oj) and ‖ψ‖L2(Oj) ≤ 1, it follows that

‖w‖H2( ˜O∗)
≤ sup

y∈Oj

‖Γ(·, y)‖H2( ˜O∗)
‖ψ‖L1(Oj)

≤ Cdist(Õ∗, Oj)
−1|Oj |

1
2 ‖ψ‖L2(Oj)

≤ C|x0 − z0|−1dj .
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Then, substituting this result into (A.6), we have

|E2| ≤ C�(x0)|x0 − z0|−1dj .(A.7)

For Oi ∈ Oz0 ∪ {O−1} we have
(A.8)

|E3| = |(∇(G−Gh),∇(w − Ihw))Oi
| ≤ Chs

i‖w‖Hs+1(Ω)‖∇(G−Gh)‖L2(Oi)

≤ Chs
i‖ψ‖Hs−1(Ω)‖∇(G−Gh)‖L2(Oi)

≤ Chs
i‖ψ‖Lps (Ω)‖∇(G−Gh)‖L2(Oi)

≤ Chs
id

2
ps

−1

j ‖ψ‖L2(Ω)‖∇(G−Gh)‖L2(Oi)

≤ Chs
id

1−s
j ‖∇(G−Gh)‖L2(Oi).

For Õi ∈ Ox0
there holds

‖w‖H2( ˜O′
i)
≤ sup

y∈Oj

‖G(·, y)‖H2( ˜O′
i)
‖ψ‖L1(Oj)

≤ C|x0 − z0|−1|Oj |
1
2 ‖ψ‖L2(Oj)

≤ C|x0 − z0|−1dj ,

which implies that
(A.9)
|E4| = |(∇(G−Gh),∇(w − Ihw)) ˜Oi

| ≤ C�(x0)‖w‖H2( ˜O′
i)
‖∇(G−Gh)‖L2( ˜Oi)

≤ C�(x0)|x0 − z0|−1dj‖∇(G−Gh)‖L2( ˜Oi)
.

For Ωi ∈ O\{ΩJ+1} there holds

‖w‖H2(Ω′
i)
≤ sup

y∈Oj

‖G(·, y)‖H2(Ω′
i)
‖ψ‖L1(Oj)

≤ Cρ−1
i |Oj |

1
2 ‖ψ‖L2(O′

j)

≤ Cρ−1
i dj ,

which implies that

(A.10)
|E5| = |(∇(G−Gh),∇(w − Ihw))Ωi

| ≤ Chi‖w‖H2(Ω′
i)
‖∇(G−Gh)‖L2(Ωi)

≤ Chiρ
−1
i dj‖∇(G−Gh)‖L2(Ωi).

Overall, substituting the estimates of |Ej |, j = 1, . . . , 5, into (A.4), we obtain
(via the duality argument)

‖G−Gh‖L2(Oj) ≤ C(κ1−γh∗)
sd1−s

j + C�(x0)|x0 − z0|−1dj

+ C
∑

Oi∈Oz0
∪{O−1}

(d1−s
j hs+1

i d−1
i )dih

−1
i ‖∇(G−Gh)‖L2(Oi)

+ C
∑

˜Oi∈Ox0

(dj�(x0)
2|x0 − z0|−1d−1

i )di�(x0)
−1‖∇(G−Gh)‖L2( ˜Oi)

+ C
∑

Ωi∈O\{ΩJ+1}
(djh

2
i ρ

−2
i )ρih

−1
i ‖∇(G−Gh)‖L2(Ωi),

(A.11)
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and so

∑
Oj∈O′

z0

h−1
j ‖G−Gh‖L2(Oj)

≤ C
∑

Oj∈O′
z0

((κ1−γh∗)
sd1−s

j h−1
j + �(x0)|x0 − z0|−1djh

−1
j )

+ C
∑

Oi∈Oz0
∪{O−1}

∑
Oj∈O′

z0

(d1−s
j h−1

j hs+1
i d−1

i )dih
−1
i ‖∇(G−Gh)‖L2(Oi)

+ C
∑

˜Oi∈Ox0

∑
Oj∈O′

z0

(djh
−1
j �(x0)

2d−1
i |x0 − z0|−1)di�(x0)

−1‖∇(G−Gh)‖L2( ˜Oi)

+ C
∑

Ωi∈O\{ΩJ+1}

∑
Oj∈O′

z0

(djh
−1
j h2i ρ

−2
i )ρih

−1
i ‖∇(G−Gh)‖L2(Ωi)

=: L1 + L2 + L3 + L4.

