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Abstract. The weak maximum principle of the isoparametric finite element method is
proved for the Poisson equation under the Dirichlet boundary condition in a (possibly
concave) curvilinear polyhedral domain with edge openings smaller than π, which include
smooth domains and smooth deformations of convex polyhedra. The proof relies on the
analysis of a dual elliptic problem with a discontinuous coefficient matrix arising from
the isoparametric finite elements. Therefore, the standard H2 elliptic regularity which
is required in the proof of the weak maximum principle in the literature does not hold
for this dual problem. To overcome this difficulty, we have decomposed the solution into
a smooth part and a nonsmooth part, and estimated the two parts by H2 and W 1,p

estimates, respectively.
As an application of the weak maximum principle, we have proved a maximum-norm

best approximation property of the isoparametric finite element method for the Pois-
son equation in a curvilinear polyhedron. The proof contains non-trivial modifications
of Schatz’s argument due to the non-conformity of the iso-parametric finite elements,
which requires us to construct a globally smooth flow map which maps the curvilinear
polyhedron to a perturbed larger domain on which we can establish the W 1,8 regularity
estimate of the Poisson equation uniformly with respect to the perturbation.

1. Introduction

Let Ω be a bounded domain in RN with N P t2, 3u and consider a quasi-uniform triangulation
of the domain Ω with mesh size h, denoted by Kh. Hence, Ωh “ p

Ť

KPKh
Kq˝ is an approxima-

tion of Ω. Let ShpΩhq be a finite element space subject to the triangulation Kh, and denote by

S̊hpΩhq “ tvh P ShpΩhq : vh “ 0 on BΩhu the finite element subspace under the homogeneous
boundary condition. A function uh P ShpΩhq is called discrete harmonic if it satisfies

ż

Ωh

∇uh ¨∇χh “ 0 @χh P S̊hpΩhq. (1.1)

For a given mesh and finite element space, if all the discrete harmonic functions satisfy the
following inequality:

}uh}L8pΩhq ď }uh}L8pBΩhq , (1.2)

then it is said that the discrete maximum principle holds.
The discrete maximum principle of finite element methods (FEMs) has attracted much atten-

tion from numerical analysts due to its importance for the stability and accuracy of numerical
solutions; for example, see [10, 13, 38, 44, 47]. However, strong restrictions on the geometry of
the mesh are required for the discrete maximum principle to hold. For example, for piecewise
linear finite elements on a two-dimensional triangular mesh, the discrete maximum principle
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generally requires the angles of the triangles to be less than π{2; see [47, §5]. In three dimen-
sions, it is hard to have such discrete maximum principe even for piecewise linear finite elements;
see [6, 27,28,48].

Schatz considered a different approach in [39] by proving the weak maximum principle (also
called the Agmon–Miranda maximum principle) ,

}uh}L8pΩhq ď C }uh}L8pBΩhq , (1.3)

for some constant C which is independent of uh and h, for a wide class of H1-conforming finite
elements on a general quasi-uniform triangulation of a two-dimensional polygonal domain. It
was shown in [39] that the weak maximum principle can be used to prove the maximum-norm
stability and best approximation results of FEMs in a plane polygonal domain, i.e.,

}u´Rhu}L8pΩq ď C`h inf
vhPS̊h

}u´ vh}L8pΩq @u P H1
0 pΩq X L

8pΩq, (1.4)

where Rh : H1
0 pΩq Ñ S̊h is the Ritz projection operator, and

`h “

"

lnp2` 1{hq for piecewise linear elements,

1 for higher-order finite elements.

Such maximum-norm stability and best approximation results have a number of applications
in the error estimates of finite element solutions for parabolic problems [25, 31, 33, 34], Stokes
systems [5], nonlinear problems [15,18,36], optimal control problems [1, 2], and so on.

In three dimensions, the weak maximum principle was extended to convex polyhedral domains
in [32] and used to prove the L8-norm stability and best approximation results of FEMs on
convex polyhedral domains, removing an extra logarithmic factor lnp2 ` 1{hq in the stability
constant for quadratic and higher-order elements obtained in other approaches (for example,
see [30]). When Ω is a smooth domain and Ωh “ Ω (the triangulation is assumed to match the
curved boundary exactly), the weak maximum principle of quadratic or higher-order FEMs is
a result of the maximum-norm stability result in [40, 42], and the weak maximum principle of
linear finite elements can be proved similarly as in [32]. In all these articles, the triangulation is
assumed to match the boundary of the domain exactly, with Ωh “ Ω.

In the practical computation, the curved boundary of a bounded smooth domain, or more
generally a curvilinear polygon or polyhedron (which may contain both curved faces, curved
edges, and corners), is generally approximated by isoparametric finite elements instead of being
matched exactly by the triangulation. In this case, the weak maximum principle of FEMs has
not been proved yet. Correspondingly, the best approximation results such as (1.4) are not
known for isoparametric FEMs in a curved domain.

Some related results have been proved in the case Ωh ‰ Ω. For the Poisson equation with
Dirichlet boundary conditions in convex smooth domains, the piecewise linear finite element
space with a zero extension in ΩzΩh is conforming, i.e., ShpΩhq Ă H1

0 pΩq. In this case, pointwise
error estimates of FEMs have been established in [4, 42]. For general bounded smooth domains
which may be concave, thus the finite element space may be non-conforming, Kashiwabara &
Kemmochi [26] have obtained the following error estimate for piecewise linear finite elements for
the Poisson equation under the Neumann boundary condition:

}ũ´ uh}L8pΩhq ď Ch| log h| inf
vhPSh

}ũ´ vh}W 1,8pΩhq ` Ch
2| log h|}u}W 2,8pΩq, (1.5)

where ũ is any extension of u in W 2,8pΩδq and Ωδ is a neighborhood of Ω. In the case u P
W 2,8pΩq, this error estimate is a consequence of the best approximation result in (1.4). More
recently, the W 1,8 stability of the Ritz projection was proved in [16] for isoparametric FEMs
on Cr`1,1-smooth domains based on weighted-norm estimates, where r denotes the degree of



3

finite elements. For curvilinear polyhedra or smooth domains which may be concave, the weak
maximum principle and the best approximation results in the L8 norm have not been proved.

In this article, we close the gap mentioned above by proving the weak maximum principle
in (1.1) for isoparametric finite elements of degree r ě 1 in a bounded smooth domain or a
curvilinear polyhedron (possibly concave) with edge openings smaller than π. As an application

of the weak maximum principle, we prove that the finite element solution uh P S̊hpΩhq of the
Poisson equation

"

´∆u “ f in Ω

u “ 0 on BΩ
(1.6)

using isoparametric finite elements of degree r ě 1 has the following optimal-order error bound
(for any p ą N):

}u´ uh}L8pΩq ď C`h}u´ Ǐhu}L8pΩq ` Ch
r`1`h}f}LppΩq, (1.7)

where uh is extended to be zero in ΩzΩh, and Ǐhu denotes a Lagrange interpolation operator
(which will be defined in the next section). Inequality (1.7) can be viewed as a variant of the best
approximation result in (1.4) by taking account of the geometry change of the domain, which
produces an additional optimal-order term Chr`1}f}LppΩq independent of the higher regularity
of f . In particular, inequality (1.7) implies the following error estimate:

}u´ uh}L8pΩq ď C`hh
s}u}CspΩq ` Ch

r`1`h}f}LppΩq for u P CspΩq, 0 ď s ď r ` 1, (1.8)

which adapts to the regularity of u.
The weak maximum principle is proved by converting the finite element weak form on Ωh to

a weak form on Ω by using a bijective transformation Φh : Ωh Ñ Ω which is piecewisely defined
on the triangles/tetrahedra. This yields a bilinear form with a discontinuous coefficient matrix.
The main technical difficulty is that the elliptic partial differential equation associated to this
coefficient matrix does not have the H2 regularity estimate, which is required in the proof of
weak maximum principle in the literature; see [32]. We overcome this difficulty by decomposing
the finite element solution vh (of a duality problem) into two parts, vh “ vh,1 ` vh,2, with vh,1
corresponding to the Poisson equation with H2 regularity, and vh,2 corresponding to an elliptic
equation with discontinuous coefficients but with a small source term arising from the geometry
perturbation, and then estimate the two parts separately by using the H2 and W 1,p regularity
of the respective problems.

The maximum-norm error estimate is proved by using Schatz argument through estimating
the difference between the solutions of the Poisson equations in Ωh and Ω. However, in order to
avoid using the partial derivatives of f in the proof of (1.7), we have to estimate the error between
the solutions of the Poisson equation in the two domains Ωh and Ω under the Dirichlet boundary
conditions, respectively. This is accomplished by perturbing the curvilinear polyhedron through
a globally smooth flow map pointing outward the domain and establishing the W 1,8 regularity
estimate of the Poisson equation in a slightly larger perturbed domain Ωt (uniformly with respect
to the perturbation), which contains both Ωh and Ω and satisfies that distpx, BΩq „ hr`1 for
x P BΩt.

The rest of this article is organized as follows. In Section ??, we present the main results
to be proved in this article, including the weak maximum principle of the isoparametric FEM
in a curvilinear polyhedron, and the best approximation result of finite element solutions in
the maximum norm. The proofs of the two main results are presented in Sections 2 and 3,
respectively. The conclusions are presented in Section 4.

In this article, we assume that Ω Ă RN , with N P t2, 3u, is either a bounded smooth domain or
a curvilinear polyhedron (possibly concave) with edge openings smaller than π. More specifically,
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in the three-dimensional space, this means that for every x P BΩ there is a neighborhood Ux
and a smooth diffeomorphism ϕx : Ux Ñ B0pεxq mapping x to 0 such that one of the following
three conditions holds:

(1) x is a smooth point, i.e., ϕxpUx XΩq “ B0pεxq XR3
`, where R3

` “ tx P R3 : x3 ą 0u is a
half space in R3.

(2) x is an edge point, i.e., ϕxpUx X Ωq “ B0pεxq XKx, where Kx “ R ˆ Σ, where Σ Ď R2

is a sector with angle less than π.
(3) x is a vertex point, i.e., ϕxpUx X Ωq “ B0pεxq XKx, where Kx is a convex polyhedral

cone with a vertex at 0. Therefore, the boundary of Kx consists of several smooth faces
intersecting at some edges which pass through the vertex 0.

We refer to [3, Definition 2.1] for the definition of general curvilinear polyhedron.
Let K be the set of closed simplices in a quasi-uniform triangulation of the domain Ω with

isoparametric finite elements of degree r ě 1 approximating the boundary BΩ, as described
in [29], with flat interior simplices which have at most one vertex on BΩ and possibly curved
boundary simplices. Each boundary simplex contains a possibly curved face or edge interpolating
BΩ with an accuracy of Ophr`1q, where h denotes the mesh size of the triangulation. Hence,
Ωh “ p

Ť

KPK Kq˝ is an approximation to Ω such that distpx, BΩq “ Ophr`1q for x P BΩh.
We prove the following weak maximum principle of the isoparametric FEM.

Theorem 1.1. For the isoparametric FEM of degree r ě 1 on a quasi-uniform triangulation of
Ω, all the discrete harmonic functions uh P ShpΩhq satisfying (1.1) have the following estimate:

}uh}L8pΩhq ď C }uh}L8pBΩhq , (1.1)

where the constant C is independent of uh and the mesh size h.

In the isoparametric finite elements described in [29], each curved simplex K P K is the image

of a map FK : K̂ Ñ K defined on the reference simplex K̂, which is a polynomial of degree no
larger than r and transforms the finite element structure of K̂ to K. There is a homeomorphism
Φh : Ωh Ñ Ω, which is piecewise smooth on each simplex and globally Lipschitz continuous.
If we denote Φh,K :“ Φh|K and Ǩ :“ ΦhpKq, then Φh,K : K Ñ Ǩ is a diffeomorphism which

transforms the finite element structure of K to Ǩ. Therefore, Ǩ “ tǨ : K P K u is a
triangulation of the curved domain Ω, with

Ωh “
ď

KPK

K and Ω “
ď

KPK

Ǩ.

