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ABSTRACT. The weak maximum principle of the isoparametric finite element method is
proved for the Poisson equation under the Dirichlet boundary condition in a (possibly
concave) curvilinear polyhedral domain with edge openings smaller than 7, which include
smooth domains and smooth deformations of convex polyhedra. The proof relies on the
analysis of a dual elliptic problem with a discontinuous coefficient matrix arising from
the isoparametric finite elements. Therefore, the standard H? elliptic regularity which
is required in the proof of the weak maximum principle in the literature does not hold
for this dual problem. To overcome this difficulty, we have decomposed the solution into
a smooth part and a nonsmooth part, and estimated the two parts by H? and WP
estimates, respectively.

As an application of the weak maximum principle, we have proved a maximum-norm
best approximation property of the isoparametric finite element method for the Pois-
son equation in a curvilinear polyhedron. The proof contains non-trivial modifications
of Schatz’s argument due to the non-conformity of the iso-parametric finite elements,
which requires us to construct a globally smooth flow map which maps the curvilinear
polyhedron to a perturbed larger domain on which we can establish the W® regularity
estimate of the Poisson equation uniformly with respect to the perturbation.

1. Introduction

Let 2 be a bounded domain in RY with N € {2, 3} and consider a quasi-uniform triangulation
of the domain {2 with mesh size h, denoted by ). Hence, 2, = (e, K)° is an approxima-
tion of £2. Let Sy ({2),) be a finite element space subject to the triangulation .%#,, and denote by
So‘h(Qh) = {vp € Sp(2) : v, = 0 on 042} the finite element subspace under the homogeneous
boundary condition. A function uy € Sp({2y) is called discrete harmonic if it satisfies

L Vup - Vxn =0 Yxne Sh(52). (1.1)
h

For a given mesh and finite element space, if all the discrete harmonic functions satisfy the
following inequality:

lunl o0, < lunlpe@n,) - (1.2)
then it is said that the discrete mazimum principle holds.

The discrete maximum principle of finite element methods (FEMs) has attracted much atten-
tion from numerical analysts due to its importance for the stability and accuracy of numerical
solutions; for example, see [10}/13}[38}44,/47]. However, strong restrictions on the geometry of
the mesh are required for the discrete maximum principle to hold. For example, for piecewise
linear finite elements on a two-dimensional triangular mesh, the discrete maximum principle
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generally requires the angles of the triangles to be less than 7/2; see [47, §5]. In three dimen-
sions, it is hard to have such discrete maximum principe even for piecewise linear finite elements;
see [6,27,28],48].

Schatz considered a different approach in [39] by proving the weak maximum principle (also
called the Agmon—-Miranda maximum principle) ,

lunl g2,y < Cllunl oo, - (1.3)

for some constant C' which is independent of uj, and h, for a wide class of H'-conforming finite
elements on a general quasi-uniform triangulation of a two-dimensional polygonal domain. It
was shown in [39] that the weak maximum principle can be used to prove the maximum-norm
stability and best approximation results of FEMs in a plane polygonal domain, i.e.,

Hu — RhuHLoo(_Q) < Cgh info Hu — UhHLOO(Q) Yuce H&(Q) M LOO(Q), (1.4)

’l}hGSh
where Ry, : H}(2) — Sy, is the Ritz projection operator, and
{ In(2+4 1/h) for piecewise linear elements,
b =

1 for higher-order finite elements.

Such maximum-norm stability and best approximation results have a number of applications
in the error estimates of finite element solutions for parabolic problems [25]31,33,34], Stokes
systems |5, nonlinear problems [15,/18}|36], optimal control problems [1}2], and so on.

In three dimensions, the weak maximum principle was extended to convex polyhedral domains
in [32] and used to prove the L®-norm stability and best approximation results of FEMs on
convex polyhedral domains, removing an extra logarithmic factor In(2 + 1/h) in the stability
constant for quadratic and higher-order elements obtained in other approaches (for example,
see [30]). When {2 is a smooth domain and (2, = 2 (the triangulation is assumed to match the
curved boundary exactly), the weak maximum principle of quadratic or higher-order FEMs is
a result of the maximum-norm stability result in [40,42], and the weak maximum principle of
linear finite elements can be proved similarly as in [32]. In all these articles, the triangulation is
assumed to match the boundary of the domain exactly, with 2, = f2.

In the practical computation, the curved boundary of a bounded smooth domain, or more
generally a curvilinear polygon or polyhedron (which may contain both curved faces, curved
edges, and corners), is generally approximated by isoparametric finite elements instead of being
matched exactly by the triangulation. In this case, the weak maximum principle of FEMs has
not been proved yet. Correspondingly, the best approximation results such as are not
known for isoparametric FEMs in a curved domain.

Some related results have been proved in the case {2, # 2. For the Poisson equation with
Dirichlet boundary conditions in convex smooth domains, the piecewise linear finite element
space with a zero extension in 2\(2), is conforming, i.e., Sj,(2,) = H}(£2). In this case, pointwise
error estimates of FEMs have been established in [4,|42]. For general bounded smooth domains
which may be concave, thus the finite element space may be non-conforming, Kashiwabara &
Kemmochi [26] have obtained the following error estimate for piecewise linear finite elements for
the Poisson equation under the Neumann boundary condition:

Jii = wnl =) < Chlloghl inf [ = vnlwr.oa,) + Ch*log hlfulae(oy  (15)

where @ is any extension of u in W2®(§25) and §2; is a neighborhood of 2. In the case u €
W2%(£2), this error estimate is a consequence of the best approximation result in . More
recently, the W1® stability of the Ritz projection was proved in [16] for isoparametric FEMs
on C"tblsmooth domains based on weighted-norm estimates, where r denotes the degree of
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finite elements. For curvilinear polyhedra or smooth domains which may be concave, the weak
maximum principle and the best approximation results in the L® norm have not been proved.

In this article, we close the gap mentioned above by proving the weak maximum principle
in for isoparametric finite elements of degree » > 1 in a bounded smooth domain or a
curvilinear polyhedron (possibly concave) with edge openings smaller than 7. As an application
of the weak maximum principle, we prove that the finite element solution wj € gh(ﬁh) of the
Poisson equation

{—Au=f in {2

u=0 on 02 (1.6)

using isoparametric finite elements of degree r > 1 has the following optimal-order error bound
(for any p > N):

lu = un| o0y < Clyllu— Tyl o) + CH ML) fll o), (1.7)

where uy, is extended to be zero in £2\f2,, and I,u denotes a Lagrange interpolation operator
(which will be defined in the next section). Inequality can be viewed as a variant of the best
approximation result in by taking account of the geometry change of the domain, which
produces an additional optimal-order term Ch™*!|f| »(0) independent of the higher regularity
of f. In particular, inequality implies the following error estimate:

|t = un| Loy < ClR [l oy + CH b vy for ue C*(2), 0<s<r+1, (1.8

which adapts to the regularity of w.

The weak maximum principle is proved by converting the finite element weak form on (2, to
a weak form on {2 by using a bijective transformation ®j, : £2;, — (2 which is piecewisely defined
on the triangles/tetrahedra. This yields a bilinear form with a discontinuous coefficient matrix.
The main technical difficulty is that the elliptic partial differential equation associated to this
coefficient matrix does not have the H? regularity estimate, which is required in the proof of
weak maximum principle in the literature; see [32]. We overcome this difficulty by decomposing
the finite element solution v, (of a duality problem) into two parts, vy = vp 1 + Va2, With vy
corresponding to the Poisson equation with H? regularity, and vp,2 corresponding to an elliptic
equation with discontinuous coefficients but with a small source term arising from the geometry
perturbation, and then estimate the two parts separately by using the H? and WP regularity
of the respective problems.

The maximum-norm error estimate is proved by using Schatz argument through estimating
the difference between the solutions of the Poisson equations in 2, and (2. However, in order to
avoid using the partial derivatives of f in the proof of , we have to estimate the error between
the solutions of the Poisson equation in the two domains §2;, and {2 under the Dirichlet boundary
conditions, respectively. This is accomplished by perturbing the curvilinear polyhedron through
a globally smooth flow map pointing outward the domain and establishing the W1 ® regularity
estimate of the Poisson equation in a slightly larger perturbed domain 2! (uniformly with respect
to the perturbation), which contains both 2, and {2 and satisfies that dist(z,02) ~ h"*1 for
x € ot

The rest of this article is organized as follows. In Section 7?7, we present the main results
to be proved in this article, including the weak maximum principle of the isoparametric FEM
in a curvilinear polyhedron, and the best approximation result of finite element solutions in
the maximum norm. The proofs of the two main results are presented in Sections [2| and
respectively. The conclusions are presented in Section [4]

In this article, we assume that £2 < RY, with N € {2, 3}, is either a bounded smooth domain or
a curvilinear polyhedron (possibly concave) with edge openings smaller than 7. More specifically,
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in the three-dimensional space, this means that for every x € 0f2 there is a neighborhood U,
and a smooth diffeomorphism ¢, : U, — By(e,) mapping = to 0 such that one of the following
three conditions holds:

(1) z is a smooth point, i.e., p;(Uy N 2) = By(e;) nR3, where R3 = {z e R3: 23 > 0} is a
half space in R3.

(2) x is an edge point, i.e., . (Us N 2) = By(e) N K, where K, = R x X, where ¥ € R?
is a sector with angle less than 7.

(3) z is a vertex point, i.e., ¢, (Uy N 2) = By(ez) N K, where K, is a convex polyhedral
cone with a vertex at 0. Therefore, the boundary of K, consists of several smooth faces
intersecting at some edges which pass through the vertex 0.