(A.12)

Since γ < s < β, as shown in (3.3), we have

L1 = C
∑

Oj∈O′
z0

((κ1−γh∗)
sd1−s

j h−1
j + �(x0)|x0 − z0|−1djh

−1
j )

≤ C
∑

Oj∈O′
z0

(κ1−γh∗)
sd1−s

j (hd1−γ
j )−1

+ C
∑

Oj∈O′
z0

�(x0)|x0 − z0|−1dj(hd
1−γ
j )−1

≤ C
∑

Oj∈O′
z0

((κ1−γh∗)
sh−γ

∗ d
−(s−γ)
j

+ C
∑

Oj∈O′
z0

(h|x0 − z0|1−γ)|x0 − z0|−1h−γ
∗ dγj

≤ C((κ1−γh∗)
sh−γ

∗ (κh∗)
−(s−γ)

+ Chγ
∗ |x0 − z0|1−γ |x0 − z0|−1h−γ

∗ |x0 − z0|γ

≤ Cκ(1−s)γ + C.
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By using the definition of M in (4.48), we have

L2 ≤ CM max
Oi∈Oz0

∪{O−1}

∑
Oj∈O′

z0

(
d1−s
j h−1

j hs+1
i d−1

i

)
≤ CM max

Oi∈Oz0
∪{O−1}

∑
Oj∈O′

z0

d1−s
j (hd1−γ

j )−1(hd1−γ
i )s+1d−1

i

≤ CM max
Oi∈Oz0

∪{O−1}

∑
Oj∈O′

z0

hsd
−(s−γ)
j d

−[1−(1−γ)(s+1)]
i

≤ CMhγs
∗ (κh∗)

−(s−γ)(κh∗)
−[1−(1−γ)(s+1)] (note that 1− (1− γ)(s+ 1) > 0)

≤ Cκ−γsM,

L3 ≤ CM max
˜Oi∈Ox0

∑
Oj∈O′

z0

(
djh

−1
j �(x0)

2d−1
i |x0 − z0|−1

)
≤ CM

∑
Oj∈O′

z0

dj(hd
1−γ
j )−1

�(x0)
2(κγs

�(x0))
−1|x0 − z0|−1

≤ CM
∑

Oj∈O′
z0

h−1dγj κ
−γs

�(x0)|x0 − z0|−1

≤ CMh−1|x0 − z0|γκ−γs(h|x0 − z0|1−γ)|x0 − z0|−1

≤ Cκ−γsM,

L4 ≤ CM max
Ωi∈O\{ΩJ+1}

∑
Oj∈O′

z0

(djh
−1
j h2i ρ

−2
i )

≤ CM max
Ωi∈O\{ΩJ+1}

∑
Oj∈O′

z0

dj(hd
1−γ
j )−1(hρ1−γ

i )2ρ−2
i

≤ CM max
Ωi∈O\{ΩJ+1}

∑
Oj∈O′

z0

hdγj ρ
−2γ
i

≤ CM max
Ωi∈O\{ΩJ+1}

hγ
∗ |x0 − z0|γ |x0 − z0|−2γ

≤ CM max
Ωi∈O\{ΩJ+1}

hγ
∗(κh∗)

−γ

≤ Cκ−γM.

Substituting the estimates of L1, L2, L3 and L4 into (A.12) and using κ ≥ 1, we
obtain ∑

Oj∈O′
z0

h−1
j ‖G−Gh‖L2(Oj) ≤ Cκ(1−s)γ + Cκ−γsM.(A.13)

This completes the proof of (4.54).

Appendix B. Proof of (4.55)

The proof of (4.55) is similar as the proof of (4.54) in Appendix A. The main

difference here is that we focus on the subdomains Õj which are closer to the
singular point x0 than the reentrant corner z0 (in Appendix A we focus on the
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subdomains Oj which are closer to the reentrant corner z0). For the convenience
of readers, we include the complete proof here.

