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MAXIMUM-NORM STABILITY OF THE FINITE ELEMENT
METHOD FOR THE NEUMANN PROBLEM IN NONCONVEX
POLYGONS WITH LOCALLY REFINED MESH

BUYANG LI

ABSTRACT. The Galerkin finite element solution uj of the Poisson equation
—Awu = f under the Neumann boundary condition in a possibly nonconvex
polygon 2, with a graded mesh locally refined at the corners of the domain,
is shown to satisfy the following maximum-norm stability:

lurllLoo 2y < Clullullpoo (02ys
where ¢, = In(2 4+ 1/h) for piecewise linear elements and £, = 1 for higher-
order elements. As a result of the maximum-norm stability, the following best
approximation result holds:
lu — upll oo 2y < Clhllu — Tnull Lo (2,
where I, denotes the Lagrange interpolation operator onto the finite element
space. For a locally quasi-uniform triangulation sufficiently refined at the

corners, the above best approximation property implies the following optimal-
order error bound in the maximum norm:

k+2-2 .
uuhnmmw{%h R gy T2k
B Céhhk+1Hf”Hk(Q) ifr= k),

where r > 1 is the degree of finite elements, k is any nonnegative integer no
larger than r, and p € [2,00) can be arbitrarily large.

1. INTRODUCTION

This article concerns the maximum-norm stability of Galerkin finite element
approximations to the Neumann boundary value problem

—Au=f in §2,

(1.1)
Opu=0  on 012,

under the condition [, fdz = 0 (for the existence of solution) with the normal-
ization condition [,udxz = 0 (for the uniqueness of the solution), where {2 is a
two-dimensional polygon. The Galerkin finite element solution of () is defined
by the weak formulation:

(12) (Vuh,Vvh) = (f, vh) Yoy € Sh,
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with the normalization condition | oundz = 0, where S}, is the Lagrange finite
element subspace of H!(§2) consisting of all piecewise polynomials of degree r > 1
subject to a locally quasi-uniform triangulation.

It is well known that the finite element approximation to () is stable in the
H' norm on a general polygon with general triangulation, i.e.,

(1.3) lunllz ) < Cllull (o),

where the constant C' is independent of the solution v and the mesh size h. The
result can be interpreted as the H! stability of the Ritz projection. Since the Ritz
projection of u — Ipu is up — Ipu, where I, denotes the Lagrange interpolation
operator onto the finite element space, replacing u by v — Inu in (3] yields the
following best approximation property in the H' norm:

(1.4) Hu—uhHHl(Q) SCHU—IhuHHl(Q).

The objective of this article is to establish the following analogous stability result
in the L> norm on a general polygon (possibly nonconvex) with locally refined
triangulation at the corners:

(1.5) lunllLo 2y < Clhull L (2,
where
In(2+1/h) ifr=1
(1.6) T O
1 if r>2.

Such maximum-norm stability results have important applications in resolvent es-
timates of discretized elliptic operators [6,28], discrete maximal LP regularity of
parabolic equations [I3[14][23,24], and pointwise error estimates of finite element
solutions for elliptic, parabolic and optimal control problems [19,2122/[33]. In
particular, the maximum-norm stability result in (C5) would completely reduce
pointwise error estimation to interpolation errors, i.e.,

(17) Hu—uhHLoo(Q) §C€h\|u—fhu||Loo(Q).

The maximum-norm stability result in (L3 has been established for convex poly-
gons and polyhedra with globally quasi-uniform mesh in [20], and for smooth do-
mains in [I83T]. It is known that the logarithmic factor In(2+1/h) in the piecewise
linear case r = 1 cannot be removed in general; see [I1]. For the Dirichlet boundary
condition, the maximum-norm stability has been established in [29] for nonconvex
polygons by utilizing a weak maximum principle of finite element methods under
globally quasi-uniform mesh. However, the argument using weak maximum prin-
ciple of finite element methods cannot be extended to the Neumann problem in
nonconvex polygons, or Dirichlet/Neumann problems in nonconvex polyhedra, or
locally refined mesh. Whether the maximum-norm stability (ILH]) can hold, under
either globally quasi-uniform mesh or locally refined mesh, is still an open ques-
tion for the Neumann problem in nonconvex polygons/polyhedra and the Dirichlet
problem in nonconvex polyhedra (except for the special case of piecewise linear
finite elements with nonobtuse quasi-uniform tetrahedral mesh [12]).

In contrast to the maximum-norm stability result in (L), the almost optimal-
order error estimate

(1.8) u—upl|pe(2)y < CR™T7¢ (e > 0 is any fixed number)
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was shown in [30] for sufficiently smooth f and general polygons, with triangulations
locally refined at the corners, i.e.,

(1.9) h(z) ~ min |z — 2z;|* A,
J

where h(z) denotes the mesh size at point z, and z; denotes the jth corner of
the polygon (2. It is assumed that the local refinement parameter v; € (0,1]
corresponding to the corner z; satisfies the condition v; < j;/r, where 5, = 7/6;
and §; is the interior angle at the corner z;. The convergence order for piecewise
linear finite elements was improved in [2] for the Dirichlet problem with explicit
dependence on a Hoélder norm of f, i.e.,

(1.10) [ = unl L (@) < CR* (2 + 1/B) || fll oo )

under the condition v; < §;/2 and o > 0. More recently, an optimal-order error
estimate

(1.11) [w — un| Lo (@) < CR* (2 + 1/R)||ull 2.

was shown in [I] under the condition v; < 3;/2, for the Neumann problem with
piecewise linear finite elements, with explicit dependence on some weighted W?2>
norm of the solution wu.

The W1 stability of finite element approximations was shown for convex poly-
gons and polyhedra under mildly graded meshes in [I0], i.e.,

(1.12) [unllwr(2) < Cllullw=(q).
The WP stability
(1.13) lunllwrr2) < Cllullwiro)

was shown in [25] for convex polygons with mesh satisfying (I9). Such W1
stability estimates were also established for the Stokes equation in convex polyhedra
[I7]. The extension of these results to nonconvex polygons or polyhedra still remains
open, similarly as the L™ stability result in (5.

In this article, we prove the maximum-norm stability (T3] for general polygons,
with finite elements of arbitrary degree and locally refined mesh satisfying (T9);
see Theorem 21 The local refinement parameter 7; is only required to satisfy
v; € (0,8;) N (0,1], which is weaker than the condition v; < 3;/2 required to ob-
tain the maximum-norm error estimates in the literature. Some new techniques
are developed to prove such maximum-norm stability results in nonconvex poly-
gons and with graded mesh. In particular, in the literature of maximum-norm
stability and error estimates for finite element methods, people often use a “dyadic
decomposition” corresponding to a point xy where u; attains its maximum, i.e.,

J
N= U Q; with 2;={zx € 2:pj41<|r—x0|<p;} and p;=2"7diameter({2),
j=0

and reduce the problem to some technical estimates on the subdomains §2;, in order
to derive estimates of |up(xo)| or |up(xo) — u(xp)|. In this article, we introduce
a “double dyadic decomposition” corresponding to both zy and a corner zp, as
described in Section Il In this way, different estimates can be obtained on the
subdomains closer to zy and the subdomains closer to zg, respectively. Therefore,
such a double dyadic decomposition is convenient for analysis of the maximum-norm
stability of finite element methods with graded mesh locally refined at a corner.
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As a consequence of (L3 and a local regularity result to be established in this
article, we also obtain the following maximum-norm error estimates:
(1.14)
_2
ClRh* 2% [ fllwer (o)
. min(1,8;
ifr>k+1andy; € (O, k+2(472/;] at corners,
CUR T fll (o)

if r =k and ~; € (0, %] at corners,

v —unllpe(a) <

where & is any nonnegative integer and p € [2,00) can be arbitrarily large; see
Corollary 211 In particular, if f is sufficiently smooth compared with the degree
of finite elements (in the case r = k), then the order of convergence is optimal with
respect to the degree of finite elements (up to a factor £;,); if f is not sufficiently
smooth compared with the degree of finite elements (in the case r > k + 1), then
the order of convergence is optimal with respect to the regularity of f.

The rest of this article is organized as follows. In Section Bl we present the
notation, assumptions and main theorems. In Section [} we present local H'**,
W?2P and H*T® estimates of Green’s function in nonconvex polygons. These results
are used in Section Ml to prove the maximum-norm stability of the Ritz projection.
The proof of is presented in Section Some technical estimates are presented
in Appendices [AHCl Throughout this article, we denote by C a generic positive
constant, which may be different at different occurrences but will be independent
of the mesh size h.

2. MAIN RESULTS

2.1. Triangulation locally refined at the corners. Let {2 be a nonconvex poly-
gon, with vertices z;, j = 0, ..., m — 1, oriented counter clockwise, and denote by
I'; the edge between the vertices z; and z;11, with 2z, = 2p. Let §; be the interior
angle of the polygon {2 at the vertex z;, and define 3; := m/6;. We assume that
the domain 2 is triangulated with the following properties.

(1) Local quasi-uniformity: The ratio between the radius of circumcircle and
the radius of inscribed circle of each triangle is bounded, and the ratios
between the diameters of adjacent triangles are bounded.

(2) Local refinement at the corners: Let h denote the mesh size of the triangula-
tion (maximal diameter of the triangles). Let h, ; ~ h'/7i for some constant
v; € (0,B;) N (0,1] represent the diameter (up to a constant multiple) of
triangles near the corner z;, and let ii(z) denote the maximal diameter of
triangles which contain z. We assume that %i(x) is equivalent to h away
from (when z is outside a neighborhood of) the corners and satisfies the

following conditions near the corners z;, j =0, ..., m — 1:
(2.1a) h(z) ~ |z — z;|* A, if |z — zj| > 2h, j,
(21b) h(iﬂ) ~ h*yj, 1f |£L' — Zj| é Zh*ﬁj.
Hence, the mesh is locally refined at the corners z;, 7 =0, ..., m —1, and

is quasi-uniform away from the corners. In particular, the mesh size near
R . .
the corner z; is h, j%h ~ Ty j, with h, j ~ b/,
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If we denote by N the number of degrees of freedom in the triangulation above,
then the following inequality can be shown:

(2.2) N < Ch™2.

Namely, the number of degrees of freedom in the above locally refined triangulation
is equivalent to the number of degrees of freedom in a quasi-uniform triangulation
with mesh size h.

Let 75 denote the set of triangles in the triangulation of the domain {2, and let
Sy, be the finite element space of degree r > 1 subject to the triangulation, i.e.,

Sy, = {vn, € H*(2) : v, is a polynomial of degree r for all 7 € Ty, }.

2.2. Main results.

Theorem 2.1. Let {2 be a polygon which is triangulated as described in Section
21l Then the Ritz projection Ry, : H () — S}, defined by

(2.3) (V(u— Rpu),Vuy) =0, VYo, €Sy,

with the normalization condition fQ Ryudzx = fQudx, satisfies the following sta-
bility estimate:

(24) HRhu”Loo(_Q) < Cgh”u”[loo(n) Yu e C(ﬁ) N HI(Q),
where Ly, is defined in (6.
Remark 2.1. Since C(£2) N H'(£2) is dense in C(£2), the stability inequality (Z4)

implies that the Ritz projection has an extension Ry, : C(£2) — Sp. The maximum-
norm stability of the Ritz projection in Theorem 2] immediately implies (IH]) for

the solutions of (LI)—(T2).

The L stability of the Ritz projection in Theorem B.Ilimmediately implies that
the solutions of (LI)-([L2) have the following property:

(2.5) [ Tpu — 'LLhHLoo(Q) = |Rp(Tpu — u)”Loo(Q) < Cly||ITpu — u”Loo(Q),
and therefore
(2.6) |u —upl|poe (@) < Clplu — Tnul| Lo ()

The inequality above is called the best approximation property in maximum norm.
By using this best approximation property (2.6]) and the regularity result in Lemma
B, we can prove the following maximum-norm error estimate, which is optimal
with respect to regularity of f.

Corollary 2.1. Let f € W*P(£2), where k is a nonnegative integer and p > 2 is a
real number such that (k,p) # (0,2) and (1 — %)Q%J' is not an integer for j =0, 1,
..., m—1. Then the solutions of (LI)-([L2)) satisfy the error bound in (LI4).

The rest part of this paper is devoted to the proof of Theorem [Z.I] and Corollary
21 For simplicity, in the proof of Theorem [Z.]] we assume that there is only one
reentrant corner at zo with 6y € (m,2r), with §; € (0,7) for j =1, ..., m — 1,
and assume that the mesh is locally refined only at the reentrant corner zo with
a parameter v = 7. The proof would be similar if there are multiple reentrant
corners or the mesh is refined at multiple corners.
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3. LOCAL ESTIMATES OF GREEN’S FUNCTION IN NONCONVEX POLYGONS

In this section we present local W2P and H?T® estimates for the solution of the
Neumann problem

(3.1)

—Au=f in {2,
Op,u=g on 0f2.

Note that the compatibility condition

(3.2) /Qfd;v:/899ds

is automatically satisfied once u is a solution of ([BI]). Conversely, this compatibility
condition also guarantees the existence and uniqueness of solutions to ([BIl) under
the normalization condition | oudx =0 (for uniqueness).

Throughout this paper, we denote by s a number satisfying the following condi-
tion (unless otherwise specified):

1 T 1

3.3 (—, ) ith f=_ (—,1).
(3.3) s € 5 8] wi B oo € 5
We denote by H*~1(£2) the dual space of H'=*(2). Then LP:(£) — H*~(£2) for
ps =2/(2— ).
3.1. H'*® estimates in a polygon.
Lemma 3.1 (Existence of lifted functions in H**1(§2)). Let ¢ € ot (092)

piecewise

and g € H: (082). There exists a lifted function w € H*1 () satisfying

piecewise

w=¢ec HT3(00) and 8nw:g€Hs_% (082) on 002,

piecewise

if and only if the following condition holds:
(3.4) ¢ is continuous at the corners z;, j=0,1, ..., m—1.