We refer to [3, Definition 2.1] for the definition of general curvilinear polyhedron.

Let £ be the set of closed simplices in a quasi-uniform triangulation of the domain (2 with
isoparametric finite elements of degree r > 1 approximating the boundary 0f2, as described
in |29, with flat interior simplices which have at most one vertex on 0f2 and possibly curved
boundary simplices. Each boundary simplex contains a possibly curved face or edge interpolating
082 with an accuracy of O(h"!), where h denotes the mesh size of the triangulation. Hence,
25 = (Ugen K)° is an approximation to §2 such that dist(z, 002) = O(h"*1) for x € 0§2),.

We prove the following weak maximum principle of the isoparametric FEM.

Theorem 1.1. For the isoparametric FEM of degree v = 1 on a quasi-uniform triangulation of
2, all the discrete harmonic functions up, € Sp(§2) satisfying (L.1)) have the following estimate:

unll ey < C lunl ooy ) - (L1)

where the constant C' is independent of up and the mesh size h.

In the isoparametric finite elements described in [29], each curved simplex K € J¢ is the image
of a map Fi : K — K defined on the reference simplex K , which is a polynomial of degree no
larger than r and transforms the finite element structure of K to K. There is a homeomorphism
by ¢ 2, — (2, which is piecewise smooth on each simplex and globally Lipschitz continuous.
If we denote ®p, i := Pp|x and K := ®&,(K), then Oy K — K is a diffeomorphism which
transforms the finite element structure of K to K. Therefore, # = {K : K € ¥} is a
triangulation of the curved domain {2, with

), = UK and 2= UK
Kex Kex

One can define isoparametric finite element space Sy (§2;) as
Sp(2) = {vn € H(24) : vp| ik © Fx is a polynomial on K of degree< r for K € #}. (1.2)
The finite element spaces on {2 can be defined as
Sp(2) = {op € H'(2) : 5 0 By € Sp(24)} and Sy (2) = {Uy € Sp(2) : v = 0 on 302}, (1.3)
For a finite element function vy, € Sy, (§2;), we can associate it with a finite element function

O € Sp(£2) defined by vy, 0 @, 1= .

Remark 1.1. By using the notation which link v, € Sp(2y) and vy, € Sy (£2), the weak mazximum
principle in (1.1) can be equivalently written as

lanl o) < Clltin] Lo o0y - (1.4)

For a function f € C°(£2,), one can define its local interpolation Ij, x f on a simplex K € %
as the function satisfying

(Ui f) o Fi := Iz (f o Fk),
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where I is the standard Lagrange interpolation on the reference simplex K (onto the space of
polynomials of degree < r). The global interpolation I f € S, ({2y,) is defined as

Ihf‘K = Ih’Kf VKeX.

For the analysis of the isoparametric FEM, we also define an interpolation operator I, : C'(2) —
Sn(£2) by
(jh’l)) o (I)h = Ih(’l) o (I)h) Yove C(ﬁ)

As an application of the weak maximum principle, we establish an L®*-norm best approxi-
mation result of isoparametric FEM for the Poisson equation in a curvilinear polyehdron. We
assume that the triangulation can be extended to a bigger domain which contains {2, as stated
below.

Assumption 1.1. The curvilinear polyhedral domain {2 can be extended to a larger convex
polyhedron 2, with piecewise flat boundaries such that 2 c §2, and the triangulation # can
be extended to a quasi-uniform triangulation #; on (2, (thus the triangulation in £2,\? is also
isoparametric on its boundary 0f2).

Remark 1.2. Here {2, can be chosen as a large cube Whose interior contains 2. Note that
the triangulation J¢ is obtained from some trlangulatlon N consisting of flat simplexes by the
method in Lenoir’s paper [29]. We can first extend K to a quasi-uniform flat triangulation Jf/
of §2,, and then modify those flat simplexes  with one of whose edges/faces attaches to the
boundary 0f2, to isoparametric elements by the method in Lenoir’s paper [29]. This leads to a
quasi-uniform triangulation JZ; on {2, which extends JZ". By our construction, the triangulation
on §2,\12 is also isoparametric on its boundary 2.

Theorem 1.2. For f € LP(§2) with some p > N, we consider the Poisson equation

—Au=f in (2
{ u=0 on 012 (1.5)
and the isoparametric FEM of degree v = 1 for (1.5): Find uy, € gh(Qh) such that
Vup-Vxnde = | fxndz Vxu e Su(2n), (1.6)

2 2n

where f € LP(2 U ) is any extension of f € LP(2) satisfying HfHLp o) < Clflreo
Assuming that the triangulation satisfies Assumption [L.1], there exist positive constants hg cmd
C' (independent of f, w and h) such that the solutions of and satisfy the following
inequality for h < hg:

lu = upl| o () < Clyu — Iyul ey + CH | fll o (), (1.7)
where up, is extended to be zero on 2\(2y,, and €}, is defined as

, { In(2 + 1/h) for piecewise linear elements,
b=

1 for higher-order finite elements.

The proofs of Theorems and are presented in the next two sections, respectively. For
the simplicity of notation, we denote by C a generic positive constant which may be different
at different occurrences, possibly depending on the specific domain {2 and the shape-regularity
and quasi-uniformity of the triangulation, and the polynomial degree r > 1, but is independent
of the mesh size h.



2. Proof of Theorem [1.1]
The proof of Theorem is divided into six parts, presented in the following six subsections.

2.1. Properties of the isomparametric FEM

In this subsection, we summarize the basic properties of the isoparametric FEM to be used
in the proof of Theorem

Lemma 2.1 (|29, Theorem 1, Theorem 2, Proposition 2, Proposition 3, Proposition 4]). Let
K be the triangulation of 2 by isoparametric finite elements of degree v = 1, with the maps
Fy - K — K and Sy K — K described in Section 7?. Let D® denote the Fréchet derivative
of order s. Then the followmg results hold:

1. Fx : K > K isa diffeomorphism such that
HDSFKHLOO(K) < Ch?® Vse[l,r+1]

1 (2.1)
HDSFI; HLOO(K) < Ch_s VS € [1,7" + 1]
2. Ppg: K — K is a diffeomorphism such that
| D*(®p, 5 — 1) | peo(ry < CR™T% Wse [1r+1] 22)

|D3 (@5 % 1) oo ey < R Vs e [Lr +1]

3. Forve H™(K) and integer m € [0,r + 1], the norms |v|gmx) and HUO(I);:}(HHm(f() are
uniformly equivalent with respect to h.

4. Fach curved simpler K € J corresponds to a flat simplex K (which has the same
vertices as K ), and there is a unique linear bijection Fy : K — K which maps the
reference simplex K onto K. The map \TJK = Fgo Fli(l K > K isa diffeomorphism
satisfying the following estimates:

ID@xk —1d)[ oo ) < Ch, DU = 1d) | (i) < Ch

N (2.3)
HDS‘I'K”LOO(I?) <C, |DV 1||L<f K <C Vse[l,r+1].

5. Forve H™(K) and integer m € [0,7 + 1], the norms ||v| gm(x) and |v o ‘T’KHHm(f() are
uniformly equivalent with respect to h.

Let W,]f P (£2) be the space of functions on 2 whose restriction on each K € # lies in W*?(K),
equipped with the following norm:

1
(2 1hg) for1<p=m

HUHW”:P(Q) = Kex
sup ”UHW’M’(K) for p = co.
Kex'

In the case p = 2 we write HY(§2) = W,i’Q(Q). The following local interpolation error estimate
was proved in [29, Lemma 7]; also see [11, Theorem 4.3.4]. Although it was proved only for
p =2 in [29, Lemma 7], the proof can be extended to 1 < p < oo straightforwardly.

Lemma 2.2 (Lagrange interpolation). Let Ij, ;¢ : C(2) — Sp(£2) be the interpolation operator
defined by

jh,Kfo (I)h = IhJ(f Vf € C(ﬁ)
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Then, for 1 <k <r+1 and 1 < p < o0 such that W, ’p(Q) — C(2) (e.g., kp > N when p > 1
or k= N when p=1), the followmg error estimate holds:
= Inkulyingy < CRE ulyrp gy YO<i<k YK e, YueC(2) n WyP(1).

Since the Lagrange interpolation is defined by using the pointwise values of a function at the
Lagrange nodes, its stability in the W*P norm is valid only when W*?(£2) «— C(£2), i.e., in
the case “kp > N and p > 1”7 or “6 = N and p = 17. One can remove this restriction by
usmg the Scott—Zhang interpolation, which can be constructed first in the flat trlangulatlon

= {K : K € #} as in [7, Section 4. 8] and then be transformed to %" via the maps V.

N amely, by denoting Oy, = Uker K and Uy, : 2, — 2, we can define
(") o Uy, := T (v o Uy) Yove L'(2),

where Z" denotes the Scott—Zhang interpolation on the flat triangulation . Since the maps
U}, induces norm equivalence on every simplex, as a result of (2.3)), we have the following result.

Lemma 2.3 (Scott—Zhang interpolation). There is a global interpolation operator
T LY (2y) — Sp(2y)
such that
|u —Ihu|wi,p (2 S Chk_i||u||Wk,p(Q ) VO<i<k VI<k<r+l Vue W,’f’p(Qh).

The inverse estimate for isoparametric finite elements follows from Lemma, [2.1], Part 1. This
is presented in the following lemma.