One can define isoparametric finite element space ShpΩhq as

ShpΩhq “ tvh P H
1pΩhq : vh|K ˝ FK is a polynomial on K̂ of degreeď r for K P K u. (1.2)

The finite element spaces on Ω can be defined as

ShpΩq “ tv̌h P H
1pΩq : v̌h ˝ Φh P ShpΩhqu and S̊hpΩq “ tv̌h P ShpΩq : v̌h “ 0 on BΩu. (1.3)

For a finite element function vh P ShpΩhq, we can associate it with a finite element function
v̌h P ShpΩq defined by vh ˝ Φ´1

h :“ v̌h.

Remark 1.1. By using the notation which link vh P ShpΩhq and v̌h P ShpΩq, the weak maximum
principle in (1.1) can be equivalently written as

}ǔh}L8pΩq ď C }ǔh}L8pBΩq . (1.4)

For a function f P C0pΩhq, one can define its local interpolation Ih,Kf on a simplex K P K
as the function satisfying

pIh,Kfq ˝ FK :“ IK̂pf ˝ FKq,
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where IK̂ is the standard Lagrange interpolation on the reference simplex K̂ (onto the space of
polynomials of degreeď r). The global interpolation Ihf P ShpΩhq is defined as

Ihf |K :“ Ih,Kf @K P K .

For the analysis of the isoparametric FEM, we also define an interpolation operator Ǐh : CpΩq Ñ
ShpΩq by

pǏhvq ˝ Φh “ Ihpv ˝ Φhq @ v P CpΩq.

As an application of the weak maximum principle, we establish an L8-norm best approxi-
mation result of isoparametric FEM for the Poisson equation in a curvilinear polyehdron. We
assume that the triangulation can be extended to a bigger domain which contains Ω, as stated
below.

Assumption 1.1. The curvilinear polyhedral domain Ω can be extended to a larger convex
polyhedron Ω˚ with piecewise flat boundaries such that Ω Ă Ω˚ and the triangulation K can
be extended to a quasi-uniform triangulation K˚ on Ω˚ (thus the triangulation in Ω˚zΩ is also
isoparametric on its boundary BΩ).

Remark 1.2. Here Ω˚ can be chosen as a large cube whose interior contains Ω. Note that

the triangulation K is obtained from some triangulation ĂK consisting of flat simplexes by the

method in Lenoir’s paper [29]. We can first extend rK to a quasi-uniform flat triangulation ĂK˚

of Ω˚, and then modify those flat simplexes ĂK with one of whose edges/faces attaches to the
boundary BΩ, to isoparametric elements by the method in Lenoir’s paper [29]. This leads to a
quasi-uniform triangulation K˚ on Ω˚ which extends K . By our construction, the triangulation
on Ω˚zΩ is also isoparametric on its boundary BΩ.

Theorem 1.2. For f P LppΩq with some p ą N , we consider the Poisson equation
"

´∆u “ f in Ω

u “ 0 on BΩ
(1.5)

and the isoparametric FEM of degree r ě 1 for (1.5): Find uh P S̊hpΩhq such that
ż

Ωh

∇uh ¨∇χh dx “

ż

Ωh

f̃χh dx @χh P S̊hpΩhq, (1.6)

where f̃ P LppΩ Y Ωhq is any extension of f P LppΩq satisfying }f̃}LppΩYΩhq ď C}f}LppΩq.
Assuming that the triangulation satisfies Assumption 1.1, there exist positive constants h0 and
C (independent of f , u and hq such that the solutions of (1.5) and (1.6) satisfy the following
inequality for h ď h0:

}u´ uh}L8pΩq ď C`h}u´ Ǐhu}L8pΩq ` Ch
r`1`h}f}LppΩq, (1.7)

where uh is extended to be zero on ΩzΩh, and `h is defined as

`h “

"

lnp2` 1{hq for piecewise linear elements,

1 for higher-order finite elements.

The proofs of Theorems 1.1 and 1.2 are presented in the next two sections, respectively. For
the simplicity of notation, we denote by C a generic positive constant which may be different
at different occurrences, possibly depending on the specific domain Ω and the shape-regularity
and quasi-uniformity of the triangulation, and the polynomial degree r ě 1, but is independent
of the mesh size h.
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2. Proof of Theorem 1.1

The proof of Theorem 1.1 is divided into six parts, presented in the following six subsections.

2.1. Properties of the isomparametric FEM

In this subsection, we summarize the basic properties of the isoparametric FEM to be used
in the proof of Theorem 1.1.

Lemma 2.1 ([29, Theorem 1, Theorem 2, Proposition 2, Proposition 3, Proposition 4]). Let
Ǩ be the triangulation of Ω by isoparametric finite elements of degree r ě 1, with the maps
FK : K̂ Ñ K and Φh,K : K Ñ Ǩ described in Section ??. Let Ds denote the Fréchet derivative
of order s. Then the following results hold:

1. FK : K̂ Ñ K is a diffeomorphism such that

}DsFK}L8pK̂q ď Chs @s P r1, r ` 1s

}DsF´1
K }L8pKq ď Ch´s @s P r1, r ` 1s

(2.1)

2. Φh,K : K Ñ Ǩ is a diffeomorphism such that

}DspΦh,K ´ Idq}L8pKq ď Chr`1´s @s P r1, r ` 1s

}DspΦ´1
h,K ´ Idq}L8pǨq ď Chr`1´s @s P r1, r ` 1s

(2.2)

3. For v P HmpKq and integer m P r0, r` 1s, the norms }v}HmpKq and }v ˝Φ´1
h,K}HmpǨq are

uniformly equivalent with respect to h.

4. Each curved simplex K P K corresponds to a flat simplex rK (which has the same

vertices as K), and there is a unique linear bijection F
rK

: K̂ Ñ rK which maps the

reference simplex K̂ onto rK. The map rΨK :“ FK ˝ F
´1
rK

: rK Ñ K is a diffeomorphism

satisfying the following estimates:

}DprΨK ´ Idq}
L8p rKq

ď Ch, }DprΨ´1
K ´ Idq}L8pKq ď Ch

}Ds
rΨK}L8p rKq ď C, }Ds

rΨ´1
K }L8pKq ď C @s P r1, r ` 1s.

(2.3)

5. For v P HmpKq and integer m P r0, r ` 1s, the norms }v}HmpKq and }v ˝ rΨK}Hmp rKq
are

uniformly equivalent with respect to h.

Let W k,p
h pΩq be the space of functions on Ω whose restriction on each Ǩ P Ǩ lies in W k,ppǨq,

equipped with the following norm:

}v}
Wk,p
h pΩq

:“

$

’

’

&

’

’

%

ˆ

ÿ

KPK

}v}p
Wk,ppKq

˙
1
p

for 1 ď p ă 8,

sup
KPK

}v}Wk,ppKq for p “ 8.

In the case p “ 2 we write H l,hpΩq “W l,2
h pΩq. The following local interpolation error estimate

was proved in [29, Lemma 7]; also see [11, Theorem 4.3.4]. Although it was proved only for
p “ 2 in [29, Lemma 7], the proof can be extended to 1 ď p ď 8 straightforwardly.

Lemma 2.2 (Lagrange interpolation). Let Ǐh,K : CpΩq Ñ ShpΩq be the interpolation operator
defined by

Ǐh,Kf ˝ Φh :“ Ih,Kf @ f P CpΩq.
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Then, for 1 ď k ď r ` 1 and 1 ď p ď 8 such that W k,p
h pΩq ãÑ CpΩq (e.g., kp ą N when p ą 1

or k ě N when p “ 1), the following error estimate holds:

|u´ Ǐh,Ku|W i,ppǨq ď Chk´i}u}Wk,ppǨq @ 0 ď i ď k, @ Ǩ P Ǩ , @u P Cp sΩq XW k,p
h pΩq.

Since the Lagrange interpolation is defined by using the pointwise values of a function at the
Lagrange nodes, its stability in the W k,p norm is valid only when W k,ppΩq ãÑ CpΩq, i.e., in
the case “kp ą N and p ą 1” or “k ě N and p “ 1”. One can remove this restriction by
using the Scott–Zhang interpolation, which can be constructed first in the flat triangulation
ĂK “ t rK : K P K u as in [7, Section 4.8] and then be transformed to K via the maps rΨK .

Namely, by denoting rΩh “
Ť

KPK
rK and rΨh : rΩh Ñ Ωh, we can define

pIhvq ˝ rΨh :“ rIhpv ˝ rΨhq @ v P L1pΩhq,

where rIh denotes the Scott–Zhang interpolation on the flat triangulation ĂK . Since the maps
rΨh induces norm equivalence on every simplex, as a result of (2.3), we have the following result.

Lemma 2.3 (Scott–Zhang interpolation). There is a global interpolation operator

Ih : L1pΩhq Ñ ShpΩhq

such that

|u´ Ihu|
W i,p
h pΩhq

ď Chk´i}u}
Wk,p
h pΩhq

@ 0 ď i ď k, @ 1 ď k ď r ` 1, @u PW k,p
h pΩhq.

The inverse estimate for isoparametric finite elements follows from Lemma 2.1, Part 1. This
is presented in the following lemma.

Lemma 2.4 (Inverse estimate). For 1 ď k ď l ď r ` 1 and 1 ď p, q ď 8 the following estimate
holds:

}ǔh}W l,ppǨq ď Chk´l`N{p´N{q}ǔh}Wk,qpǨq @ ǔh P ShpΩq, @ Ǩ P Ǩ . (2.4)

The following lemma says that the pr ` 1qth-order derivative of a finite element function
in ShpΩq can be bounded by its lower-order derivatives. This result is often used to prove a
super-approximation property which is stated in Lemma 2.6 for iso-parametric finite elements.

Lemma 2.5. The following result holds for iso-parametric finite element functions in ShpΩq:

|Dr`1v̌h|pxq ď C
r
ÿ

i“1

|Div̌h|pxq @x P Ǩ, @ Ǩ P Ǩ , @ v̌h P ShpΩq. (2.5)

Proof. Let MK :“ Φh,K ˝ rΨK , which is a diffeomorpshism between the flat simplex rK and the

curved simplex Ǩ (according to Lemma 2.1), satisfying the following estimates:

}DsMK}L8p rKq ď C and }DsM´1
K }L8pǨq ď C @ 1 ď s ď r ` 1.

According to the definition of ShpΩq, a function v̌h is in ShpΩq if and only if the pull-back

function v̌h ˝MK is a polynomial degreeď r on the flat simplex rK. Therefore, from the estimate
on higher order derivatives of composed functions (see [13, Lemma 3]), we have

|Dr`1v̌h|pxq

“ |Dr`1ppv̌h ˝MKq ˝M
´1
K q|pxq

ď C
r`1
ÿ

l“1

|Dlpv̌h ˝MKqpM
´1
K pxqq|

ÿ

iPIpl,r`1q

|DM´1
K pxq|i1 |D2M´1

K pxq|i2 ...|Dr`1M´1
K pxq|ir`1
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ď C
r`1
ÿ

l“1

|Dlpv̌h ˝MKq|pM
´1
K pxqq

“ C
r
ÿ

l“1

|Dlpv̌h ˝MKq|pM
´1
K pxqq,

where

Ipl, r ` 1q :“ ti “ pi1, i2, ..., ir`1q P Zr`1 : ik ě 0,
r`1
ÿ

k“1

ik “ l;
r`1
ÿ

k“1

kik “ r ` 1u.