In this case, the lifted function w satisfies the following estimate:

(3.5) lellizesoy < C (61 ey +llgll .

H (892) H (80)> '

piecewise

Proof. Condition (B.4) with s € (3,1) is exactly the condition (5.3) in [3, Theorem
5.2] in the case n = 0 and m = 2. As a result, the existence of the lifted function and
its boundedness in H*t1(£2) follow from [3, Theorem 5.2 and Corollary 5.3]. O

piecewise

The following regularity result can be proved by using Lemma 311

Lemma 3.2. Let s be any number satisfying B3). For any given f € H*~1(02)
_1
and g € H; 2 wise(092), the solution of BJ) is in H¥1(02), and

iecewise

(3.6) lull 1) < CUF 1) +llgl oy o)

piecewise

Proof. Let ¢ = 0. Then condition (4] is fulfilled, and Lemma B1] implies that
there exists a function w € H**1(2) satisfying

(3.7) Opw =gon d2 and |w|gs10) < C||g||HS,% 00

piecewise
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If w is the solution of (Bl then u — w is the solution of

(3.8) {—A(u —w)=f+Aw in {2,

On(u—w) =0 on 012,

with the homogeneous Neumann boundary condition. Since w € H*t1(2), it
follows that f + Aw € H*71(£2). In [8, (23.3)] it is shown that, when 0 < s < 3
as shown in (33), the solution to the Neumann problem (B.8) has the following
regularity result:

lu —w|gst1(2) < Cllf + Awl| gs—1(0)
S COfllas—1(2) + Cllwl g+ (o)

(39) < Clfllaesian +Clall g

piecewise

The two estimates in [B.7) and ([B.9) imply the desired result in Lemma 3.2 O

For a subdomain D C {2 we define the fractional-order Sobolev space on D by

(3.10)
0|l fretr (py = i%f |0/ fre+x () when a € (0,1) and & is a nonnegative integer,

where the infimum extends over all possible extensions & € H***(§2) such that
© =wv on D. The definition in BI0) is equivalent to the usual definition of Sobolev
spaces when D is a fixed Lipschitz domain (see [32] p. 181, Theorem 5]), but is
more convenient for analysis when the subdomain D is nonsmooth and not fixed.
By using the regularity result in Lemma [ we prove the following local H5+!
estimate.

Lemma 3.3. Let D = By(z) N2 and D' = Bag(z) N 2 be subdomains of §2, where
z € 2 and 0 < d < diameter(§2), and let w be a smooth cut-off function satisfying

(3.11a) w(z) =1, x € By(z),
(3.11b) w(x) =0, z € R*\Byq/2(2),
(3.11c) VFw| < Crd ™", k=1,2,....

Then for any giwen f € LP*(2) and g = 0, with [, fdz =0 and p := 2/(2 — s),
the solution of B satisfies

(3.12)  [lu—upllg=+1(p) < CllfllLes (pry + Cd™*([[ull L2 (2) + [[Vull L2 (2)),

where up s some constant depending on both u and the subdomain D, satisfying
lup| < Cd™2||ul| 1102y, and || - ||r. (o) denotes the weak LP norm defined by

(3.13) Wl Lp.e () = \/iuf()))\|{x € R :|w(x)P > A},
>

where |[{z € 2 : |w(x)|P > \}| denotes the measure of the set {x € 2 : |w(z)[P > A}.

Proof. Since ps = 2/(2 — s), the following two Sobolev embedding results hold and
will be used frequently:

(3.14) LP: () — HY(2) and WYP:(02) — H*(12).
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Let LP9({2) be the Lorentz space (see [15 §1.4]), and let W1P4(£2) be the space
of functions w such that

1
lollwroa) = (1l + IVl 0) * < 0.

In the case ¢ = oo, the LP9({2) norm is equivalent to the definition in BI3).

Let E : L'(2) — L*(R?) be Stein’s extension operator as described in [32 p.
181, Theorem 5], which is bounded from W*P(£2) to W*P(R?) for 1 < p < o0
and k& > 0. According to [26, Example 7], the real interpolation space between
Whrr(0) and WhP2 () is

1 1 1 .1 1-6 6
(WHPLH(2), WP ((2)g o = WHPI(L2) with — = +— and 1 <q<o0.
p p1 b2
By choosing ¢ = oo and using the real interpolation result, we obtain that Stein’s
extension operator is bounded from W1P:%°(2) to W1P>°(R?) for 1 < p < co. We
denote u = Fu so that 4 = v in {2 and

(3.15) [l 2.0 r2) + ([ V]| 200 (r2) < C([[ull 2.0 (2) + VUl 220 (2))-

Since f € LP=(£2) — H*~(£2), with [, fdz = 0and g = 0, it follows that (3. has
a unique solution in H'(§2) and therefore the right-hand side of ([BI5) is bounded
(L?°° norm is weaker than L? norm).

Let @4 be the average of @ on Bag(z). Then @ := w(@ — 14) is the solution of

(3.16) —An=f g,
Ot =g-n on 02,

where

(3.17) = fw—2Vi-Vw — (4 — Ug)Aw,

f
(3.18) g=(u—1u4)Vw and §-n=(a—1uy)Vw-n.
)

fe H1(0). Since & € H'(2) = W'Ps(2) < H*(12), it follows that

GeWLP(2)— H*(2) and §-n=(u—1g)Vw -n& o2 (09).

piecewise

Then Lemma implies that

o) < CU ey + 13- mll oy )

piecewise

< C(Iflls=1() + 13l s ()
< C(Iflers—1(2) + 1gllwros(2))
S COllwfllzes (o) + ClIVE - Vol oo (2
(3.19) +C||(u— ﬂd)Aw”Lps(Q) +C||(a— ﬂd)V(U”Wl,Ps(_Q).
By using (3I1d) to estimate Vw and Aw on the right-hand side of (3.19), we have
[l o102y € Cllwfllzes ) + Cd72|[@ = @allLoe (Boa(zy) + CA™H V| Loe (Bru(2))
<Ol fllzes (pry + cd! IVl trs (Bou(z))  (by Poincaré’s inequality)
< C|fllees oy + Cd2tes Vil p2.00r2) ([15, Exercise 1.1.15])
_ 2
(3.20) < CIfllLes (pry + Cd™ 5 (

[ul| 2.0 (2) + IVl L2, (02))-
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Since ps = 5= implies —2 —|— = = —g, and & = w(a — 4g) is an extension of u — a4
from D to Q the last mequahty implies (312)) in view of the definition in B0,
with up = 4y, i.e., the average of & = Eu in Byy(z). Therefore,

1
lup| = 7’/ Eudz
|B2d(Z)| Bzd(z)

where the boundedness of the extension operator E : L*(£2) — L'(R?) is used. [0

< Cd-2/ Buldz < Cd~2ull 1 0,
Baa(z)

3.2. A priori W?? and H?"T® estimates in a polygon. It is well known that
in a nonconvex polygon, f € LP(f2) and g € Wllege/‘f,’be(aﬂ) with p > 1 may not
imply u € W2P(£2) for the solution of ([B.I]). However, for a solution u which is a

priori in W2P(£2), we still have the following WP estimates.

Lemma 3.4 (A priori W?? estimates). Let u € W2P(£2), with p > 1, be a solution
of B, and assume that the following conditions are satisfied:

2 1) 26,
(3.21) 2—— and (1 — —) = are not integers for j =0,1,...,m — 1.
p p) ™
Then
(3.22) [ulwieo) + [ulwzre@) < O fllro) + ||g||Wl,cclc/vf§i(09))
where
(3.23) WooolPP (902) = {q € LP(9R2) : q € WIV/PP(I}), j=0,1,...,m —1}.
In particular, if w € H?(82) is a solution of ([B.]) with g =0, then
(3.24) lular o) + luluz ) < ClfllL2 ()

Proof. From [I6] Corollary 4.4.4.14] we know that for the given f € LP(2) and g €
wi-i/p (012) satisfying the compatibility condition [, fdz = [,,gds (which

plecewise

must be true if u € W2P(£2) is the solution of ([B.I])), there exist some constants
¢jn,n=1 ..., K;jand j =0, ..., m—1, such that
m—1 Kj
(3.25) u= Y ¢jnSjn € WHP(12),
j=0 n=1
where S; ,, n =1, ..., Kj, are some weakly singular functions (independent of f

and g) not in W2P(£2), but AS;,, € LP(£2) and 9,S;,, = 0 on 9£2. The number of
such singular terms depends only on {2 and p. In fact, we have

(3.26) Sjn(@) = ¢z = 2w — | cos (5-6;()).

where ©,(x) denotes the angle between the two vectors x — z; and 2,11 — z;, and
¢ : R — R is some smooth cut-off function such that ¢(|z — z;|) = 0 when x is
outside a small neighborhood of the corner z;, and K is the largest integer such

that K; < (1-1)2%.

™

Let X be the Banach space spanned by W#?(§2) and S, ,,, with n = 1,

K;and j =0, 1, . — 1, and define Xy = {v € X : [,vdz = 0}. Let
Y = {(f,9) € LP(Q) X W;mclc/‘f:ffc o02) : [, fdx = [,,9ds}. Then the above-

mentioned regularity result implies that the operator
(A, 8n) : Xo—>Y
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is one-to-one, bounded and onto. Therefore, there exists a bounded right inverse
of the above operator. This implies that

(3.27)
m—1 Kj m—1 K
S lesaltfume=3 S cinSinl| < CU ey +lslyrve )
j=0 n=1 j=0n=1 W2:r(£2) R
for some constant ¢ = ﬁ Joudz. If uis a priori in W2?(£2) then ¢;,, = 0 for
n=1 ..., K;and j =0, ..., m — 1. In this case, the above inequality implies

B.22).
In the case p = 2 and g = 0, it is shown in [16, Theorem 4.3.1.4] that any solution
u € H%(2) of BI) with g = 0 satisfies the following estimate:

lullzz(0) < O fllLz2) + lullzz(2)-
Let ugp = ﬁ fQ ud x be the average of u over 2. Then u — uy, is also a solution of
(B1) with g = 0. Replacing u by u — up, in the inequality above yields

lu —uellaze) < CUlfllzz) + lu —uellzz@) < CUIfllrze) + IVulle(2)-

By substituting the standard energy estimate ||Vul[z2(oy < C| f]lz2() into the
inequality above, we obtain ([B.24]). O

Similar as Lemma[3.4] for a solution which is a priori in H2+%(£2), the standard
H?*** estimates still hold. The proof of this result requires using the existence of
1
a function w € H?T%(§2) satisfying d,w = g, for any g € H;jcgwise(arz). This is
guaranteed by Lemma

Lemma 3.5 (Existence of lifted functions in H*t%(2)). Let o € (0,1), and let ¢ €
3 (e 1 (03 . . .
H: (092) and g € HZ' (092). There exists a lifted function w € H*T(£2)

piecewise piecewise

satisfying
w=¢ and Oyw=g on I,
if and only if the following conditions hold:

(3.28)
¢ and (0-¢)T + gn are both continuous at the corners zj, j=0,1, ..., m—1,

where 7 and n denote the unit tangential and normal vectors on the boundary 052,
respectively. In this case, the lifted function w satisfies the following estimate:

(3:29) lwlzeai) < C(I911 g0n .+ gl 3r

(992) H (09)) ’

piecewise piecewise

Proof. Condition ([34)) is exactly the condition (5.3) in [3| Theorem 5.2] in the case
n = 0,1 and m = 2 therein. As a result, the existence of the lifted function and its

boundedness in H2+*(§2) follow from [3, Theorem 5.2 and Corollary 5.3]. O
Lemma 3.6 (A priori H?T® estimate). Let u € H*t*(£2) be a solution of B.1),
with

(1+ )b,

(3.30) «€(0,1) and L is not an integer for j =0, 1, ..., m — 1.
Then there exist constants ¢ and C such that

Ju =z < OO i +loll e o)

piecewise
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where

H2Y  (00) = {q e L2(09) : qe H¥*(T;), j=0,1,...,m—1},

piecewise

|lc| < Cllullz1(@) and the constant C' is independent of u, f and g.

Proof. We define ¢ to be a cubic polynomial on each side I';, j =0, 1, ..., m — 1,
such that
$=0, O, 06= 9- Z 9Nt N 0 8, g = TET I
Ty -N— T— N4

at every corner z; from both sides of the corner, where 7_ and n_ denote the
tangential and normal vectors on the left side of the corner, 7, and ny denote the
normal vectors on the right side of the corner, and g_ and g4 denote the values of
g on the left and right sides of the corner. Then ¢ and g satisfy the conditions in
(3.28). In fact, the above expressions of d;, ¢ and 0;_¢ at a corner can be solved
from the following two equations:

[(0ry 1) T4 + g4ny] - no = [(0r_¢-)7— +g-n_] - n_=g_,
[(0r_ ¢ )T— + g-n_]-ny =[(0r, ¢4 )T4 + g4ny] - ng =gy .