For Õj ∈ O′
x0
, we estimate ‖G−Gh‖L2( ˜Oj)

via the duality

‖G−Gh‖L2( ˜Oj)
= sup

ψ∈C∞
0 ( ˜Oj)

‖ψ‖
L2( ˜Oj)

≤1

(G−Gh, ψ).

For any given ψ ∈ C∞
0 (Õj) satisfying ‖ψ‖L2( ˜Oj)

≤ 1, we define w as the solution of

{
−Δw = ψ − ψ in Ω,

∂nw = 0 on ∂Ω,
(B.1)

where ψ := 1
|Ω|

∫
Ω
ψ(x)dx is the average of ψ in the domain Ω. The solution w

exists and is unique under the condition
∫
Ω
w(x) dx = 0. Moreover, inequality

(A.3) holds similarly here.
By using the normalization condition

∫
Ω
Gh dx =

∫
Ω
G dx, we have (G−Gh, ψ)

= 0 and therefore

(B.2)

(G−Gh, ψ) = (G−Gh, ψ − ψ) = (G−Gh,−Δw) = (∇(G−Gh),∇w)

= (∇(G−Gh),∇(w − Ihw))

= (∇(G−Gh),∇(w − Ihw))O∗

+
∑

Oi∈Oz0

(∇(G−Gh),∇(w − Ihw))Oi

+
∑

Ωi∈O\{ΩJ+1}
(∇(G−Gh),∇(w − Ihw))Ωi

+ (∇(G−Gh),∇(w − Ihw)) ˜O∗

+
∑

˜Oi∈Ox0
∪{ ˜O−1}

(∇(G−Gh),∇(w − Ihw)) ˜Oi

=:
5∑

j=1

Ẽj .

The term |Ẽ1| can be estimated in the same way as (A.5), i.e.

(B.3) |Ẽ1| =|(∇(G−Gh),∇(w − Ihw))O∗ | ≤ C(κ1−γh∗)
sd1−s

j .

The second and third terms on the right-hand side of (B.2) can be estimated by
(B.4)

|Ẽ2| = |(∇(G−Gh),∇(w − Ihw))Oi
| ≤ Chs

i‖w‖Hs+1(O′
i)
‖∇(G−Gh)‖L2(Oi)

≤ Chs
i‖ψ‖Hs−1(Ω)‖∇(G−Gh)‖L2(Oi)

≤ Chs
id

1−s
j ‖∇(G−Gh)‖L2(Oi)

≤ C(d1−s
j hs+1

i d−1
i )dih

−1
i ‖∇(G−Gh)‖L2(Oi),
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and
(B.5)

|Ẽ3| = |(∇(G−Gh),∇(w − Ihw))Ωi
| ≤ Chsi‖w‖Hs+1(Ω′

i)
‖∇(G−Gh)‖L2(Ωi)

≤ Chsi‖ψ‖Hs−1(Ω)‖∇(G−Gh)‖L2(Ωi)

≤ Chsid
1−s
j ‖∇(G−Gh)‖L2(Ωi)

≤ C(d1−s
j hs+1

i ρ−1
i )ρih

−1
i ‖∇(G−Gh)‖L2(Ωi).

To estimate |Ẽ4|, we consider the two different cases below.

Case 1. If j = Jx0
or j = Jx0

+ 1, then Õ′
j ∩ Õ′

∗ �= ∅ and dj ≤ Cκ�(x0). In this
case, by applying (3.36b) with p = 2 we have

‖w‖H2( ˜O′
∗)

≤ C
(
‖ψ − ψ̄‖L2( ˜O′′

∗ ) + (κγs
�(x0))

−1‖∇w‖L2( ˜O′′
∗ )

)
≤ C

(
‖ψ‖L2( ˜O′′

∗ ) + (κγs
�(x0))

−1‖∇w‖L2( ˜O′′
∗ )

)
,

and so
(B.6)

|Ẽ4| = |(∇(G−Gh),∇(w − Ihw)) ˜O∗
|

≤ C�(x0)‖w‖H2( ˜O′
∗)
‖∇(G−Gh)‖L2( ˜O∗)

≤ C�(x0)
(
‖ψ‖L2( ˜O′′

∗ ) + (κγs
�(x0))

−1‖∇w‖L2( ˜O′′
∗ )

)
‖∇(G−Gh)‖L2( ˜O∗)