We can estimate |Dlpv̌h ˝MKq|pM
´1
K pxqq using the same estimate on higher order derivatives of

composed function

|Dlpv̌h ˝MKq|pM
´1
K pxqq

ďC
l
ÿ

k“1

|Dkv̌h|pxq
ÿ

iPIpk,lq

|DMKpM
´1
K pxqq|i1 |D2MKpM

´1
K pxqq|i2 ...|DlMKpM

´1
K pxqq|il

ďC
l
ÿ

k“1

|Dkv̌h|pxq

The result of Lemma 2.5 is obtained by combining the two estimates above. �

The result above is the key to the superapproximation results for the isoparametric case. For
the standard elements the r ` 1 derivative just vanishes.

Lemma 2.6 (Super-approximation). Let ω P C80 pRN q be a smooth cut-off function such that
0 ď ω ď 1 and supppωq XΩ Ă Ω0 Ă Ω, with Ω0pdq :“ tx P Ω : distpx,Ω0q ď du Ă Ω1 for some

d ą h. Then the following estimate holds for v̌h P S̊hpΩq:

}ωv̌h ´ Ǐhpωv̌hq}H1pΩ1q
ď Ch

´

r
ÿ

j“1

hj´1}ω}W j,8pRN q

¯

}v̌h}H1pΩ1q
` Chr}ω}r`1,8}v̌h}L2pΩ1q

,

}ωv̌h ´ Ǐhpωv̌hq}H1pΩ1q
ď C

´

r`1
ÿ

j“1

hj´1}ω}W j,8pRN q

¯

}v̌h}L2pΩ1q
.

Proof. Since supppωv̌hq Ă Ω0, it follows that Ǐhpωv̌hq vanishes on all Ǩ such that Ǩ XΩ0 “ H.
Since Ω0pdq Ă Ω1, all the simplices Ǩ such that Ǩ X Ω0 ‰ H are contained in Ω1. Therefore,
we have

}ωv̌h ´ Ǐhpωv̌hq}
2
H1pΩ1q

“
ÿ

ǨXΩ0‰H

}ωv̌h ´ Ǐhpωv̌hq}
2
H1pǨq

ď
ÿ

ǨXΩ0‰H

Ch2r}ωv̌h}
2
Hr`1pǨq

ď
ÿ

ǨXΩ0‰H

Ch2r
´

|v̌h|
2
Hr`1pǨq

`

r
ÿ

i“0

}ω}2W r`1´i,8pRN q}v̌h}
2
HipǨq

¯

.

(2.6)

The term |v̌h|
2
Hr`1pǨq

can be estimated by using Lemma 2.5, i.e.,

|v̌h|
2
Hr`1pǨq

ď C
r
ÿ

i“1

|v̌h|
2
HipǨq

. (2.7)
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For 0 ď i ď r, the term |v̌h|HipǨq can be estimated by using the inverse estimate for isoparametric

finite element functions (see Lemma 2.4). This yields the first result of Lemma 2.6. The second
result can be proved similarly. �

2.2. The perturbed bilinear form associated to the isoparametric FEM

By using the notation ǔh˝Φh “ uh and v̌h˝Φh “ vh for uh, vh P ShpΩhq, the following identity
holds:

ż

Ωh

∇uh ¨∇vh dx “

ż

Ωh

∇pǔh ˝ Φhq ¨∇pǔh ˝ Φhq dx

“

ż

Ω
Ah∇ǔh ¨∇v̌h dx @ v̌h P S̊hpΩq, (2.8)

where
Ah “ p∇Φhp∇Φhq

JJ´1q ˝ Φ´1
h

is a piecewise smooth (globally discontinuous) and symmetric matrix-valued function, and J “
detp∇Φhq P L

8pΩhq is the Jacobian of the mapping Φh : Ωh Ñ Ω, piecewisely defined on every
simplex K P K . Therefore, a function uh P ShpΩhq is discrete harmonic if and only if

ż

Ω
Ah∇ǔh ¨∇v̌h dx “ 0 @ v̌h P S̊hpΩq, (2.9)

Identity (2.9) will be used frequently in the following proof.
Since the map Φh : Ωh Ñ Ω is close to the identity map Id : RN Ñ RN (which satisfies

Idpxq ” x), it follows that the matrix Ah is close to the identity matrix. In particular, the
following results are corollaries of the second statement of Lemma 2.1:

}∇jpΦh ´ Idq}L8pΩhq ď Chr`1´j and }Ah ´ I}L8pΩq ď Chr, for j “ 0, 1. (2.10)

Therefore, for sufficiently small mesh size h, the perturbed bilinear form B̌h : H1pΩqˆH1pΩq Ñ
R defined by

B̌hpv, χq “

ż

Ω
Ah∇v ¨∇χdx (2.11)

is continuous and coercive on H1
0 pΩq, i.e.,

B̌hpv, χq ď C}∇v}L2pΩq}∇χ}L2pΩq @ v, χ P H1pΩq,

B̌hpv, vq ě C´1}∇v}2L2pΩq „ }v}
2
H1pΩq @ v P H1

0 pΩq.
(2.12)

More precisely, the difference between B̌hpu, vq and Bpu, vq is estimated in the following
lemma.

Lemma 2.7. There exists a positive constant h1 ą 0 such that for h ď h1 the following result
holds: If 1 ď p, q ď 8, 1

p `
1
q “ 1, and u PW 1,ppΩq, v PW 1,qpΩq, then

ˇ

ˇB̌hpu, vq ´Bpu, vq
ˇ

ˇ ď Chr}∇u}LppΛhq}∇v}LqpΛhq
where Λh :“ tx P Ω : distpx, BΩq ď 2hu.

Proof. Since Φh “ Id at all interior simplices, it follows that Ah ˝Φh “ I outside the subdomain
Dh “ tx P Ωh : distpx, BΩhq ď hu. Correspondingly, Ah “ I outside the subdomain ΦhpDhq and
therefore,

ˇ

ˇB̌hpu, vq ´Bpu, vq
ˇ

ˇ ď }Ah ´ I}L8pΦhpDhq}∇u}LppΦhpDhqq}∇v}LqpΦhpDhqq
ď Chr}∇u}LppΦhpDhqq}∇v}LqpΦhpDhqq.
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If x P Dh, then there exists x1 P BΩh such that |x´ x1| “ distpx, BΩhq ď h and

|Φhpxq ´ Φhpx
1q| ď |Φhpxq ´ x| ` |x´ x

1| ` |x1 ´ Φhpx
1q| ď Chr`1 ` h` Chr`1,

which implies that

distpΦhpxq, BΩq ď Chr`1 ` h.

For sufficiently small h we obtain distpΦhpxq, BΩq ď 2h and therefore ΦhpDhq Ă Λh. �

2.3. Reduction of the problem

Let x0 P Ω be a point satisfying

|ǔhpx0q| “ }ǔh}L8pΩq with d “ distpx0, BΩq.

If d ě 2kh for some fixed k ě 1, i.e., x0 is relatively far away from the boundary BΩ, then
we can choose Ω1 “ tx0u and Ω2 “ Sd{2px0q and use the interior L8 estimate established
in [40, Corollary 5.1]. This yields the following result:

|ǔhpx0q| ď Cd´
N
2 }ǔh}L2pSdpx0qq.

Otherwise, we have d ă 2kh. In this case, assuming that x0 P Ǩ for some curved simplex
Ǩ P Ǩ , by the inverse estimate in Lemma 2.4 we have

|ǔhpx0q| “ }ǔh}L8pǨq ď Ch´
N
2 }ǔh}L2pǨq ď Ch´

N
2 }ǔh}L2pS2khpx0qq.

Overall, for either d ě 2kh or d ă 2kh, the following estimate holds:

|ǔhpx0q| ď Cρ´
N
2 }ǔh}L2pSρpx0qq, with ρ “ d` 2kh. (2.13)

To estimate the term }ǔh}L2pSρpx0qq on the right-hand side of (2.13), we use the following
duality property:

}ǔh}L2pSρpx0qq “ sup
supppϕqĂSρpx0q
}ϕ}L2pSρpx0qq

ď1

|pǔh, ϕq|,

where p¨, ¨q denotes the inner product of L2pΩq (or L2pΩqN for vector-valued functions), i.e.,

pu, vq :“

ż

Ω
u ¨ v dx.

Hence, there exists a function ϕ P C80 pΩq with the following properties:

supppϕq Ă Sρpx0q, }ϕ}L2pSρpx0qq ď 1, (2.14)

}ǔh}L2pSρpx0qq ď 2|pǔh, ϕq|. (2.15)

For this function ϕ, we define v P H1
0 pΩq and u P H1pΩq to be the solutions of the following

elliptic equations (in the weak form):
#

pAh∇v,∇χq “ pϕ, χq @χ P H1
0 pΩq,

v “ 0 on BΩ,
(2.16)

and
#

pAh∇u,∇χq “ 0 @χ P H1
0 pΩq,

u “ ǔh on BΩ,
(2.17)

respectively. The maximum principle of the continuous problem (2.17) implies that

}u}L8pΩq ď }ǔh}L8pBΩq. (2.18)
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Therefore, we have

}ǔh}L2pSρpx0qq ď 2|pǔh, ϕq| (here we have used (2.15))

“ 2|pǔh ´ u, ϕq ` pu, ϕq|

“ 2|pAh∇pǔh ´ uq,∇vq ` pu, ϕq| (here we have used (2.16))

“ 2|pAh∇ǔh,∇vq ` pu, ϕq| (here we have used (2.17))

ď 2|pAh∇ǔh,∇vq| ` 2}u}L8pΩq}ϕ}L1pSρpx0qq (since supppϕq Ă Sρpx0q)

ď 2|pAh∇ǔh,∇vq| ` Cρ
N
2 }ǔh}L8pBΩq}ϕ}L2pSρpx0qq, (2.19)

where we have used (2.18) and the Hölder inequality in deriving the last inequality. Combing
inequalities (2.13) and (2.19), we have

}ǔh}L8pΩq “ |ǔhpx0q| ď Cρ´
N
2 |pAh∇ǔh,∇vq| ` C}ǔh}L8pBΩq (2.20)

where we have used the fact that }ϕ}L2pSρpx0qq ď 1.