Therefore, Lemma implies that there exists a lifted function w € H*"2({2)
satisfying

at+s
(3.31) dpaw=gc€ leecgwme(arz) on 92 and |wl|| gereo) < C’||g||H2+a 0

piecewise

If w is the solution of (Bl then u — w is the solution of

—“Alu—w)=f+Aw in £,
(3:32) {8n(u —w) =0 on 012,

with the homogeneous Neumann boundary condition. Since w € H*2(§2), it
follows that f+ Aw € H*(£2). In [8, (5.11) and p. 210] (also see [T, page 24]) it is
shown that the solution of the PDE problem [B.32) with f + Aw € H*({2) can be
written as a singular part plus a regular part (similarly as in the proof of Lemma

BA), i.e.,

(3.33)
iy KJ nm
in € H*T(Q) with S, (z) = |z — z]\ i cos ( 7. @j(x)),
j=0 n=1 J
. . 1\ 20, .
where K is the largest integer such that K; < (1 — —) —=. Moreover, the following
p/ w
estimate holds (similarly as in the proof of Lemma [B.4)):
m—1 Kj m—1 K
2 2 leial+ |u=w=co= 3 D cinSin
7=0 n=1 7=0 n=1 H2te(82)

< Olf + Awl| ga(o)
S O fllze ) + |l g2te (o),
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where ¢y = ﬁ Jou—w)dz =: c+cp, where ¢ = ﬁ Joudxzand e, = ﬁ Jowdz.
By using the triangle inequality and (3.31]), the inequality above implies that

m—1 Kj m—1 Kj
DD el u=c=3 > cinSin
j=0 n=1 =0 n=1 H2te(02)
< C|fllze (o) + Cllw|l gzta ) + Cer
<C o )
<O lncor + loll e )
If u is a priori in H*T(§2) then ¢;,, =0 forn=1,..., K; and j =0, ..., m — 1.
In this case, the above inequality implies the desired result in Lemma O

3.3. W2P and H?T® estimates away from the reentrant corner. As men-
tioned at the end of Section 2] we assume that there is only one reentrant corner

at zo with 0y € (m,27), with §; € (0,7) for j =1, ..., m — 1. We define
. 2 . i

(3.34) ap = min <% -1, \min (E) - 1) € (0,1),
2

3.35 = .

( ) Po 1— g

Then any p € (2,pg) and a € (0, ap) satisfy the conditions in [B21)) and B30).
Moreover, we have the following qualitative regularity results away from the reen-
trant corner as a result of the decomposition in (3.28) and (333).

Lemma 3.7. For any 0 < d < diameter({2), the solution of B has the following
properties:

(1) If f € LP(R2) and g € W) /10 (992), then u € W2P(2\Ba(z0));

iecewise

(2) If f € H*(2) and g € H/2T2 (802), then u € H**(2\By(z0)).

piecewise

For the Neumann problem (&Il with ¢ = 0, by using Lemmas [34] and we
have the following local quantitative estimates away from the reentrant corner.

Lemma 3.8 (Local W?? and H*'® estimates away from the reentrant corner).
Let p € [2,po) and « € (0,ap), and let u be a solution of BI) with g = 0. Let
D = By(2)N 2 and D' = Byya, (2) N2, with z € 2, be subdomains of 2 such that

d<Kd, and d+d,<|z— 2|
Then
(3.36a)  |ulp(p) < Cr(dillfllr2p) + [[Vull L2 (1)), if feL*D),
(3.36D)
[ulwrr(p) + [ulw2r(p) <Ck <||fHLP(D’) + d:2+2/p||vu”L2’°°(D'))a if feLP(D).

Moreover, there exists 5 € (0,1) such that D can be covered by a bounded number
of smaller subdomains Dj = Bgq/2((;) N 2 (with some points (; € D), j =1, ...,
Jg, such that

(3.37)
lu—upsl2va(pry < Crdy® (I flle2on + dllV fllzzory + d IVl 2 (1) 5
if feH (D),
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where D; = Bgq(¢;) N2 and up are some constants depending on both u and Dj,
satisfying lup;| < Cd; 2|l 11 (o

Remark 3.1. In Section [ we will decompose the domain into some subdomains
and cover each subdomain by a finite number of balls By(z) (with several different
z in the subdomain). Then we apply the estimates on each By, /8(2) to obtain
Lemma

In the estimation of the Green function and the regularized Green function (see
Lemmas B9 [4.1] and [£2]), and in the proof of Theorem 2] we have to frequently
use some H2t® estimates of the Green function. Since we cannot directly prove
such H*** estimates on the subdomain D = By(z) N 2 (which may intersect two
adjacent sides of {2 and therefore nonconvex), we have to cover D by some smaller
convex subdomains D = Bgg/2((;) N2 which intersect at most one edge of §2 (and
therefore convex) and use the estimates on these convex subdomains D;. This is
the motivation of dividing D into subdomains D;, j =1, ..., Jg.

Proof. Without loss of generality, we can assume that f is qualitatively smooth
enough, provided our quantitative estimates presented below are independent of
the assumed extra smoothness of f.

Let ( € D be any fixed point and consider D¢ := Bgq({) N {2 and D/C =
Bga+pa, (¢) N £2, with 8 = m sin(2m — 6p). Then we have 8d + Bd. < 3|¢ —
2o| sin(27—60y), which guarantees that the disk Bgg+ a4, (¢) can intersect at most one
side of the wedge at corner 2. As a result, the subdomain D, is convex and |D¢| >
d?/C. 1In this case, the following Poincaré’s inequality holds (cf. [4, Theorems
1.1-1.2)):

(3.38) lu = upllLapy) < Cdel|Vullpapy) V1< g < oo,

where u D! denotes the average of u on D,C'

Since D = By(z) N {2 can be covered by a finite number of subdomains of the
type Bgg/2(¢) N 2 with ¢ € D (the number depends only on f3, independent of z,
d, d,), we only need to prove the following estimates in Dy = Bgq(¢) N £2:

(3.39a)

lulri(p,) < Cr (dull fllzzoy) + [Vull e pr)).

(3.39b)

[ulwro(pe) + [ulwen (b <Cr (|l +dx > P |Vl oo py)) - for pe(2,po),
(3.39¢)

lu—ellmzrap,) < Crdi® (Iflz2oy) + dell V2o + 5 [Vl 2 (1)),

where c is some constant depending on u and Dy, satisfying that |c|<Cd?||u| (D)-

Then B36)-B31) follow from (B39).
To prove (B8.39a)-(3.39d), we introduce a convex subdomain D} := Bgg, ga, /2(C)

N {2, which satisfies D¢ C IND’C C D¢, and define a smooth cut-off function w(z) such
that

(3.40a) w(z) =1, =z € Bgy(C),
(3.40b) w(z) =0, z€R*\Bggypa, 2(C),
(3.40c) VFw| < Cpd®, k=1,2,....
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In view of Lemma B2 we have @ = w(u — up,) € W2P(£2), and it is the solution
¢

of the equation

~Ai=f in
(3.41) =, i 8
Ot =g-n on 02
where
(3.42) f=fw—2Vu-Vuw— (“_UBZ)AW and ¢= (u—uf),g)Vw.

For p € (2, po), we choose ¢ € (1,2) satisfying 1 = 2/q — 2/p so that Wh9(§2) —
LP(2) and W29(02) < WLP(2). Since 1 < ¢ < p < po, it follows that g also
satisfies the condition (B2I]), as explained below ([338). Then Lemma [B4] implies
that

IViillwraga) < CllfllLae) + Cllg - n||W§i;1e/vf;fe(89)

< CHf”L‘l(Q) + C|gllwra()
< CU o) + d HIVull oy + 42w = up, Mo s,)
< C(HfHLq(f)/C) + d*_lHVUHLq(Eé))
(the Poincaré inequality (B38) is used)
(3.43) < O fll 2y + 45NVl e 1)
and so
V| Lr2y) < ClIVil|wia(e)
< O gy + 4Vl 2. )

2 —142
(3.44) < O£l a5y + A 21Vl o )

where 1 = 2/q — 2/p is used in the last inequality. Since w = 1 on D, and
@ = w(u —up, ), the last inequality implies that
¢

(3.45) IVulloog) < C@ £l a5y + d TP IVl 2 5):
By using Hélder’s inequality, we can further derive the following two inequalities:
(3.46) ||vu||L2(D<) < dl_Q/pHV“HLP(DC) < C(d*Hf”Lz(ﬁé) + ||Vu||L2,oo(52)),

(3.47) ||Vu||LP(D<) < O(d*Hf”Lp(f)/C) + d:1+2/p||Vu||L2m([~),<)).

This proves (3.39al).
Similarly as (3406)-(@.47), replacing D, and Dé by Dé and DIC’ respectively, we
also have the following estimates:

(3.48) ||Vu||L2(ﬁ,<) < C(d*HfHL"‘(Dé) + ||Vu||L2=°°(D2))7

—1+42
(3.49) HVUHLP(E’C) < C(d*HfHL”(DZ) +d, + /PHVuHLz,oo(D/C)).
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The last inequality and Lemma [3.4] imply
|t wir () + W|W2 »(2)

piecewise

< C|fllze) + Cllgllwrr o)
<O fll s By T IVl o ey + di 2 lu— Up, ||LD(D’))

S C(HfHLp(ﬁ/() + d* 1HquLp(ﬁ/<))
- —142

<C (HfHLp(Eé) +d, 1(d*||fHLp(D/<) +d 't /p||Vu||L2,OC(D2))>
—242

< C(||f||LP(D’<) + d* + /p||vu||L2°°(D2))

This proves (3.39D)) in the case p € (2,po)-
For p = 2 we have 4 = 1 + 1, where %; and sy are solutions of

—Ad; = f in 2, and —Aly =0 in £,
Oty =0  on 012, Oplie = G-n  on O0f2.
By applying (324) and (322) to @, and ug, respectively, we obtain
1| ) + |1 m2(0) < Cllfl2e0)
< C(HfHLz(Eé) + d:1||Vu||L2(52) + d:2||u - UEZHB(EZ))
< C(”fHLz(Eé) + d*’llquIIp(]sg))
and

|talwrr(2) + l2lw2r@) < CIF - nllyr-vee g0

piecewise

< CHQHWLP (2)
< OdIIHVUHLP(fyC)

< O e +d T IVl e o),
where (3:45]) is used in the last mequahty By using Holder’s inequality, we have
|ta| (@) + U2|p2(2) < Cd, 7 (Jiialw, r() Tt |U2|w2r(2)

< C(Ifle2pry + dIIHVUHmw(Dg))-
Combining the estimates of @; and @z, we obtain
(3.50) |1 () + ]2 (2) < O flle2 oy + dH I Vull e pr)-

This proves (3.39D)) in the case p = 2.
Next, we prove ([339d). In view of the qualitative regularity results in Lemma
B we have @ = w(u — up,) € H*T*(2), which is the solution of (Z4I). For the
¢
given a € (0, ), we choose p = 2/(1 — a) so that H*({2) — LP(f2). Let @ be a
smooth cut-off function such that

(3.51a) w(r) =1, =€ Bgaypa, 2(¢),
(3.51b) &(x) =0, = €R*\Bgaisa,(C),
(351C) |Vk@\ < de:k7 k= 1727"'7

so that @ =1 on ﬁl{ and @ = 0 outside D/C'
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Since

1fGlae) < Clf oo
1@l (@) < Cd M fllzzoy) + CIV Fllez oy,
it follows from the interpolation and Young’s inequalities that
1]y < 15l za{o) | /&5 o) < Cd I llzzcoy) + CIFN Lo IV Al oy
(3.52) < Cd | fllrzpy) + Cd |V £z (py)-

Similarly, for the smooth cut-off function w defined in ([B40), the following result
holds:

1fwllme@) < Ifwllpafo)l fwllf o) < Cdolfll 25, + ClIFILL (o) IV 225
(353) < Ozl + O IV iy
By an obvious change of domain from Dy to EIC’ (3:39D) implies

|a|W1‘P o)+ lilwzr (o)
CUIS o)+ de 71Vl e 5)
<\|wf||m<m +d 22V o 5)
CI&S =) +d 2P|Vl o 51)
(3.54) C(d7 |l z2py) + AV fllz2(or) + de 2P| Vul| 2. (b)),
which reduces to
(3.55)  |ulwre(py) + |ulw2r(ny)
< C(d; | flz2y) + IV flla(or) + di 2P| Vul| 2. (py))-

Again, by an obvious change of domain from D¢ to B/C’ we can rewrite the last
inequality as

|“|W1,p(52) + |U‘W2,p(52)
< ;| fl oy + A eIV Loy + dx TPV 2. )
Since 1 — 2/p = «, by using Holder’s inequality we get
1-2/
‘U|H1(52) + |U|H2(f>é) < Cd, p(‘u|wl,p(f)é) + |U|W2‘p(52))

(3.56) < C(Ifllzacpy) + dellV fllp2 oy + d IVl L2 pr))-

In order to obtain H2?T® estimate for 1, we first estimate ||f||Ha(Q) below, where
f is defined in 4. By the properties of w and the Holder inequality, we have

1w = up, ) Awll () < Cdy2llu = up, |l 25, < O [ Vull a5y,
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[l (u— uﬁ’()Aw”Hl(Q)
< l(u— uf)é)AW”LQ(Q) + [IVulAw|[2(0) + [[(u — UEZ)VAW”LQ(Q)
< Cd?|lu— Up, ||L2(13'<) + Cd;2||Vu||L2(52) +Cd|u—~ Up, ||L2(f;2)
< Cd 2|Vl 25
By the interpolation inequality between L2(£2) and H'(2), we have

[[(u— UEZ)AWHH‘X(Q) < lu— UEZ)AWHIL;?Q)H(“ - UEQ)AW”?{I(Q)

(3.57) < Cd 0Vl 25
Similarly, we have
[Vu - Vwl| 20 SCdeVUHm(Egy

—92 -1
<Cd; ||VU||L2(52) +Cd, |“‘H2(52)’

which imply the following result by the Sobolev interpolation inequality and Young’s
inequality:

IVu- Vol geg) < [Vu- Vol s (VU Vol g

< Cd; " Vu ||L2(D, (Cd 2|V ull 25, + Cdy ul g2 )
< OVl (CA2 IVl g, + Cd ulg )
(3.58) < Cd TVl o5y + Ol 1||Vu||L2(D, [ule ;)
The estimates in (B.53) and E57)—-(B5]) imply that
1 Fllrec2) <CALNFll 2, + Cd IV fll
(3.59) + Cd |Vl o by +C0ds 1\|vu\|L2(D, |u|?‘{2(52).