Lemma 2.4 (Inverse estimate). For 1 <k <I<r+1and1l< < © the following estimate
holds:

Hﬂh”Wz,p([{) < Chk_l+N/p_N/q||12hHWk,q(K) YV € Sp(£2), VK e X. (2.4)
The following lemma says that the (r + 1)th-order derivative of a finite element function

in Sp(£2) can be bounded by its lower-order derivatives. This result is often used to prove a
super-approximation property which is stated in Lemma for iso-parametric finite elements.

Lemma 2.5. The following result holds for iso-parametric finite element functions in Sy (£2):

D" ayl(2) < © Y. |Diyl(x) Vae K, VK €, ¥y € Sp(92). (2.5)
=1

Proof. Let My := ®p i © ] K, which is a diffeomorpshism between the flat simplex K and the
curved simplex K (according to Lemma , satisfying the following estimates:
|D* M| o gy < € and ID* Myt ooy C V1<s<r+1.

According to the definition of S,(£2), a function o is in Sy(£2) if and only if the pull-back

function vy 0 M is a polynomial degree < r on the flat simplex K. Therefore, from the estimate
on higher order derivatives of composed functions (see [13, Lemma 3]), we have

| D" Lo ()

= |D" (w5 0 M) 0 Myh)|(x)
r+1

< C ) D' (0o Mg)(McM (@) Y, [DMic (2)[*|D* My ()| 2. | D™ M ()
=1 €l(l,r+1)



r+1
<C Z | D (55, 0 Mg )| (M ()
=1

B
= C Y |D! (5 0 M) (M (2)),
=1
where
r+1 r+1
I(lr 4+ 1) o= {i = (in,iz, cooyipg1) €271 g 20, Y ig = 1 ) ki =7+ 1}
k=1 k=1

We can estimate | D (o), o My )|(Mg"'(z)) using the same estimate on higher order derivatives of
composed function

| D' (tn © M) |(M' (2))

!
<C Y [D*onl(z) Y, [DMr (Mg ()| |D* My (M (2))[2...| D' Mg (M () [
k=1 icI(k,l)

l
<C ) |D"p(x)
k=1

The result of Lemma [2.5|is obtained by combining the two estimates above. O

The result above is the key to the superapproximation results for the isoparametric case. For
the standard elements the r + 1 derivative just vanishes.

Lemma 2.6 (Super-approximation). Let w € CF(RY) be a smooth cut-off function such that
0 <w <1 and supp(w) N 2 < 2y < 2, with 2y(d) := {x € 2 : dist(z, ) < d} < 1 for some
d > h. Then the following estimate holds for vy € Sp(£2):

|won — In(won) | () < Ch( > hjileHWjaw(RN)) |5n] (1) + CR |wllr 41,00 [ 08l 22 (21)
j=1
5 r+1 .
o~ i) lmscay < O 2 W lhwseeqam ) ol ey
j=1
Proof. Since supp(wdy,) < 2, it follows that I (w®y,) vanishes on all K such that K n 2y = (.

Since £2y(d) {21, all the simplices K such that K n 2y # J are contained in 2;. Therefore,
we have

lowon = In(win) oy = D5 letn = In(win) 5 g
Kno#g
< ) ORwinln g 2.6
Kn20#£Q ( ‘ )
T
< Z Ch2r<wh’§{r+1(i() 4 Z HOJHIZ/VT-Fl—i,OO(]RN)thH?qi(f()).
Kno#g =0

The term |vp,| can be estimated by using Lemma ie.,

2 9
HT‘+1 (K)

wh‘zrﬂ(}‘() < C; ’{)h’?{i(f()' (2'7)
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For 0 < i < 7, the term |0y Hi(i) can be estimated by using the inverse estimate for isoparametric

finite element functions (see Lemma . This yields the first result of Lemma The second
result can be proved similarly. O

2.2. The perturbed bilinear form associated to the isoparametric FEM

By using the notation @y 0 ®;, = up, and v, 0@y, = vy, for up, vy € Sp(£2y,), the following identity
holds:

Vuh . Vvh dz = V(ﬂh o (I)h) . V(’llh o (I)h) dz
2 2y

= J AhVﬂh . V’Dh dx V’Dh € gh(Q), (2.8)
2
where
Ap = (VO,(VE,) T 1)o@t
is a piecewise smooth (globally discontinuous) and symmetric matrix-valued function, and J =

det(V®y) € L*(£2) is the Jacobian of the mapping ®, : 2, — (2, piecewisely defined on every
simplex K € # . Therefore, a function uy, € Sy(§2,) is discrete harmonic if and only if

f AhV’ah : V@h dz =0 V@h € éh(()), (2.9)
)

Identity will be used frequently in the following proof.

Since the map ®;, : £, — 2 is close to the identity map Id : RY — RY (which satisfies
Id(xz) = x), it follows that the matrix Ay is close to the identity matrix. In particular, the
following results are corollaries of the second statement of Lemma [2.1

|V (@, — 1d)| o) < CR™H7 and Ay — I pe) < Ch7, for j=0,1. (2.10)
Therefore, for sufficiently small mesh size h, the perturbed bilinear form By, : H(§2) x H'(£2) —
R defined by

Bp(v,x) = J ApVo - Vxdz (2.11)
[0

is continuous and coercive on Hg(£2), i.e.,
By(v,x) < C|Vol 2| Vxllre)  Yo,xe H'Y(9),

i L, ; | (2.12)
Bh(v,0) =2 O [Volga0) ~ vl o) Yve Hg(£2).

More precisely, the difference between By (u,v) and B(u,v) is estimated in the following
lemma.

Lemma 2.7. There exists a positive constant hy > 0 such that for h < hy the following result
holds: If 1 < p,q < o, % + % =1, and ue WYP(02), ve WhHi(£2), then

| Br(u,v) — B(u,v)| < Ch"|Vul 1o a,) V] agay)
where Ay, := {x € 2 : dist(z, 002) < 2h}.
Proof. Since ®;, = Id at all interior simplices, it follows that Ay o ®;, = I outside the subdomain

Dy, = {x € (2, : dist(x,082,) < h}. Correspondingly, A, = I outside the subdomain &, (D) and
therefore,

By (u,v) — B(u, v)|

< A = I o @, (0 IVUll Lo @, (Do) IV V] La(@, (D))
<

Ch|Vul po@, (0, VY| La(@, (Dy))-
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If x € Dy, then there exists 2’ € (2, such that |z — 2/| = dist(z, 062;) < h and
|y () — ®p ()] < |Bp(x) — 2| + |z — 2| + |2" — p(2))| < CR™T + h 4+ CR™ T,
which implies that
dist(®p,(z),002) < ChA™ L + h.

For sufficiently small h we obtain dist(®p(x), 02) < 2h and therefore @, (D) < Ap,. O
2.3. Reduction of the problem

Let z¢ € 2 be a point satisfying

|t (w0)| = U] Le(2) with d = dist(zg, 012).

If d = 2kh for some fixed k > 1, i.e., xqg is relatively far away from the boundary 02, then
we can choose 21 = {zo} and (23 = Syp(z0) and use the interior L™ estimate established
in [40, Corollary 5.1]. This yields the following result:

- N,
in (o) < Cd™ 2 ||tn || £2(5,(20))-
_ Otherwise, we have d < 2kh. In this case, assuming that zo € K for some curved simplex
K e Z, by the inverse estimate in Lemma we have
- . N _N
[an(o)| = l[tnll ooy < Ch™ 2 |[n| 2y < Ch™ 2 [[n] L2(8y,, (20)) -
Overall, for either d > 2kh or d < 2kh, the following estimate holds:
N .
]ﬂh(azo)| <Cp 2 HahHLQ(Sp(xo))v with p=d + 2kh. (2.13)

To estimate the term [in]z2(s,(z,)) on the right-hand side of (2.13), we use the following
duality property:

lnlL2(s,(z0)) = sup |(@n, @),
supp(p)<=Sp(wo)
12122 (5 (o) <1

where (-,-) denotes the inner product of L2(§2) (or L?(§2)" for vector-valued functions), i.e.,

(u,v) := f u-vde.
Q
Hence, there exists a function ¢ € Cg°(§2) with the following properties:
supp(p) < Sp(wo),  l¢lr2(s, @) < 1, (2.14)
[l z2(s, o)) < 21(in; @) (2.15)

For this function ¢, we define v € H}(£2) and u € H(£2) to be the solutions of the following
elliptic equations (in the weak form):

ApVu, V) = (0, x) Vx e H (),
(AnVu, Vx) = (¢, x) Vx € Hy(f2) (2.16)
v=20 on 0f2,
and
ApVu,Vx) =0 Vye H(2),
(Fu, ¥ =0 ¥y e HY(2) o
u =1, on 02,

respectively. The maximum principle of the continuous problem ([2.17)) implies that

[ull Lo @) < lanl Lo o0)- (2.18)
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Therefore, we have

lunlz2(s,(z0)) < 2[(tn, )] (here we have used (2.15))
= 2| (i — u, ) + (u; 9)]
= 2|(ApV (ap, —u), Vo) + (u, )| (here we have used (2.16))
= 2|(ApVay, Vo) + (u, )| (here we have used (2.17))
< 2[(AnVin, Vo)l + 2|ul o) el L (s, 0)) (since supp() < Sy(0))
< 2|(A4 Vi, Vo)l + Cp lin = o0 el 2(s) o) (2.19)

where we have used (2.18) and the Holder inequality in deriving the last inequality. Combing
inequalities (2.13) and ([2.19]), we have