≤ C�(x0)
(
‖ψ‖L2( ˜O′′

∗ ) + (κγs
�(x0))

s−1‖∇w‖L2/(1−s)( ˜O′′
∗ )

)
‖∇(G−Gh)‖L2( ˜O∗)

≤ C�(x0)
(
‖ψ‖L2( ˜O′′

∗ ) + (κγs
�(x0))

s−1‖w‖Hs+1(Ω)

)
‖∇(G−Gh)‖L2( ˜O∗)

≤ C�(x0)
(
1 + (κγs

�(x0))
s−1‖ψ‖Hs−1(Ω)

)
‖∇(G−Gh)‖L2( ˜O∗)

≤ C�(x0)
(
1 + (κγs

�(x0))
s−1(κγs

�(x0))
1−s

)
‖∇(G−Gh)‖L2( ˜O∗)

≤ C�(x0),

where we have used Hölder’s inequality in deriving the third inequality of (B.6),
and used (4.46) in deriving the last inequality.

Case 2. If 0 ≤ j < Jx0
, then Õ′

j ∩ Õ′
∗ = ∅ and for p ∈ (2, p0) as in Lemma 4.2

we have

|Ẽ4| = |(∇(G−Gh),∇(w − Ihw)) ˜O∗
|

≤ C�(x0)‖w‖W 2,p( ˜O′
∗)
‖∇(G−Gh)‖Lp′ ( ˜O∗)

≤ C�(x0)|Õ∗|
1
p′ −

1
2 ‖w‖W 2,p( ˜O′

∗)
‖∇(G−Gh)‖L2( ˜O∗)

≤ C�(x0)(κ
γs
�(x0))

2
p′ −1‖w‖W 2,p( ˜O′

∗)
,

where we have used (4.46) in the last inequality. Then, by applying the local W 2,p

estimate in Lemma 4.2 to the expression w(x) =
∫

˜Oj
Γ(x, y)ψ(y) d y and using
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Hölder’s inequality, we have

‖w‖W 2,p( ˜O′
∗)

≤ sup
y∈ ˜Oj

‖Γ(·, y)‖W 2,p( ˜O′
∗)
‖ψ‖L1( ˜Oj)

≤ Cd
−2+2/p
j dj‖ψ‖L2( ˜Oj)

≤ Cd
2/p−1
j ,

which implies that

|Ẽ4| = |(∇(G−Gh),∇(w − Ihw)) ˜O∗
| ≤ Cκ

γs( 2
p′ −1)

�(x0)
2
p′ d

2/p−1
j .(B.7)

Similarly, we also consider the following two different cases in the estimation of

|Ẽ5|.
Case 1’. If |j−i| ≤ 2, then Õ′

j∩Õ′
i �= ∅. In this case, dj ∼ di and hi ∼ hj ∼ �(x0),

and we have

(B.8)

|Ẽ5| = |(∇(G−Gh),∇(w − Ihw)) ˜Oi
|

≤ C�(x0)
s‖w‖Hs+1(Ω)‖∇(G−Gh)‖L2( ˜Oi)

≤ C�(x0)
s‖ψ‖Hs−1(Ω)‖∇(G−Gh)‖L2( ˜Oi)

≤ C(�(x0)
s+1d−s

i )dih(x0)
−1‖∇(G−Gh)‖L2( ˜Oi)

.

Case 2’. If |j − i| ≥ 3, then Õ′
j ∩ Õ′

i = ∅. In this case, hi ∼ hj ∼ �(x0), and for
p ∈ (2, p0) as in Lemma 4.2 we have

|Ẽ5| = |(∇(G−Gh),∇(w − Ihw)) ˜Oi
|

≤ C�(x0)‖w‖W 2,p( ˜O′
i)
‖∇(G−Gh)‖Lp′ ( ˜Oi)

≤ C�(x0)‖w‖W 2,p( ˜O′
i)
d

2
p′ −1

i ‖∇(G−Gh)‖L2( ˜Oi)

≤ C
(
�(x0)

2d
2
p′ −2

i ‖w‖W 2,p( ˜O′
i)

)
di�(x0)

−1‖∇(G−Gh)‖L2( ˜Oi)
.