By applying Lemma to equation ([B4I) and using (B59), we obtain

@ — 1l g2+a(a)

< C”fHHO‘ (2) + C||g n||H1/2+a (992)

piecewise

< O\ fllge() + Cllgl mi+a o)
< Cdia”f”m(f)/) + CdliaHVme f)/

+ Cd |Vl a5y + Cd [ Vull (5l

L2( D’ H2(DY)

< CAz gy + CA IV oy + Ol IVl a5y + Ol

where ¢; is some constant satisfying |ei| < C [, |a[dz < C’fﬁ,_ lu|dz. Then,
J
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substituting ([B.48) and ([B.50) into the inequality above, we have
H’U, — uﬁlg — Cl||H2+u(D<)
< Ck (d:a”f”L?(D’c) +d NV fllz2 oy + dfl_aHVUHL%m(DZ)) :

where the constant ¢ := up, +e satisfies |¢| < C'dj_2 fﬁ; |u| dz. This proves ([3:39d).
The proof of Lemma [3.8 is complete. |

3.4. Local estimates of the Green function. Let I'(z,y) be the Green function
of the Neumann problem, defined by

~AL(y) =8, — & in 2,

(3.60)
onI(y)=0 on 912,

where d,(x) is the delta function satisfying [, d,(z)¢(z)dz = ¢(y) for any ¢ €
C (ﬁ) For uniqueness of the Green function, we impose the normalization condition
JoT(z,y) dz = 0. The Green function satisfies the basic weak L? estimate [27]
Theorem 1.3]:

(3.61) VT (-, y)l[ £2.00(2) < C.

Since [, I'(x,y) dx = 0, the above estimate also implies (via the Sobolev embedding
inequality)

(3.62) Iy ey < CIVTCy)llpeeo) < C for 1< g < oo.

We will need the following local estimates of the Green function in the next
section.

Lemma 3.9 (Local estimates of the Green function). Let p € (2,pg) and o €
(0,0), and let D = By(z) N 2 with

d < Kd, and d+ de < min(|z — 2o/, |z — yl).
Then the Green function T'(x,y) satisfies

(3.63a) ITC a0y < Ck,

(3.63b) ITC, )20y < Credy ',

(3.63c) ITC, ) llwew(py < Creds *T2P.

Moreover, there exists 8 € (0,1) such that D can be covered by a bounded number
of subdomains D; = Bga/2(¢;) N $2, j=1, ..., Jg, with

(3.64) IT(y) = ep; (W)l gza(py) < Crd ™,

where D = Bga((;) N 2 and cp,(y) is some constant depending on D; and y,
satisfying |cp, (y)| < Cd; 2.

Ifd+d. < Kdy and d+d,+dy < |z—1y|, then the following improved estimates
hold:

(3.65a) ITC, )l 2Dy < Credytd,?,
—2+2+4s
(3.65b) ITC, ) lwew(p) < Cred, d®.
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Proof. The condition d+ d, < min(]z — 2|, |z — y|) guarantees that the subdomain
D’ = Byya,(2) N 2 is away from the reentrant corner and the singularity point y.

As a result, the solution I'(-,y) of equation ([B.60) has WP and H?T“ regularity in
the subdomain D’.

By applying Lemma B.8 and using the basic estimate ([B.61), we have

TG,y < Cr (dll1/12 2oy + IVT G 9) | L2 (0r))
S CK)

1 —242
LG y)lwrepy + L y)lwzepy < CK(”@”LP(D/) +d°" /pHVF(~,y)||L2,w(D,))
< CKd;2+2/p
T )l oy + T ¢ y) 20y < CKd172/p(|F('7y)\W1»P(D) + ¢, y)lwere (D))
< CKd;l.

Moreover, according to Lemma B.8 D can be covered by a bounded number of
subdomains D; = Bggq/2(¢;) N2, j =1, ..., Jg, with

IT(,y) = ep, lmz+e(py) < O (d *11/1920| 22y + di IV y)l| 2200 (D))
<cd;te,

where cp,(y) is some constant which satisfies |cp, (y)| < Cd:2||F(~7y)||L1(D§) <
Cd;2. The above semi-norm estimates and the Li-norm estimate in (3.62) together

imply the desired results in (B.63)—(B.64)).
Let D" = Bgid,+a,(2) N 2. Let w be a smooth cut-off function such that

(3.66a) w(z) =1, € Bgya,(2),
(366b) w(x) =0, x€ Q\Bd+d*+d# (Z),
(3.66¢) \VFw| < Crpd”, k=1,2,....

Hence, w = 1 on D’ and w = 0 outside D”. Then applying Lemma [3.8] yields
ILC,y)lwrepy + LG y)lwee(p)

< Cre (/12 oy + &P IT0C, ) )

< Cre(C o+ d P IVECg) ocn)

2
(Holder inequality with ¢ > 2 satisfying s =1 — —)
q

—24+24s . s
<Ck(CH+d " |wT(y) = )llmre+1(2) (with H*TH(02) — WH9(02))
—24 245 s
< Cre [0+ d > (11120 ann oy g (IDC D)l 2 HIVT G Dl )]
—2+2+s

S CK d* ? d;%sa
where ¢ can be an arbitrary constant in the third to last inequality, and we have

used (B.20) in estimating [|w(T'(-, y) —c)||gs+1 () Withu =T'(-,y), ¢ = dq, f = 1/|12)
and ps = 2/(2 — s). By using Holder’s inequality, we further derive the following
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result:

2
P

1
LG )|y + PGy a20) < Cde (TG 9)lwrr oy + 05 Y) lwzr ()
< CKdiild;s.

The two semi-norm estimates above and the Li-norm (B.62) together imply the
desired results in ([B.63). The proof of Lemma is complete. O

4. PROOF OF THEOREM [2.1]

We only need to prove the following result for any given point g € {2 in the
interior of some triangle 7q:

|Rpu(zo)| < Cllul|p~(o) for any given zq € £2.

We first focus on the case |zg— 2| > 16kh,, where k > 1 is a parameter to be deter-
mined later. From now on, we keep the generic positive constant C' independent of
£ until it is determined, and keep C independent of xg. The case |zg — 2| < 16Kh,
will be discussed after the parameter k is determined.

4.1. Double dyadic decomposition of the domain. We decompose the domain
{2 into disjoint subsets

~ T~
(4.1) 2 =0, Jul2,0;( JO. | Jujz0; | JulZs s,

where

(42a) O, :={x € 2:|x—2| <dj 41},

(42b) Oj = {I €: dj+1 < ‘I — Z()‘ < dj}, ] = 0,1,...,Js,
(42¢) O, :={z e R:|x—x| < A, +1}s

(4.2d) 5j ={reN:djy <|r—ux| <d;} i=0,1,...,J4,
(4.2e) 2;:={x € 2:pj1 <|z— 2| <p;}, j=0,1,...,J,
(4.2f) Ry ={x € R:|x—x0| >doy, do < |z — 20| < pss1},

with d; = 27972|zg — 20|, J = [log2 (‘fg;;f‘)] and J,, = [log2 (%)} for
some o € (0,1), and p; = 2~ 7diameter(2) and J = [log2 (dlaLter(Q)) }, so that

T6[zo —zo|
(4.3a) 26hy. < dj, 41 < 4khy,

(4.3b) 2677 h(wo) < dg, 41 < 4K77R(w0),

(4.3c) 8|zo — 20| < pri1 < 16|xo — 20],

(4.3d) dist(Oj, 0;) ~ |zo — 20|,

(4.3e) dist(Oj, £2;) ~ dist(Og, £2:) ~ pi,

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



MAXIMUM-NORM STABILITY OF THE FINITE ELEMENT METHOD 1553

where dist(O;, 61) denotes the distance between the two sets O; and O;. Moreover,
we have

(4.4a) K 'h, < h(z) <2Kk'7h, Va € O,,
(4.4b) h(x) ~d; h Ve 0y,
(4.4c) h(z) ~ Ri(zo) Ve 0;UO0.,
(4.4d) h(z) ~p; " Vo € 0,

for some positive constant K (independent of k). We denote by h; the mesh size
in O; and h; the mesh size in £2;.

Let
(4.5) 05 =0;_1/2U0; UOj11)2,
(4.6) 6; = ~j—1/2 U 6;’ U 5j+1/27
(4.7) Q=05 15U 02U 0541,
(4.8)
with
(4.9a) Oj1yg={x € R:dji10 < |v— 20| <dj_1/2},
(4.9b) Oj 12 ={x€R:dj1)5 < |z — x| <dj_1/2},
(4.9¢) Qi 1 ={r€2:pjr1)2 < | — 20| < pj_12},
(4.94) O_1=0_1:= 2,4,
(4.9¢) R519:=00U 60,
(4.9f)
and
(4.10a) O, :={0;:0<j < J.}, O, =0, U{0,},
(4.10Db) Oy :={0; :0<j < Ju}, Ol == 0, U{0.},
(4.10¢) O:={02;:0<j<J+1}, O =0U{2;42}.

Then we have 2 = O, Ué* U ( UO]EOZO Oj) U (Uéjeozo 5J) U (UQjeO Qj).

Remark 4.1. Tn the case |z — 29| > 16kh, ~ 165k we have |zg — 29|7 > 167k7h
and

|zo — 2o |zo — 2o lzo — 207 _ wY(7)

KYR(xo) ~ KY%|xg — 2|1~ 7h T Twen T C

Hence, for the fixed o € (0,1), we can choose & sufficiently large to make sure that
|zo — zo| > 16K77h(x0).

Remark 4.2. The double dyadic decompositions O; := {z € 2:dj11 < |z — 2| <
d;} and O; == {z € 2 : dj1 < |z — 20| < d;} are defined for d; = 27772|z — 2|,
j =1, ..., Ji, and therefore with radius d; smaller than |zg — zp|. They reduce
to the single dyadic decomposition 2; := {z € 2 : pj11 < |v — 20| < p;} when
the radius exceeds |zo — z9|. We use p; to denote the radius when it is bigger than
‘LL'() — Z()|.
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4.2. Regularized Green’s function. Recall that 7 is the triangle which contains
xg. We denote by 6., € C3(p) a regularized Delta function which has the following
properties:

(4.11a) Swo is compactly supported in 7,
(411b) (NIO,’Uh)TO = Uh(l'()), V’Uh S Sh,
(4.11c) / Ouo () dz =1,
Q
4.11d S llwircn < Chilzo) 207 %) for 1<p< oo, 1=0,1,2,3.
( ollwir(e)

It is known that such a smoothed Delta function exists; see [34, Lemma 2.2].
The regularized Green’s function G(z,x¢) is defined by using the regularized
Delta function, as the solution of

—AG(20) = ba () — [y In 92,

(4.12)
OnG(,29) =0 on Jf2.

Since fﬂ((g(as) - ﬁ) dz = 0, the equation above admits a unique solution up to
a constant. The discrete Green’s function G (-, zg) € S, is defined as the finite
element solution of the problem

1
(413) (VG}L(',!E()), V’Uh) = ’Uh(LL'()) — ﬁ/ Q)h(l') d:L‘, Y € Sh,
(]

which is also well defined up to a constant. For uniqueness, we further impose the
condition

/G(:mxo)dx:/ Gr(z,x0)dz =0.
2 2

Similarly as the local estimates of Green’s function in Lemma [3.9] the following
local estimates of the regularized Green’s function hold.

Lemma 4.1 (Local estimates of the regularized Green’s function). Let p € (2, po)
and « € (0, ). Let D = By(2) N 2 and assume that

d< Kd, and Bata, (2) {20} = Bata, (z) Nsupp(dz,) = 0.

Then the regularized Green’s function G(x,x) satisfies the following estimates:

(4.14a) G (s zo)ll a1 (p) < Ck,

(4.14b) ||G('a$0)||H2(D) < CKd:l,

(4.14c) IG (- z0)[lw2w(py < Credy >T2/P.

Moreover, there exists 5 € (0,1) such that D can be covered by a bounded number
of subdomains D; = Bga/2(¢;) N 82, j=1, ..., Jg, with (; € D, and

(4.15) IG(-, zo) — CD; ||H2+a(D;) < OKd;lfa’

where D;- = Bpa(Cj) N §2 and cp, is some constant depending on G and D;.
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Ifd+d, < Kdy and d+d,+dy < dist(z,supp(da,)), then the following estimates
hold:

(4.16) ||G('7$O)HH2(D) < CKdi_ld;ﬁS,
—2+24s
(4'17) HG('?xO)HWQvP(D) <Cgdy 7 d# .

Proof. By representing G(z,z¢) in terms of the continuous Green function, i.e.