It remains to estimate ρ´
N
2 |pAh∇ǔh,∇vq|. To this end, we define Rh : H1

0 pΩq Ñ S̊hpΩq to be
the Ritz projection associated with the perturbed bilinear form defined in (2.11), i.e.,

pAh∇pv ´Rhvq,∇χ̌hq “ 0 @ χ̌h P S̊hpΩq, (2.21)

which is well defined in view of the coercivity of the bilinear form; see (2.12). By using identity
(2.9) for the discrete harmonic function uh and the definition of the Ritz projection Rh in (2.21),
we have

pAh∇ǔh,∇vq “ pAh∇ǔh,∇pv ´Rhvqq

“ pAh∇pǔh ´ χ̌hq,∇pv ´Rhvqq @χ̌h P S̊hpΩq. (2.22)

In particular, we can choose χ̌h “ χh ˝ Φ´1
h P S̊hpΩq to satisfy χh “ uh on all interior Lagrange

nodes while χh “ 0 on all the boundary nodes (which implies χh “ 0 on BΩh and therefore
χ̌h ” 0 on BΩ). Then

}χ̌h ´ ǔh}L8pΩq ď C}ǔh}L8pBΩq. (2.23)

Let Λh “ tx P Ω : distpx, BΩq ď 2hu be a neighborhood of the boundary BΩ, when h sufficiently
small, ǔh ´ χ̌h “ 0 outside Λh. Then

|pAh∇pǔh ´ χ̌hq,∇pv ´Rhvqq| ď C}∇pχ̌h ´ ǔhq}L8pΩq}∇pv ´Rhvq}L1pΛhq

ď Ch´1}ǔh}L8pBΩq}∇pv ´Rhvq}L1pΛhq, (2.24)

where we have used (2.23) and the inverse estimate for finite element functions. Substituting
(2.22) and (2.24) into (2.20), we obtain

}ǔh}L8pΩq ď C
`

ρ´
N
2 h´1}∇pv ´Rhvq}L1pΛhq ` 1q}uh}L8pBΩq. (2.25)

The proof of Theorem 1.1 will be completed if the following result holds:

ρ´
N
2 h´1}∇pv ´Rhvq}L1pΛhq ď C, (2.26)

which will be proved in the following subsections.
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2.4. Regularity decomposition

In order to estimate the left-hand side of (2.26), we need to use a local energy estimate and
a duality argument, which is based on the regularity result of the following elliptic equation (in
the weak form): Find v P H1

0 pΩq such that

pAh∇v,∇χq “ pf, χq @χ P H1
0 pΩq, (2.27)

where Ah is a globally discontinuous matrix-valued function defined in Section 2.2.
Due to the discontinuity of the coefficient matrix Ah, the standard H2 regularity does not

hold for the elliptic equation (2.27). We decompose the solution v P H1
0 pΩq of equation (2.27)

into the following two parts:

v “ v1 ` v2, (2.28)

where v1 P H
1
0 pΩq and v2 P H

1
0 pΩq are the weak solutions of the equations

p∇v1,∇χq “ pf, χq @χ P H1
0 pΩq, (2.29)

pAh∇v2,∇χq “ ppI ´Ahq∇v1,∇χq @χ P H1
0 pΩq. (2.30)

Equation (2.29) has a constant coefficient and therefore the classical W 2,q regularity estimate
holds for 1 ă q ă 2 ` ε, for some ε ą 0 which depends on the interior angles at the edges and
corners of the domain Ω (see [14, Corollaries 3.7, 3.9 and 3.12]), i.e.,

}v1}W 2,qpΩq ď Cq}f}LqpΩq @ 1 ă q ă 2` ε. (2.31)

Since equation (2.30) has discontinuous coefficients, the W 2,q regularity estimate does not hold.
We have to estimate v2 by using the W 1,p estimate in the following lemma.

Lemma 2.8. For every 1 ă p ă 8 there exists hp ą 0 (which depends on p), such that for
h ď hp, the solution w P H1

0 pΩq of the equation

pAh∇w,∇χq “ p~g,∇χq @χ P H1
0 pΩq with ~g P LppΩqN X L2pΩqN , (2.32)

satisfies w PW 1,ppΩq and

}w}W 1,ppΩq ď Cp}~g}LppΩq, (2.33)

where Cp is a constant which is independent of h (possibly depending on p).

Proof. We can rewrite equation (2.32) into the following form:

p∇w,∇χq “ p~g,∇χq ` ppI ´Ahq∇w,∇χq @χ P H1
0 pΩq,

and apply the W 1,p regularity estimate for the Poisson equation (which holds in a smooth domain
or curvilinear polyhedron with edge openings smaller than π; see [14, Corollaries 3.7, 3.9 and
3.12]). This yields the following inequality:

}w}W 1,ppΩq ď Cp}~g}LppΩq ` Cp}I ´Ah}L8pΩq}w}W 1,ppΩq.

Since }Ah´I}L8 ď Ch, for sufficiently small h (depending on p) the last term on the right-hand
side can be absorbed by the left-hand side. This yields the result of Lemma 2.8. �

By combining the W 2,q regularity estimate in (2.31) and the W 1,p regularity estimate in
Lemma 2.8, we can prove the following result.

Lemma 2.9. Let 1 ă p, q ă 8 be numbers such that 1{q ď 1{n` 1{p, and assume that h ď hp,
where hp is given in Lemma 2.8. Let w P H1

0 pΩq be the weak solution of the equation

pAh∇w,∇χq “ pf, χq ` p~g,∇χq @χ P H1
0 pΩq (2.34)
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for some f P LqpΩq X L2pΩq and ~g P LppΩqN X L2pΩqN . Then w PW 1,ppΩq and

}w}W 1,ppΩq ď Cp}f}LqpΩq ` Cp}~g}LppΩq. (2.35)

Proof. We consider the decomposition w “ w1 ` w2 with w1, w2 P H
1
0 pΩq weakly solving

p∇w1,∇χq “ pf, χq @χ P H1
0 pΩq,

pAh∇w2, χq “ ppI ´Ahq∇w1 ` ~g,∇χq @χ P H1
0 pΩq.

Note that for χ PW 1,p1

0 pΩq where 1{p` 1{p1 “ 1

|pf, χq| ď}f}LqpΩq}χ}Lq1 pΩq (1{q ` 1{q1 “ 1)

ďC}f}LqpΩq}χ}W 1,p1 pΩq (embedding W 1,p1 ãÑ Lq
1

used),

therefore we have }f}W´1,ppΩq ď C}f}LqpΩq. By the W 1,p regularity estimate for the Poisson
equation on curvilinear polyhedron (see [14, Corollaries 3.7, 3.9 and 3.12]), there holds

}w1}W 1,ppΩq ď Cp}f}W´1,ppΩq ď Cp}f}LqpΩq

Then we apply the W 1,p estimate in Lemma 2.8 to the equation of w2. This yields the following
result:

}w2}W 1,ppΩq ď Cp}~g ` pI ´Ahq∇w1}LppΩq ď Cp}~g}LppΩq ` Cp}f}LqpΩq.

The result of Lemma 2.9 follows from combining the estimates for w1 and w2. �

The following lemma was proved in [32, Lemma 2.2] for polyhedral domains. The proof of
this result for smooth domains and curvilinear polyhedron is the same.

Lemma 2.10. If χ PW 1,p
0 pΩq for some 1 ă p ă 8 and x˚ P BΩ, then

}χ}LppSd˚ px˚qq ď Cd˚}∇χ}LppΩq,

where Sd˚px
˚q :“ tx P Ω : |x´ x˚| ă d˚u.

Lemma 2.11. Let 1 ă p ă 8 and h ď hp, where hp is given in Lemma 2.8. For

f P LppΩq X L2pΩq with supppfq Ă Sd˚px0q, where x0 P Ω and distpx0, BΩq ď d˚,

the solution v P H1
0 pΩq of equation (2.27) satisfies

}v}W 1,ppΩq ď Cpd˚}f}LppΩq (2.36)

Proof. We consider the decomposition v “ v1 ` v2 in (2.28)–(2.30). If distpx0, BΩq ď d˚, then

Sd˚px0q Ă S2d˚px̄0q for some x̄0 P BΩ. Note that for χ PW 1,p1

0 pΩq where 1{p`1{p1 “ 1, we have

|pf, χq| ď}f}LppSd˚ px0qq}χ}Lp1 pSd˚ px0qq

ď}f}LppSd˚ px0qq}χ}Lp1 pS2d˚ px̄0qq

ďCd˚}f}LppΩq}∇χ}Lp1 pΩq, (Lemma 2.10 used)

which implies that }f}W´1,ppΩq ď Cd˚}f}LppΩq. Thus by the W 1,p regularity estimate for the
Poisson equation on curvilinear polyhedron (see [14, Corollaries 3.7, 3.9 and 3.12]), there holds:

}v1}W 1,ppΩq ď Cp}f}W´1,ppΩq ď Cpd˚}f}LppΩq.

By applying Lemma 2.8 to equation (2.30), we obtain

}v2}W 1,ppΩq ď Cp}pI ´Ahq∇v1}LppΩq ď Cph}v1}W 1,ppΩq ď Cphd˚}f}LppΩq.

The last two inequalities imply the result of Lemma 2.11. �
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The next lemma is about the Cacciopoli inequality for harmonic functions which is the same
as in [41, Lemma 8.3]. The result holds for smooth domains and curvilinear polyhedra on which
the elliptic H2 regularity result holds for the Poisson equation.

Lemma 2.12. Let D and Dd be two subdomains of Ω satisfying D Ă Dd Ă Ω, with

Dd “ tx P Ω : distpx,Dq ď du,

where d is a positive constant. If v P H1
0 pΩq and v is harmonic on Dd, i.e.

p∇v,∇wq “ 0 @w P H1
0 pDdq,

then the following estimates hold:

|v|H2pDq ď Cd´1}v}H1pDdq, (2.37a)

}v}H1pDq ď Cd´1}v}L2pDdq. (2.37b)

We also need the following interior estimate in the estimation of v2.

Lemma 2.13. Let 1 ă p, q ă 8 be numbers such that 1{q ď 1{n` 1{p and assume that h ď hp,
where hp is given in Lemma 2.8. Let D Ă Dd Ă Ω be subdomains, with Dd “ tx P Ω :

distpx,Dq ď du. If v PW 1,p
0 pΩq XH1

0 pΩq satisfies equation

pAh∇v,∇χq “ 0 @χ P H1
0 pDdq, (2.38)

or

p∇v,∇χq “ 0 @χ P H1
0 pDdq. (2.39)

Then

}v}W 1,ppDq ď
Cp
d
p}v}LppDdq ` }v}W 1,qpDdqq. (2.40)

Proof. We focus on the first case: v satisfies equation (2.38). The proof for the second case is
the same and therefore omitted.

First, we choose a cut-off function ω P C80 pRN q, ω ” 1 on D, supppωq X Ω Ă Dd, with
}ω}W 1,8pRN q ď Cd´1. Then ωv P H1

0 pΩq satisfies the following equation:

pAh∇pωvq,∇χq “ pωAh∇v,∇χq ` pAh∇ω, v∇χq
“ pAh∇v,∇pωχqq ´ pAh∇v, χ∇ωq ` pAh∇ω, v∇χq
“ pAhv∇ω,∇χq ´ pAh∇v ¨∇ω, χq @χ P H1

0 pΩq

where we have used the identity pAh∇v,∇pωχqq “ 0 in the derivation of the last equality, which
is a consequence of (2.38) and ωχ P H1

0 pDdq. Then we can apply Lemma 2.9 to the above
equation satisfied by ωv. This yields the following result:

}ωv}W 1,ppΩq ď Cp}Ahv∇ω}LppΩq ` Cp}Ah∇v ¨∇ω}LqpΩq

ď
Cp
d
}v}LppDdq `

Cp
d
}v}W 1,qpDdq.

Since ω “ 1 on D, the last inequality implies the result of Lemma 2.13. �

Lemma 2.14. Let 1 ă p, q ă 8 be numbers such that 1{q ď 1{n ` 1{p and assume that
h ď minthp, hqu, where hp, hq are given in Lemma 2.8. Let D Ă Dd Ă Ω be subdomains, with
Dd “ tx P Ω : distpx,Dq ď du. If the source function f has supppfqXDd “ H, then the solution
v2 of equation (2.30) satisfies the following estimate:

}v2}W 1,ppDq ď
Cp,q
d
h}v1}W 1,qpΩq. (2.41)
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Proof. We consider a cut-off function ω such that ω ” 1 in D and supppωq Ă Dd{2, with

}ω}W 1,8pRN q ď Cd´1. Then the following equation can be written down similarly as in the proof
of Lemma 2.13:

pAh∇pωv2q,∇χq “ pωpI ´Ahq∇v1,∇χq ` ppI ´Ahq∇v1 ¨∇ω, χq
` pv2Ah∇ω,∇χq ´ pAh∇v2 ¨∇ω, χq @χ P H1

0 pΩq.

