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Abstract The weak maximum principle of finite element methods for parabolic equa-
tions is proved for both semi-discretization in space and fully discrete methods with
k-step backward differentiation formulae for k = 1, . . . , 6, on a two-dimensional gen-
eral polygonal domain or a three-dimensional convex polyhedral domain. The semi-
discrete result is established via a dyadic decomposition argument and local energy
estimates in which the nonsmoothness of the domain can be handled. The fully dis-
crete result for multistep backward differentiation formulae is proved by utilizing
the solution representation via the discrete Laplace transform and the resolvent es-
timates, which are inspired by the analysis of convolutional quadrature for parabolic
and fractional-order partial differential equations.

Keywords Parabolic equation, finite element method, weak maximum principle,
full discretization, backward differentiation formulae, Laplace transform, analytic
semigroup, local energy estimate, nonsmooth domain.

1 Introduction

Maximum principle serves as a fundamental mathematical tool for the study of elliptic
and parabolic partial differential equations (PDEs). The discrete counterpart of max-
imum principle associated to finite element methods (FEMs) has a well-established
history of research and remains an active field. However, unlike its continuous counter-
part, the discrete maximum principle is not an inherent property and is significantly
influenced by the triangulation of the physical domain [32, §5].

In two dimensions, the applicability of the discrete maximum principle for elliptic
equations is primarily confined to piecewise linear elements, as quadratic elements
necessitate uniform equilateral triangulation [11]. The scenario becomes more intri-
cate in three dimensions [2, 14, 15, 34]. Particularly, it becomes challenging to assure
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the discrete maximum principle for even piecewise linear elements. Nonetheless, a
large number of applications do not require a strong discrete maximum principle.
Schatz demonstrated in [26] that a weak maximum principle (also known as the
Agmon-Miranda principle) is applicable to a broad spectrum of finite elements on
general quasi-uniform triangulation in any two-dimensional polygonal domains. This
weak maximum principle has recently been extended to three-dimensional convex
polyhedral domains [19] and the Neumann problem in two-dimensional polygonal do-
mains [18,23]. The situation for parabolic equations is more complex, depending not
only on space discretization but also on time discretization.

This paper focuses on the weak maximum principle of semi-discrete and fully
discrete FEMs for the following parabolic equation:

∂tu−∆u = 0 in (0,∞)×Ω,

u = g on [0,∞)× ∂Ω,

u|t=0 = u(0) in Ω.

(1.1)

Specifically, we are interested in determining whether the semi-discrete and fully dis-
crete finite element solutions of (1.1) are uniformly bounded by constant multiples of
‖g‖L∞(∂Ω) and ‖u(0)‖L∞(Ω).

The discrete maximum principle of fully discrete FEMs for parabolic equations was
initially addressed by Fujii in [7], demonstrating that the backward Euler method may
satisfy a maximum principle for specific families of acute triangulations. However, his
results require a lower bound for the time step size, and therefore do not imply the
discrete maximum principle for the semi-discrete FEM (which would necessitate the
step size tending to zero). In [31], it was established that without the application
of the mass lumping method, the strong discrete maximum principle for the semi-
discrete FEM does not hold, even for acute triangulation, thereby making the mass
lumping method a necessary requirement. These results were extended to more general
conditions as well as more general single-step time-stepping methods (again, with
a lower bound for the step size) and numerically illustrated in [3]. To the best of
our knowledge, the weak discrete maximum principle of the semi-discrete FEM for
parabolic equations has not been addressed, a gap this paper aims to fill.

The weak maximum principle of the semi-discrete FEM with respect to the initial
value is equivalent to the uniform boundedness of the finite element heat semigroup
in L∞(Ω). The latter was proved in [27] for smooth domains by assuming that the
partition of the domain contains curved simplices which fit the geometry of the bound-
ary exactly. The extension to nonsmooth polygonal and polyhedral domains, thus a
standard triangulation with flat simplices can fit the boundary exactly, introduces
more technical challenges where the elliptic regularity theory and finite element error
estimates degenerate. A comprehensive solution to these issues, which emerge due to
the domain’s nonsmoothness, was presented in a recent paper [21]. However, the weak
maximum principle of the semi-discrete FEM with respect to the boundary value g re-
mains unaddressed, and this issue can’t be transformed into the uniform boundedness
of the semigroup in L∞(Ω). This is proved in the current paper by the representation
formula via discrete Laplace transform, discrete resolvent estimates on the contour
and the consistency of discrete and continuous Laplace transform together with the
elliptic weak maximum principle developed in [19].

Regarding time discretizations, the maximal LpLq regularity for multistep BDF
and Runge-Kutta time-stepping methods, with 1 < p, q < ∞, was shown in [16]
and [22] for semi-discretization in time and fully discrete FEMs, respectively. The
authors utilized the R-boundedness concept to reduce maximal LpLq regularity to set
inclusion [17, Theorem 1.11], which is further characterized by the concept of A(α)-



3

stability. In addition to BDF, the discontinuous Galerkin time-stepping method was
studied in [20], and the θ-scheme was considered in [13]. These findings are closely tied
to the weak maximum principle of time discretizations with respect to the initial value.
However, the weak maximum principle of time discretizations with respect to the
boundary value has not been addressed. This question is answered affirmatively in the
current paper for k-step BDF methods with k = 1, . . . , 6. The analysis was particularly
challenging due to the existence of boundary data g, the domain’s nonsmoothness,
and the lack of A-stability for k-step BDF with 3 ≤ k ≤ 6. The two main points of
analysis in this paper are:
• The weak maximum principle of the semi-discrete FEM requires proving the fol-

lowing estimate:
‖Γh − Γ‖L1(0,∞;L1(Dh)) ≤ h, (1.2)

where Dh = {x ∈ Ω : dist(x, ∂Ω) ≤ h}, Γ and Γh are the parabolic Green’s
functions with respect to the regularized delta function δ̃ (see [30, Lemma 2.2])
and the discrete delta function δh (to be defined in Section 3.3), respectively.
This error estimate is not straightforward due to the lack of an approximation
property for the initial value Γh(0) − Γ (0) = δh − δ̃ = (Ph − 1)δ̃ in the error
equation (where Ph denotes the L2 orthogonal projection onto the finite element
space), as the initial value δ̃ is only bounded by a universal constant C in the
(very weak) L1 norm. The standard nonsmooth data error estimate [29, Chapter
3] and the negative norm error estimate [29, Chapter 5] are both hindered in the
case of a nonsmooth domain. Note that the error estimate (1.2) is applicable when
the underlying domain is sufficiently smooth [27, Proposition 3.2]. However, for a
nonconvex polygon, the argument of [27, Proposition 3.2] is no longer valid due
to the degeneracy of the consistency error and the finite element error estimates.
The solution is to leverage the local Hölder’s inequality, the smoothing property of
the discrete heat semigroup, and the lower bound α > 1

2 , where α is the indicator
of the domain’s smoothness [21, Lemma 4.2]. The lower bound 1