Gz, o) = /Q T2, €)5,, (€) d,

we see that | — &| > dy when z € D and £ € supp(ds,). Therefore, the following
estimate holds as a result of Lemma

16 z0) lwenip) < /Q 1T €) e 2 (6)] d €

= / Cd72 715, (6)| de < Cd 27,
2

The other estimates in (£14) and (£I6)-(I7) can be proved in the same way.
The local H?T* estimate in ([£I5]) needs to be proved in a slightly different way,
by considering the following expression:

Gz, z0) - c = / (C.9) = e, (1)d, (1)

where ¢ = [, cp, (y)ds, (y) dy satisfies |c| < [, Cd;20,,(y)dy < Cd; 2. By using
B64)) we obtain

|G(+ m0) = cllg2+a(py) < /Q ITC ) = e, ()| a2+ (pr) 020 ()] dy

< / Cd 5 ()| dy < Cd 2
(93

Each O; can be covered by a finite number of balls ij/g(Z) with z € O;, and
the number of balls are independent of d;, where each ball By, ,,(2) satisfies the
condition of Lemma EET with d = d, = d;/8. Similarly, O, and £2; can also be cov-
ered by balls of radius d;/8 and p,/8, respectively. Hence, Lemma [T immediately
implies the following results.
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Lemma 4.2 (Local estimates in O;, 5]- and £2;). Let p € (2,po) and o € (0, ap).
Then we have

(4.18a) IG(,20)ll 20, < C
(4.18D) IG (- 20)llm2(0,) < Cd;
(4180 e
(4.18d) IG(: a$0)||H1(o ) =G,
(4.18¢) IGC, 20l 25,y < Cdj ™
(4.18f) 1G( zo) e (0;) = Cdj—2+2/p’
(4.18g) IG(w0)llm1(0;) < C,
(4.18h) IG(, z0)ll 22, < Coj
(4.18i) IG (- 20)llw2n () < Coy 7.
Moreover, there exists 8 € (0, 1) such that O; can be covered by a bounded number
of subdomains Dj; = Bgg,/2(j:) N2, i=1, ..., Jg, with (;; € O, and

(4.19) G (-, z0) _CDj,'iHH2+O‘(D;’7i) < Cdj_l—a7

where D’ ; = Bpga,;((j,:) N 2 and cp, is some constant depending on G and Dj ;.
Similarly, there exists 8 € (0,1) such that 6j can be covered by a bounded number
of subdomains Dj; = Bgq,/2((ji) N2, i =1, ..., Jg, with (j; € O;, and

(4.20) IG (- w0) — e, , < cd;e

where 5;1 = Bga,(¢j,:) N 2 and p, ., is some constant depending on G and l~)“
There exists § € (0,1) such that £2; can be covered by a bounded number of
subdomains Dj; = Bg, /2(Cji) N2, i =1, ..., Jg, with (;; € 2;, and

(4.21) IG(-,z0) —cp < ijflfa7

(D}

where 15;1 = Bg,,/(¢,i) N 2 and Cp,, Is some constant depending on G and DH
If 2; € O and O; € O, \{Oo}, then

(4.22) seup IG(-,y )||H2(5;) < Clzo — zo|5*1pj*s.
yen;

Proof. [@I8)) is a consequence of ([{I4); (LI9)-E2I) follow from (@I5); (IHZI)

a consequence of (EI6]).

Since G, is piecewisely defined in the elements and therefore not in H?(£2), we
denote by VZG), the elementwise second-order derivative (Hessian) of Gj,. For the
simplicity of notation, we denote

IV5H(Gh = Glipy == Y IIV*(Gh = G)lLr(n
TND#)
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and

(423) ||G(, {Eo)HHZJra(Oj) = Z ||G(7:L‘0) — CDj,i H2+&(D3‘,i)7
(4.24) 1G G20} 24265y 7= 2 NG Co20) = 2, lpgzea iy
(4.25) IGC @0l 2o 0y = DG 20) = &p,, | s -

i

where the number of terms in the three summations above is bounded (independent
of h), as mentioned in Lemma Then we have the following estimates:

IVIG(-,0) — InG(:, xO)H|L2(O~)
< ZHV — I,G(, 1130)]||L2(Dj,i)

= Z [VI(G(,20) — ¢p;,) — In(G(, 20) — ep; )z2(p; )
< Z Chl-i-aHG(.’xo) — CDj,i||H2+a(D;’i) (lf r> 2)
(426) = Ch1+04HG(-7x0)||HE+Q(Oj),

IVEG(, 2 >—IhG<- fo)]HLz(o-)
<Z||v2 — G, w0)ll 2o, )

= Z IVFU(G(-,z0) — cp,,) — In(G (-, z0) — cp, )l L2(p; )

< ZChO‘||G(.7:L‘O) = Cp; |2+ (D) ) (if r >2)

(4.27) = Ch®||G (-, o)l gz+a 0,)»

and similarly, the following estimates hold for r» > 2:

(4.28) IVIG(, 20) = InG (- 20)]ll 12(5,) < CR'TIG( 20) | g2t 5,
(4.29) IVFIG( 20) = InG (- 20)lll 25, < CROIG(, z0)l g24a 5,
(4.30) IVIG(,z0) = InG (- o)l 2(02;) £ CR TG o)l 2o,
(4.31) IVFIG (- @0) = InG (- wo)lll L2,y < CROIIG(, wo)ll 2t g,
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For r = 1 the estimates in ([{.20)—-(@.31]) should be replaced by the following
standard estimates:

IVIG(s20) = InG (- 20)]ll 22 (0,) < CRIG(, 20) | 120,
IVZG(, z0) — InG (-, z0)] [l 2(0;) < CIG(C zo)llm2(0y),

IVIG(; 20) = InG (s wo)lll 125, < CRIGC 20)ll 1265
IVFIG (-, 20) = InG (- o)l 125, < CIGCzo)l 2

IVIG(-; 20) = InG(-, 2ol L2(2;) < CRIG(:, zo) | H2(2).

IVFIG( x0) = InG (-, x0)]ll L2(;) < CIG(,@0) |l 2

4.3. Reduction to the estimation of ||VZ-(G,—G)||1(o)+ |V (GL—G)| 11 (o)

The standard Lagrange interpolation operator I : C(£2) — Sy has the following
approximation properties (cf. [5, Theorem 3.1.5))

(4.32) |lu — TnullLa(py < C’h2+2(5_%)|u|wz,p(D,), for 1 <p<q<oo,
where D C D’ C {2 can be any subdomain such that {7 : 7N D # (0} Cc D".
Then we have
) — Tnu(xp) — L/ (Rpu — IThu)dx
2] Jo

(VGh, (Rhu - Ihu))|

(VGh, V(u — Inu))|

(V(GL, — G),V(u—TIhu)) + (VG,V(u— Ihu))|

_|
|
_|

_ }(V(Gh —G), V(= [y)) + (g ) — Tyu(o) —

1
m 2(u—Ihu)daj
= Z(_A(Gh_G Ihu + Z Gh— u—]hu)e
T€Th ec&y
N 1
+ (5$05u) - Ihu(l'o) — T (U — Ihu) dJ)
12| Jo
s ( Y NAGE =Dl + Y M0a(Gr = Ol o) +C)||u||Loo o)

T7€TH eely
(4.33)
< C(IVFH(Gh — G2 + 1K' V(Gh — G)lr(2) + 1) lull L= (2,

where we have used the following trace inequality in the last inequality of [33]) (e
is an edge of 7):

(4.34)  |V(Gh = Dy < C(1'V(Gh = D)Ly + IVFHGL = D) -
It remains to prove

(4.35) V3 (Gh — D)) + 1A' V(GL — G| 1) < Cly,
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where ¢, is defined in ([L6). Once the above inequality is proved, (33) would
reduce to

|Rnu(xo) — Ihu(xo)| < Clal|ullpe (o ’ (Rpu — Inu)dx

121 /o
L u—]u)da:
9] h

= Clyllull =y + ]
< Clp|lull Lo (),

where we have used the normalization condition f o Ryudx = f ol d x for the Ritz
projection. By using the triangle inequality, we obtain from the inequality above

(4.36) [Rnu(wo)| < ClulullLee (o) + [Tnul@o)| < Clallullpec (o)

Since the constant C is independent of zg, the inequality above implies (Z4]) and
therefore complete the proof of Theorem 211

It remains to prove the key estimate (43%]), which is presented in the next two
subsections.

4.4. Reduction to the estimation of ||i~'V(G), — G)||11(0). By using the in-
verse inequality, we have
(4.37)
IVFH(Gr — Ol + 1 'V(Gh = )|l 110
< ||V3H(Gh — InG)|l i) + IVFUILG — G|l 110y + 1B 'V(GL — G110
< CIP'V(Gh — InG) |12y + IVFUIRG = G)lLio) + 1B V(Gr — G|l
< CIR'V(Gh = G)lLi(e) + CINT'V(G = IiG)| o) + IVFH(G = 1nG) || 10
The last two terms on the right-hand side are estimated in Lemma
Lemma 4.3. There exists a constant C, independent of h, such that
(4.38) 1B 'V(G = InG) |1 (2) + IVFH(G = InG) | 1 (2) < Ol
Proof. By using the decomposition (1), we have

IVH(G = IG) |2 o) + 1B V(G = 1,G) || 110
<IVEH(G = L&) 0.) + 1F7 V(G = InG) |21 0.)

+ Z V3G = Gl Lo, + Z 1h'V(G = IG) | L1 0,
0,€0., 0,€0.,

HIVEHG ~ IG5 + IF71V(G = 1G)ll s,
+ Z V3G ~ InG )||L1(5,-)+ Z |h_1V(G—IhG)||L1(6J-)

5]‘6010 6]‘6010
+ Z IVHG — IG) | Ly, + Z IR 'V(G = I,G) || 11 (0;)
ijEO QjEO

To estimate the integrals on O., we use the following result: for sufficiently small
q € (1,2) the W21 estimate ||G||w2.(0) < Cld — 1/192|||La(s2) holds; see [16]. By
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applying this result and the H*t! estimate in Lemma 3.2 we obtain
(4.39)
1B~ 1V(G = IG) || 1 0.y + IVFH(G = 1nG) | Lico

< Ch M |IV(G = 1nG) 120, + Od " VG = 16 | aco.

< Ok 0 |Gl () + CRY B |Gl

< CR(R' ) 80 = 11920l + Ok B b0, = 1/120 |10

< CRE M0 82y = /1920 o ) + CRYT B 13, = 1/1920] 52

< Cr(KThy ) h(ag) 22/ 4 C’/@Q/q/hz_wqh(azo)*z*z/q (here (AIId) is used)
< Cr+ CrM/Y,

where we have chosen pg := 2/(2 — s), which satisfies LPs(£2) — H* 1() and
—2+2/ps = —s, and we have also used the following relation in the derivation of
the last inequality:

h(zo) ~ |xo — 20" Yh > C(khy)* " 7h) ~ Ck*7h,.

Similarly, the following estimate holds:
(4.40)
1B7V(G — InG)l 1 5,y + IVFH(G = Gl 115

< Ch(o)""dy, ||v<G ~ LGl 2., + Cdiij IV3G = &) Lo,
< CK " h(x0)* |Gl e+1(2) + C (K7 h(x0)) ¥ | Gllw2.a()
< CRI(w0)*[18ae — 1/192][l -1 (2 + C(K h(@0)) ' |80y — 1/192 || ()
< CRh(w0)*[[8wo — 1/12/| Lo 2 + C(67 h(20)) /¥ [18ay — 1/12]| L)
< CRY h(xo)* h(xg) ~2H2/Ps
+ CrY? 9 B(20) 22/ 9R(20) "2t/ (here [@EILd) is used)
< C(K7 4 K192/
< Cr?.

We estimate the integrals on O; below by using Lemma
(4.41)
[h7'V(G = InG) |1 (0,) + IVFH(G = 1nG)l 11(0;)

< C (d;h;MIV(G = InG) | 12(0,) + di | VFH(G = InG)]l 12(0,))

CdeG”H?(OJ) ifr= 1, . . .

< (here the notation in ([f26)-E3T) is used)
Cdjh?”GHHer“(oj) if r>2,
C ifr=1,

<

Chod: ifr > 2,
Since h ~ hi, dj 11 > 2khs and k > 1, it follows that

Z hS'd; ™ ~ Z(d;’”h)ad;“ = hd;"" < Ch)*(2kh,) " < C.

J
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By using the inequality above in the case r > 2, and using the inequality J, <
C'ln(2+ 1/h) in the case r = 1, we obtain

Y VG = L) poy + Y IVHG = LiG)llio

OjEOZO OjGOzO
| if r > 2,
= CYlp,.

In the same way, one can prove that

Yo V@=L e, + D IVFHGE - 1) s,

0;€04, 0;€04,
(4.43)
+ > VG = LG)pe) + Y IVHG = 1nG) | Li(ay) < Cl.
QjEO QjeO

Summing up @39)-(£40) and ([@42)—-([443]), we obtain the desired result (£38]).
O

Then, by substituting Lemma F3] into ([@37), we obtain
(4.44)

IVFH(Gh = Doy + 177V (Ch = G Li@) < CIR'V(Gh = G)||Li(0) + Cla

Now it remains to estimate |[h~ V(G — G)|| L1 (o)

4.5. Estimation of |i~*V (G}, — G)||11 (). We consider the decomposition
[R'V(Gh = G)lLi(0)
< CHV(G = Gl 0.y + Chlao) I9(G = Gl 6
+C Z h V(G = Gr)ll o))

0,€0.,
+C Y hzo) V(G = Ga)ll s,
O EO.L'O
+C Z b V(G = Gu)llie,)
(4.45) ;€0 !

< CrlIV(G = Gi)llz2(0.) + CEIV(G = Gl 25,
+C Y dih V(G = Gh)llzzo

OJEOZO

+C Y dih(xo) MV(G = Gh)llea,,
53-6(9330

+C Z pjhj‘lIIV(G - Gn)llz2(2))-
QjeO
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Again, we use the notation p, = 2/(2 — s), with LPs(£2) < H*"1(£2). Then we
have

V(G = Gu)llieo.) + V(G = Gl o

<2[|V(G = Gh)llL2()

<2|V(G = InG)llL2(e)

<2|V(G = 1InG)l[12(0.) + 2IV(G = InG)| 12 (5.