By using the local W 2,p estimate in Lemma 4.2, we have

‖w‖W 2,p( ˜O′
i)
≤ sup

y∈ ˜Oj

‖Γ(·, y)‖W 2,p( ˜O′
i)
‖ψ‖L1( ˜Oj)

≤ Cmax(di, dj)
−2+ 2

p dj‖ψ‖L2( ˜Oj)

≤ Cmax(di, dj)
− 2

p′ dj ,

which implies that

(B.9) |Ẽ5| ≤ C
(
�(x0)

2d
2
p′ −2

i max(di, dj)
− 2

p′ dj

)
di�(x0)

−1‖∇(G−Gh)‖L2( ˜Oi)
.
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Substituting the estimates of |Ẽj |, j = 1, . . . , 5 into (B.2), we obtain (via the
duality argument)
(B.10)
‖(G−Gh‖L2( ˜Oj)

≤ C(κ1−γh∗)
sd1−s

j

+
∑

Oi∈Oz0

C(hs+1
i d−1

i d1−s
j )dih

−1
i ‖∇(G−Gh)‖L2(Oi)

+
∑
Ωi∈O

C(hs+1
i ρ−1

i d1−s
j )ρih

−1
i ‖∇(G−Gh)‖L2(Ωi)

+ C�(x0)(δj,Jx0
+ δj,Jx0

+1) + Cκ
γs( 2

p′ −1)
�(x0)

2
p′ d

1− 2
p′

j (1− δj,Jx0
− δj,Jx0

+1)

+ C
∑

˜Oi∈Ox0

(�(x0)
s+1d−s

i )dih
−1
i ‖∇(G−Gh)‖L2( ˜Oi)

(δi,j + δi,j−1 + δi,j+1 + δi,j−2 + δi,j+2)

+
∑

|i−j|≥3

(
�(x0)

2d
− 2

p

i max(di, dj)
− 2

p′ dj

)
di�(x0)

−1‖∇(G−Gh)‖L2( ˜Oi)
.

Hence, we have

∑
˜Oj∈O′

x0

�(x0)
−1‖G−Gh‖L2( ˜Oj)

≤ C
∑

˜Oj∈O′
x0

�(x0)
−1(κ1−γh∗)

sd1−s
j

+ C
∑

Oi∈Oz0

∑
˜Oj∈O′

x0

(�(x0)
−1hs+1

i d−1
i d1−s

j )dih
−1
i ‖∇(G−Gh)‖L2(Oi)

+ C
∑
Ωi∈O

∑
˜Oj∈O′

x0

(�(x0)
−1hs+1

i ρ−1
i d1−s

j )ρih
−1
i ‖∇(G−Gh)‖L2(Ωi)

+ C + C
∑

˜Oj∈O′
x0

κ
γs( 2

p′ −1)
�(x0)

2
p′ −1

d
1− 2

p′
j

+ C
∑

˜Oj∈Ox0

(�(x0)
sd−s

j )dj�(x0)
−1‖∇(G−Gh)‖L2( ˜Oj)

+ C
∑

˜Oi∈Ox0

∑
˜Oj∈O′

x0

⎛⎝ �(x0)dj

d
2
p

i max(di, dj)
2
p′

⎞⎠ di�(x0)
−1‖∇(G−Gh)‖L2( ˜Oi)

=: E1 + E2 + E3 + E4 + E5 + E6.

(B.11)
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Since γ < s < β, as shown in (3.3), we have

E1 = C
∑

˜Oj∈O′
x0

�(x0)
−1(κ1−γh∗)

sd1−s
j

≤ C(h|x0 − z0|1−γ)−1(κ1−γh∗)
s|x0 − z0|1−s

≤ Ch−1(κ1−γh∗)
s|x0 − z0|−(s−γ)

≤ Ch−γ
∗ (κ1−γh∗)

s(κh∗)
−(s−γ)

≤ Cκγ(1−s),

E2 ≤ CM max
Oi∈Oz0

∑
˜Oj∈O′

x0

(
�(x0)

−1hs+1
i d−1

i d1−s
j

)
≤ CM max

Oi∈Oz0

(
(h|x0 − z0|1−γ)−1(hd1−γ

i )s+1d−1
i |x0 − z0|1−s

)
≤ CM max

Oi∈Oz0

(
hs|x0 − z0|−(s−γ)d

−[1−(1−γ)(1+s)]
i

)
≤ CMhγs

∗ (κh∗)
−(s−γ)(κh∗)