By applying Lemma 2.9 to the equation above, we obtain

}v2}W 1,ppDq ď Cph}v1}W 1,ppDd{2q
`
Cph

d
}v1}W 1,qpΩq `

Cp
d
}v2}LppΩq `

Cp
d
}v2}W 1,qpΩq

ď Cph}v1}W 1,ppDd{2q
`
Cph

d
}v1}W 1,qpΩq `

Cp
d
}v2}W 1,qpΩq, (2.42)

where we have used Sobolev embedding W 1,qpΩq ãÑ LppΩq.
Since supppfq X Dd “ H, it follows that the solution v1 of (2.29) satisfies equation (2.39).

Therefore, Lemma 2.13 implies that

}v1}W 1,ppDd{2q
ď
Cp
d
p}v}LppDdq ` }v}W 1,qpDdqq ď

Cp
d
}v1}W 1,qpΩq.

By applying Lemma 2.8 to equation (2.30), we also obtain

}v2}W 1,qpΩq ď Cq}I ´Ah}L8pΩq}v1}W 1,qpΩq ď Cqh}v1}W 1,qpΩq.

Then, substituting the last two inequalities into (2.42), we obtain the result of Lemma 2.14. �

2.5. W 1,p stablity of the Ritz projection (with discontinuous coefficients)

In [22] the W 1,8 stability of the Ritz projection is proved for the Poisson equation in convex
polyhedral domains. The proof is based on the following properties of the domain and finite
elements:

(P1) Hölder estimates of the Green function for the Poisson equation, i.e.,

|BxiGpx, ξq ´ ByiGpy, ξq|

|x´ y|σ
ď C

`

|x´ ξ|´2´σ ` |y ´ ξ|´2´σ
˘

ˇ

ˇBxiBξjGpx, ξq ´ ByiBξjGpy, ξq
ˇ

ˇ

|x´ y|σ
ď C

`

|x´ ξ|´3´σ ` |y ´ ξ|´3´σ
˘

(2.43)

for i, j “ 1, 2, 3.
(P2) Elliptic H2 regularity result for the Poisson equation.
(P3) Exact triangulation which matches the boundary BΩ.
(P4) Error estimates for the Lagrange interpolation holds as in Lemma 2.2.

Note that the Hölder estimates for the Green function in (2.43) was proved in [22] for general
curvilinear polyhedral domains with edge opening smaller than π, instead of merely classical
polyhedral domains. If we define a modified Ritz projection R˚h associated to the Poisson equa-
tion (without the discontinuous coefficient Ah), i.e.,

ż

Ω
∇pv ´R˚hvq ¨∇χ̌h dx “ 0 @χ̌h P S̊hpΩq, (2.44)

then all the properties in (P1)–(P4) are possessed by the curvilinear polyhedral domain Ω and

the finite element space S̊hpΩq. The latter is based on the triangulation Ǩ which matches the
boundary BΩ exactly. Therefore, the W 1,8 stability still holds for the modified Ritz projection
defined in (2.44). The result is stated in the following lemma.
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Lemma 2.15.

}R˚hv}W 1,8pΩq ď C}v}W 1,8pΩq @ v P H1
0 pΩq XW

1,8pΩq. (2.45)

By real interpolation between the H1 and W 1,8 stability estimates (see [8, result in (5.1)]),
we obtain the W 1,p stability of the modified Ritz projection for 2 ď p ď 8. The result can also
be extended to 1 ă p ď 2 by a duality argument as in [7, Section 8.5], which requires Poisson

equation to have the W 1,p1 regularity (this is true for a curvilinear polyhedron with edge opening
smaller than π). The result is summarized below.

Lemma 2.16 (W 1,p stability of the modified Ritz projection R˚h). For any 1 ă p ď 8, there
exists a positive constant hp such that for h ď hp the following result holds:

}R˚hu}W 1,ppΩq ď Cp}u}W 1,ppΩq @u PW 1,ppΩq XH1
0 pΩq. (2.46)

By a “perturbation” argument, similar as [7, Section 8.6], one can obtain the W 1,p stability
of the Ritz projection Rh. This is stated in the following proposition.

Proposition 2.17 (W 1,p stability of the Ritz projection Rh). For any 1 ă p ă 8, there exists
a positive constant hp such that for h ď hp the following result holds:

}Rhu}W 1,ppΩq ď Cp}u}W 1,ppΩq @u PW 1.ppΩq XH1
0 pΩq. (2.47)

Proof. For v P H1
0 pΩq, its Ritz projection Rhv P S̊hpΩq satisfies the following equation:

ż

Ω
∇pv ´Rhvq ¨∇χ̌h dx “

ż

Ω
pI ´Ahq∇pv ´Rhvq ¨∇χ̌h dx @χ̌h P S̊hpΩq.

If we define w to be the solution of the following elliptic equation (in the weak form):
ż

Ω
∇w ¨∇χ̌dx “ ´

ż

Ω
pI ´Ahq∇pv ´Rhvq ¨∇χ̌dx @χ̌ P H1

0 pΩq,

then
ż

Ω
∇pw ` v ´Rhvq ¨∇χ̌h dx “ 0 @χ̌h P S̊hpΩq,

which means that Rhv “ R˚hpw ` vq. Lemma 2.16 implies that

}Rhv}W 1,ppΩq “ }R
˚
hpw ` vq}W 1,ppΩq ď Cp}w ` v}W 1,ppΩq

ď Cp}I ´Ah}L8pΩq}v ´Rhv}W 1,ppΩq ` Cp}v}W 1,ppΩq

ď Cph}Rhv}W 1,ppΩq ` Cp}v}W 1,ppΩq.

There exists a constant hp such that for h ď hp the first term on the right-hand side can be
absorbed by the left-hand side. In this case we obtain the result of Proposition 2.17. �

As a result of Proposition 2.17, we obtain the following W 1,p error estimate for the Ritz
projection.

Lemma 2.18. For any 1 ă q ă 2 ` ε, there exists a positive constant hq such that for h ď hq
the solution of equation (2.27) has the following error bound:

}v ´Rhv}W 1,qpΩq ď Cqh}f}LqpΩq @ f P LqpΩq X L2pΩq.

Proof. We consider the decomposition v “ v1` v2 in (2.28)–(2.30). The W 2,q estimate in (2.31)
and the W 1,p estimate in Lemma 2.8 imply that v1 and v2 satisfy the following estimates:

}v1}W 2,qpΩq ď Cq}f}LqpΩq @ 1 ă q ă 2` ε,

}v2}W 1,qpΩq ď Cqh}v1}W 1,qpΩq ď Cqh}f}LqpΩq.
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Applying the W 1,q stability of the Ritz projection, we obtain the following estimates:

}v1 ´Rhv1}W 1,qpΩq ď Cq inf
χ̌hPS̊hpΩq

}v1 ´ χ̌h}W 1,qpΩq ď Cqh}v1}W 2,qpΩq ď Cqh}f}LqpΩq,

}v2 ´Rhv2}W 1,qpΩq ď Cq}v2}W 1,qpΩq ď Cqh}f}LqpΩq.

The result of Lemma 2.18 is obtained by combining the two estimates above. �

Finally, the Lp error estimate for the Ritz projection follows from a standard duality argument,
again by using the regularity decomposition as in (2.28)–(2.30) for the dual problem.

Lemma 2.19. For any 1 ă q ă 2 ` ε, there exists a positive constant hq such that for h ď hq
the following error estimate holds:

}u´Rhu}Lq1 pΩq ď Cqh}u´Rhu}W 1,q1 pΩq @u P H1
0 pΩq XW

1,q1pΩq, (2.48)

where 1{q ` 1{q1 “ 1.

Proof. By using the duality between LqpΩq and Lq
1

pΩq, we can express the Lq
1

error of the Ritz
projection as

}Rhu´ u}Lq1 pΩq “ sup
ϕPC80 pΩq
}ϕ}LqpΩqď1

pRhu´ u, ϕq,

In particular, there exists ϕ P C80 pΩq with }ϕ}LqpΩq ď 1 such that

}Rhu´ u}Lq1 pΩq ď 2pRhu´ u, ϕq.

Let v P H1
0 pΩq be the weak solution of the following elliptic equation (in the weak form):

pAh∇v,∇χq “ pϕ, χq @χ P H1
0 pΩq.

Then

pRhu´ u, ϕq “ pAh∇v,∇pRhu´ uqq
“ pAh∇pRhu´ uq,∇vq
“ pAh∇pRhu´ uq,∇pv ´Rhvqq
ď C}Rhu´ u}W 1,q1 pΩq}Rhv ´ v}W 1,qpΩq

ď Cqh}Rhu´ u}W 1,q1 pΩq}ϕ}LqpΩq (Lemma 2.18 is used here)

ď Cqh}Rhu´ u}W 1,q1 pΩq.

This proves the result of Lemma 2.19 . �

2.6. Estimation of ρ´
N
2 h´1}∇pv ´Rhvq}L1pΛhq

In this subsection, we prove (2.26) by utilizing the results established in Sections 2.4–2.5,
where v is the solution of (2.16). This would complete the proof of Theorem 1.1. To this end,
we consider a dyadic decomposition of the domain as in the literature; see [22,32,39].

Let R0 “ diampΩq and dj “ R02´j for j ě 0. We define a sequence of subdomains

Dj “ tx P Ω : dj`1 ď |x´ x0| ď dju for j ě 0.

For each j we denote by Dl
j a subdomain slightly larger than Dj , defined by

Dl
j “ Dj´l Y ¨ ¨ ¨ YDj YDj`1 Y ¨ ¨ ¨ YDj`l (Di :“ H for i ă 0.)

Let J “ rln2pR0{2κρqs ` 1, where rln2pR0{2κρqs denotes the biggest integer not exceeding
ln2pR0{2κρq. The constant κ ą 32 will be determined below, and the generic constant C
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will be independent on κ until it is determined (unless it contains a subscript κ). The definition
above implies that

1

2
κρ ď dJ`1 ď κρ

and

measurepDj X Λhq ď ChdN´1
j . (2.49)

Note that v is the solution of (2.16), where ϕ “ 0 outside Sρpx0q. Therefore, ϕ “ 0 in D3
j for

1 ď j ď J . This result will be used below.
By using the subdomains defined above, we have

ρ´
N
2 h´1}∇pv ´Rhvq}L1pΛhq

ď ρ´
N
2 h´1

ˆ J
ÿ

j“0

}∇pv ´Rhvq}L1pΛhXDjq ` }∇pv ´Rhvq}L1pΛhXSκρpx0qq

˙

ď Cρ´
N
2 h´1

J
ÿ

j“0

h
1
2d

N´1
2

j }∇pv ´Rhvq}L2pΛhXDjq

` Cκ
N´1

2 ρ´
1
2h´

1
2 }∇pv ´Rhvq}L2pΛhXSκρpx0qq, (2.50)

where the Hölder inequality and (2.49) are used in the derivation of the last inequality. By
choosing q “ 2 in Lemma 2.18 we have

}∇pv ´Rhvq}L2pΩq ď Ch}ϕ}L2pΩq ď Ch. (2.51)

Then, substituting (2.51) into the last term on the right-hand side of (2.50) and using the fact
that ρ ě h (which follows from the definition of ρ in (2.13)), we obtain

ρ´
N
2 h´1}∇pv ´Rhvq}L1pΛhq ď Cρ´

N
2 h´

1
2

J
ÿ

j“0

d
N´1

2
j }∇pv ´Rhvq}L2pDjq ` Cκ, (2.52)

where Cκ denotes a constant which depends on the parameter κ.
It remains to estimate }∇pv ´Rhvq}L2pDjq. To this end, we use the following interior energy

estimate for the solution of (2.16):

}v ´Rhv}H1pDjq ď C}v ´ Ǐhv}H1pD1
j q
` Cd´1

j }v ´ Ǐhv}L2pD1
j q
` Cd´1

j }v ´Rhv}L2pD1
j q
. (2.53)

The proof of such interior energy estimate is omitted as it only requires the coefficient matrix Ah
to be L8 in the perturbed bilinear form in (2.11), without additional smoothness, and therefore
is the same as the proof for standard finite elements for the Poisson equation.