N

[an| o2y = lan(zo)| < Cp™ 2 |(ApVian, V)| + Cllin] L= o0) (2.20)

where we have used the fact that [¢]|z2(s,(2)) < 1-

It remains to estimate p_% (A Vi, Vo). To this end, we define Ry, : HE(£2) — Sp(£2) to be
the Ritz projection associated with the perturbed bilinear form defined in (2.11)), i.e.,

(ApV (v — Rpv), V) =0 ¥ xn € Sp(£2), (2.21)

which is well defined in view of the coercivity of the bilinear form; see (2.12)). By using identity
(2.9) for the discrete harmonic function uj, and the definition of the Ritz projection Ry, in (2.21),

we have

(AthLh, VU) = (AthLh, V(U - R}ﬂ)))
— (ApV (i — Xn), V(v — Rp))  Vxn € Sp(9). (2.22)
In particular, we can choose X, = xp © <I>}:1 € Sh(Q) to satisfy x;, = up on all interior Lagrange

nodes while x, = 0 on all the boundary nodes (which implies x, = 0 on 02, and therefore
Xr = 0 on 012). Then

IXn — o) < Clin] Lo a0)- (2.23)
Let Ay, = {x € 2 : dist(z, 012) < 2h} be a neighborhood of the boundary 0f2, when h sufficiently
small, @, — x5 = 0 outside Ap. Then
[(ApV (tn — Xn), V(v — Bp))| < C|V(Xn — @n) | Lo (2) [V (v — Rpv)| 14,
< Ch™ g o200 |V (v = Rpv) |21 ay)s (2.24)

where we have used ([2.23) and the inverse estimate for finite element functions. Substituting
(2.22)) and (2.24) into ([2.20]), we obtain

N
litn]| o) < C(p~ 2 h V(0 = Ruo) | pi(a,) + Dl o o)- (2.25)
The proof of Theorem [1.1] will be completed if the following result holds:
N
p_ih_l‘IV('U — th)HLl(Ah) < C, (2.26)

which will be proved in the following subsections.
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2.4. Regularity decomposition

In order to estimate the left-hand side of ([2.26]), we need to use a local energy estimate and
a duality argument, which is based on the regularity result of the following elliptic equation (in
the weak form): Find v € H}(£2) such that

(ARVo,VX) = (f.x) Vxe H(9), (2.27)

where Ay, is a globally discontinuous matrix-valued function defined in Section
Due to the discontinuity of the coefficient matrix Ay, the standard H? regularity does not

hold for the elliptic equation (2.27). We decompose the solution v € HE(£2) of equation (2.27)
into the following two parts:

v = vy + vy, (2.28)

where vy € H}(£2) and vy € H}(£2) are the weak solutions of the equations
(Vi, VX) = (%) Vx € Hy(92), (2.29)
(AnVv2, VX) = (I = Ap) Vi, V) Vx € Hy (92). (2.30)

Equation ([2.29)) has a constant coefficient and therefore the classical W24 regularity estimate
holds for 1 < ¢ < 2 + ¢, for some £ > 0 which depends on the interior angles at the edges and
corners of the domain (2 (see |14, Corollaries 3.7, 3.9 and 3.12]), i.e.,

lv1|w2a) < Collflay Y1<g<2+e. (2.31)

Since equation (2.30)) has discontinuous coefficients, the W24 regularity estimate does not hold.
We have to estimate vy by using the WP estimate in the following lemma.

Lemma 2.8. For every 1 < p < oo there exists h, > 0 (which depends on p), such that for
h < hy, the solution w € H}(£2) of the equation

(A Vw,Vx) = (§,Vx) Yxe HLR) with §e LP(Q)N ~n L?(2)V, (2.32)
satisfies w € WHP(£2) and
lwlwir2) < Cpllglrr2), (2.33)
where C), is a constant which is independent of h (possibly depending on p).
Proof. We can rewrite equation into the following form:
(Vw, Vx) = (§,VX) + (I = Ap)Vw, Vx)  Vx € Hy(£2),

and apply the WP regularity estimate for the Poisson equation (which holds in a smooth domain
or curvilinear polyhedron with edge openings smaller than m; see [14, Corollaries 3.7, 3.9 and
3.12]). This yields the following inequality:

lwlwrr) < Cplglreo) + Cpll — Anllpe () lwlwre)-
Since |Ap, —I||r» < Ch, for sufficiently small h (depending on p) the last term on the right-hand
side can be absorbed by the left-hand side. This yields the result of Lemma [2.8 g

By combining the W24 regularity estimate in (2.31)) and the WP regularity estimate in
Lemma [2.8] we can prove the following result.

Lemma 2.9. Let 1 < p,q < 0 be numbers such that 1/qg < 1/n+1/p, and assume that h < hy,
where hy, is given in Lemma . Let w € HE(£2) be the weak solution of the equation

(AnVw,Vx) = (f,x) + (G, VX) Vx € Hy(£2) (2.34)
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for some f e LI(02) n L2(2) and §e LP(2)N ~n L2(2)N. Then w e WP(£2) and
lwliwree) < Col flze) + Coldlrr()- (2.35)
Proof. We consider the decomposition w = wy + wy with wi,we € H(§2) weakly solving
(Vw, Vx) = (£, %) Vx € Hy(£2),
(AnVwz, x) = (I — Ap)Vwr + G, Vx) Vx € Hy(2).
Note that for y € Wol’pl(Q) where 1/p+1/p' =1
0l <l (Va+1/d = 1)
<Clf ooy Xy ) (embedding W s L7 used),

therefore we have | f|ly-100) < C|f|pe). By the WP regularity estimate for the Poisson
equation on curvilinear polyhedron (see [14, Corollaries 3.7, 3.9 and 3.12]), there holds

lwillwre2y < Cpl flw-102) < Cpll fllLae)

Then we apply the WP estimate in Lemma to the equation of we. This yields the following
result:

lwellwipo) < Cpllg + (I — An)Vwi|Le(2) < Cpldle(2) + Cpl flLa)-
The result of Lemma [2.9] follows from combining the estimates for w; and ws. O

The following lemma was proved in [32, Lemma 2.2] for polyhedral domains. The proof of
this result for smooth domains and curvilinear polyhedron is the same.

Lemma 2.10. If x € Wol’p(Q) for some 1 < p < 0 and x* € 012, then
X1 22 (54, %)) < Cdal VX Lo (02),
where Sg, (%) :={x € 2 |z — ™| < dy}.
Lemma 2.11. Let 1 <p < o0 and h < hy, where hy, is given in Lemma . For
feLP(2) n L*(2) with supp(f) < Sa, (z0), where xoe€ 2 and dist(xg, 092) < dy,
the solution v € H(82) of equation satisfies
lvlwreo) < Cpdill fllLr ) (2.36)

Proof. We consider the decomposition v = vy + vy in (2.28)—(2.30). If dist(zg, 012) < d, then
Say (z0) < Saa, (To) for some zg € 012. Note that for x € Wol’pl(ﬂ) where 1/p+1/p’ = 1, we have

[ <HfHLP(Sd* (x0)) HXHLP’(Sd* (z0))
<1 co(y oon X1 2 500, 20

<Cd|| f] e () HVXHLP’(_Q)v (Lemma used)

which implies that | flly-1s(0) < Cds|f|re(2). Thus by the W'? regularity estimate for the
Poisson equation on curvilinear polyhedron (see [14, Corollaries 3.7, 3.9 and 3.12]), there holds:

lvillwre2) < Cpll flw-1p0) < Cpdil fllr(2)-
By applying Lemma to equation ([2.30)), we obtain
lvzlwiro) < Cpll(I — An) Vil o) < Cphllvillwie(o) < Cphds| fr(0)-
The last two inequalities imply the result of Lemma [2.11 O
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The next lemma is about the Cacciopoli inequality for harmonic functions which is the same
as in [41, Lemma 8.3]. The result holds for smooth domains and curvilinear polyhedra on which
the elliptic H? regularity result holds for the Poisson equation.

Lemma 2.12. Let D and Dy be two subdomains of §2 satisfying D < Dy < {2, with
Dy = {x € Q:dist(x,D) < d},
where d is a positive constant. If v e H&(Q) and v 1s harmonic on Dy, i.e.
(Vu,Vw) =0 Ywe H}(Dy),
then the following estimates hold:
ola2p) < Cd o] gy, (2.37a)
[0l py < Cd™ Yol Lypy)- (2.37b)
We also need the following interior estimate in the estimation of vs.

Lemma 2.13. Let 1 < p,q < o be numbers such that 1/q < 1/n+1/p and assume that h < hy,
where hy, is given in Lemma . Let D ¢ Dy < 2 be subdomains, with Dg = {x € (2 :
dist(x,D) < d}. Ifve Wol’p(Q) N Hi(92) satisfies equation

(AnVv,Vx) =0 Vx e Hy(Dq), (2.38)
or
(Vu,Vx) =0 Ve H)(Dy). (2.39)
Then
Cp
lvlwirpy < F(HUHLP(Dd) + lvlwrapy)- (2.40)

Proof. We focus on the first case: v satisfies equation . The proof for the second case is
the same and therefore omitted.