+2 Y V(G = In@)z0n +2 Y, VG =16,
0,€0;, 0;€0x,

+2 Z V(G = InG) || r2(0;)
2;€0
< O(’fl*’yh*)s||G||Hs+1(o;) + Ch(xo)SHGHHsH(a;)
+C Y WlGlazon+C Y W@o)lGl 25,y +C > BilGllaza
0;€0z, 0;€04, 2;€0
< O ) (1800 — 1/1920| -1 (2) + C(@0)° |80y — 1/192]]| 1rs-1(2)
+C Z hjd;1 +C Z h(xo)d;1+C Z hjp;1 (Lemma (2] is used)
0,€0. 0;€04, 2;e0

< O R 1020 — 1/1920 || v (2) + Ch(w0)* (1020 — 1/|2||| Loe (22) + C
C

< C(KY7VR) (o) ~2H2/Ps - Ch(o)*i(ao) ~2+2/P + €' (here (@IId) is used)
(4.46)
<C.
The estimates (£40)—(E46]) imply
(4.47) [F'V(Gh = @)l Li(e) < C+OM,
where
M = Z d]h;1||V(G - Gh)HLQ(Oj)
0;€0,
(4.48) + D dihlao) V(G = Ga)llas,)
OjGOa«,O
+ > o V(G = Gh)lle2a,)-
2;€0

To estimate M, we need to use the following local energy error estimate (cf.
[9, Theorem 3.4]), which holds in general polygons.

Lemma 4.4. For any £ € 2, let Ly and Ly be two concentric annuli such that
{x € R? : dist(z, Ly) < d} C L1, and consider the subdomains D = Lo N 2 and
D' = LiN 2 of 2. Moreover, we assume that h(z) < d and h(z) ~ h(y) for all
z,y € D'. Then any function u € WH1(Q2) N HY(D') satisfies

lu = Ryullg (o)

S C (HU - Ihu||H1(D/) + d71Hu — Ihu||L2(D’) + d71||u — RhU||L2(Dl)) .
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Since G}, = Ry G, we can apply Lemma 4] with u = G(-, zy) and use the local
regularity estimates in Lemma Then we obtain
(4.49)

h V(G = Gh)llzzco,)

<C (djhj_IHV(G = 1hG) |l 20y + hi |G — IhGHL?(o;.)) +Ch; G- Ghll2(05)
c (dj||G||H2(o;/) + hj||G||H2(oy)) +ChHG = Ghllrzoy) ifr=1,
< (o7 (o7
SN C (451Gl 2w op) + B 1G240 o))
+Chj_1HG_Gh”L2(O;) if r Z 2,
C—FCh;lHG—Gh”Lz(O}) if r =1,
C (dy *hg +d; ' " h ) + ChiY|G = Ghll2op  ifr > 2.

Since J, < C'In(2+41/h) and 3, co., 4 “h§ < C, it follows that

(4.50) Z d]hj_1||V(G—Gh)HL2(O])Sth—l—C Z hj_lnG_GhHL?(O;)
OjEOZO Ojeozo

In the same way, one can prove that

(4.51)
Y dih(xo) MIV(G = Gi)llap,) S Cla+C Y hlwo) G - Gl 261
0,€0,, 0,€0,,
(4.52)
> o VG =Gz, < Cl+C Y 0HIG = Ghllr2gar).
QjEO QjEO

Hence, by summing up (£50)-@52)), we have

M<ClA+C Y bt G = Gallrzoy)
0;€0;,

+C Y Awo) G = Gullpary +C D 07 IG = Gallaay

O €0., 2;€0
(4.53) _
< Cty +C Z hi G = Gllzzo
O]‘EOQO
+C Z h(.’[o)_IHG _ Gh||L2(5j) +C Z h;lHG — Gh||L2(_Qj)a
51‘60;0 2;€0

where we have used (£48) in the last inequality.
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The following three technical estimates can be proved for some o € (v, ), and
their proofs are presented in Appendices [AHCE

(4.54) > hiHIG = Grllreo,) < CETT 4+ CRTIIM,
0,€0;,

(4.55) S b@o) MG = Gl < ORI 4 CrTI7M,
0;€0,,

(4.56) > b NG = Ghllra(e,) < CT) 4+ CRTIIM.
;€0

Substituting ([@54)-50) into [@53J), we have

(4.57) M < Cly + Cr'9 4 Crm17° M.

Then, by choosing k sufficiently large, the last term of the above inequality would
be absorbed by its left-hand side, and therefore we obtain

(4.58) M < Cly.

By substituting the above result into (£47) and using ([@44]), we obtain the key
estimate (£38]). This completes the proof of Theorem 2] in the case |zg — zo| >
16Kh,.

4.6. The case |z9—zo| < 16kh.. Note that  is a fixed constant already determined
below [@ET). In the case |zg — 29| < 16Kh,, we decompose the domain 2 into
disjoint subsets

J+1
(4.59) n=J%,
=0
where
(4.60a) Q;:={xe2:pjn <l|x—2|<pj} J=0,1,...,J,
(4.60b) Ry ={x e 2:|z—2)]|<ps},

with p; = 2 /diameter(£2) and J = [log2 (%ﬁgm) ], so that

(4.61a) BkhaA < pri1 < 16KDA,

where A is a constant to be determined later (like the constant s in the previous
subsections).

The rest of the proof is similar as the proof for the case |zo — 29| > 16kh., except
that the decomposition ([1]) is replaced by the simpler one ([£E9). In particular,
inequality (£33) still holds, i.e.,

1

Rpu(xo) — Inu(zo) — ﬁ (Rpu — Ihu)dx
19)

(4.62) < CO(IVFH(Gh = G)llLio) + 1B V(Gh — Gl @) + 1) lull (@),

and ([{410)—(E48) would be replaced by
(4.63) V3 (Gh — D)) + 1B 'V(GL = G|l () < Cl, + CM,
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with
J
o —-1
(4.64) M = E pih; IV(G — Gh)||L2(Qj).
7=0

The similar estimates as in the previous subsections would yield the following esti-
mate (similarly as ([@57)):

(4.65) M < Cl, +CNE=9) L CAT7 M.

By choosing sufficiently large A, the last term of (LGH) can be absorbed by its
left-hand side and therefore,

(4.66) M < Cly.
Substituting ([@63) and (L60) into (L62) would yield the desired result, i.e.,
(4.67) |Rpu(zo)| < Clyllullpe(0)-

This completes the proof of Theorem 211

5. PROOF OF COROLLARY [2.]]

In this section, we prove Corollary 2.1] by applying the result of Theorem 2]
and assuming that the triangulation satisfies the general conditions described in
Section 2.1}

We first prove the following local W#+2P regularity for the solutions of the
Poisson equation and then use this result to prove Corollary 211

Lemma 5.1 (Local Wk*2P estimates). Let k and p be nonnegative integer and
real number, respectively, such that p > 2, (k,p) # (0,2), and (1 — %)% are not

integers for j = 0, 1, ..., m — 1. Let f € WFP(0) (satisfying the compatibility
condition [, fdx =0) and let u be the unique solution of (LI), and let d > 0 be
small enough so that dist(£2 N Bsq(z;),2;) > C when @ # j and i,j =0, 1, ...,
m—1. Then

—k-142-2
(51) ||u||Wk+2*P(QﬂBzd(Zj)\Bd(Zj)) < cd P4 ||f||kaP(Q)a

where ¢; =2/(1—6;) if ; <land ¢ =00 if ; > 1 and k > 1.

Proof. Since we have assumed that & > 0, p > 2 and (k,p) # (0,2), there are two
cases: (1) If k = 0 then p > 2; (2) If k > 1 then WkP(2) — L4(£2) for some
q > 2. In either case, f € WFP(£2) < LI(£2) for some ¢ > 2. We can choose such
a fixed ¢ > 2 such that condition [B2I]) is satisfied. Then from F25)-B27) (or

[16, Corollary 4.4.4.11]) we know there exist some constants ¢j,, n =1, ..., K;
and j =0, ..., m — 1, such that
m—1 Kj
u— Z Z ijSj)n S WZ’Q(Q),
7=0 n=1

where the expression of §;,, in ([3:20) implies that

. . m .
‘|VSj7n‘|LqJ‘v0°(Q) < C with q; = 2/(1 — 6]) if Bj = w— < 1, and qj = 00 if Bj > 1.
J
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Moreover, as explained in the text above [B.21), there exists ¢ € R such that

< O|fllzace) < Cllfllwer(o)-
W2.a(0)

Since ¢ > 2, it follows that W24(2) — W1°(02) — Wi (). As a result, the
two inequalities above and the triangle inequality imply that

[VullLai> (2nByaz;) < Cllfllwrroy for j=0,1,...,m—1.

This is the basic estimate to be used in the following proof.

For any fixed 8 € (0,1), the circular region {2 N Bay(20)\Ba(z0) can be covered
by a bounded number of disks of radius Sd (the number depends on ). We shall
present estimates of the solution in each of these disks. To this end, for ( €
2N Bag(zj)\Ba(z;) and k > 0, we denote by wy a smooth cut-off function such
that

(52&) (A)k;(l‘) = 17 in Bﬁd/2k+3 (C),
(52b) wk(x) = O, outside Bﬂd/2k+2 (C),
(5.2¢) V| < Crd™, 1=1,2,...,

and let ¢ be an arbitrary constant. Since u is the solution of [B1I), it follows that
@ = wi(u — ¢) is the solution of

(5.3) {_%u =5 m&,
Ont=g-n on 0f2,

with

(5.4) f=fur —2Vu - Vg, — (u — ¢)Awy,

(5.5) g = (u—c)Vwy.

Note that the functions @, f and § are all supported on Bgqyar+2(C). If Bgasa(¢) N
082 = () then the equation in (5.3)) actually holds on R?. Then the W*+2P estimates
of 4 can be obtained similarly as (but simpler than) the following argument for the
more complicated case that Bgg/o(¢) N OS2 # .

Without loss of generality, we focus on the case Bgg/2(¢) N 962 # 0 and, by
choosing 3 small enough, we can make sure that Bgq({) does not intersect other
sides of 2. Via a rotation we can assume that one side of 02N Bgg/2(() is contained
in Ry x {0}. Since @ is supported in Bgg,2((), it follows that (5.3) holds in the
upper half plane, i.e.,

56) {—Aa =f in RxRy,

Opt=g-n on Rx {0},
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where §(x1,0) = 0 for 1 < 0. Let Bga/2(¢)+ = Bga/2(¢) N (R x Ry). By applying
the W*+1P estimates on the upper half plane we obtain

|u|W"+2vP(R><R+)

< O\l Fllwrn g -
< Cllfllwes sy +ClF-nl st o)

< Ol fllwer@xry) + Cllgllwerrr@xr,)
k k

< CZd_j”fHWk*j*”(Bﬁd/zkH ©0 T CZd_j_l||u||Wk+17j’p(BBd/2k+2 (©+)

Jj=0 Jj=0

k
—5—2
+CZd J Hu—C||Wk—j:P(Bﬁd/2k+2(C)+)
=0
k+1
T CZ d*]*1||u — c||Wk+1—j,p(B5d/2k+2 (©+)
=0

where we have substituted the expressions (.4)—(5.1) in deriving the last inequality.
By choosing c to be the average of u on By/ox+2((), we have

lu — C|LP(BBd/2k+2(C)+) = C’d|u|Wl‘p(Bﬁd/?ﬂ“ (©+):

Since wy = 1 on Bgg/or+s((), it follows that

ulwr2p(B,, peis(©ON2)
(5.7)
k k
<C Z A [ fllwr=sir(B,, pse©n2) +C Z d_j_l||u||Wk+1*J'~P(Bﬁd/2k+z (©n9)-
Jj=0 j=0
Since the right-hand side contains strictly lower-order norms of u than the left-hand
side, by iterating the inequality with respect to k we can obtain

|ulwiren(B,, 4ers(ON2)
k
- —k—
< Czd N wr=s0(Brays)ne) + Cd lllvu”L”(Bﬁd/MC)ﬁm'
j=0
Then, substituting the LP estimate for Vu in (349) into the above inequality, we
have

‘u|W’€+2’P(BBd/2k+3(()nQ)
k
—q —k—24+2
< CZ -’ ||f||Wk*j*”(BBd/2(C)ﬁQ) +0d e ”VuHLz(BBd/z’(OmQ)
§=0
(5.8)
k 2 2
—q —k—142_2
<Y A flwrsrBaatone + Cd 00 Vull o (5,0 0000);
§=0
where the last inequality follows from using Holder’s inequality with the weak L9
norm, for arbitrary g € [2,00]. The proof of above inequality relies on the iteration
of (51). In fact, we can construct many intermediate disks between Bgq({) and
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Bgg/2(¢) and apply similar iterations as (5.7). In this way, we would obtain a similar
inequality as (B.8), but with Bgg/ox+s(() replaced by Bgg/4(¢) on the left-hand side,
i.e.,

ulwi+20(Byy,0(0)N02)
(5.9)

k
g —k— 2_2
< O3 a7 flwisr(Bayaiine +Cd 8|Vl 2000

Jj=0

Since the circular region 2N Bay(z;)\Ba(z;) can be covered by a bounded number
of balls of radius Ad, by summing up the W*+2P estimates over these balls, we
obtain

Hu”Wk+2~P(QmBzd(Zj)\Bd(Zj))

k
i —k—1+2-2
< CZd N llwe—sp() +Cd P99 ||Vl La > (0nBsa(z))
j=0
—k—14+2-2
(5.10) <Cd P fllwes ()
This proves the desired result of Lemma 5.1l a

Let d be a sufficiently small constant such that dist(z;,z;) > 4d for any two
different vertices z; and z; of the polygon (2. For any j = 0,1,...,m—1, we denote
Dj,i =0nN BZdi(Zj)\Bdi(zj); with d; = 27172 for i = 0,1,...,Ij, where Ij is
determined by 277id ~ khs j, where k can be chosen to be large enough so that
d; > CK"ihj; is bigger than twice of the mesh size in By, (2;).

Let 2y = {z € 2 : dist(z,z;) > d/4 for j=0,1,...,m —1}. We denote by h;;
the mesh size in D; ;. According to the mesh size choice in ([2.]), we have

hji=d, "h.
Then
m—1
2=102U | UZyDs;.
j=0

(C2) implies that the finite element solution given by (2] satisfies the following
error estimate:

||’LL — ’U,hHLoo(Q) = ||u — Ihu — Rh(u — Ihu)”Loo(Q)
< Clpllu — Ihu L= (o)

< (Cl, max max |lu— Ipu| ;e v v
< Cly _max | max | 2o (@NBaa, () Bay (2))

(511) —I—CéhHu—IhuHLoo(QU).