−[1−(1−γ)(1+s)]

≤ Cκ−γsM,

E3 ≤ CM max
Ωi∈O

∑
˜Oj∈Ox0

(
�(x0)

−1hs+1
i ρ−1

i d1−s
j

)
≤ CM max

Ωi∈O

(
(h|x0 − z0|1−γ)−1(hρ1−γ

i )s+1ρ−1
i |x0 − z0|1−s

)
≤ CM max

Ωi∈O

(
hs|x0 − z0|−(s−γ)ρ

−[1−(1−γ)(1+s)]
i

)
≤ CMhγs

∗ (κh∗)
−(s−γ)(κh∗)

−[1−(1−γ)(1+s)]

≤ Cκ−γsM,

E4 ≤ C + C
∑

˜Oj∈O′
x0

κ
2
p′ −1

�(x0)
2
p′ −1

d
−
(

2
p′ −1

)
j

≤ C + Cκ
γs( 2

p′ −1)
�(x0)

2
p′ −1

(κγs
�(x0))

−
(

2
p′ −1

)
≤ C,

E5 ≤ CM max
˜Oj∈O′

x0

�(x0)
sd−s

j ≤ Cκ−γs2M,

E6 ≤ CM max
˜Oi∈Ox0

∑
˜Oj∈Ox0

⎛⎝ �(x0)dj

d
2
p

i max(di, dj)
2
p′

⎞⎠
≤ CM max

˜Oi∈Ox0

(
�(x0)

di

)
≤ Cκ−γsM.
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Substituting the estimates of Ek, k = 1, . . . , 6, into (B.11), we obtain∑
˜Oj∈Ox0

�(x0)
−1‖G−Gh‖L2(Oj) ≤ Cκγ(1−s) + Cκ−γs2M.(B.12)

Appendix C. Proof of (4.56)

The proof of (4.55) is similar as the proof of (4.54) in Appendix A. The main
difference here is that the subdomains Ωj are away from both the reentrant corner
z0 and the singular point x0, and therefore the analysis would become simpler. For
the convenience of readers, we include the complete proof here.

For Ωj ∈ O, we estimate ‖G−Gh‖L2(Ωj) via the duality

‖G−Gh‖L2(Ωj) = sup
ψ∈C∞

0 (Ωj)

‖ψ‖
L2(Ωj)

≤1

(G−Gh, ψ).

For any given ψ ∈ C∞
0 (Ωj) satisfying ‖ψ‖L2(Ωj) ≤ 1, we define w as the solution of{

−Δw = ψ − ψ in Ω,

∂nw = 0 on ∂Ω,
(C.1)

where ψ := 1
|Ω|

∫
Ω
ψ(x)dx is the average of ψ in the domain Ω. The solution w

exists and is unique under the condition
∫
Ω
w(x) dx = 0. Moreover, inequality

(A.3) holds similarly here.
By using the normalization condition

∫
Ω
Gh dx =

∫
Ω
G dx, we have (G−Gh, ψ)

= 0 and therefore

(C.2)

(G−Gh, ψ) = (G−Gh, ψ − ψ) = (G−Gh,−Δw) = (∇(G−Gh),∇w)

= (∇(G−Gh),∇(w − Ihw))

= (∇(G−Gh),∇(w − Ihw))O∗

+
∑

Oi∈Oz0
\{O0}

(∇(G−Gh),∇(w − Ihw))Oi

+
∑

Ωi∈O∪{ΩJ+2}
(∇(G−Gh),∇(w − Ihw))Ωi

+ (∇(G−Gh),∇(w − Ihw)) ˜O∗

+
∑

˜Oi∈Ox0
\{ ˜O0}

(∇(G−Gh),∇(w − Ihw)) ˜Oi

=
5∑

j=1

E∗
j .

The term |E∗
1 | can be estimated in the same way as (A.5), i.e.