First, we choose a cut-off function w € Cé’o(RN), w=1on D, supp(w) n 2 < Dy, with
lew [ ppr1.00mvy < Cd~1. Then wv € H}(£2) satisfies the following equation:

(ApV(wv), Vx) = (wALVY, VX) + (ApVw,vVX)
= (ApVv, V(wx)) — (A Vv, xVw) + (ApVw,vV)
= (ApvVw,Vx) — (ApVv - Vw, x) Vxe H&(Q)

where we have used the identity (A, Vv, V(wx)) = 0 in the derivation of the last equality, which
is a consequence of (2.38)) and wy € Hi(Dy). Then we can apply Lemma to the above
equation satisfied by wv. This yields the following result:

lwvllwieo) < CplAnvVw| o) + Cpll AnVv - Vw| La(o)

C
< FPHUHLP(DUZ) + FPHUHWLq(Dd)-
Since w = 1 on D, the last inequality implies the result of Lemma [2.13 O
Lemma 2.14. Let 1 < p,q < o be numbers such that 1/q < 1/n + 1/p and assume that
h < minfhy, he}, where hy, hq are given in Lemma[2.8 Let D < Dg < £2 be subdomains, with

Dy = {x € 2 :dist(x,D) < d}. If the source function f has supp(f)n Dy = &, then the solution
vy of equation (2.30) satisfies the following estimate:

C
lv2llwe(py < ;’qhﬂvluwl,q(n)- (2.41)
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Proof. We consider a cut-off function w such that w = 1 in D and supp(w) < Dgjp, with
|wlwroryy < Cd™'. Then the following equation can be written down similarly as in the proof
of Lemma m

(ApV(wv2),Vx) = (w(I — Ap)Vv1,Vx) + (I — Ap)Vor - Vw, )
+ (v2ARVw, V) — (AR Vs - Vw, x)  Vx € Hy(02).
By applying Lemma [2.9] to the equation above, we obtain

Cyh C C
l2llwre(py < Cphlvi|wie(p,,) + %Hm lwrac) + Fpllvz\lm(m + FpHWHWl’q(Q)

Cyh C
< Collerlwr o, + 2 lorlwrage) + 2lealwage), (2.42)

where we have used Sobolev embedding W4(£2) — LP(§2).
Since supp(f) N Dg = O, it follows that the solution v; of (2.29) satisfies equation (12.39)).
Therefore, Lemma implies that

C C
lvilwre(py.) < Fp(HUHLP(Dd) + [vlwrap,)) < FpHlewlvq(n)'

By applying Lemma, to equation ([2.30]), we also obtain
lv2llwra(2)y < Colll — AnlLeylvilwrae) < Cohlvilwiaa)-
Then, substituting the last two inequalities into (2.42)), we obtain the result of Lemma O

2.5. WP stablity of the Ritz projection (with discontinuous coefficients)

In [22] the W1 stability of the Ritz projection is proved for the Poisson equation in convex
polyhedral domains. The proof is based on the following properties of the domain and finite
elements:

(P1) Holder estimates of the Green function for the Poisson equation, i.e.,

‘axZG(x7§) — 6yzG(yvf)| <C (‘.% o 5’—2—0 + ’y _ 5’—2—0)
[z —yl”

|02,0¢,G(, &) — 0y,0¢,G(y, §)|
|z —ylo

(2.43)

<C(z =€ +ly—¢€7°7)

fori,j =1,2,3.
(P2) Elliptic H? regularity result for the Poisson equation.
(P3) Exact triangulation which matches the boundary 0f2.
(P4) Error estimates for the Lagrange interpolation holds as in Lemma

Note that the Holder estimates for the Green function in (2.43)) was proved in [22] for general
curvilinear polyhedral domains with edge opening smaller than 7, instead of merely classical
polyhedral domains. If we define a modified Ritz projection R} associated to the Poisson equa-
tion (without the discontinuous coefficient Ay), i.e.,

f V(U — R;‘;U) . V)v(h dz =0 th € gh(Q), (2.44)
2

then all the properties in (P1)—(P4) are possessed by the curvilinear polyhedral domain (2 and
the finite element space Sh(_Q) The latter is based on the triangulation K which matches the
boundary 012 exactly. Therefore, the W1 ® stability still holds for the modified Ritz projection
defined in ([2.44]). The result is stated in the following lemma.
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Lemma 2.15.
|Rfvweo (o) < Cllvlwio) Yve Hy(R2) n WH*(£2). (2.45)
By real interpolation between the H! and Wh® stability estimates (see [8, result in (5.1)]),
we obtain the WP stability of the modified Ritz projection for 2 < p < c0. The result can also
be extended to 1 < p < 2 by a duality argument as in |7, Section 8.5], which requires Poisson

equation to have the W?' regularity (this is true for a curvilinear polyhedron with edge opening
smaller than 7). The result is summarized below.

Lemma 2.16 (W!? stability of the modified Ritz projection R}). For any 1 < p < o0, there
exists a positive constant hy such that for h < hy, the following result holds:

[Riullwroio) < Colulwio)  Yue WP(Q) A HY(9). (2.46)

By a “perturbation” argument, similar as 7, Section 8.6], one can obtain the W1¥ stability
of the Ritz projection Rjp. This is stated in the following proposition.

Proposition 2.17 (WP stability of the Ritz projection Rj). For any 1 < p < o0, there erists
a positive constant hy such that for h < hy, the following result holds:

| Ruullwipioy < Cplulwinggy Yue WHP(2) n Hy(02). (2.47)
Proof. For v € Hj(£2), its Ritz projection Rpv € Sy (£2) satisfies the following equation:
L V(v — Rpv) - Vi da = L(I AV (0= Ruv) - Vinde Vi € Sh(Q).
If we define w to be the solution of the following elliptic equation (in the weak form):
f Vw - Vyde = f (I — Ap)V(v — Ryw) - Vxdz Yy e H} (1),
then ! !
L V(w+v— Ryv) - Vipdz =0 Vxu € S(£2),

which means that Ryv = R} (w + v). Lemma implies that
| Rpvllwieo) = [RE(w + v) [wir2) < Cpllw + vllwire)
< Cp| I = Aplzo(a)llv — Ruvllwie2) + Cplvllwiro)
< CthRhUHWLP(Q) + CpH”HWLP(Q)-

There exists a constant h;, such that for h < h;, the first term on the right-hand side can be
absorbed by the left-hand side. In this case we obtain the result of Proposition [2.17 g

As a result of Proposition we obtain the following WP error estimate for the Ritz
projection.

Lemma 2.18. For any 1 < q < 2 + ¢, there exists a positive constant hy such that for h < hy
the solution of equation (2.27) has the following error bound:

lv— Rpvlwiagg) < Cohl| flliaa) VY fe Li(2) A L*(R2).
Proof. We consider the decomposition v = v1 + vg in (2.28)-(2.30). The W24 estimate in (2.31)
and the WP estimate in Lemma imply that v; and v satisfy the following estimates:
lvillw2a(2) < Coll fllLagey V1<g<2+e,

lv2llwra(2) < Cohllvillwra2y < CohlflLaa)-
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Applying the W4 stability of the Ritz projection, we obtain the following estimates:

lv1 = Rpvillwaoy) < Cg  inf - ur = Xallwrao) < Cohllviwea) < Cohl L),
XhESK($2)

lve — Rpva|wia(e) < Colvalwrae) < Coh|flLao)-

The result of Lemma [2.18is obtained by combining the two estimates above. O

Finally, the LP error estimate for the Ritz projection follows from a standard duality argument,
again by using the regularity decomposition as in (2.28)—(2.30|) for the dual problem.

Lemma 2.19. For any 1 < q < 2 + ¢, there exists a positive constant hy such that for h < hy
the following error estimate holds:

u— Ryl ) < Cohllu— Rl Vue HUR) A WH(Q),  (248)
where 1/q +1/¢' = 1.
Proof. By using the duality between L9(£2) and LY (£2), we can express the L9 error of the Ritz

projection as

HRhu - u”Lq'(Q) = sup (Rhu — U, 90)7
weCF (£2)
[ellLao)y<l

In particular, there exists p € Cg°(§2) with @[ za(o) < 1 such that
| Rpu — u“Lq’(Q) < 2(Rpu —u, ).
Let v € H(£2) be the weak solution of the following elliptic equation (in the weak form):
(4nVo, V) = (p.x) ¥ x e H(£2).

Then

(ApVu, V(Rpu — u))

= (ApV(Rpu — u), Vv)

= (ApV(Rpu — u), V(v — Rpv))
< C|Rpu — u“WLq’(Q)HRhU = vllwra(e)
< Ch|Rpu = ulypra (o) €l Loy (Lemma is used here)

< Coh|[Rpu — ulyra (-

(Rhu —u, QO)

This proves the result of Lemma [2.19]. U
2.6. Estimation of p_%h*1\|V(v — Rpv)|p1(ay)

In this subsection, we prove (2.26) by utilizing the results established in Sections
where v is the solution of (2.16]). This would complete the proof of Theorem To this end,
we consider a dyadic decomposition of the domain as in the literature; see [22,324|39).

Let Ry = diam(£2) and dj = Ry277 for j > 0. We define a sequence of subdomains
D;={xef2:dj11 <|v—x0| <dj} for j=0.
For each j we denote by Dé- a subdomain slightly larger than D;, defined by
Dé-=Dj_lu---uDjuDj+1u-"uDjJrl (D; := g fori <0.)