2 is sharp in our
proof in the sense that our proof does not work if α < 1

2 .
• Weak maximum principle of time discretizations is accomplished by studying the

representation formula of unh in terms of the generating functions ũ(ζ) =
∑∞

n=k u
n
h,

which may alternatively be understood as the discrete Laplace transform or z-
transform of the fully discrete finite element solution. For the representation of
unh,2 the second part of the fully discrete solution readers are referred to equations
(5.17), (5.32), and (5.33).
However, it is crucial to note that a direct application of the L∞ norm to the
representation formula of unh introduces a logarithmic factor. This factor emerges
from the summation process, which is a consequence of the discrete convolution
as in convolutional quadrature [25], [12, Chapter 3]:

⌊T/τ⌋∑
j=1

1

j
≈ log

T

τ
. (1.3)

In order to eliminate this logarithmic factor, a comparison is conducted between
the representation formulas of the discrete and continuous Laplace transforms,
as outlined in equation (5.34). This comparison necessitates the development of
consistency between these two types of Laplace transform.
We draw attention to a central correspondence relation concerning the boundary
data, as stated in Lemma 5.4:

ĝh(z) =
e−τz + eτz − 2

z2τ
g̃h(e

−τz),
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Here, g̃h(ζ) signifies the generating function (the discrete Laplace transform or
z-transform) of gnh , while ĝh(z) represents the continuous Laplace transform of
gh(t). The latter transform corresponds to the piecewise linear reconstruction of
the nodal values gnh . The removal of the logarithmic factor is exactly accomplished
by utilizing this consistency, which improves (1.3) to the following result:

∞∑
j=1

1

j2
≤ C. (1.4)

Furthermore, it should be noted that BDF-k is not A-stable for 3 ≤ k ≤ 6. This
instability necessitates the adherence to the BDF-1 symbol within the resolvent
operator, i.e., ( 1−e−τz

τ −∆h)
−1. Consequently, to eliminate the logarithmic factor

for BDF-k, consistency of the solution maps associated with BDF-1 and BDF-k
is required, as outlined in Lemma 5.5.

The rest of this article is organized as follow. In Section 2 we state the two main
theorems regarding the weak maximum principle of semi-discrete and fully discrete
FEMs for parabolic equations. In Section 4, we introduce the notation and establish
the weak discrete maximum principle of the semi-discrete FEM. In Section 5, we prove
the fully discrete weak maximum principle of fully discrete FEMs with multistep BDF
time-stepping methods. Finally, in the conclusion section, we briefly discuss the exten-
sion to discontinuous Galerkin time-stepping methods with possibly highly variable
time step sizes, as well as the limitation of current approach and the possibility to
address it based on novel approaches developed recently.

2 The main results

Let Sh, 0 < h < h0, be a family of Lagrange finite element subspaces of H1(Ω)
consisting of all piecewise polynomials of degree r ≥ 1 subject to a quasi-uniform
triangulation of a polygonal/polyhedral domain Ω. We denote by S̊h the subspace of
Sh with zero boundary conditions, and denote by Ih : C(Ω) → Sh the Lagrangian
interpolation operator onto Sh.

The semi-discrete FEM (FEM) for (1.1) is to find uh ∈ C1([0,∞);Sh) satisfying
the following weak formulation:

(∂tuh(t), vh) + (∇uh(t),∇vh) = 0 ∀ vh ∈ S̊h, ∀ t ∈ (0,∞),

uh(t) = gh(t) on ∂Ω, ∀ t ∈ [0,∞)

uh(0) = u0h in Ω,

(2.1)

where u0h = Ihu(0) ∈ Sh(Ω) and gh ∈ Sh(∂Ω) is the Lagrangian interpolation of g on
the boundary ∂Ω. If g̃ is any extension of g from C(∂Ω) to C(Ω), then gh = Ihg̃ on
∂Ω.

The first main result of this article is the following theorem.

Theorem 2.1 (Weak maximum principle of semi-discrete FEM) If Ω is a
polygon (possibly nonconvex) in R2 or a convex polyhedron in R3, then the solution
of the semi-discrete FEM in (2.1) satisfies the following weak maximum principle for
r ≥ 1 in R2 and r ≥ 2 in R3:

‖uh‖L∞(0,T ;L∞(Ω)) ≤ C‖u0h‖L∞(Ω) + C‖gh‖L∞(0,T ;L∞(∂Ω)),

where C is a constant independent of h and T .
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We denote by δj , j = 0, ..., k, the coefficients of the generating polynomial of the
BDF-k method (see [12, equation (3.5)]), i.e.,

δ(ζ) =

k∑
j=1

1

j
(1− ζ)j =

k∑
j=0

δjζ
j ,

and use the notation δτ (ζ) = τ−1δ(ζ), where τ denotes the step size of time dis-
cretization. The BDF-k method is know to be A(θk)-stable, i.e., the set {z ∈ C\{0} :
| arg(z)| < θk} is contained in the stability region of the method (see [33, p. 251]),
where θk = 90◦, 90◦, 86.03◦, 73.35◦, 51.84◦, 17.84◦ for k = 1, 2, 3, 4, 5, 6, respectively.

For the BDF-k method, we assume that the starting values unh, n = 0, ..., k − 1,
are given or computed from some other time-stepping methods (such as the Taylor
expansion method or the Runge–Kutta method).

Given any final time T ≥ (k − 1)τ , we set N = bT/τc. For n = k, ..., N , the fully
discrete FEM with BDF-k time-stepping method seeks unh ∈ Sh such that

(
1

τ

k∑
j=0

δju
n−j
h , vh

)
+ (∇unh,∇vh) = 0 ∀ vh ∈ S̊h, n = k, . . . , N,

unh = gnh on ∂Ω, n = k, . . . , N,

(2.2)

where gnh = Ihg(tn) ∈ Sh(∂Ω).
The second main result of this article is the following theorem.

Theorem 2.2 (Weak maximum principle of fully discrete FEM) If Ω is a
polygon (possibly nonconvex) in R2 or a convex polyhedron in R3, then the fully dis-
crete solution given by (2.2) satisfies the following weak maximum principle for r ≥ 1
in R2 and r ≥ 2 in R3:

max
k≤n≤N

‖unh‖L∞(Ω) ≤ C max
0≤n≤k−1

‖unh‖L∞(Ω) + C max
k≤n≤N

‖gnh‖L∞(∂Ω),

where C is a constant independent of τ , h and N .

Remark 2.1 From the proof of Theorems 2.1 and 2.2 in the following sections we can
see that, for a convex polyhedron in R3 and finite elements of degree r = 1, the semi-
discrete and fully discrete FEMs satisfies the following weak maximum principle with
an additional logarithmic factor, i.e.,

‖uh‖L∞(0,T ;L∞(Ω)) ≤ C ln(2 + 1/h)‖gh‖L∞(0,T ;L∞(∂Ω)), (2.3)
max

k≤n≤N
‖unh‖L∞(Ω) ≤ C max

0≤n≤k−1
‖unh‖L∞(Ω) + C ln(2 + 1/h) max

k≤n≤N
‖gnh‖L∞(∂Ω).