We use the decomposition v “ v1 ` v2 in (2.28)–(2.30) with f “ ϕ supported in Sρpx0q, and
consider interpolation error of v1 and v2, respectively. First, by applying the result of Lemma
2.2 and using the fact that dj ą h, we have

}v1 ´ Ǐhv1}H1pD1
j q
` dj

´1}v1 ´ Ǐhv1}L2pD1
j q
ď Ch}v1}H2pD2

j q
ď Chd

´1`N
2
´N
p

j }v1}W 1,ppΩq

for 2N
N`2 ă p ă 2, (2.54)

where we have used the following inequality in deriving the last inequality:

}v1}H2pD2
j q
ď Cd

1
2
´ 3
p

j }v1}W 1,ppΩq for 2N
N`2 ă p ă 2. (2.55)
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The inequality above follows from Lemma 2.12 (because v1 is the solution of (2.29) with f “
ϕ “ 0 in D3

j ), the Hölder inequality and the Sobolev embedding inequality, i.e.,

}v1}H2pD2
j q
ď Cd´2

j }v1}L2pD3
j q

ď Cd
´2`N

2
´ N
p˚

j }v1}Lp˚ pD3
j q

if p˚ ą 2

ď Cd
´1`N

2
´N
p

j }v1}W 1,ppΩq for N
p˚
“ N

p ´ 1 and 2N
N`2 ă p ă 2

so that p˚ ą 2 and W 1,ppΩq ãÑ Lp
˚

pΩq.

Here we require κ ą 32 to guarantee that dJ`5 ą ρ, which is required in the use Lemma 2.12.
This proves the last inequality in (2.54).

Next, we consider the interpolation error of v2 by using Lemma 2.2 and Hölder inequality,
i.e.,

}v2 ´ Ǐhv2}H1pD1
j q
` dj

´1}v2 ´ Ǐhv2}L2pD1
j q
ď Cd

N
2
´ N
p1

j }v2}W 1,p1 pD2
j q

ď Cd
N
2
´ N
q1

j h}v1}W 1,q1 pΩq

for some p1 ą N and
N

q1
“
N

p1
` 1, (2.56)

where we have applied Corollary 2.14 in deriving the last inequality. (Here we only need p1 to
be slightly bigger than N , and therefore the corresponding q1 here can be smaller than 2, so
that we can use Hölder inequality to estimate }ϕ}Lq1 pSρpx0qq below.)

By combining (2.54) and (2.56), we obtain

C}v ´ Ǐhv}H1pD1
j q
` Cdj

´1}v ´ Ǐhv}L2pD1
j q

ď Chd
´1`N

2
´N
p

j }v1}W 1,ppΩq ` Cd
N
2
´ N
q1

j h}v1}W 1,q1 pΩq

ď Chd
´1`N

2
´N
p

j ρ}ϕ}LppSρpx0qq ` Chd
N
2
´ N
q1

j ρ}ϕ}Lq1 pSρpx0qq

ď Chd
´1`N

2
´N
p

j ρ
1´N

2
`N
p ` Chd

N
2
´ N
q1

j ρ
1´N

2
` N
q1 , (2.57)

where we have applied Lemma 2.11 to equation (2.29) in the derivation of the second inequality,
and used Hölder inequality in the derivation of the last inequality.

Finally, substituting (2.57) into (2.53), we obtain

d
N´1

2
j }∇pv ´Rhvq}L2pDjq

ď Chd
N´ 3

2
´N
p

j ρ
1´N

2
`N
p ` Chd

N´ 1
2
´ N
q1

j ρ
1´N

2
` N
q1 ` Cd

N´3
2

j }v ´Rhv}L2pD1
j q

ď Chd
N´ 3

2
´N
p

j ρ
1´N

2
`N
p ` Cd

N´3
2

j }v ´Rhv}L2pD1
j q
, (2.58)

where we have chosen p “ q1 ă 2 and used dj ď C in the derivation of the last inequality. Here
we can make p as close to 2 as possible so that p “ q1 satisfies the condition in Lemma 2.19
(which will be used in the subsequent analysis).
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Now we substitute (2.58) into (2.52) and use the result
řJ
j“0 d

N´ 3
2
´N
p

j ď Cκρ
N´ 3

2
´N
p , we

obtain
J
ÿ

j“0

d
N´1

2
j }∇pv ´Rhvq}L2pDjq ď Cκhρ

N´1
2 `

J
ÿ

j“0

Cd
N´3

2
j }v ´Rhv}L2pD1

j q
, (2.59)

and therefore

ρ´
N
2 h´1}∇pv ´Rhvq}L1pΛhq ď Cρ´

N
2 h´

1
2

J
ÿ

j“0

d
N´1

2
j }∇pv ´Rhvq}L2pDjq ` Cκ

ď Cκ ` Cρ
´N

2 h´
1
2

J
ÿ

j“0

d
N´3

2
j }v ´Rhv}L2pD1

j q
. (2.60)

It remains to estimate
řJ
j“0 d

N´3
2

j }v ´Rhv}L2pD1
j q

. To this end, we let χ be a smooth cut-off

function satisfying

χ “ 1 on D1
j , χ “ 0 outside D2

j and |∇χ| ď Cd´1
j .

For N “ 2, 3 the following Sobolev interpolation inequality holds:

}χpv ´Rhvq}L2pΩq ď }χpv ´Rhvq}
1´θ
LppΩq}χpv ´Rhvq}

θ
H1pΩq with

1

2
“

1´ θ

p
`

θ

p˚
, (2.61)

where p˚ “ 8 for N “ 2 and p˚ “ 6 for N “ 3. For both N “ 2 and N “ 3, the parameter θ
determined by (2.61) satisfies the following relation:

N

p
´
N

2
“

θ

1´ θ
. (2.62)

We can choose p sufficiently close to 2 as mentioned below (2.58). Since

C}χpv ´Rhvq}H1pΩq ď C}∇pv ´Rhvq}L2pD2
j q
` Cd´1

j }v ´Rhv}L2pD2
j q

(2.63)

it follows that

}v ´Rhv}L2pD1
j q

ď }v ´Rhv}
1´θ
LppD2

j q

`

C}∇pv ´Rhvq}L2pD2
j q
` Cd´1

j }v ´Rhv}L2pD2
j q

˘θ

“ pε´
θ

1´θ }v ´Rhv}LppD2
j q
q1´θ

`

Cε}∇pv ´Rhvq}L2pD2
j q
` Cεd´1

j }v ´Rhv}L2pD2
j q

˘θ

ď Cε´
θ

1´θ }v ´Rhv}LppD2
j q
` Cε}∇pv ´Rhvq}L2pD2

j q
` Cεd´1

j }v ´Rhv}L2pD2
j q
,

where ε can be an arbitrary positive number.
By choosing ε “ djpρ{djq

σ with a fixed σ P p0, 1q, we obtain

}v ´Rhv}L2pD1
j q
ď C

ˆ

ρ

dj

˙´ θσ
1´θ

d
´ θ

1´θ

j }v ´Rhv}LppD1
j q

(2.64)

`

ˆ

ρ

dj

˙σ
`

Cdj}∇pv ´Rhvq}L2pD2
j q
` C}v ´Rhv}L2pD2

j q

˘

.

Hence,

ρ´
N
2 h´

1
2

J
ÿ

j“0

d
N´3

2
j }v ´Rhv}L2pD1

j q
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ď Cρ´
N
2 h´

1
2

J
ÿ

j“0

ˆ

ρ

dj

˙´ θσ
1´θ

d
´ θ

1´θ
`N´3

2

j }v ´Rhv}LppD2
j q

` Cρ´
N
2 h´

1
2

J
ÿ

j“0

ˆ

ρ

dj

˙σ
`

d
N´1

2
j }∇pv ´Rhvq}L2pD2

j q
` Cd

N´3
2

j }v ´Rhv}L2pD2
j q

˘

ď Cρ´
N
2 h´

1
2

J
ÿ

j“0

ˆ

ρ

dj

˙´ θσ
1´θ

d
´ θ

1´θ
`N´3

2

j }v ´Rhv}LppD2
j q

` Cκ ` Cρ
´N

2 h´
1
2

ˆ

ρ

dJ

˙σ J
ÿ

j“0

d
N´3

2
j }v ´Rhv}L2pD3

j q
, (2.65)

where we have used (2.59) and the fact ρ
dj
ď

ρ
dJ

in deriving the last inequality. Note that

J
ÿ

j“0

d
N´3

2
j }v ´Rhv}L2pD3

j q
ď Cd

N´3
2

J }v ´Rhv}L2pSκρpx0qq ` 3
J
ÿ

j“0

d
N´3

2
j }v ´Rhv}L2pD1

j q
.

Combining the last two estimates, we obtain

ρ´
N
2 h´

1
2

J
ÿ

j“0

d
N´3

2
j }v ´Rhv}L2pD1

j q
ď Cρ´

N
2 h´

1
2

J
ÿ

j“0

ˆ

ρ

dj

˙´ θσ
1´θ

d
´ θ

1´θ
`N´3

2

j }v ´Rhv}LppD2
j q

` Cκ ` Cρ
´N

2 h´
1
2

ˆ

ρ

dJ

˙σ

d
N´3

2
J }v ´Rhv}L2pSκρpx0qq

` Cρ´
N
2 h´

1
2

ˆ

ρ

dJ

˙σ J
ÿ

j“0

d
N´3

2
j }v ´Rhv}L2pD1

j q
.

For the fixed σ P p0, 1q, by choosing a sufficiently large parameter κ we have
`

ρ
dJ

˘σ
ď C

κσ , and

therefore the last term of the inequality above can be absorbed by the left-hand side. From now
on we fix the parameter κ. Then we have

J
ÿ

j“0

ρ´
N
2 h´

1
2d

N´3
2

j }v ´Rhv}L2pD1
j q
ď

J
ÿ

j“0

Cρ´
N
2 h´

1
2

ˆ

ρ

dj

˙´ θσ
1´θ

d
´ θ

1´θ
`N´3

2

j }v ´Rhv}LppD2
j q

` Cκ ` Cρ
´N

2 h´
1
2

ˆ

ρ

dJ

˙σ

d
N´3

2
J }v ´Rhv}L2pSκρpx0qq.

(2.66)

It remains to estimate }v ´ Rhv}LppD1
j q

and }v ´ Rhv}L2pSκρpx0qq. This is done by applying

Lemma 2.19 (with q1 “ p therein), Lemma 2.18 (with q “ p therein) and Hölder’s inequality,
i.e.,

}v ´Rhv}LppΩq ď Ch2}ϕ}LppΩq ď Ch2ρ
N
p
´N

2 , (2.67)

}v ´Rhv}L2pΩq ď Ch2 (setting q1 “ q “ 2 in Lemma 2.19 and Lemma 2.18 ). (2.68)

Then, substituting these estimates into (2.66), we obtain

J
ÿ

j“0

ρ´
N
2 h´

1
2d

N´3
2

j }v ´Rhv}L2pD1
j q
ď

J
ÿ

j“0

C

ˆ

h

ρ

˙
N
2
ˆ

h

dj

˙
3´N

2
ˆ

ρ

dj

˙
N
p
´N

2
´ θσ

1´θ

d
N
p
´N

2
´ θ

1´θ

j
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` Cκ ` C

ˆ

h

ρ

˙
N
2
ˆ

h

dJ

˙
3´N

2
ˆ

ρ

dJ

˙σ

(2.69)

By choosing p ă 2 to be sufficiently close to 2 (so that q1 “ p satisfies the condition of Lemma
2.19) and using the relation N

p ´
N
2 “

θ
1´θ as shown in (2.62), we obtain

J
ÿ

j“0

ρ´
N
2 h´

1
2d

N´3
2

j }v ´Rhv}L2pD1
j q
ď C. (2.70)

Then, substituting the last inequality into the right-hand side of (2.60), we obtain

ρ´
N
2 h´1}∇pv ´Rhvq}L1pΛhq ď C.