Let J = [lng(Ro/2kp)] + 1, where [lna(Ro/2kp)] denotes the biggest integer not exceeding
Ino(Rop/2kp). The constant x > 32 will be determined below, and the generic constant C
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will be independent on « until it is determined (unless it contains a subscript ). The definition
above implies that

and
measure(D; N Ap) < C’hdév_l. (2.49)

Note that v is the solution of (2.16]), where ¢ = 0 outside S,(zo). Therefore, ¢ = 0 in D? for
1 < j < J. This result will be used below.
By using the subdomains defined above, we have

N
p~ 2 h V(0 = Ryo)|paay,)

J
_N.
<p 2h 1 < Z [V(v— th)HLl(Ahij) + V(v — th)|L1(AhﬁSnp(mO))>
j=0
N S N
<Cp zh™' Y h2d; 7 V(v = Ryo)l 24, ~b))
=0

Nl 1,1
+ Ok 2 p 2072V (v = Rpv) | £2(4,n8,p (20)) (2.50)

where the Holder inequality and (2.49)) are used in the derivation of the last inequality. By
choosing ¢ = 2 in Lemma we have

IV(v = Rpv)|r2(2) < Chle|r20) < Ch. (2.51)

Then, substituting (2.51]) into the last term on the right-hand side of (2.50) and using the fact
that p = h (which follows from the definition of p in (2.13])), we obtain

J
N N
p77h71HV(U — RhU)HLl(Ah) < Cpifhié Z HV (v— th)HLz(D + C, (2.52)

where C,; denotes a constant which depends on the parameter k.
It remains to estimate ||V (v — Rpv)l|2(p,). To this end, we use the following interior energy
estimate for the solution of -

H'U - Rh'UHHl(Dj) < CH'U - IthHl(D]l) + Cd]_lH'U — Ivh,UHLQ(DJl.) + Cd]_lH'U - Rh'UHLZ(Djl_). (253)

The proof of such interior energy estimate is omitted as it only requires the coefficient matrix Ay,
to be L* in the perturbed bilinear form in , without additional smoothness, and therefore
is the same as the proof for standard finite elements for the Poisson equation.

We use the decomposition v = v; + vy in f with f = ¢ supported in S,(zg), and
consider interpolation error of v; and vy, respectively. First, by applying the result of Lemma
and using the fact that d; > h, we have

., N_N
lor = Tnorl oy + di ™ lor = Tnvill 2oy < Chllvtlgapzy < Chd; ™ 7 ot lwinge)
for 5 <p<2, (2.54)

where we have used the following inequality in deriving the last inequality:

1_3
HU1HH2(DJ2.) < Cd; pH’U1HW1,p(Q) for 1\277]):2 <p< 2. (2.55)
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The inequality above follows from Lemma (because vy is the solution of (2.29) with f =
¢ =0in D?), the Holder inequality and the Sobolev embedding inequality, i.e.,

lo1llr2(p2) < Cdj_QHUl”LQ(D?)

o4 N_ N
14N _ N
< Cd; * " oifwrege)  for 1% = % —1 and ]\%—ZJ\FIQ <p<2

so that py > 2 and WhP(2) — L*(12).

Here we require x > 32 to guarantee that dj,5 > p, which is required in the use Lemma [2.12]
This proves the last inequality in (2.54)).

Next, we consider the interpolation error of vy by using Lemma and Holder inequality,
ie.,

N_ N
[v2 = Inva|l gy oy + dj vz — Iyvall popry < Cdj ™ Jvallyran (2
N N

<Cdf " hloiwra g

N N
for some py > N and — = — + 1, (2.56)
o p1

where we have applied Corollary in deriving the last inequality. (Here we only need p; to
be slightly bigger than N, and therefore the corresponding ¢; here can be smaller than 2, so
that we can use Holder inequality to estimate |¢]|za1 (s, (zo)) Delow.)

By combining (2.54) and (2.56]), we obtain

Clv - jhv\’Hl(Djl.) + Cdj_lHU - fh””L?(D})
14 N_N NN
<Chd; 7 futlwrney + C47 " hlutlwra o)

N_N

plelLr(s, @) + Chd; ™ pllelLa (s, o)
_ N N

N_N N, N N N N, N
<Chd, 7 7P EYY Lond? (2.57)

+45-

=2

< Chdj_l

where we have applied Lemma to equation ([2.29)) in the derivation of the second inequality,
and used Holder inequality in the derivation of the last inequality.

Finally, substituting (2.57) into (2.53]), we obtain

No1
d;* |V(v—Rpv)|r2p;)

N-3_N , NN N-I-N N N N3
<Chd; * 7p' "2 +Chd; * apl 2V 4 Cd,? lv— Ruvll 2o
N-3_N NN N—3
< C’hd‘7 2 P p 2 + P + Cd] 2 H’U - Rh'UHL2(DJ1_), (258)

where we have chosen p = ¢1 < 2 and used d; < C in the derivation of the last inequality. Here
we can make p as close to 2 as possible so that p = ¢ satisfies the condition in Lemma
(which will be used in the subsequent analysis).



20
N 3N _3_N
Now we substitute (2.58)) into (| and use the result Z] 0d; 2P L Cup T2, we
obtain
S N1 N Oy N3
D1d T V(= Rpo)lrep,) < Cuhp 2 + ). Cd;® o — Rivl2(p), (2.59)
— 20
and therefore
N v 1 -1
P2V (v = Rio)|paga,y < Cpm 2 h72 3 dy® |V (v — Ruv)|i2(p,) + Cn
7=0
J
(2.60)

_N 1
2h72 Z 2 ”U—RhUHLQ Dl)

Rh'UHLQ(Dl) To this end, we let x be a smooth cut-off

It remains to estimate Zj 0d; T Hv
function satisfying
x =1 on Djl-7 = 0 outside Dj? and |Vy| < Cd;*.

For N = 2,3 the following Sobolev interpolation inequality holds
1 1-6 0
(2.61)

= )

— Rp)|f with —
Lot X (v = Rio) |51 5= o

[x(v = Rrv)ll2(2) < [x(v — Rpv)|

where p, = o0 for N = 2 and p, = 6 for N = 3. For both N = 2 and N = 3, the parameter 6
determined by (2.61)) satisfies the following relation:

N N 0

— = 2.62

P 2 1-6 ( )
We can choose p sufficiently close to 2 as mentioned below Since

OV (0~ Ruo)|ogoe) + Cd5 o = Ruvllpaozy  (263)

Clx(v = Rpv)| 1) <

it follows that
lv — Ry 2 (D}
< v - th||Lp D2) (CIV (@ = Bnv)l g2 (pz) + Cd; o - Bpol2(p2 )’
= (€T o — Byl ogp2)' " (Ce[ V(v = Ruv) 22y + Ced; o = Ryvl2p2))’

_o —
Ce 19 |v— Rh/UHLp(D?) + CﬁHV(U — RhU)HLQ(DJQ.) + CGdj IHU — Rh’UHL2 D?

where € can be an arbitrary positive number.
By choosing € = d;j(p/d;)° with a fixed o € (0,1), we obtain
(2.64)

o~ Rusloaoy <€ (£
P o
+(2) 190 = Rl + Clo — Rl

J

P\ it
dj lv — RhUHLP(D}.)

Hence,

J
N1 N
P 2 h 22d]2 HU_RhUHLle)
j=0
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‘ Z

J 1o __6_
<Cprhr Y] (;) G o= Ruvlso
J

N 1 J P _16%9 *LJFN
<o St R (£) 7T o= Rl

o J
N 1 p N-3
+Ci+Cp 2h2 (@) ; d;? v = Ruvl p2(ps), (2.65)

where we have used and the fact dﬁ < % in deriving the last inequality. Note that

J N3
Z d;? |v— RhUHLZ(D;?) <C HU — Rpv||p2(s,,(20)) + 3 Z d; T HU — Rpv DY)
- =

Combining the last two estimates, we obtain

J _bo_
N, _1 N1 p - _%4_&
p 2 h—2 Z dj = HU _fihUHL2 D1) < CP 2h”2 Z (d) d] =0 HU — RhUHLp Dz)
j=0 j=0 J
_N
+C,+Cp 2

For the fixed o € (0, 1), by choosing a sufficiently large parameter x we have (%)J < H%, and

therefore the last term of the inequality above can be absorbed by the left-hand side. From now
on we fix the parameter x. Then we have

N-3

J *% [
_7_’_7
2 “HhEd T o= Ruvlaon Zcp%%(p) 4 o = Ryl
& d; i

no 1 p\7 A3
+CH+Cp 2h 2 d—] dJ Hv_RhU“LQ(SNp(zo))‘
(2.66)
It remains to estimate |v — Rpv|| (D) and [v — Rpvl12(s, ,(z0))- This is done by applying

Lemma [2.19 - with ¢’ = p therein), Lemma [2.18 - with ¢ = p therein) and Hélder’s inequality,
ie.,
N

lv = Rpv|reo) < Ch2HSO||LP(Q) < Ch*pr ™2, (2.67)
lv = Rpv| 200y < Ch? (setting ¢ = ¢ = 2 in Lemma and Lemma [2.18] ). (2.68)
Then, substituting these estimates into (2.66]), we obtain

N_s J \Z R\ T p\» 2718 N_N_ o
2 Co-mieoy < 5e(G) (5) (7)) T

vl
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el (3)7 ()

By choosing p < 2 to be sufficiently close to 2 (so that ¢ = p satisfies the condition of Lemma
} and using the relation % — % = % as shown in (2.62), we obtain

J N 1 N=3
Z p 2h72d;? |v— RhUHL2(DJ1.) < C. (2.70)
=0

Then, substituting the last inequality into the right-hand side of (2.60|), we obtain
N
p~ 2 h 7YV (v = Ryo)| 14, < C.

This proves @ for sufficiently small mesh size, say h < hg. This condition is required when
we use Corollary 2.14] Lemma and Lemma [2.19]in this subsection.