(C.3) |E∗
1 | =|(∇(G−Gh),∇(w − Ihw))O∗ | ≤ C(κ1−γh∗)

sρ1−s
j .

|E∗
2 | and |E∗

3 | can be estimated by
(C.4)

|E∗
2 | = |(∇(G−Gh),∇(w − Ihw))Oi

| ≤ Chs
i‖w‖Hs+1(O′

i)
‖∇(G−Gh)‖L2(Oi)

≤ Chs
i‖ψ‖Hs−1(Ω)‖∇(G−Gh)‖L2(Oi)

≤ Chs
iρ

1−s
j ‖∇(G−Gh)‖L2(Oi)



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

MAXIMUM-NORM STABILITY OF THE FINITE ELEMENT METHOD 1581

and
(C.5)

|E∗
3 | = |(∇(G−Gh),∇(w − Ihw))Ωi

| ≤ Chsi‖w‖Hs+1(Ω′
i)
‖∇(G−Gh)‖L2(Ωi)

≤ Chsi‖ψ‖Hs−1(Ω)‖∇(G−Gh)‖L2(Ωi)

≤ Chsiρ
1−s
j ‖∇(G−Gh)‖L2(Ωi).

|E∗
4 | can be estimated by

(C.6)
|E∗

4 | = |(∇(G−Gh),∇(w − Ihw)) ˜O∗
| ≤ C�(x0)‖w‖H2( ˜O′

∗)
‖∇(G−Gh)‖L2( ˜O∗)

≤ C�(x0)‖w‖H2( ˜O′
∗)
,

where we have used (4.46) in the last inequality. By using (4.22), we get

‖w‖H2( ˜O′
∗)

≤ sup
y∈Ωj

‖G(·, y)‖H2( ˜O′
∗)
‖ψ‖L1(Ωj)

≤ C|x0 − z0|s−1ρ−s
j |Ωj |

1
2 ‖ψ‖L2(Ωj)

≤ C|x0 − z0|s−1ρ1−s
j ,

which implies

(C.7) |E∗
4 | ≤ C|x0 − z0|s−1

�(x0)ρ
1−s
j .

By using (4.22) we can estimate |E∗
5 | similarly as |E∗

4 |, i.e.,

(C.8)
|E∗

5 | = |(∇(G−Gh),∇(w − Ihw)) ˜Oi
|

≤ C(|x0 − z0|s−1
�(x0)

2d−1
i ρ1−s

j di�(x0)
−1‖∇(G−Gh)‖L2( ˜Oi)

.

Then, substituting the estimates of |E∗
j | into (C.2), we obtain (via the duality

argument)
(C.9)
‖G−Gh‖L2(Ωj) ≤ C(κ1−γh∗)

sρ1−s
j

+ C
∑

Oi∈Oz0

(hs+1
i d−1

i ρ1−s
j )dih

−1
i ‖∇(G−Gh)‖L2(Oi)

+ C
∑

Ωi∈O∪{ΩJ+2}
(hs+1

i ρ−1
i ρ1−s

j )ρih
−1
i ‖∇(G−Gh)‖L2(Ωi)

+ C|x0 − z0|s−1
�(x0)ρ

1−s
j

+ C
∑

˜Oi∈Ox0
\{ ˜O0}

�(x0)
2ρ1−s

j

|x0 − z0|1−sdi
di�(x0)

−1‖∇(G−Gh)‖L2( ˜Oi)
.
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As a result, we have

∑
Ωj∈O

h−1
j ‖G−Gh‖L2(Ωj)(C.10)

≤ C
∑

Ωj∈O
(κ1−γh∗)

sρ1−s
j h−1

j

+ C
∑

Oi∈Oz0

∑
Ωj∈O

(hs+1
i d−1

i ρ1−s
j h−1

j )dih
−1
i ‖∇(G−Gh)‖L2(Oi)

+ C
∑

Ωi∈O∪{ΩJ+2}

∑
Ωj∈O

(hs+1
i ρ−1

i ρ1−s
j h−1

j )ρih
−1
i ‖∇(G−Gh)‖L2(Ωi)

+ C
∑

Ωj∈O
|x0 − z0|s−1

�(x0)ρ
1−s
j h−1

j

+ C
∑

˜Oi∈Ox0

∑
Ωj∈O

�(x0)
2ρ1−s

j

|x0 − z0|1−sdihj
di�(x0)

−1‖∇(G−Gh)‖L2( ˜Oi)