(2.4)

3 Notation, finite element discretization, and regularized Green’s function

3.1 Function spaces and notation

We use the conventional notations of Sobolev spaces W s,q(Ω), s ≥ 0 and 1 ≤ q ≤
∞, with abbreviations Lq = W 0,q(Ω), W s,q = W s,q(Ω) and Hs := W s,2(Ω). The
notation H−s(Ω) denotes the dual space of Hs

0(Ω). The latter is defined as the closure
of C∞

0 (Ω) in Hs(Ω).
For any given W s,q-valued function f : (0, T ) →W s,q, we can define the following

Bochner norm:
‖f‖Lp(0,T ;W s,q) =

∥∥‖f(·)‖W s,q

∥∥
Lp(0,T )

, ∀ 1 ≤ p, q ≤ ∞, s ∈ R. (3.1)
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For any subdomain D ⊂ Ω, we define
‖f‖W s,q(D) := inf

f̃ |D=f
‖f̃‖W s,q(Ω), ∀ 1 ≤ q ≤ ∞, s ∈ R, (3.2)

where the infimum extends over all possible f̃ defined on Ω such that f̃ = f in D.
Similarly, for any subdomain Q ⊂ Q = (0, 1)×Ω, we define

‖f‖LpW s,q(Q) := inf
f̃ |Q=f

‖f̃‖Lp(0,T ;W s,q), ∀ 1 ≤ p, q ≤ ∞, s ∈ R, (3.3)

where the infimum extends over all possible f̃ defined on Q such that f̃ = f in Q.
We adopt the following notations for the L2 inner products on Ω and the space-

time L2 inner products on QT = (0, T )×Ω:

(φ, ϕ) :=

∫
Ω

φ(x)ϕ(x)dx, [u, v] :=

∫ T

0

∫
Ω

u(t, x)v(t, x)dx dt. (3.4)

Moreover, we denote w(t) = w(t, ·) for any function w defined on QT . The nota-
tion 10<t<T will denote the characteristic function of the time interval (0, T ), i.e.
10<t<T (t) = 1 if t ∈ (0, T ) while 10<t<T (t) = 0 if t /∈ (0, T ).

3.2 Properties of the finite element spaces

For any subdomain D ⊂ Ω, we denote by S̊h(D) the space of functions of S̊h restricted
to the domain D, and denote by S̊0

h(D) the subspace of S̊h(D) consisting of functions
which equal zero outside D. For any given subset D ⊂ Ω, we denote Dd = {x ∈ Ω :
dist(x,D) ≤ d} for d > 0.

On a quasi-uniform triangulation of the domain Ω, there exist positive constants
K and κ such that the triangulation and the corresponding finite element space S̊h

possess the following properties (K and κ are independent of the subset D and h).

(P1) Quasi-uniformity:
For all triangles (or tetrahedron) τhl in the partition, the diameter hl of τhl and
the radius ρl of its inscribed ball satisfy

K−1h ≤ ρl ≤ hl ≤ Kh.

(P2) Inverse inequality:
If D is a union of elements in the partition, then

‖χ‖W l,p(D) ≤ Kh−(l−k)−(d/q−d/p)‖χ‖Wk,q(D), ∀χ ∈ S̊h,

for 0 ≤ k ≤ l ≤ 1 and 1 ≤ q ≤ p ≤ ∞.
(P3) Local approximation and superapproximation:

There exists an operator Ih : H1
0 (Ω) → S̊h with the following properties:

(1) For v ∈ H1+α(Ω) ∩H1
0 (Ω) the following estimate holds:

‖v − Ihv‖L2 + h‖∇(v − Ihv)‖L2 ≤ Kh1+α‖v‖H1+α ∀α ∈ [0, 1],

(2) If d ≥ 2h then the value of Ihv in D depends only on the value of v in Dd. If
d ≥ 2h and supp(v) ⊂ D, then Ihv ∈ S̊0

h(Dd).
(3) If d ≥ 2h, ω = 0 outside D and |∂βω| ≤ Cd−|β| for all multi-index β, then

ψh ∈ S̊h(Dd) =⇒ Ih(ωψh) ∈ S̊0
h(Dd),

‖ωψh − Ih(ωψh)‖L2 + h‖ωψh − Ih(ωψh)‖H1 ≤ Khd−1‖ψh‖L2(Dd).

(4) If d ≥ 2h and ω ≡ 1 on Dd, then Ih(ωψh) = ψh on D.
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The properties (P1)-(P3) hold for any quasi-uniform triangulation with the stan-
dard finite element spaces consisting of globally continuous piecewise polynomials of
degree r ≥ 1 (cf. [28, Appendix]). Property (P3)-(1) and the definition (3.2) imply
the following local estimate for α ∈ [0, 1] and v ∈ H1+α(Dd) ∩H1

0 (Ω):
‖v − Ihv‖L2(D) + h‖v − Ihv‖H1(D) ≤ Kh1+α‖v‖H1+α(Dd). (3.5)

In addition to Ih, we will also need the orthogonal L2 projection Ph : L
2(Ω) →

S̊h(Ω) and Ritz-Projection Rh : H
1
0 (Ω) → S̊h(Ω), which are defined by

(Phv, χ)Ω = (v, χ)Ω , ∀χ ∈ S̊h(Ω),

(∇Rhv,∇χ)Ω = (∇v,∇χ)Ω , ∀χ ∈ S̊h(Ω).

For v ∈ H1+α(Ω) ∩H1
0 (Ω) with α ∈ [0, 1], the following global estimate follows from

choosing D = Ω in (3.5):
‖v − Phv‖L2(Ω) + h‖v − Phv‖H1(D) ≤ Kh1+α‖v‖H1+α(Ω). (3.6)

Using (3.5) and a duality argument, we also have the following global estimate for
the Ritz projection:

‖v −Rhv‖L2(Ω) + hα‖v −Rhv‖H1(Ω) ≤ Kh2α‖v‖H1+α(Ω). (3.7)

3.3 Green’s functions

For any x0 ∈ τhl (where τhl is a triangle or a tetrahedron in the triangulation of Ω),
there exists a function δ̃x0 ∈ C3(Ω) with support in τhl such that

χ(x0) =

∫
Ω

χδ̃x0dx, ∀χ ∈ S̊h,

and
‖δ̃x0

‖W l,p ≤ Kh−l−d(1−1/p) for 1 ≤ p ≤ ∞, l = 0, 1, 2, 3, d ≥ 1, (3.8)

sup
y∈Ω

∫
Ω

|δ̃y(x)|dx+ sup
x∈Ω

∫
Ω

|δ̃y(x)|dy ≤ C. (3.9)

The construction of δ̃x0 can be found in [30, Lemma 2.2].
Let δx0

denote the Dirac Delta function centered at x0. In other words, the fol-
lowing relation holds: ∫

Ω

δx0(y)ϕ(y)dy = ϕ(x0) ∀ϕ ∈ C(Ω).