In the case h = hy, we denote by g, € Sp({2,) the isoparametric finite element function
satisfying g, = up on d§2;, and g, = 0 at the interior nodes of the domain (2,. Then the
following estimate holds:

1Gnl 2o (2,) < Clunllze(on,)-
Since xp = up — gn € gh(ﬂh), it follows from (I.1]) that

0= Vup-V(up—3n) = [V(un—gn)l72c0,) + L Vn - V(un = gn),
2y h

and therefore
IV (un = Gn)l720,) = — L}h Van - V(un = gn) < C|Vanl 2o |V (un — gn)lr2(0,)-
Thus, by using the inverse inequality and the condition h > hg, we have
IV (un = Gn)llz2(2,) < CIVanllzz(a,) < Ch anl2(a,) < Cho Mldnlre )

< Chy Hun| e 22,)-

By using the inverse inequality again, we obtain
- N -
lun — Gnllre(2,) < Ch™2 |un — Gnllz2(0,)

N ~
< Ch™ =2 |V(up — gn)ll12(0)

_%_1
< Chy |un] Lo 202,)-
By the triangle inequality, this proves

lunll o2,y < 1Gnl e + lun = GnlLe@,) < ClunlLeon,)

for h = hyg.
Combining the two cases h < hg and h = hg, we obtain the result of Theorem d

3. Proof of Theorem [1.2]

In this section, we adapt Schatz’s argument in [39] to the proof of maximum-norm stability
of isoparametric finite element solutions of the Poisson equation in the curvilinear polyhedron
considered here. The argument is based on the weak maximum principle established in Theorem
and the following technical result, which asserts that the W1 regularity estimate of the
Poisson equation can hold in a family of larger perturbed domains £2¢, ¢t € [0, 6], such that
dist(002,092) ~ t and the W estimate is uniformly with respect to t € [0, §].
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Remark 3.1. Here we make a remark on the idea of our proof. To prove Theorem [1.2] we
observe that the numerical solution wuy, is in fact the Ritz projection of u(® e HE(£2y,) which is
the exact solution of the Poisson equation on (2:

“Au™ = f in 2, (f is extended by zero outside §2),
in the sense that
Rh(u(h) o @El) = up o @;1.

Using the weak maximum principle established in Theorem one can imitate the proof of [32,
Theorem 5.1] to show that there holds L® stability for our Ritz projection Rj. It follows that

Ju™ — w1,y < Clu™ — Lu®| o (g,
Now we can obtain the result of Theorem [I.2] as long as we establish the estimate
Ju—u™| e,y < CR | flioy (P> N),

where we have extended u by zero outside {2. To this end, we consider employing the maximum
principle of harmonic functions since A(u® —wu) = 0 in 2 A £2;,. Here technically we introduce
larger perturbed domain £2¢ and solution u?

—Aut = f in 2,

in the larger perturbed domain 2¢. Then using maximum principle, we compare u and u™ with

u? respectively, for example we have

lu — | o) < 0|22 (002) < CH U e (0.
This explains the motivation of establishing Proposition (3.1

Proposition 3.1. Let {2 be a curvilinear polyhedron with edge openings smaller than w, and
define
Q(e) := {x e RY : dist(z, 2) < e},

which is an € neighborhood of (2. Then there exist constants § > 0 and A > 0 and a family of
larger bounded domains 2t satisfying

Q) c 2t R\ vEe 0,4,
such that the weak solution u' € H} (') of the Poisson equation
~Aut = f in Q') with fe LP(2") for somep > N, (3.1)
satisfies the following estimate:
[u lwroe(aty < Cpll floe(ary  for te[0,6], (3:2)

where Cy, is some constant which is independent of t € [0, 0].

Proof. In a standard convex polyhedron 2, the following estimate holds for p > N (cf. [35,
Lemma 2.1]):

HVwHLw(Q) <G|V - (an)HLp(Q) Vwe HY(£2) such that V- (aVw) € L?(£2). (3.3)

where a = (a;;) is any symmetric positive definite matrix in leq(f?) with ¢ > N, satisfying the
following estimate:

CHEP <ag- £ < Ol (3.4)
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On the curvilinear polyhedron (2 considered in this article, by using a partition of unity we
can reduce the problem to an open subset of {2 which is diffeomorphic to a convex polyhedral
cone. Therefore, the following result still holds for p > N:

IVw| ooy < Cp|V - (aVw)|1p0) Ywe HZ(£2) such that V- (aVw) e L?(12). (3.5)

If there exists a smooth diffeomorphism ¥, : 2 — 2! (smooth uniformly with respect to
t € [0,6]), then we can pull the Poisson equation on 2! = W;(£2) back to the curvilinear
polyhedron {2 as an elliptic equation with some coefficient matrix a satisfying , and then
use the result in (3.5)). This would prove . If the partial derivatives of the diffeomorphism
from (2 to 2! can be uniformly bounded with respect to ¢ € [0, 6], then the constant in is
independent of ¢ € [0, d].

It remains to prove the existence of a smooth diffeomorphism Wy : 2 — 2¢ = ¥,(§2). This is
presented in the following lemma. O

Lemma 3.2. Let §2 be a curvilinear polyherdon. Then there exist constants § > 0 and A > 0
(which only depend on §2), and a family of diffeomorphisms Wy : RN — RN for t € [0,6], such
that

(1) 2(\t) € U4(02) < 2(A~1t) for t € [0,5] and some constant X > 0.

(2) The partial derivatives of Wy are bounded uniformly with respect to t € [0,46], i.e.,

VRO (2)] < Cp Yz eRY, Vk =1, where Cy is independent of t € [0, ].

Proof. 1t is known that any given smooth and compactly supported vector field X on R induces
a flow map

U:RxRY RN (t,2) — &, 2),
such that each W; = W(t,-) : RY — R is a diffeomorphism of RY for sufficiently small ¢, say
|t| < §. Moreover, ¥y = Id, ¥y s = ¥y 0 U, for ¢, s € R, and the partial derivatives of U, are
uniformly bounded by constants which only depend on X and § (independent of ¢).

Therefore, in order to prove Lemma[3.2] it suffices to construct a compactly supported smooth
vector field X, such that the flow map induced by X satisfies 2(\t) € U,(2) < 2(A\~1¢) for
t € [0, 0] (with some constants A > 0 and ¢ > 0). This can be proved by utilizing the following
result, which provides a criteria for the construction of such a vector field.

Lemma 3.3. Let §2 be a curvilinear polyhedron, and let X be a smooth and compactly supported
vector field on RN satisfying the following conditions:

(1) X|qo =0 for some nonempty open subset 2" cc (2.
(2) (X (x),Ngzy = c at all smooth points x € 012, where N, denotes the unit outward normal
vector at x € 02 and ¢ > 0 is some constant.
(3) | X(z)| <1 VoxeRY
Then there are constants A > 0 and § > 0, which only depend on X and §2, such that the flow
map Yy induced by the vector field X has the following property:

QM) € U, (2) < 2N for te0,6].

Let us temporarily assume that Lemma holds, and use it to prove Lemma (3.2} To this
end, it suffices to construct a vector field which satisfies the conditions in Lemma, |3.3

From the definition of the curvilinear polyhedron we know that for every x € 02 there exists
a map ¢, : U, — B, (0) which is a diffeomorphism from a neighborhood U, of z in R¥ to
a ball centered at 0 with radius e, such that ¢,(z) = 0 and ¢, (U, n 2) = K, n By(e,),
where K, = {y € R? : y/|y| € ©} is a cone corresponding to a spherical region © — S? which
is contained in an open half sphere, say S = {z € R® : |z| = 1, x3 > 0}. We shall use the
following terminology:
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(1) By composing ¢, with an additional linear transformation if necessary, we can assume
that Vg (x) = I (which holds only at the point x in Uy).

(2) If p is a smooth point on 0K, (not on the edges or vertex of 0K,), then we denote by
N, the unit outward normal vector of 0K, at p, and define

Nm = {Nx’p : p in some smooth piece of 6Km}

to be the set of all outward unit normal vectors on the smooth faces of 0K,. When x is
a smooth point of 02, N, consists of only one vector, i.e., the usual unit normal vector
N,. Therefore, the set Nm can be viewed as generalization of normal vector at  when z
is not a smooth point.
(3) Let y be an interior point in the polyhedral cone K,. Then the unit vector V, = —y/|y|
satisfies that (V,,, N, p) > 0 for all N, , € N,.
We will construct a smooth vector field X on RY as follows, by using a partition of unity. By
the three properties above and the compactness of 02, there is constant ¢ > 0 only dependent
on {2 such that for each = € 012, there is a unit vector V, € RV such that

<Vza Nx,p> > 2c VNx’p € Nr
Since the normal vector at a smooth point of 02 changes continuously in a smooth piece of 02,
one can shrink the neighborhood U, of x € 02 so that
(Vz, Nyy) = ¢ for all smooth points y € 062 n Uy,

where IV, denotes the unit outward normal vector at y € 02 n U,. We define a smooth vector
field X, on U, by

X:(y) =V, VyeU,,
and choose a finite covering {Uy, }1<i<z, of 012 from these U,, x € 012, and a family of smooth
cut-off functions {x¢}1<vr<r, such that 0 < x, <1 and

supp(xe) € Uy, and > xe(x) =1, Vaedf.
1<¢<L

Then we denote by X, the above-mentioned vector field defined on Uy,, and define

L
X = Z XKXxga
/=1

so that X is a compactly supported smooth vector field such that

(X(y), Ny) = Z Xe(y){Xz,, Ny) = ¢, for all smooth point y € 012.
xe(y)#0

and clearly |X(z)| < 1, Vo € RY. This proves the existence of a desired vector field X, and
therefore completes the proof of Proposition (3.1 O

Proof of Lemma|3.3. For each z € 012, let ¢, : U, — B._(0) be the map as in the definition of
the curvilinear polyhedron. Here we do not require ¢, (U,) to be a ball so that we can assume
U, to be convex.