We consider two cases separately.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



MAXIMUM-NORM STABILITY OF THE FINITE ELEMENT METHOD 1569

Case 1: r > k + 1. In this case, we have

k4+2-2
llw = Inull oo (@nBau, (25)\Bu, (z)) < Chji " llullwrszr(@nBaa, (2)\Ba, j2(25))

_1+%_l

N Fllwes o)

2 2

(1_7')(k+2_%) _2 ~k— +p q;
<Cd; ~ W, I f llwee )

%

k4+2-2 —k
gChM vd,

. —2Y_ 2_ 2
(1= (k42— 2)—k—1+42

—2 aj
< ChF?7hd, N w2

2 2
(b+2-2)+1-2

_2 =7 aj
(5.12) < ChHPTRd, [ fllwrr ()

) . 1-2/q, in(1,8;
By choosing —v;(k +2 — %) +1-— q% > 0, or equivalently v; < k+2j§}p - 21112(725/]3

(as gj = oo when §; > 1), we obtain
_z
(5.13) ||u — Ihu||Loc(QmB2di (Zj)\Bdi (Zj)) S Chk+2 P ||f||Wkp(Q)
Since the mesh size in 2y is O(h), it follows that
_2 _2
(5.14)  lu = Inull e () < CHM 70 ullwrrza(ayy < CRMF275 | fllwran ),

where ) = {z € 2 : dist(x, z;) > d/8} D (2. By substituting the two estimates
above into (BI1), we obtain

_2
(5.15) H’U,—uhHLoo(Q) < ththrz p||f||Wk,p(Q).

This proves the desired result of Corollary 21]in the case r > k + 1.
Case 2: v = k > 1. In this case, we choose p = 2 in Lemma [.J] and replace
(EI2) by the following estimate:

lw = Inull Lo (20Ba, (2))\Bu, (2)) < Ch§j1\|u||HT+2(mB4di (2))\Ba, /2(%}))

2
<Critld, Y fllae)

(5.16) <on T

By choosing (1 —v;)(r +1) — 7 — q%_ > 0, or equivalently v, < I;i/lqj = mij(jff)
(as gj = oo when §; > 1), we obtain

(5.17) lu = Inull Lo (2 Baa, () \Ba, (2)) < CH T ()

Since the mesh size in 2y is O(h), it follows that

(5.18) lu = Tnull oo (@) < Ch™ M Jull iy < CRHY [ fllar (),

where () = {z € 2 : dist(x, z;) > d/8} D (2. By substituting the two estimates
above into (BI1), we obtain

(5.19) w = un| o2y < CLR" fllr(2)-

This proves the desired result of Corollary 2.1]in the case r = k.
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6. CONCLUSIONS

We have proved the maximum-norm stability of finite element solutions to the
Poisson equation with the Neumann boundary condition in a polygon which is
possibly nonconvex. The use of graded mesh, with triangulations locally refined at
the reentrant corners, is essential to the proof. With the maximum-norm stability
result, the error estimation in the L°° norm can be reduced to an interpolation
error estimate. By analyzing the interpolation error, the error estimate is derived
in terms of the smoothness f € W*?(£2) of the right-hand side, with 2 < p < oo.
By using norms in Lorentz spaces LP2(f2) (instead of the usual Lebesgue spaces)
for the singular functions, it is possible to choose the grading parameter in the
limit.

The analysis in this article may be extended to the Dirichlet boundary condi-
tion and more general elliptic equations with variable diffusion coefficients in two-
dimensional polygonal domains. The maximum-norm stability of finite element
solutions in three-dimensional nonconvex polyhedral domains still remains open.

APPENDIX A. PrROOF OF (d54)

For O; € O, , we estimate ||G'— G4l|L2(0,) via the duality

|G = Gullzz0;) = sup (G —Gh,¥).
WeCEe (0;)
191200, <1

For any given ¢ € C§°(0;) satisfying ||¢[[12(0,) < 1, we define w as the solution of

(A1)

—Aw=1)—1) in 2,
Opw =0 on 012,

where 1) 1= ﬁ fnw(az)daz is the average of ¢ in the domain (2. The solution w

exists and is unique under the condition [, w(x)dz = 0. It is known that the
solution of (AJJ)) satisfies that

1
]| e 2y < Cllellge—r(ey for s=0 and s € (5,5);
see Lemma [3.2] with ¢ = 0. By the complex interpolation, we have

(A.Q) ||w||Hs+1(_Q) < C”T,{}”Hsfl(n) for s € [0,5).

Here we choose s > v to be sufficiently close to v so that (1 —v)(1+s) < 1, and
choose o = s in the definition of J,, below ([£2]). Inequality (A2]) will be used in
Appendices [AHC]

By using the Sobolev embedding LP:(£2) — H*~(£2) with p, = 2/(2 — s) and
Holder’s inequality, we have

(A.3)
11 21 s
[l frs-1(2) < CllllLoe () < ClO;17 "2 W]l L2() < Cdf [[ll 20y = COdj~*.

This inequality will be frequently used below.
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By using the normalization condition [, Gy dz = [, Gdz, we have (G — Gy, 1)
= 0 and therefore

(G =G, ) = (G = Gn,p =) = (G = Gp, —Aw) = (V(G = G,), V)
= (V(G - Gp),V(w — Ihw))
= (V(G = Gp), V(w = Ihw))o.,
(V(G = Gp), V(v — Iyw))g.

+
+ Y (V(G=Gh),V(w—Tw))o,
0,€0.,U{0_1}

(A4
) + > (VG =Gh),V(w—Tyw))g,
O €0,
+ Z (V(G = Gh),V(w—Ihw))o,
2,€0\{2541}

5
=: ZEJ
j=1

We estimate &;, j = 1,...,5, separately.
The first term on the right-hand side of (A4)) can be estimated by

&1 = [(V(G = Gp), V(v — Thyw))o.
<||V(G = Gi)ll 12 (w — Ihw)l|L2(0.)
< C(E"R) V(G = Gr)ll 2o lwll e (o)
< C('"7h)°IV(G = Gl 20 1Yl -1 ()
< C(k'7h)%d; V(G = Gh)ll L2 c0.)
< C(k'Tha) d T,

(A.5)

where we have used (A3) in the second to last inequality, and ([£40]) in the last
inequality.
The second term on the right-hand side of (A4]) can be estimated by

&2 = [(V(G = Gh), V(w — Thw))g_|
< Oh(xo)Hw”Hz(é*)”V(G - Gh)”p(é )
(A.6) < Chiao) W] g

where we have used ([{40]). Note that ||wHH2(5*) can be estimated by using Green’s
formula, i.e.,

w(z) = /Q Tz, yi(y) dy = /O D) dy

Since ¢ € C5°(0;) and [[1[|L2(0,) < 1, it follows that

[l 25,y < sup ITC ) 2.0 1¥1L1 o))
Yy

< Cdist (0., 0;) Y012 19| 120,
S C|CEO — Z()|_1d]

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



1572 BUYANG LI

Then, substituting this result into (ALG), we have
(A7) |82| S Ch(xo)‘xo — Zol_ldj.

For O; € O,, U{O_1} we have
(A.8)
&3] = [(V(G = G), V(w — Thw))o,| < Chi||w| ge+1(2) V(G = Gh)llL2(0,)

< ORI\l gs-1(2)IV(G = Gi)ll 20,
< Ch{[Y|lLrs () IV(G = Gh)ll22(0,)
21
<Chidy |[Yllrz)IV(G = Gh)llL20,)
< Chid;~°|[V(G = Gi)ll12(0,)-
For 61 € Oy, there holds
1wl 25y < sup NG9 gz o) 181121 0,
D= eo, !
< Clao — 20|05 2 19l L2 (0,)
< Clzo — 20|~ 'd;,
which implies that

(A.9)
€4 = [(V(G = Gn), V(w = Ihw))g | < Ch(zo)|wl 25 IV(G = Gi)ll 25,

=

< Ch(.’[o”%o — Zo|_1deV(G — Gh)”L?(@)

For £2; € O\{f2,41} there holds

wll 22 < sup |GG y)lm2en Pl o))
y€O;

< Cp; Y0512 ¥l L2 (0s)
< Cp;'d;,
which implies that
1€5] = [(V(G = Gp), V(w = Thw))e,

< Chil|wll a2 V(G = Gi)llr2())

A.10
(A10) < Chip; 'dj||[V(G = Gu)ll 2 (2

Overall, substituting the estimates of |&;], 7 = 1,...,5, into (A4)), we obtain
(via the duality argument)

(A.11)
|G = Ghllz20,) < C(5""h.)*d} ™ + Ch(xo)|xo — 20| ' d;
+C Z (d;*hi*d; ) dih V(G = Gh)llL20,
OiEOZOU{Ofl}
+C Z (djﬁ($0)2|2130 - Zo|71d;1)dih($0)71”v<G - Gh)HLQ(aq)
5i€(9m0

+C > (dindp; ey HIV(G = Gu)llzea,),
2,€0\{2;541}
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and so
(A.12)
> MG - Ghllrzo,)
OEO/
<C Y ((BThD)E hy T B(wo) o — 20| Mdjhy )
O; EO/
+C > D (@ h T T dih TV (G = Gl o,

OiEonU{Ofl} Oj EOIZO

+C D D (dhy h(wo)*d; o = 20 )dih(wo) V(G = Gl (o,
6ieo O‘EO’
+C Z Z (d;h5 03 p; H)pin V(G = Ga)llrz
2:€0\{£2741} 0;€0%,
=1 L1+ Ly + Lz + Ly.

Since v < s < 3, as shown in ([B.3]), we have

=C > ((57h)*d st + h(xo)wo — 20| T'djh; )
Oj 6(9’
1 1—s 1—vyy\—1
<C Y (KR (hdy )
O; EO/
+C Z h(zo)|zo — Zo|_1dj(hdjl‘ﬂ)_l
OseO’
ol — g—(s=7)
<C Y ((K7ha)h7d;
O; EO/
+C Z (hlzo = 20|' ™) |0 — 20| ' hVd]
OJ'EO/ZO
< C((K'Th)*h (kb)) =677
+ Oh1|1‘0 - 20‘17”2130 — Zo‘ilh;”"to — 20 v

< Cx1=9)7 4 C.
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By using the definition of M in (4.48]), we have

Ly<C Tl
2= MOiEOI:%)EO,l} Z (] 7 i i )

0;e0.
<C dl'*s hdl'*“/ -1 hd177 S+1d»71
B MOiGOI:%?o,l}OEZO/ ;o (hdy ) (hd ) i
<CM  max > hd; —(-(=m(e+D)]
0:€0-,010-1) 5 25,
S CMhZS(K/h*)f(S*"/) (K/h*)f[lf(l*’)/)(\%l*l)] (note that 1 — (1 _ ’Y)(S + 1) > O)

< Cr™7°M,

Ly <CM max > (d;h; "h(zo)’d;  |zo — 20| ")
Oieoxg O‘GO’

<CM Z d;(hd; ™)~ h(x0)* (K7 h(x0)) ™ |zo — 20| "

0;€0,
<SCM Y hTdl R h(ao) o — zo|

0,€0z,
< CMhHag — 20|76 7 (h|zo — 20)*77) |20 — 20|
< Cr™7°M,

Ly <CM = max d;h 7 h2p72
4> Q,ieo\{QJH}OJEZOI ( 7' Pi )
20

<CM  max di(hd*= ) "L (hpl= 72,2
B Qieo\{QJJrl}OEZO, j( J ) ( Pi ) Pi
J EN)

<OCM  max hd p; 2"
2,€0\{2541} OJEZ(’)’ J Pi
zZ0

<CM max hY|xo — 20| |20 — 20|77
2,€0\{2;41}

<CM max h)(khe)™7
2,€0\{2541}

< Cr™ M.

Substituting the estimates of Lq, Lo, L3 and L4 into (A12) and using £ > 1, we
obtain

(A.13) > BNG = Ghllzeo,) < CrUT + CRTM.
O]‘EOQO

This completes the proof of ([E54).

ApPPENDIX B. PROOF OF (55

The proof of [55) is similar as the proof of ([#54]) in Appendix [Al The main

difference here is that we focus on the subdomains O; which are closer to the
singular point zy than the reentrant corner zy (in Appendix [Al we focus on the
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subdomains O; which are closer to the reentrant corner zp). For the convenience
of readers, we include the complete proof here.

For O; € O.,,, we estimate ||G — Gh||L2(6j) via the duality
IG = Ghll 2, = suwp (G—=Gn ).
HeECH(0,)

H’ALJHL2(5J_)S1

For any given ¢ € C§° (6J) satisfying ||¢HL2(5J_) < 1, we define w as the solution of

(B.1)
Opw =0 on 0f2,

{—Aw = —1p in £,
where 1 := T QI Jo¥(x)dx is the average of 4 in the domain §2. The solution w

exists and is unique under the condition | ow(r)dzr = 0. Moreover, inequality
(A3) holds similarly here.