This proves (2.26) for sufficiently small mesh size, say h ď h0. This condition is required when
we use Corollary 2.14, Lemma 2.18 and Lemma 2.19 in this subsection.

In the case h ě h0, we denote by g̃h P ShpΩhq the isoparametric finite element function
satisfying g̃h “ uh on BΩh and g̃h “ 0 at the interior nodes of the domain Ωh. Then the
following estimate holds:

}g̃h}L8pΩhq ď C}uh}L8pBΩhq.

Since χh “ uh ´ g̃h P S̊hpΩhq, it follows from (1.1) that

0 “

ż

Ωh

∇uh ¨∇puh ´ g̃hq “ }∇puh ´ g̃hq}2L2pΩhq
`

ż

Ωh

∇g̃h ¨∇puh ´ g̃hq,

and therefore

}∇puh ´ g̃hq}2L2pΩhq
“ ´

ż

Ωh

∇g̃h ¨∇puh ´ g̃hq ď C}∇g̃h}L2pΩhq}∇puh ´ g̃hq}L2pΩhq.

Thus, by using the inverse inequality and the condition h ě h0, we have

}∇puh ´ g̃hq}L2pΩhq ď C}∇g̃h}L2pΩhq ď Ch´1}g̃h}L2pΩhq ď Ch´1
0 }g̃h}L8pΩhq

ď Ch´1
0 }uh}L8pBΩhq.

By using the inverse inequality again, we obtain

}uh ´ g̃h}L8pΩhq ď Ch´
N
2 }uh ´ g̃h}L2pΩhq

ď Ch´
N
2 }∇puh ´ g̃hq}L2pΩhq

ď Ch
´N

2
´1

0 }uh}L8pBΩhq.

By the triangle inequality, this proves

}uh}L8pΩhq ď }g̃h}L8pΩhq ` }uh ´ g̃h}L8pΩhq ď C}uh}L8pBΩhq

for h ě h0.
Combining the two cases h ď h0 and h ě h0, we obtain the result of Theorem 1.1. �

3. Proof of Theorem 1.2

In this section, we adapt Schatz’s argument in [39] to the proof of maximum-norm stability
of isoparametric finite element solutions of the Poisson equation in the curvilinear polyhedron
considered here. The argument is based on the weak maximum principle established in Theorem
1.1 and the following technical result, which asserts that the W 1,8 regularity estimate of the
Poisson equation can hold in a family of larger perturbed domains Ωt, t P r0, δs, such that
distpBΩt, BΩq „ t and the W 1,8 estimate is uniformly with respect to t P r0, δs.
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Remark 3.1. Here we make a remark on the idea of our proof. To prove Theorem 1.2, we
observe that the numerical solution uh is in fact the Ritz projection of uphq P H1

0 pΩhq which is
the exact solution of the Poisson equation on Ωh:

´∆uphq “ f in Ωh (f is extended by zero outside Ω),

in the sense that

Rhpu
phq ˝ Φ´1

h q “ uh ˝ Φ´1
h .

Using the weak maximum principle established in Theorem 1.1, one can imitate the proof of [32,
Theorem 5.1] to show that there holds L8 stability for our Ritz projection Rh. It follows that

}uphq ´ uh}L8pΩhq ď C}uphq ´ Ihu
phq}L8pΩhq.

Now we can obtain the result of Theorem 1.2 as long as we establish the estimate

}u´ uphq}L8pΩhq ď Chr`1}f}LppΩq (p ą N),

where we have extended u by zero outside Ω. To this end, we consider employing the maximum
principle of harmonic functions since ∆puphq ´ uq “ 0 in Ω XΩh. Here technically we introduce
larger perturbed domain Ωt and solution ut

´∆ut “ f in Ωt,

in the larger perturbed domain Ωt. Then using maximum principle, we compare u and uphq with
ut respectively, for example we have

}u´ ut}L8pΩq ď }u
t}L8pBΩq ď Chr`1}ut}W 1,8pΩtq.

This explains the motivation of establishing Proposition 3.1.

Proposition 3.1. Let Ω be a curvilinear polyhedron with edge openings smaller than π, and
define

Ωpεq :“ tx P RN : distpx,Ωq ă εu,

which is an ε neighborhood of Ω. Then there exist constants δ ą 0 and λ ą 0 and a family of
larger bounded domains Ωt satisfying

Ωpλtq Ď Ωt Ď Ωpλ´1tq @t P r0, δs,

such that the weak solution ut P H1
0 pΩ

tq of the Poisson equation

´∆ut “ f in Ωt, with f P LppΩtq for some p ą N, (3.1)

satisfies the following estimate:

}ut}W 1,8pΩtq ď Cp}f}LppΩtq for t P r0, δs, (3.2)

where Cp is some constant which is independent of t P r0, δs.

Proof. In a standard convex polyhedron Ω̂, the following estimate holds for p ą N (cf. [35,
Lemma 2.1]):

}∇w}L8pΩ̂q ď Cp}∇ ¨ pa∇wq}LppΩ̂q @w P H1
0 pΩ̂q such that ∇ ¨ pa∇wq P L2pΩ̂q. (3.3)

where a “ paijq is any symmetric positive definite matrix in W 1,qpΩ̂q with q ą N , satisfying the
following estimate:

C´1|ξ|2 ď aξ ¨ ξ ď C|ξ|2. (3.4)
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On the curvilinear polyhedron Ω considered in this article, by using a partition of unity we
can reduce the problem to an open subset of Ω which is diffeomorphic to a convex polyhedral
cone. Therefore, the following result still holds for p ą N :

}∇w}L8pΩq ď Cp}∇ ¨ pa∇wq}LppΩq @w P H1
0 pΩq such that ∇ ¨ pa∇wq P L2pΩq. (3.5)

If there exists a smooth diffeomorphism Ψt : Ω Ñ Ωt (smooth uniformly with respect to
t P r0, δs), then we can pull the Poisson equation on Ωt “ ΨtpΩq back to the curvilinear
polyhedron Ω as an elliptic equation with some coefficient matrix a satisfying (3.4), and then
use the result in (3.5). This would prove (3.2). If the partial derivatives of the diffeomorphism
from Ω to Ωt can be uniformly bounded with respect to t P r0, δs, then the constant in (3.2) is
independent of t P r0, δs.

It remains to prove the existence of a smooth diffeomorphism Ψt : Ω Ñ Ωt “ ΨtpΩq. This is
presented in the following lemma. �

Lemma 3.2. Let Ω be a curvilinear polyherdon. Then there exist constants δ ą 0 and λ ą 0
(which only depend on Ω), and a family of diffeomorphisms Ψt : RN Ñ RN for t P r0, δs, such
that

(1) Ωpλtq Ď ΨtpΩq Ď Ωpλ´1tq for t P r0, δs and some constant λ ą 0.
(2) The partial derivatives of Ψt are bounded uniformly with respect to t P r0, δs, i.e.,

|∇kΨtpxq| ď Ck @x P RN , @k ě 1, where Ck is independent of t P r0, δs.

Proof. It is known that any given smooth and compactly supported vector field X on R induces
a flow map

Ψ : Rˆ RN Ñ RN pt, xq ÞÑ Φpt, xq,

such that each Ψt “ Ψpt, ¨q : RN Ñ RN is a diffeomorphism of RN for sufficiently small t, say
|t| ď δ. Moreover, Ψ0 “ Id, Ψt`s “ Ψt ˝ Ψs for t, s P R, and the partial derivatives of Ψt are
uniformly bounded by constants which only depend on X and δ (independent of t).

Therefore, in order to prove Lemma 3.2, it suffices to construct a compactly supported smooth
vector field X, such that the flow map induced by X satisfies Ωpλtq Ď ΨtpΩq Ď Ωpλ´1tq for
t P r0, δs (with some constants λ ą 0 and δ ą 0). This can be proved by utilizing the following
result, which provides a criteria for the construction of such a vector field.

Lemma 3.3. Let Ω be a curvilinear polyhedron, and let X be a smooth and compactly supported
vector field on RN satisfying the following conditions:

(1) X|Ω1 ” 0 for some nonempty open subset Ω1 ĂĂ Ω.
(2) xXpxq, Nxy ě c at all smooth points x P BΩ, where Nx denotes the unit outward normal

vector at x P BΩ and c ą 0 is some constant.
(3) |Xpxq| ď 1 @x P RN

Then there are constants λ ą 0 and δ ą 0, which only depend on X and Ω, such that the flow
map Ψt induced by the vector field X has the following property:

Ωpλtq Ď ΨtpΩq Ď Ωpλ´1tq for t P r0, δs.

Let us temporarily assume that Lemma 3.3 holds, and use it to prove Lemma 3.2. To this
end, it suffices to construct a vector field which satisfies the conditions in Lemma 3.3.

From the definition of the curvilinear polyhedron we know that for every x P BΩ there exists
a map ϕx : Ux Ñ Bεxp0q which is a diffeomorphism from a neighborhood Ux of x in RN to
a ball centered at 0 with radius εx, such that ϕxpxq “ 0 and ϕxpUx X Ωq “ Kx X B0pεxq,
where Kx “ ty P R3 : y{|y| P Θu is a cone corresponding to a spherical region Θ Ă S2 which
is contained in an open half sphere, say S2

` “ tx P R3 : |x| “ 1, x3 ą 0u. We shall use the
following terminology:
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(1) By composing ϕx with an additional linear transformation if necessary, we can assume
that ∇ϕxpxq “ I (which holds only at the point x in Ux).

(2) If p is a smooth point on BKx (not on the edges or vertex of BKx), then we denote by
Nx,p the unit outward normal vector of BKx at p, and define

N̂x “
 

Nx,p : p in some smooth piece of BKx

(

to be the set of all outward unit normal vectors on the smooth faces of BKx. When x is
a smooth point of BΩ, N̂x consists of only one vector, i.e., the usual unit normal vector
Nx. Therefore, the set N̂x can be viewed as generalization of normal vector at x when x
is not a smooth point.

(3) Let y be an interior point in the polyhedral cone Kx. Then the unit vector Vx “ ´y{|y|

satisfies that xVx, Nx,py ą 0 for all Nx,p P N̂x.

We will construct a smooth vector field X on RN as follows, by using a partition of unity. By
the three properties above and the compactness of BΩ, there is constant c ą 0 only dependent
on Ω such that for each x P BΩ, there is a unit vector Vx P RN such that

xVx, Nx,py ě 2c @Nx,p P N̂x.

Since the normal vector at a smooth point of BΩ changes continuously in a smooth piece of BΩ,
one can shrink the neighborhood Ux of x P BΩ so that

xVx, Nyy ě c for all smooth points y P BΩ X Ux,

where Ny denotes the unit outward normal vector at y P BΩ X Ux. We define a smooth vector
field Xx on Ux by

Xxpyq “ Vx @y P Ux,

and choose a finite covering tUx`u1ď`ďL of BΩ from these Ux, x P BΩ, and a family of smooth
cut-off functions tχ`u1ď`ďL such that 0 ď χ` ď 1 and

supppχ`q Ď Ux` and
ÿ

1ď`ďL

χ`pxq “ 1, @x P BΩ.