By composing ¢, with an additional linear transformation if necessary, we can assume that
V() = I (as in the proof of Lemma [3.2). Since ¢ < (X(z),N,) < 1 (as a the condition in
Lemma , we can shrink the neighborhood U, small enough so that

c
5 <{Vee(®) X (y), Nop) <2 Yy € Us, pe @u(Us 0 002) = 2(Us) 0 0K,
p is a smooth point. (3.6)
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Moreover, since (Vnpx)T = [ at x, we can shrink U, so that the following equivalence relation
holds:

d(y1,y2) ~ d(pa(¥1), P2 (y2))  Vy1,y2 € Us,
where d(-,-) denotes the Euclidean distance in RV, As a result,
d(y, Uz 0 2) ~ d(pz(y), pu(Uz 0 2)) Yy e Us.

We can choose a finite covering {Uy, }1<¢<r, of 02 from these U,. Then there exists a sufficiently
small 0 > 0 such that for any x € 012 there exists 1 < ¢ < L such that for all ¢ € [0, 4],

U, (z) € Uy, for some 1 < ¢ < L.
Moreover,
d(¥(x),$2) = d(Ve(x),Up 0 $2) (3.7)
and
d(4(2), 2) ~ d(pe, (Vi(2)), 0, (Ur 0 £2)). (3.8)
Let Yy = (Vig,) " X|u, be the pushforward vector field under ¢, then ., (¥;(z)) is the integral
curve of vector field Yy, with initial value point ¢z, (x). From (3.6 we know that
c
5 < Yi(2), Nayp) <2 V2 € 03, (Uzy); VP € 0, (Un, 0 002) = 00, (Us,) N 0K,

which implies that the integral curve ¢, (U:(z)) is flowing outside ¢y, (U, N £2), i.e.,
ct
9 < (e, (Pe(2)), a, (Uz, N 12)) < 2t

Then, from the equivalence of distance as shown in (3.7)—(3.8)), we conclude that there exists a
constant A > 0 such that

1
20t < d(Uy(z), 2) < §>\_1t vt e [0,8], Yz e on.

We consider the domain 2(\t) := {z € RV : dist(z, £2) < At}  £2. On the one hand, since
X|o = 0 for some subdomain 2" cc 2 it follows that ¥;(2) n 2(\t) # &. On the other
hand, since d(¥¢(x), £2) > At for all z € 012, the boundaries of W;({2) and 2(\t) are disjoint. It
follows that £2(\t) < W, (2) for t € [0,d]. Similarly, one can prove that 2(A~1t) > ¥,(£2). This
completes the proof of Lemma [3.3 U

Lemma 3.4. Let 2! be the domain in Proposition satisfying 2(\t) < 28 < Q(A71t) for
t € [0,6], with 2(\t) = {x e RN : dist(z, 2) < A\t}. Suppose that f € LP(§2') for some p > N,
and 2, = Ot for some t = O(K"™™Y) and h < hy, where hy > 0 is some constant. Let u € H}(2)
and uM) e H}(£2,) be the weak solutions of the following PDE problems:

—Au=f in {2,
— AuM) = foin {2,

and extend u and u') by zero to the larger domain 2¢. Then there exists hy > 0 such that for
h < ho the following estimate holds:

Ju — ul Ity < Chr+1||f||LP(Qt) (3.9)
Proof. Since max |®,(z) — x| < Coh" ! for some constant Cy, it follows that 2, = 2(Coh™ 1) =
xellp

0t for t = CoA~'h™*1. When h is sufficiently small we have t = CoA~'h"*! < § and therefore
% is well defined. Let u! € HE(£2%) be a weak solution of the Poisson equation

—Aut = f in 02
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Proposition |3.1] implies that
Ju lwioe(ty < Ol flLo(ar): (3.10)

Since u! —u is harmonic in 2 < 2% and v’ —u® is harmonic in 2, ¢ £2¢, the maximum principle
of the continuous problem implies that

t

[t — 0™ e,y < [t = u™ | 1020,
= HUtHLOC(th) (since u™ = 0 on 012;,)
< Ch™Hu! e
< CN £l ooy, (3.11)

where we have used the fact that dist(z, 002!) < 2Coh"*! for x € 0(2;,. Therefore,

t t

lu” — u(h)HLOC(Qh) + HUtHLOO(Qt\Qh)

Jut — ™| ooy <
< CR™ Y fllowcor + CR™ U [y o)
< O fluoan) (3.12)
The following result can be proved in the same way:
Ju' —ul ooty < CH™ | Lo (r)- (3.13)
The result of Lemma follows from (3.12)—(3.13)) and the triangle inequality. O

In the following, we prove Theorem by using the technical result in Proposition (3.1

Let 02! be the domain in Propositi satisfying 2(\t) < 2f < 2(A~Y%) for t € [0,4],
with 2(A\t) = {x e RY : dist(z,2) < At}. For the simplicity of notation, we still denote by
f € LP(£2") an extension of f € LP(2 U £2) satistying || f]|zo(0t) < Clflr(0u,) < ClfLr)-

Under assumption the curvilinear polyhedral domain {2 can be extended to a larger
convex polyhedron {2, with a piecewise flat boundary such that 2 c §2, and the triangulation
 can be extended to a quasi-uniform triangulation .#; on {2, (thus the triangulation in 2,\2
is also isoparametric on its boundary 02).

Let @ be an extension of u such that @ = u(® on 2, and @ = 0 in £2,\2. Let Sp(£2,) <
H}(£2,) be the H!'-conforming isoparametric finite element space on (2, with triangulation .
Let uy, € §h(9*) be the Ritz projection of % defined by

f V(a—an) Vxn=0 Ve Sn(2).
02y
Then
Ju®) — unlze(,) = 14— unfz=(0,)
| — anl Lo, + lan — unl Lo,
@ — @l Lo (g + 0 — unl 2oy (3.14)

where |t — 1y, | 1o (0,) is the error of the Ritz projection of an H L_conforming FEM in a standard
convex polyhedron and therefore can be estimated by using the result on a standard convex
polyhedron (or using the interior maximum-norm estimate as in [40, Theorem 5.1] and |32, Proof
of Theorem 5.1)), i.e.,

|@ — tin] o (2q) < Cl|T — InTl oo (0,
Clplu™ — Lu™ | e,

<
< Clyllu— Inu| o,y + CR ™ fll o ry,s (3.15)
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where the last inequality uses the triangle inequality and (3.9), and Iju is the interpolation
operator associated with the larger triangulation .Z; which extends the interpolation operator
I, - C(£2,) — Sp(§2) associated with . Since 4 — uy, is discrete harmonic in 2y, i.e.,

V(in —un) - Vxpde = | V(a—u®) - Vyyde =0 xue Sh(f),
2y 2

it follows from Theorem [1.1] that i — uy, satisfies the discrete maximum principle, i.e.,

ltan — un|p=(2,) < Clan — unlLe@n,)
= Cllin| = (20,)
= Clap — U)o (on,) (since dlag, = 0)
< Clap — ] o (g2,)- (3.16)

Substituting (3.15]) and (3.16]) into (3.14) yields
|ut™ — g e (2, < Clallu — Inu| o () + CR | fllio(at)-
Since u™ =y =0 in \$2y,, it follows that
Ju™ — g oo () = 6™ = wpl| Lo (2nan) < Clhllu — Inul Lo, + CR ™ fl Lo (at)-
Then, combining this with (3.9)), we obtain the following error bound:
lu = un| o0y < Clilu — Iyl o0,y + COR™ | £l oo
Finally, we note that

lw — Thu| o) =lluo ®p — In(uo ®p)| 120y
=|u — Ihu|po,) — Clu —wo @p po(g,)
=|u — Inullpo(,) — Clullweomay|®n — 1d| (0,
> — Inull o2,y = O™ |[ul oo e
>|u— Iyulpe(o,) — CR™ | o).
This proves the result of Theorem [I.2] O

4. Conclusion

We have proved the weak maximum principle of the isoparametric FEM for the Poisson
equation in curvilinear polyhedral domains with edge openings smaller than 7, which include
smooth domains and smooth deformations of convex polyhedra. The proof requires using a
duality argument for an elliptic equation with some discontinuous coefficients arising from the
use of isoparametric finite elements. Hence, the standard H? elliptic regularity does not hold for
the solution of the corresponding dual problem. We have overcome the difficulty by decomposing
the solution into a smooth H? part and a nonsmooth W1 part, separately, and replaced the H?
regularity required in a standard duality argument by some WP estimates for the nonsmooth
part of the solution.

As an application of the weak maximum principle, we have proved an L*-norm best approx-
imation property of the isoparametric FEM for the Poisson equation. All the analysis for the
Poisson equation in this article can be extended to elliptic equations with W® coefficients.
However, the current analysis does not allow us to extend the results to curvilinear polyhedral
domains with edge openings bigger than 7 (smooth deformations of nonconvex polyhedra) or
graded mesh in three dimensions. These would be the subject of future research.
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There are other approaches to the maximum principle of finite element methods for elliptic
equations using non-obtuse meshes, which is restricted to piecewise linear finite elements and
Poisson equation with constant coefficients; see [19]. The approach in the current manuscript is
applicable to elliptic equations with W1® coefficients, general quasi-uniform meshes, and high-
order finite elements, and therefore requires completely different analysis from the approaches
using non-obtuse meshes.
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