By using the normalization condition [, Gy dz = [, G dz, we have (G — Gy, 1))
= 0 and therefore

(G =Gn ) = (G =G, =) = (G = Gp, —Aw) = (V(G = Gy), Vw)

= (V(G Gh),V(w—Ihw))
= (V(G = Gh), V(w = Iyw))o.
+ > (V(G=Gn),V(w—Iw))o,
0;€0;,
V(G —Gp), V(w — Ihw))g,
(B.2) * Qieo\z{:%ﬂ}( ( n), V(w = Ihw))e,

+(V(G = Gp), V(w — Ihw))s,
+ > (VG =Gh),V(w - Iw))g,
O,UU{O 1}

~35

The term | | can be estimated in the same way as (&), i.e.
(B3) 8] =|(V(G - Gn). V(w— Luw)o.| < C(xTh.)d

The second and third terms on the right-hand side of (B:2]) can be estimated by
(B.4)
|&2| = [(V(G = Gh), V(v — Ihw))o,| < Chillwl|gs+10n) V(G = Gh)llr2(0,)

< O[]l s IV(G = Gl 20

< Chid;~°|IV(G = Gi)llz2(0,)

< C(d;hiTd ) dih V(G = G)llzz(0,),
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and
(B.5)
€3] = [(V(G = Gn), V(w — Inw))a,| < OB} [w]| s (2p V(G = Gi) e
< On} [Pl gs-1 () [IV(G — Gr)ll2(0))
< C'hsdl'ﬂHV(G = Gn)ll2(2)
< C(d; "0 o ) piby V(G = Gl L2

To estimate |4], we consider the two different cases below.
Case 1. If j = Jy, or j = Jy, + 1, then O; N O} # 0 and d; < Ckh(x). In this
case, by applying (3.36b]) with p = 2 we have
ol oo,y < € (I = Pl oo + (7 Bo) "IVl 2o )
< C (Il 2oy + (5 Ro) V025
and so
(B.6)

€4l = |(V(G = G), V(w — Ihw))g |
< Ch(xg ||w||H2(5;)||V(G - Gh)”Lz(é*)

< Ch(@o) (1]l 25 + (57 R(@0) " IVl 2 51 ) IV(G = Gl 5.
< Ch fo ”wHL?(O“) + lﬂsh(fo))#l||vw||L2/(1—s>(5/*/)> ||V(G - Gh)“m(é*)

)
)
)

< Ch(o) (Il 250y + (7 hao)) el ) 19(G ~ Gl a(s.
) (1+
) (1+
)

(
< Ch(wo) (1 + (2 R(20))* ¥l s 2) 19(G = Gl oo,
< Ch(zo) (1 + (K7 h(z0))* (K7 R(z0)) ) | V(G — Gi)ll 25,
< Ch(iﬂo )

where we have used Holder’s inequality in deriving the third inequality of (B.6),
and used (£.40) in deriving the last inequality.
Case 2. 1f 0 < j < Jy,, then O; N O} = 0 and for p € (2,po) as in Lemma [£2]
we have
&l = [(V(G = Gp), V(w — Iyw))s.|
< Ch(xo)llwllyy2m () IVIG = Gr)ll 1w 5.
~ 11
< O] 0.1 ol o 1916 ~ Gl

< CR(ao) (R R(20))7 Ml 25

where we have used ([@46]) in the last inequality Then, by applying the local W2P
estimate in Lemma to the expression w( fo (y)dy and using
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Hoélder’s inequality, we have

”w”W?,p(@;) < sup ”F('vy)”WZp(ﬁ;)”(bHLl(@j)
yEOj
242
< Cd; A1) a6,

< CdQ_/pfl
— J b)
which implies that
(B.7) &4 = [(V(G = Gn), V(w — Tyw)) g, | < CR* & Dh(ag)w a2/

__ Similarly, we also consider the following two different cases in the estimation of
|E5]. o
Case 1. 1f |j—i| < 2, then O}NO; # . In this case, d; ~ d; and h; ~ hj ~ h(xo),
and we have

15| = [(V(G = Gn), V(w = Ihw))g |
< Ch(wo)*[[wllro+1(2) IV(G = Gl 125,
< Ch(@o)*[¥llm=-1(2)IV(G = Gl 25,
< C(R(wo) 1 d; ") dih(zo) M V(G = Gu)ll 125,

(B.8)

Case 2. If |j —i| > 3, then 5; N O} = (. In this case, h; ~ h; ~ h(xg), and for
p € (2,pp) as in Lemma 2 we have

&5 = [(V(G = G), V(w — Tw))g |
< Cﬁ(wo)llwllwz,p(af)IIV(G =Gl 5,

scmxo)nwnwma VG - Gllago,

< O (Mwo)d?" " Nwllyanar ) dilizo) M IV(G = Gl a5,
By using the local WP estimate in Lemma .2, we have

ol < 59 I0C0) ey 19l 5,
y€O;

< C'max(d;, d;)"* v d; ||¢||L2(o )
< Cmax(di,dj)_l" dj,

which implies that

~ 29 _2 _
(B.9) |&] < C(R(wo)*d) " max(di,d;) ™7 d; ) dih(wo) V(G = Ga)l 25,
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Substituting the estimates of |£;], 7 = 1,...,5 into (B2), we obtain (via the
duality argument)
(B.10)

||(G - GhHLz(éj)

< C(k'7hy)0d)
+ Y Ot ) dih V(G = Gu)lleeos)

0;€0;,
+ > CmTp ) pin V(G = Gl Legan
;€0
s(2— 2 1-Z
+ Chlo)(8;, Jxo + 85,0, 11) + OV V(o) d; 7 (1= 85,0, — 85,0, 11)
+C Y (o) )ik V(G = Gl 25,
O eO

(5ij+5ij 1+5ij+1+5ij 2+ 0ij+2)
+ 3 (o)d; * max(ds, )7 dy ) diheo) IV (G ~ Gl o

li—j|>3

Hence, we have

> o) G =Gl e,

6]‘60;0
<C Z h(xo)—l(nl—'yh*)sd;fs
0,€0;,
0 Y (o) ) V(G — G200
0i€0s, 6,0,
+0 3N (Blwo) i ) e V(G — G2y
2;,€0 o ’
(B.11) S oseet,
s(=7 %_ 1_5
+o+C S KT ()
0;€0%,
+C Z dh(.ﬂ?o) 1||V(G Gh)HLZ(O)
OEO(L‘O
Mxo)d,; -
RS #ﬁ dih(x0) V(G = Gi)l 125,

61'6010 5j€0;0 d ma‘x(dl7 d )

=1+ FEy+ E35+ FEy+ Es + Eg.
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Since v < s < 3, as shown in ([B.3]), we have
Ey=C Y hlwo) (k' Th.)di*
@eo;o

< C(h|zo — 20| ™7) "MK TV hL)E 2o — 20|10
< Ch K" Thy)® |w — zo|7(57”)
< OV (K hy)* (khy) 7Y
< CKW(PS),

Ey < CM Fa ~Z (h(xo)flhgﬂdi—ld}‘s)

O; EOOIT'O

< OM e (o — z0/' ™)™ (ht} ™)™ — 20"~

K2

< CM max (h5|$0 _ ZO|7(sfw)d.—[1—(1—7)(1+s)])

€0z,
< CMAB}* (1h) ™77 (kb )~
<COr™7°M,
E; < CM max Z (h(xo)—lhf-‘rlpi—ld}—s)

2,0 _
OjeOwo

< OM max ((h\wo — 20| ) )y o — Z0|1_s)
< s N —(5—7) 4—[1—(1—7)(1-&-3)])
< CM max (h |zo — 2o Pi

< CMhzs(Kh*)—(S—w) (Kh*)—[l—(l—v)(Hs)]
<Cr™7°M,

Es <CM max h(zg)°d;” < Cr7° M,
OjEO;O

h d;
Es < CM max QLMQ
0;€04, 0,0, \di max(d;,d;)v’

< CM max <M>
0:;€0,, \ d;

< Cr™7°M.
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Substituting the estimates of Fy, k =1,...,6, into (BI1]), we obtain

(B.12) Z Wao) G - Grllz2(0;) < CrY1=) 4 O™ M.
5j€(9$0

ApPENDIX C. PROOF OF (HL56)

The proof of [55) is similar as the proof of (£54]) in Appendix[Al The main
difference here is that the subdomains {2; are away from both the reentrant corner
zop and the singular point z(, and therefore the analysis would become simpler. For
the convenience of readers, we include the complete proof here.

For £2; € O, we estimate ||G' — Gy||L2(,) via the duality

|G = GullL2,) = sup (G — Gh,¥).
YECe (2;)
19l 2(0,)<1

For any given ¢ € C§°({2;) satisfying [|¢[|2(,) < 1, we define w as the solution of

(1) —Aw=1)—1) in 2,
' Opw =0 on 012,
where 9 = IQI fgw x)dz is the average of ¢ in the domain {2. The solution w

exists and is unique under the condition [, w(z)dz = 0. Moreover, inequality
(A33) holds similarly here.

By using the normalization condition [, G dz = [, Gdz, we have (G — Gy, )
= 0 and therefore

(G=Gn ) = (G—=Gn, ¥ =) = (G = Gp, —Aw) = (V(G — G), V)
= (V(G = Gn), V(
= (V(G = Gr), V(
+ Z (V(G = Gh), V(w — Thw))o,
0;€0:,\{O0}

+ Y (VE=Gh), V(W= Dw))e,
QiEOU{Q,]+2}

+(V(G = Gy), V(w = Thw))gs.

+ ) (VG =Gh).V(w—Iw)g,
0;€0,,\{Oo}

5
= Z &;
j=1

The term |Ef] can be estimated in the same way as (AR, i.e.

w — Ihw))

w — Iyw))o,

(C.3) €51 =[(V(G = Gn), V(w — Inw)o.| < C(k'7hi)*p;~".
|€5] and |E5] can be estimated by
(C.4)

€3] = |(V(G = Gh), V(w — Inw))o,| < Ch}||w| gs+10n V(G — Ghr)l2(0,)
< Chi|Yl s @ IV(G = Gi)llL2 0,
< Chip;~* V(G = Gu)llL2(0,)
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and
(C.5)
€31 = |(V(G = Gp), V(w — Ihw))g,| < O} |lw|| g+ V(G = Gn) L2

< OR3Pl -1 IV(G = Gh)llz2 ()
< Chip; V(G = Gu)llLa(ay)-

|€5| can be estimated by
(C.6)
€11 = [(V(G = Gi), V(w — Inw))g, | < Chlao) [0l o0, I9(G — Gl oo

< Ch(wo)llwll 2515
where we have used (£40) in the last inequality. By using ([£.22), we get

leollgssy < 59D 1GC9) g2 122 2
yEL;

_ — 1
< Clzo — 20l 05 * 192512 10| L2 (2,

< Clag — 20" pj %,
which implies
(C.7) €51 < Clao — 20" 'h(o)p;—°
By using [@.22]) we can estimate |£F| similarly as |E]], i.e.,

&5 = [(V(G = Gp), V(w — Tyw))g,|
< C(lzo — 20"~ hlwo)*d; * pj = "dih(x0) T IV(G = Gl 25,

Then, substituting the estimates of |£f] into (C2), we obtain (via the duality
argument)
(C.9)
|G = GhllL2(,) < C(s"ha)p;~°
+C Y (BTN o)) dih V(G = Gh)lezo,
0;€0;,
+C D 5 ) )pib T IV(G = G)llz e
2,€00{2; 42}

+ Clzo — 20~ (o) p;

hxo)?p;~* .

61'6(910\{60}
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As a result, we have

(C.10) > biYIG = Ghllpze,)
2;€0
<C Y (7)) ong
;€0

+C DD (W el dih VG = Gh) ez o,
0,€0,, 2,€0

+C S S ® e e V(G — Gl

Q,€0U{2,42} 2;€0

+C E |JJ()—20|S lh({Eo) Sh 1
2;,€e0
2 s

1—
+C >N —_ lﬂs d;h(z0) V(G = Gi)l 120,
|JIO Zo‘ dh
O €04, ;€0
::F1+F2+F3+F4+F5,

where

—-C Z 1— 'yh Sh;1

2;,€0

SCZ l'thIS(hp )1
2;,€0

< C(k'hy) hlzp—(sv

2;€0
< C(K* 7V hy)*h ™ Hag — 2|~
< C(K' 7 hy) B (kb))

< CrYO=9),
F, < C max hSHd 1p1 Sh M
2 0,€0;, _Q-EO( )
<C max > (hd; ") el (hpy ) TIM
Qic0 0 0;e0
< C max hedI D=1 (5= g
OeOzOQ o J
< C max h°d; br(s+1)= s|:1:0—zo|7(577)./\/l
0;€0;,

< Chzs(nh*)_h(sﬂ)_s](nh*)_(s_”/)/\/l
< Cr™7°M,
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Fys<C ma ool =shHm
h< 0, Jnax > ety

2;,€0

<C max hpl=7)s+1 =1 Jl=s ()11 =1 A4

>~ 2,E0U{N2 42} _Q;O( Pi ) Pi p] ( p] )

<C max hspl(l—v)(s+1)—1p;(s_y)M
2,€0U{N2; 42} et

<C o max bt DD Tg gt m
2,€0U{R; 42}

< Ch* (khe) "Dl (e, ) =671 M

< Cr™7M,

F4 S C Z ‘LL'() — Zo|s_1h(l‘0)p;7shj71

2;,€0

<C Y fao — 20/ (Blwo — 20' 7)) (hpy )
2;€0

<C Z ‘xO _ ZO|57VPJ‘_(S_’Y)
2;,€0

<C,

h(wo)* 1—sy —1
Fs < C max Z 1P b )M
0:€0.g (32t 1¥0 — 20l 7%d;

< C max E —h(aco)f Pl-_s(hpl-_v)_l)./\/l
5ieox0 _Qjeo ‘.’EO — Zo| 7Sdi J J
h 2 (s
< C max G R Y

= _ 1-s,. J
0:€0s 20 |z — 20['~%d;

hlzg — zo|' ™R
< (C max |70 = 2| - (o)
0,e0,, |To— z0l'7%d;

< C max h(xo)d;*M
0,€0,,

< Cr™7° M.

h71|$0 - ZO|7(577)M

Substituting the estimates of Fy, F», F3, Fy and Fj into (CI0Q), we obtain

(C.11) > n G = Ghlleae,) < CRYTY + CRTIM,
QjEO
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