Then we denote by Xx` the above-mentioned vector field defined on Ux` , and define

X “

L
ÿ

`“1

χ`Xx` ,

so that X is a compactly supported smooth vector field such that

xXpyq, Nyy “
ÿ

χ`pyq‰0

χ`pyqxXx` , Nyy ě c, for all smooth point y P BΩ.

and clearly |Xpxq| ď 1, @x P RN . This proves the existence of a desired vector field X, and
therefore completes the proof of Proposition 3.1. �

Proof of Lemma 3.3. For each x P BΩ, let ϕx : Ux Ñ Bεxp0q be the map as in the definition of
the curvilinear polyhedron. Here we do not require ϕxpUxq to be a ball so that we can assume
Ux to be convex.

By composing ϕx with an additional linear transformation if necessary, we can assume that
∇ϕxpxq “ I (as in the proof of Lemma 3.2). Since c ď xXpxq, Nxy ď 1 (as a the condition in
Lemma 3.3), we can shrink the neighborhood Ux small enough so that

c

2
ď xp∇ϕxpyqqJXpyq, Nx,py ď 2 @y P Ux, p P ϕxpUx X BΩq “ ϕxpUxq X BKx,

p is a smooth point. (3.6)
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Moreover, since p∇ϕxqJ “ I at x, we can shrink Ux so that the following equivalence relation
holds:

dpy1, y2q „ dpϕxpy1q, ϕxpy2qq @y1, y2 P Ux,

where dp¨, ¨q denotes the Euclidean distance in RN . As a result,

dpy, Ux XΩq „ dpϕxpyq, ϕxpUx XΩqq @y P Ux.

We can choose a finite covering tUx`u1ď`ďL of BΩ from these Ux. Then there exists a sufficiently
small δ ą 0 such that for any x P BΩ there exists 1 ď ` ď L such that for all t P r0, δs,

Ψtpxq P Ux` for some 1 ď ` ď L.

Moreover,

dpΨtpxq, Ωq “ dpΨtpxq, U` XΩq (3.7)

and

dpΨtpxq, Ωq „ dpϕx`pΨtpxqq, ϕx`pU` XΩqq. (3.8)

Let Y` “ p∇ϕx`qJX|U` be the pushforward vector field under ϕx` , then ϕx`pΨtpxqq is the integral
curve of vector field Y`, with initial value point ϕx`pxq. From (3.6) we know that

c

2
ď xY`pzq, Nx`,py ď 2 @z P ϕx`pUx`q, @p P ϕx`pUx` X BΩq “ ϕx`pUx`q X BKx` ,

which implies that the integral curve ϕx`pΨtpxqq is flowing outside ϕx`pUx` XΩq, i.e.,

ct

2
ď dpϕx`pΨtpxqq, ϕx`pUx` XΩqq ď 2t.

Then, from the equivalence of distance as shown in (3.7)–(3.8), we conclude that there exists a
constant λ ą 0 such that

2λt ď dpΨtpxq, Ωq ď
1

2
λ´1t @t P r0, δs, @x P BΩ.

We consider the domain Ωpλtq :“ tx P RN : distpx,Ωq ă λtu Ą Ω. On the one hand, since
X|Ω1 “ 0 for some subdomain Ω1 ĂĂ Ω it follows that ΨtpΩq X Ωpλtq ‰ H. On the other
hand, since dpΨtpxq, Ωq ą λt for all x P BΩ, the boundaries of ΨtpΩq and Ωpλtq are disjoint. It
follows that Ωpλtq Ď ΨtpΩq for t P r0, δs. Similarly, one can prove that Ωpλ´1tq Ą ΨtpΩq. This
completes the proof of Lemma 3.3. �

Lemma 3.4. Let Ωt be the domain in Proposition 3.1, satisfying Ωpλtq Ď Ωt Ď Ωpλ´1tq for
t P r0, δs, with Ωpλtq “ tx P RN : distpx,Ωq ă λtu. Suppose that f P LppΩtq for some p ą N ,
and Ωh Ă Ωt for some t “ Ophr`1q and h ď h1, where h1 ą 0 is some constant. Let u P H1

0 pΩq

and uphq P H1
0 pΩhq be the weak solutions of the following PDE problems:

´∆u “ f in Ω,

´∆uphq “ f in Ωh,

and extend u and uphq by zero to the larger domain Ωt. Then there exists h2 ą 0 such that for
h ď h2 the following estimate holds:

}u´ uphq}L8pΩtq ď Chr`1}f}LppΩtq (3.9)

Proof. Since max
xPΩh

|Φhpxq´x| ď C0h
r`1 for some constant C0, it follows that Ωh Ă ΩpC0h

r`1q Ă

Ωt for t “ C0λ
´1hr`1. When h is sufficiently small we have t “ C0λ

´1hr`1 ď δ and therefore
Ωt is well defined. Let ut P H1

0 pΩ
tq be a weak solution of the Poisson equation

´∆ut “ f in Ωt.
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Proposition 3.1 implies that

}ut}W 1,8pΩtq ď C}f}LppΩtq. (3.10)

Since ut´u is harmonic in Ω Ă Ωt and ut´uphq is harmonic in Ωh Ă Ωt, the maximum principle
of the continuous problem implies that

}ut ´ uphq}L8pΩhq ď }u
t ´ uphq}L8pBΩhq

“ }ut}L8pBΩhq (since uphq “ 0 on BΩh)

ď Chr`1}ut}W 1,8pΩtq

ď Chr`1}f}LppΩtq, (3.11)

where we have used the fact that distpx, BΩtq ď 2C0h
r`1 for x P BΩh. Therefore,

}ut ´ uphq}L8pΩtq ď }u
t ´ uphq}L8pΩhq ` }u

t}L8pΩtzΩhq

ď Chr`1}f}LppΩtq ` Ch
r`1}ut}W 1,8pΩtq

ď Chr`1}f}LppΩtq. (3.12)

The following result can be proved in the same way:

}ut ´ u}L8pΩtq ď Chr`1}f}LppΩtq. (3.13)

The result of Lemma 3.4 follows from (3.12)–(3.13) and the triangle inequality. �

In the following, we prove Theorem 1.2 by using the technical result in Proposition 3.1.
Let Ωt be the domain in Proposition 3.1, satisfying Ωpλtq Ď Ωt Ď Ωpλ´1tq for t P r0, δs,

with Ωpλtq “ tx P RN : distpx,Ωq ă λtu. For the simplicity of notation, we still denote by

f P LppΩtq an extension of f̃ P LppΩ YΩhq satisfying }f}LppΩtq ď C}f̃}LppΩYΩhq ď C}f}LppΩq.
Under assumption 1.1, the curvilinear polyhedral domain Ω can be extended to a larger

convex polyhedron Ω˚ with a piecewise flat boundary such that Ω Ă Ω˚ and the triangulation
K can be extended to a quasi-uniform triangulation K˚ on Ω˚ (thus the triangulation in Ω˚zΩ
is also isoparametric on its boundary BΩ).

Let ũ be an extension of uphq such that ũ “ uphq on Ωh and ũ “ 0 in Ω˚zΩh. Let S̊hpΩ˚q Ă
H1

0 pΩ˚q be the H1-conforming isoparametric finite element space on Ω˚ with triangulation K˚.

Let ũh P 8ShpΩ˚q be the Ritz projection of ũ defined by
ż

Ω˚

∇pũ´ ũhq ¨∇χh “ 0 @χh P 8ShpΩ˚q.

Then

}uphq ´ uh}L8pΩhq “ }ũ´ uh}L8pΩhq

ď }ũ´ ũh}L8pΩhq ` }ũh ´ uh}L8pΩhq

ď }ũ´ ũh}L8pΩ˚q ` }ũh ´ uh}L8pΩhq, (3.14)

where }ũ´ ũh}L8pΩ˚q is the error of the Ritz projection of an H1-conforming FEM in a standard
convex polyhedron and therefore can be estimated by using the result on a standard convex
polyhedron (or using the interior maximum-norm estimate as in [40, Theorem 5.1] and [32, Proof
of Theorem 5.1]), i.e.,

}ũ´ ũh}L8pΩ˚q ď C`h}ũ´ Ihũ}L8pΩ˚q

ď C`h}u
phq ´ Ihu

phq}L8pΩhq

ď C`h}u´ Ihu}L8pΩhq ` C`hh
r`1}f}LppΩtq, (3.15)
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where the last inequality uses the triangle inequality and (3.9), and Ihru is the interpolation
operator associated with the larger triangulation K˚ which extends the interpolation operator
Ih : CpΩhq Ñ ShpΩhq associated with K . Since ũh ´ uh is discrete harmonic in Ωh, i.e.,

ż

Ωh

∇pũh ´ uhq ¨∇χh dx “

ż

Ωh

∇pũ´ uphqq ¨∇χh dx “ 0 @χh P S̊hpΩhq,

it follows from Theorem 1.1 that ũh ´ uh satisfies the discrete maximum principle, i.e.,

}ũh ´ uh}L8pΩhq ď C}ũh ´ uh}L8pBΩhq

“ C}ũh}L8pBΩhq

“ C}ũh ´ ũ}L8pBΩhq (since ũ|BΩh “ 0)

ď C}ruh ´ ru}L8pΩ˚q. (3.16)

Substituting (3.15) and (3.16) into (3.14) yields

}uphq ´ uh}L8pΩhq ď C`h}u´ Ihu}L8pΩhq ` C`hh
r`1}f}LppΩtq.

Since uphq “ uh “ 0 in ΩzΩh, it follows that

}uphq ´ uh}L8pΩq “ }u
phq ´ uh}L8pΩXΩhq ď C`h}u´ Ihu}L8pΩhq ` C`hh

r`1}f}LppΩtq.

Then, combining this with (3.9), we obtain the following error bound:

}u´ uh}L8pΩq ď C`h}u´ Ihu}L8pΩhq ` C`hh
r`1}f}LppΩtq.

Finally, we note that

}u´ Ǐhu}L8pΩq “}u ˝ Φh ´ Ihpu ˝ Φhq}L8pΩhq

ě}u´ Ihu}L8pΩhq ´ C}u´ u ˝ Φh}L8pΩhq

ě}u´ Ihu}L8pΩhq ´ C}u}W 1,8pRdq}Φh ´ Id}L8pΩhq

ě}u´ Ihu}L8pΩhq ´ Ch
r`1}u}W 1,8pRdq

ě}u´ Ihu}L8pΩhq ´ Ch
r`1}f}LppΩtq.

This proves the result of Theorem 1.2. �

4. Conclusion

We have proved the weak maximum principle of the isoparametric FEM for the Poisson
equation in curvilinear polyhedral domains with edge openings smaller than π, which include
smooth domains and smooth deformations of convex polyhedra. The proof requires using a
duality argument for an elliptic equation with some discontinuous coefficients arising from the
use of isoparametric finite elements. Hence, the standard H2 elliptic regularity does not hold for
the solution of the corresponding dual problem. We have overcome the difficulty by decomposing
the solution into a smooth H2 part and a nonsmooth W 1,p part, separately, and replaced the H2

regularity required in a standard duality argument by some W 1,p estimates for the nonsmooth
part of the solution.

As an application of the weak maximum principle, we have proved an L8-norm best approx-
imation property of the isoparametric FEM for the Poisson equation. All the analysis for the
Poisson equation in this article can be extended to elliptic equations with W 1,8 coefficients.
However, the current analysis does not allow us to extend the results to curvilinear polyhedral
domains with edge openings bigger than π (smooth deformations of nonconvex polyhedra) or
graded mesh in three dimensions. These would be the subject of future research.
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There are other approaches to the maximum principle of finite element methods for elliptic
equations using non-obtuse meshes, which is restricted to piecewise linear finite elements and
Poisson equation with constant coefficients; see [19]. The approach in the current manuscript is
applicable to elliptic equations with W 1,8 coefficients, general quasi-uniform meshes, and high-
order finite elements, and therefore requires completely different analysis from the approaches
using non-obtuse meshes.
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