Then the discrete Delta function
δh,x0

:= Phδx0
= Phδ̃x0

decays exponentially away from x0 (cf. [30, Lemma 2.3]):

|δh,x0(x)| = |Phδ̃x0(x)| ≤ Kh−de−
|x−x0|

Kh , ∀x, x0 ∈ Ω. (3.10)

Let G(t, x, x0) denote the Green’s function of the parabolic equation, i.e. G =
G(·, · , x0) is the solution of∂tG(·, · , x0)−∆G(·, · , x0) = 0 in (0, T ]×Ω,

G(·, · , x0) = 0 on (0, T ]× ∂Ω,
G(0, ·, x0) = δx0

in Ω.
(3.11)

The Green’s function G(t, x, y) is symmetric with respect to x and y. It has an analytic
extension to the right half-plane, satisfying the following Gaussian estimate (cf. [6,
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Lemma 2] and [5, Theorem 3.4.8]):

|G(z, x, y)| ≤ Cθ|z|−
d
2 e

− |x−y|2
Cθ|z| , ∀ z ∈ Σθ, ∀x, y ∈ Ω, ∀ θ ∈ (0, π/2), (3.12)

where the constant Cθ depends only on θ. Then Cauchy’s integral formula says that

∂kt G(t, x, y) =
k!

2πi

∫
|z−t|= t

2

G(z, x, y)

(z − t)k+1
dz, (3.13)

which further yields the following Gaussian pointwise estimate for the time derivatives
of Green’s function (cf. [6, Corollary 5] and [8, Appendix B with α = β = 0]):

|∂kt G(t, x, x0)| ≤
Ck

tk+d/2
e
− |x−x0|2

Ckt , ∀x, x0 ∈ Ω, ∀ t > 0, k = 0, 1, 2, . . . (3.14)

Let Γ = Γ (·, · , x0) be the regularized Green’s function of the parabolic equation,
defined by 

∂tΓ (·, · , x0)−∆Γ (·, · , x0) = 0 in (0, T ]×Ω,
Γ (·, · , x0) = 0 on (0, T ]× ∂Ω,

Γ (0, ·, x0) = δ̃x0
in Ω,

(3.15)

and let Γh = Γh(·, ·, x0) be the finite element approximation of Γ , defined by{
(∂tΓh(t, ·, x0), vh) + (∇Γh(t, ·, x0),∇vh) = 0, ∀ vh ∈ S̊h, t ∈ (0, T ),

Γh(0, ·, x0) = δh,x0 .
(3.16)

The regularized Green’s function can be expressed in terms of the Green’s function
as follows:

Γ (t, x, x0) =

∫
Ω

G(t, y, x)δ̃x0
(y)dy =

∫
Ω

G(t, x, y)δ̃x0
(y)dy. (3.17)

From the expression in (3.17) one can easily derive that the regularized Green’s func-
tion Γ also satisfies the Gaussian pointwise estimate for k ≥ 0:

|∂kt Γ (t, x, x0)| ≤
Ck

tk+d/2
e
− |x−x0|2

Ckt , ∀x, x0 ∈ Ω, ∀ t > 0 for max(|x− x0|,
√
t) ≥ 2h.

(3.18)

4 Weak maximum principle of semi-discrete FEM

Since the problem is linear, the first part of the result, i.e., ‖uh‖L∞(0,T ;L∞(Ω)) ≤
C‖u0h‖L∞(Ω), follows from the pointwise stability of the semi-group established in [21].
To establish the second part of the result, i.e., ‖uh‖L∞(0,T ;L∞(Ω)) ≤ C‖u0h‖L∞(Ω) +
C‖gh‖L∞(0,T ;L∞(∂Ω)), we will use the technique based on the dyadic decomposition
and local energy estimates.

4.1 Dyadic decomposition of the domain Q = (0, 1)×Ω

In the proof of Theorem 2.1, we need to partition the domain Q = ΩT with T = 1, i.e.
Q = (0, 1)×Ω, into subdomains, and present estimates of the finite element solutions
in each subdomain. The following dyadic decomposition of Q was introduced in [27].

For any integer j, we define dj = 2−j . For a given x0 ∈ Ω, we let J1 = 1, J0 = 0
and J∗ be an integer satisfying 2−J∗ = C∗h with C∗ ≥ 16 to be determined later. If

h < 1/(4C∗), (4.1)
then

2 ≤ J∗ = log2[1/(C∗h)] ≤ log2(2 + 1/h). (4.2)
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Let
Q∗(x0) = {(x, t) ∈ ΩT : max(|x− x0|, t1/2) ≤ dJ∗},
Ω∗(x0) = {x ∈ Ω : |x− x0| ≤ dJ∗} .

We define
Qj(x0) = {(x, t) ∈ ΩT : dj ≤ max(|x− x0|, t1/2) ≤ 2dj} for j ≥ 1,

Ωj(x0) = {x ∈ Ω : dj ≤ |x− x0| ≤ 2dj} for j ≥ 1,

Dj(x0) = {x ∈ Ω : |x− x0| ≤ 2dj} for j ≥ 1,

and
Q0(x0) = Q

∖(
∪J∗
j=1 Qj(x0) ∪Q∗(x0)

)
,

Ω0(x0) = Ω
∖(

∪J∗
j=1 Ωj(x0) ∪Ω∗(x0)

)
.

For j < 0, we simply define Qj(x0) = Ωj(x0) = ∅. For all integer j ≥ 0, we define
Ω′

j(x0) = Ωj−1(x0) ∪Ωj(x0) ∪Ωj+1(x0), Q′
j(x0) = Qj−1(x0) ∪Qj(x0) ∪Qj+1(x0),

Ω′′
j (x0) = Ωj−2(x0) ∪Ω′

j(x0) ∪Ωj+2(x0), Q′′
j (x0) = Qj−2(x0) ∪Q′

j(x0) ∪Qj+2(x0),

D′
j(x0) = Dj−1(x0) ∪Dj(x0), D′′

j (x0) = Dj−2(x0) ∪D′
j(x0).

Then we have

ΩT =

J∗⋃
j=0

Qj(x0) ∪Q∗(x0) and Ω =

J∗⋃
j=0

Ωj(x0) ∪Ω∗(x0). (4.3)

We refer to Q∗(x0) as the "innermost" set. We shall write
∑

∗,j when the innermost
set is included and

∑
j when it is not. When x0 is fixed, if there is no ambiguity, we

simply write Qj = Qj(x0), Q′
j = Q′

j(x0), Q′′
j = Q′′

j (x0), Ωj = Ωj(x0), Ω′
j = Ω′

j(x0)
and Ω′′

j = Ω′′
j (x0).

We shall use the notations

‖v‖k,D =

(∫
D

∑
|α|≤k

|∂αv|2dx
) 1

2

, |||v|||k,Q =

(∫
Q

∑
|α|≤k

|∂αv|2dxdt
) 1

2

, (4.4)

for any subdomains D ⊂ Ω and Q ⊂ (0, 1) × Ω. Throughout this paper, we denote
by C a generic positive constant that is independent of h, x0 and C∗ (until C∗ is
determined in Section 4.4). To simplify the notations, we also denote d∗ = dJ∗ .