=: F1 + F2 + F3 + F4 + F5,

where

F1 = C
∑

Ωj∈O
(κ1−γh∗)

sρ1−s
j h−1

j

≤ C
∑

Ωj∈O
(κ1−γh∗)

sρ1−s
j (hρ1−γ

j )−1

≤ C(κ1−γh∗)
sh−1

∑
Ωj∈O

ρ
−(s−γ)
j

≤ C(κ1−γh∗)
sh−1|x0 − z0|−(s−γ)

≤ C(κ1−γh∗)
sh−1(κh∗)

−(s−γ)

≤ Cκγ(1−s),

F2 ≤ C max
Oi∈Oz0

∑
Ωj∈O

(hs+1
i d−1

i ρ1−s
j h−1

j )M

≤ C max
Oi∈Oz0

∑
Ωj∈O

(hd1−γ
i )s+1d−1

i ρ1−s
j (hρ1−γ

j )−1M

≤ C max
Oi∈Oz0

∑
Ωj∈O

hsd
(1−γ)(s+1)−1
i ρ

−(s−γ)
j M

≤ C max
Oi∈Oz0

hsd
−[γ(s+1)−s]
i |x0 − z0|−(s−γ)M

≤ Chγs
∗ (κh∗)

−[γ(s+1)−s](κh∗)
−(s−γ)M

≤ Cκ−γsM,
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F3 ≤ C max
Ωi∈O∪{ΩJ+2}

∑
Ωj∈O

(hs+1
i ρ−1

i ρ1−s
j h−1

j )M

≤ C max
Ωi∈O∪{ΩJ+2}

∑
Ωj∈O

(hρ1−γ
i )s+1ρ−1

i ρ1−s
j (hρ1−γ

j )−1M

≤ C max
Ωi∈O∪{ΩJ+2}

∑
Ωj∈O

hsρ
(1−γ)(s+1)−1
i ρ

−(s−γ)
j M

≤ C max
Ωi∈O∪{ΩJ+2}

hsρ
−[γ(s+1)−s]
i |x0 − z0|−(s−γ)M

≤ Chγs
∗ (κh∗)

−[γ(s+1)−s](κh∗)
−(s−γ)M

≤ Cκ−γsM,

F4 ≤ C
∑

Ωj∈O
|x0 − z0|s−1

�(x0)ρ
1−s
j h−1

j

≤ C
∑

Ωj∈O
|x0 − z0|s−1(h|x0 − z0|1−γ)ρ1−s

j (hρ1−γ
j )−1

≤ C
∑

Ωj∈O
|x0 − z0|s−γρ

−(s−γ)
j

≤ C,

F5 ≤ C max
˜Oi∈Ox0

∑
Ωj∈O

�(x0)
2

|x0 − z0|1−sdi
ρ1−s
j h−1

j )M

≤ C max
˜Oi∈Ox0

∑
Ωj∈O

�(x0)
2

|x0 − z0|1−sdi
ρ1−s
j (hρ1−γ

j )−1)M

≤ C max
˜Oi∈Ox0

∑
Ωj∈O

�(x0)
2

|x0 − z0|1−sdi
h−1ρ

−(s−γ)
j M

≤ C max
˜Oi∈Ox0

h|x0 − z0|1−γ
�(x0)

|x0 − z0|1−sdi
h−1|x0 − z0|−(s−γ)M

≤ C max
˜Oi∈Ox0

�(x0)d
−1
i M

≤ Cκ−γsM.

Substituting the estimates of F1, F2, F3, F4 and F5 into (C.10), we obtain

(C.11)
∑

Ωj∈O
h−1
j ‖G−Gh‖L2(Ωj) ≤ Cκγ(1−s) + Cκ−γsM.
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[2] T. Apel, A. Rösch, and D. Sirch, L∞-error estimates on graded meshes with application to op-
timal control, SIAM J. Control Optim. 48 (2009), no. 3, 1771–1796, DOI 10.1137/080731724.
MR2516188

https://www.ams.org/mathscinet-getitem?mr=4050547
https://www.ams.org/mathscinet-getitem?mr=2516188


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

1584 BUYANG LI

[3] C. Bernardi, M. Dauge, and Y. Maday, Polynomials in the Sobolev world, Preprint,
hal-00153795, September 2007, https://hal.archives-ouvertes.fr/hal-00153795v2/file/
BeDaMa07b.pdf.

[4] S.-K. Chua and R. L. Wheeden, Estimates of best constants for weighted Poincaré inequal-
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