4.2 Technical lemmas

Let Ω be a polygon in R2 or a polyhedron in R3 (possibly nonconvex), and let S̊h,
0 < h < h0, be a family of finite element subspaces of H1

0 (Ω) consisting of piecewise
polynomials of degree r ≥ 1 subject to a quasi-uniform triangulation of the domain
Ω (with mesh size h).

The first two of the following three technical lemmas were proved in [21, Lemma
4.1, Lemma 4.4] for general polyhedron that may be nonconvex. In the case Ω is a
convex polyhedron, α can be slightly bigger than 1. We include this slightly different
result for the convex case and omit the proof, which is almost the same as the proof
for general polyhedra except some minor difference.

Lemma 4.1 There exist α ∈ ( 12 , 2] and C > 0, independent of h and x0, such that the
Green’s function G defined in (3.11) and the regularized Green’s function Γ defined
in (3.15) satisfy the following estimates:

d
−4−α+d/2
j ‖Γ (·, ·, x0)‖L∞(Qj(x0)) + d−4−α

j |||∇Γ (·, ·, x0)|||L2(Qj(x0))
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+ d−4
j |||Γ (·, ·, x0)|||L2H1+α(Qj(x0))

+ d−2
j |||∂tΓ (·, ·, x0)|||L2H1+α(Qj(x0))

+ |||∂ttΓ (·, ·, x0)|||L2H1+α(Qj(x0))
≤ Cd

−d/2−4−α
j , (4.5)

‖G(·, ·, x0)‖L∞H1+α(∪k≤jQk(x0)) + d2j‖∂tG(·, ·, x0)‖L∞H1+α(∪k≤jQk(x0)) ≤ Cd
−d/2−1−α
j .

(4.6)
In the case d = 2, α ∈ ( 12 , 1]. In the case d = 3 and Ω is convex, α ∈ (1, 2].

In the rest of this paper, we denote by α a number depending on which case we
are working on, i.e., α ∈ ( 12 , 1] in the case d = 2, and α ∈ (1, 2] in the case d = 3 and
Ω is convex.

Lemma 4.2 The functions Γh(t, x, x0), Γ (t, x, x0) and F (t, x, x0) := Γh(t, x, x0) −
Γ (t, x, x0) satisfy

sup
t∈(0,∞)

(
‖Γh(t, ·, x0)‖L1(Ω) + t‖∂tΓh(t, ·, x0)‖L1(Ω)

)
≤ C, (4.7)

sup
t∈(0,∞)

(
‖Γ (t, ·, x0)‖L1(Ω) + t‖∂tΓ (t, ·, x0)‖L1(Ω)

)
≤ C, (4.8)

‖∂tF (·, ·, x0)‖L1((0,∞)×Ω) + ‖t∂ttF (·, ·, x0)‖L1((0,∞)×Ω) ≤ C, (4.9)
‖∂tΓh(t, ·, x0)‖L1 ≤ Ce−λ0t, ∀ t ≥ 1, (4.10)

where the constants C and λ0 are independent of h.

Lemma 4.3 The following results hold:
1. ‖Γ (t)‖L2( 1

4 ,∞;H1+α(Ω)) + ‖∂tΓ (t)‖L2( 1
4 ,∞;H1+α(Ω)) ≤ C.

2. (−∆h)
−1 : (S̊h(Ω), ‖ · ‖L1(Ω)) → (S̊h(Ω), ‖ · ‖L2(Ω)) is continuous.

3. ‖∇(Γh − Γ )‖L1(0,1;L1(Ω)) ≤ Ch
1
2 .

Proof To show the first result, we recall the estimate in [21, p. 27] which can be proved
by the standard energy method. Here we additionally allow t ≥ 1

4 instead of t ≥ 1
in [21, p. 27]:

‖∂tΓ (t, ·, x0)‖2L2 + ‖∂tΓh(t, ·, x0)‖2L2 + ‖∂ttΓ (t, ·, x0)‖2L2 + ‖∂ttΓh(t, ·, x0)‖2L2

≤ Ce−λ0(t− 1
4 ).

Therefore from elliptic regularity theory, we get the following boundedness results
‖Γ (t)‖L2( 1

4 ,∞;H1+α) ≤ C‖∆Γ (t)‖L2( 1
4 ,∞;L2) = C‖∂tΓ (t)‖L2( 1

4 ,∞;L2) ≤ C,

‖∂tΓ (t)‖L2( 1
4 ,∞;H1+α) ≤ C‖∆∂tΓ (t)‖L2( 1

4 ,+∞;L2) = C‖∂ttΓ (t)‖L2( 1
4 ,+∞;L2) ≤ C.

To prove the second one, for any given fh ∈ S̊h(Ω), we define uh = (−∆h)
−1fh

and u ∈ H1
0 (Ω) to be the solution of the elliptic equation

−∆u = fh.

By the definition we have the relation uh = Rhu. For d = 2, 3, fix p = 2∗ = 2d
d+2 whose

Hölder conjugate is p′ = 2d
d−2 , and we apply the Sobolev embedding W 1,p ↪→ L2,

the stability of Ritz projection Rh (see [19, equation (2.5)]), the elliptic regularity
theory on corner domain (see [4, Theorem 3.2, Corollary 3.10, Corollary 3.12]) and
the embedding W 1,p′

↪→ L∞ successively to derive
‖(−∆h)

−1fh‖L2 = ‖uh‖L2 ≤ C‖uh‖W 1,p ≤ C‖u‖W 1,p ≤ C‖fh‖W−1,p ≤ C‖fh‖L1 .

For the third result, we modify the quantity K in the proof of [21, Lemma 4.4] to be

K : =
∑
j

d
1+d/2
j

(
d
−1/2
j h−1/2|||F |||1,Qj

+ |||∂tF |||Qj
+ dj |||∂tF |||1,Qj

+ d2j |||∂ttF |||Qj

)
,
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and then the same proof will show K ≤ C. Sketch of the proof: The lowest powers of h
in the consistency part in the proof of [21, Lemma 4.4] are hα (see [21, equation (5.14)
and (5.15)]) and h1+α−d/2 (see [21, equation (5.32)]). Therefore if we multiply h−1/2

in the front, we get h−1/2+α+h1/2+α−d/2 ≤ C. For the stability part, as [21, equation
(5.32)], we will get an additional power of h−1/2h1+α = h1/2+α in front of |||Ft|||Qi

and
an additional power of hα in front of |||F |||1,Qi

(note that according to the definition
of K, there already exists h−1/2 in front of |||F |||1,Qi

on the left hand side). Such
additional positive powers of h ensure the stability of K. ut

4.3 Reduction of the problem

To simplify the notation, we relax the dependence of the Green’s functions on x0
and denote

Γh(t) = Γh(t, ·, x0), Γ (t) = Γ (t, ·, x0) and F (t) = Γh(t)− Γ (t).

If uh is the finite element solution of
(∂tuh, vh) + (∇uh,∇vh) = 0 ∀ vh ∈ S̊h, for t ∈ (0, T ],

uh = gh on [0, T ]× ∂Ω,

uh(0) = 0 in Ω,

(4.11)

then substituting vh = Γh(s − t), with 0 < t < s ≤ T , and integrating the result for
t ∈ (0, s) yield

uh(s, x0) = −
∫ s

0

[
(uh, ∂tΓh(s− t)) + (∇uh,∇Γh(s− t))

]
dt

= −
∫ s

0

[
(uh − wh, ∂tΓh(s− t)) + (∇(uh − wh),∇Γh(s− t))

]
dt, (4.12)

which holds for all wh ∈ L2(0, T ; S̊h), where the last inequality is a consequence of
(3.16). Let wh ∈ S̊h be the finite element function which equals uh at interior nodes
and equals 0 on ∂Ω. Then

uh(s, x0) = −
∫ s

0

[
(g̃h, ∂tΓh(s− t)) + (∇g̃h,∇Γh(s− t))

]
dt, (4.13)

where g̃h is the finite element solution which equals gh on ∂Ω and equals zero at the
interior nodes of Ω. Let Dh = {x ∈ Ω : dist(x, ∂Ω) ≤ h}. Then

uh(s, x0) = −
∫ s

0

[
(g̃h, ∂tΓh(s− t))Dh

+ (∇g̃h,∇Γh(s− t))Dh

]
dt. (4.14)

Let ũ be the solution of the PDE problem
∂tũ−∆ũ = 0 for t ∈ (0, T ],

ũ = gh on [0, T ]× ∂Ω,

ũ(0) = 0 in Ω.

(4.15)

By the maximum principle of parabolic PDEs (see [1, Theorem 6.2.6] and [24, Chapter
II]), we have

‖ũ‖L∞(0,T ;L∞) ≤ ‖gh‖L∞(0,T ;L∞(∂Ω)). (4.16)
Testing the first equation of (4.15) by Γ (s− t) and integrating the result for t ∈ (0, s),
we obtain

(ũ(s, ·), δ̃x0
) = −

∫ s

0

[
(ũ, ∂tΓ (s− t)) + (∇ũ,∇Γ (s− t))

]
dt
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= −
∫ s

0

[
(ũ− w, ∂tΓ (s− t)) + (∇(ũ− w),∇Γ (s− t))

]
dt, (4.17)

which holds for all w ∈ L2(0, T ;H1
0 (Ω)). By choosing w = ũ− g̃h we obtain

(ũ(s, ·), δ̃x0) = −
∫ s

0

[
(g̃h, ∂tΓ (s− t)) + (∇g̃h,∇Γ (s− t))

]
dt

= −
∫ s

0

[
(g̃h, ∂tΓ (s− t))Dh

+ (∇g̃h,∇Γ (s− t))Dh

]
dt. (4.18)

Subtracting (4.18) from (4.14), we obtain

uh(s, x0) = (ũ(s, ·), δ̃x0
)−

∫ s

0

(
g̃h, ∂tΓh(s− t)− ∂tΓ (s− t)

)
Dh

dt

−
∫ s

0

(
∇g̃h,∇(Γh(s− t)− Γ (s− t))

)
Dh

dt. (4.19)

From (4.9) we know that∫ s

0

∫
Ω

|∂tΓh(s− t)− ∂tΓ (s− t)|dxdt ≤ C,

which implies that
|uh(s, x0)|

≤ ‖ũ(s)‖L∞‖δ̃x0‖L1 + C‖g̃h‖L∞(0,s;L∞) +

∣∣∣∣ ∫ s

0

(
∇g̃h,∇(Γh(s− t)− Γ (s− t))

)
Dh

dt

∣∣∣∣
≤C‖gh‖L∞(0,s;L∞(∂Ω)) + ‖g̃h‖L∞(0,s;L∞(Ω))Ch

−1‖∇F‖L1(Ds
h)

≤C‖gh‖L∞(0,s;L∞(∂Ω))(1 + h−1‖∇F‖L1(Ds
h)
), (4.20)

where Ds
h = (0, s)×Dh. If the following estimate can be proved:

h−1‖∇F‖L1((0,∞)×Dh) ≤ C, (4.21)
then substituting (4.21) into (4.20) immediately yields

|uh(s, x0)| ≤C‖gh‖L∞(0,s;L∞(∂Ω)). (4.22)
Since s and x0 can be arbitrary, this proves the desired result of Theorem 2.1.

It remains to prove (4.21).

4.4 Proof of (4.21)

We need to use the following local energy error estimate for finite element solutions
of parabolic equations, which was proved in [21, Lemma 5.1].

Lemma 4.4 Suppose that φ ∈ L2(0, T ;H1
0 (Ω))∩H1(0, T ;L2(Ω)) and φh ∈ H1(0, T ; S̊h)

satisfy the equation
(∂t(φ− φh), χ) + (∇(φ− φh),∇χ) = 0, ∀χ ∈ S̊h, a.e. t > 0, (4.23)

with φ(0) = 0 in Ω′′
j . Then

|||∂t(φ− φh)|||Qj
+ d−1

j |||φ− φh|||1,Qj

≤ Cε−3
(
Ij(φh(0)) +Xj(Ihφ− φ) + d−2

j |||φ− φh|||Q′
j

)
+

[
C

(
h

dj

) 1
2

+ ε∗

](
|||∂t(φ− φh)|||Q′

j
+ d−1

j |||φ− φh|||1,Q′
j

)
, (4.24)

where ε∗ = ε+ ε−1/C∗ and
Ij(φh(0)) = ‖φh(0)‖1,Ω′

j
+ d−1

j ‖φh(0)‖Ω′
j
,
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Xj(Ihφ− φ) = dj |||∂t(Ihφ− φ)|||1,Q′
j
+ |||∂t(Ihφ− φ)|||Q′

j

+ d−1
j |||Ihφ− φ|||1,Q′

j
+ d−2

j |||Ihφ− φ|||Q′
j
.

The positive constant C is independent of h, j and C∗; the norms |||·|||k,Q′
j

and |||·|||k,Ω′
j

are defined in (4.4).

In the rest of this section, we apply Lemma 4.4 to estimate h−1‖∇F‖L1((0,∞)×Dh).
The estimation consists of two parts: The first part concerns estimates for t ∈ (0, 1),
and the second part concerns estimates for t ≥ 1, which is a consequence of the
smoothing property of parabolic equations.

Part I. First, we present estimates in the domain Q = (0, 1)×Ω with the restric-
tion h < 1/(4C∗); see (4.1). In this case, the basic energy estimate gives
‖∂tΓ‖L2(Q) + ‖∂tΓh‖L2(Q) ≤ C(‖Γ (0)‖H1 + ‖Γh(0)‖H1) ≤ Ch−1−d/2, (4.25)
‖Γ‖L∞L2(Q) + ‖Γh‖L∞L2(Q) ≤ C(‖Γ (0)‖L2 + ‖Γh(0)‖L2) ≤ Ch−d/2, (4.26)
‖∇Γ‖L2(Q) + ‖∇Γh‖L2(Q) ≤ C(‖Γ (0)‖L2 + ‖Γh(0)‖L2) ≤ Ch−d/2, (4.27)
‖∂ttΓ‖L2(Q) + ‖∂ttΓh‖L2(Q) ≤ C(‖∆Γ (0)‖H1 + ‖∆hΓh(0)‖H1) ≤ Ch−3−d/2, (4.28)
‖∇∂tΓ‖L2(Q) + ‖∇∂tΓh‖L2(Q) ≤ C(‖∆Γ (0)‖L2 + ‖∆hΓh(0)‖L2) ≤ Ch−2−d/2,

(4.29)
where we have used (3.8) and (3.10) to estimate Γ (0) and Γh(0), respectively. Hence,
we have
|||Γ |||Q∗

+ |||Γh|||Q∗
≤ Cd∗‖Γ‖L∞L2(Q∗) + Cd∗‖Γh‖L∞L2(Q∗) ≤ Cd∗h

−d/2 ≤ CC∗h
1−d/2.

(4.30)

Since the volume of Qj is Cd2+d
j , we can decompose

‖∂tF‖L1(DT
h ) + ‖t∂ttF‖L1(DT

h ) + h−1‖∇F‖L1(DT
h )

in the following way:
‖∂tF‖L1(DT

h ) + ‖t∂ttF‖L1(DT
h ) + h−1‖∇F‖L1(DT

h )

≤ ‖∂tF‖L1(Q∗∩DT
h ) + ‖t∂ttF‖L1(Q∗∩DT

h ) + h−1‖∇F‖L1(Q∗∩DT
h )

+
∑
j

(
‖∂tF‖L1(Qj∩DT

h ) + ‖t∂ttF‖L1(Qj∩DT
h ) + h−1‖∇F‖L1(Qj∩DT

h )

)
≤ Cd

1+ d−1
2

∗ h
1
2

(
|||∂tF |||Q∗∩DT

h
+ d2∗|||∂ttF |||Q∗∩DT

h
+ h−1|||F |||1,Q∗∩DT

h

)
+
∑
j

Cd
1+ d−1

2
j h

1
2

(
|||∂tF |||Qj∩DT

h
+ d2j |||∂ttF |||Qj∩DT

h
+ h−1|||F |||1,Qj∩DT

h

)
≤ CC

5+d
2

∗ + K , (4.31)
where we have used (4.25), (4.27) and (4.28) to estimate

Cd
1+ d−1

2
∗ h

1
2

(
|||∂tF |||Q∗∩DT

h
+ d2∗|||∂ttF |||Q∗∩DT

h
+ h−1|||F |||1,Q∗∩DT

h

)
,

and introduced the notation

K : =
∑
j

(
h

dj

)− 1
2

d
1+ d

2
j (d−1

j |||F |||1,Qj
+ |||∂tF |||Qj

+ dj |||∂tF |||1,Qj
+ d2j |||∂ttF |||Qj

).

(4.32)

It remains to estimate K . To this end, we set “φh = Γh, φ = Γ , φh(0) = Phδ̃x0

and φ(0) = δ̃x0
” and “φh = ∂tΓh, φ = ∂tΓ , φh(0) = ∆hPhδ̃x0

and φ(0) = ∆δ̃x0
” in
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Lemma 4.4, respectively. Then we obtain
d−1
j |||F |||1,Qj

+ |||∂tF |||Qj
≤ Cε−3(Îj + X̂j + d−2

j |||F |||Q′
j
) (4.33)

+

[
C

(
h

dj

) 1
2

+ ε∗

](
d−1
j |||F |||1,Q′

j
+ |||∂tF |||Q′

j

)
and
dj |||∂tF |||1,Qj

+ d2j |||∂ttF |||Qj
≤ Cε−3(Ij +Xj + |||∂tF |||Q′

j
) (4.34)

+

[
C

(
h

dj

) 1
2

+ ε∗

](
dj |||∂tF |||1,Q′

j
+ d2j |||∂ttF |||Q′

j

)
,

respectively. By using (3.5) (local interpolation error estimate), (3.10) (exponential
decay of Phδ̃x0) and Lemma 4.1 (estimates of regularized Green’s function), we have

Îj = ‖Phδ̃x0‖1,Ω′
j
+ h−1‖Phδ̃x0‖Ω′

j
≤ Ch2d

−3−d/2
j , (4.35)

X̂j = dj |||∂t(IhΓ − Γ )|||1,Q′
j
+ |||∂t(IhΓ − Γ )|||Q′

j

+ d−1
j |||IhΓ − Γ |||1,Q′

j
+ d−2

j |||IhΓ − Γ |||Q′
j

≤ Cdjh
α|||∂tΓ |||L2H1+α(Q′′

j )
+ d−1

j hα|||Γ |||L2H1+α(Q′′
j )

≤ Chαd
−α−1−d/2
j (4.36)

and
Ij = d2j‖∆hPhδ̃x0

‖1,Ω′
j
+ dj‖∆hPhδ̃x0

‖Ω′
j
≤ Ch2d

−3−d/2
j , (4.37)

Xj = d3j |||Ih∂ttΓ − ∂ttΓ |||1,Q′
j
+ d2j |||Ih∂ttΓ − ∂ttΓ |||Q′

j

+ dj |||Ih∂tΓ − ∂tΓ |||1,Q′
j
+ |||Ih∂tΓ − ∂tΓ |||Q′

j

≤ (d3jh
α + d2jh

1+α)|||∂ttΓ |||L2H1+α(Q′′
j )

+ (djh
α + h1+α)|||∂tΓ |||L2H1+α(Q′′

j )

≤ Chαd
−α−1−d/2
j . (4.38)

By substituting (4.33)-(4.38) into the expression of K in (4.32), we have

K =
∑
j

(
h

dj

)− 1
2

d
1+ d

2
j (d−1

j |||F |||1,Qj
+ |||∂tF |||Qj

+ dj |||∂tF |||1,Qj
+ d2j |||∂ttF |||Qj

)

≤ C
∑
j

(
h

dj

)− 1
2

d
1+ d

2
j ε−3

(
h2d

−3−d/2
j + hαd

−α−1−d/2
j + d−2

j |||F |||Q′
j

)
+
∑
j

[
C + ε∗

(
h

dj

)− 1
2
]
d
1+ d

2
j (d−1

j |||F |||1,Q′
j
+ |||∂tF |||Q′

j
+ dj |||∂tF |||1,Q′

j
+ d2j |||∂ttF |||Q′

j
)

≤ C + Cε−3
∑
j

(
h

dj

)− 1
2

d
−1+ d

2
j |||F |||Q′

j

+
∑
j

[
C + ε∗

(
h

dj

)− 1
2
]
d
1+ d

2
j (d−1

j |||F |||1,Q′
j
+ |||∂tF |||Q′

j
+ dj |||∂tF |||1,Q′

j
+ d2j |||∂ttF |||Q′

j
).

(4.39)
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Since |||F |||Q′
j
≤ C(|||F |||Qj−1

+ |||F |||Qj
+ |||F |||Qj+1

), we can convert the Q′
j-norm

in the inequality above to the Qj-norm:

K ≤ C + Cε−3

(
h

d∗

)− 1
2

d
−1+ d

2
∗ |||F |||Q∗

+ Cε−3
∑
j

(
h

dj

)− 1
2

d
−1+ d

2
j |||F |||Qj

+
∑
j

[
C + ε∗

(
h

dj

)− 1
2
]
d
1+ 2
∗ (d−1

∗ |||F |||1,Q∗
+ |||∂tF |||Q∗

+ d∗|||∂tF |||1,Q∗
+ d2∗|||∂ttF |||Q∗

)

+
∑
j

[
C + ε∗

(
h

dj

)− 1
2
]
d
1+ d

2
j (d−1

j |||F |||1,Qj
+ |||∂tF |||Qj

+ dj |||∂tF |||1,Qj
+ d2j |||∂ttF |||Qj

)

≤ C + Cε−3C
d−1
2

∗ +
∑
j

Cε−3

(
h

dj

)− 1
2

d
−1+ d

2
j |||F |||Qj

+

[
C + ε∗

(
h

d∗

)− 1
2
]
C

3+ d
2

∗

+ (ε∗ + CC
−1/2
∗ )K . (4.40)

where we have used dj ≥ C∗h and (4.25)-(4.29) to estimate
|||F |||1,Q∗

, |||∂tF |||Q∗
, |||∂tF |||1,Q∗

and |||∂ttF |||Q∗

and used the expression of K in (4.32) to bound the terms involving Qj . Since
ε∗ = ε + ε−1/C∗, we can make ε∗ sufficiently small by first choosing ε small enough
and then choosing C∗ large enough (ε can be fixed now and C∗ will be determined
later). Then the last term on the right-hand side of (4.40) can be absorbed by the
left-hand side. Therefore, we obtain

K ≤ C + CC
3+ d

2
∗ +

∑
j

(
h

dj

)− 1
2

d
−1+ d

2
j |||F |||Qj

. (4.41)

It remains to estimate |||F |||Qj
. This was estimated in [21, inequality (5.32)] as

|||F |||Qj
≤ Ch1+α−d/2d−α

j + C
∑
∗,i

(h1+α|||Ft|||Qi
+ hα|||F |||1,Qi

)d1−α
i

(
min(di, dj)

max(di, dj)

)α

.

(4.42)
Note that

∑
j

(
h

dj

)− 1
2

d
−1+ d

2
j

(
min(di, dj)

max(di, dj)

)α

≤


C

(
h

di

)− 1
2

if d = 2 and r ≥ 1,

C

(
h

di

)− 1
2

d
1
2
i if d = 3 and r ≥ 2,

(4.43)

where the last inequality uses the assumption that in the case d = 3 the domain is
convex so that α > 1 can be chosen; see (P3) in Section 3.2. By substituting (4.42)–
(4.43) into (4.41) we obtain

K ≤ C + CC
3+d/2
∗ +

∑
j

Cd
−1+ d

2
j |||F |||Qj

≤ C + CC
3+d/2
∗ + C

∑
j

(
h

dj

)α+ 1
2−

d
2

here we substitute (4.42)

+ C
∑
j

(
h

dj

)− 1
2

d
−1+ d

2
j

∑
∗,i

(h1+α|||Ft|||Qi
+ hα|||F |||1,Qi

)d1−α
i

(
min(di, dj)

max(di, dj)

)α

.
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In the case ‘d = 2 (in this case α > 1
2 )” or “d = 3, r ≥ 2 and Ω is convex (in this

case α > 1)”, we have

K ≤ C + CC
3+d/2
∗ + C (here we exchange the order of summation)

+ C
∑
∗,i

(h1+α|||Ft|||Qi
+ hα|||F |||1,Qi

)d1−α
i

∑
j

(
h

dj

)− 1
2

d
−1+ d

2
j

(
min(di, dj)

max(di, dj)

)α

≤ C + CC
3+ d

2
∗ + C

∑
∗,i

(h1+α|||Ft|||Qi
+ hα|||F |||1,Qi

)d
d
2−α
i

(
h

di

)− 1
2

((4.43) is used)

= C + CC
3+ d

2
∗ + C

∑
∗,i

d
1+ d

2
i

(
|||Ft|||Qi

(
h

di

) 1
2+α

+ d−1
i |||F |||1,Qi

(
h

di

)α− 1
2

)

≤ C + CC
3+ d

2
∗ + Cd

1+ d
2

∗

(
|||Ft|||Q∗

+ d−1
j |||F |||1,Q∗

)
+ C

∑
i

(
h

di

)− 1
2

d
1+ d

2
i

(
|||Ft|||Qi

+ d−1
j |||F |||1,Qi

)( h
di

)α

≤ C + CC
3+d/2
∗ +

CK

Cα
∗
.

By choosing C∗ to be large enough (C∗ is determined now), the term CK

Cα
∗

will be

absorbed by the left-hand side of the inequality above. In this case, the inequality
above implies

K ≤ C. (4.44)
Substituting the last inequality into (4.31) yields

h−1‖∇F‖L1((0,1)×Dh) ≤ C. (4.45)

Part II. For t ∈ [1,∞), we consider the error equation{
(∂t(Γh(t)− Γ (t)), vh) + (∇(Γh(t)− Γ (t)),∇vh) = 0, ∀ vh ∈ S̊h,

Γh(0)− Γ (0) = δh,x0 − δ̃x0 .
(4.46)

Let χ(t) be a smooth cut-off function such that

χ(t) =


1 for t ≥ 1

2
,

0 for t ≤ 1

4
.

Then the function η(t) = χ(t)(Γh(t)− Γ (t)) satisfies the following equation:{
(∂tη(t), vh) + (∇η(t),∇vh) = (∂tχ (Γh(t)− Γ (t)), vh), ∀ vh ∈ S̊h,

η(0) = 0,
(4.47)

which can also be written as{
∂tRhη −∆hRhη = −∂t[χ(Ph −Rh)Γ ] + ∂tχ(t)(Γh(t)− PhΓ (t)),

Rhη(0) = 0,
(4.48)

where −∆h : S̊h → S̊h is the discrete Laplacian defined by
(−∆hvh, χ) = (∇vh,∇χ), ∀ vh ∈ S̊h. (4.49)



17

The solution to (4.48) can be furthermore expressed in terms of the semigroup et∆h ,
i.e.,

Rhη(t) = −
∫ t

0

e(t−s)∆h∂s[χ(s)(Ph −Rh)Γ (s)]ds

+

∫ t

0

e(t−s)∆h∂sχ(s)(Γh(s)− PhΓ (s))ds. (4.50)

By applying the operator (−∆h)
1
2 to the both sides of the above equality, we obtain

(−∆h)
1
2Rhη(t) = −

∫ t

0

(−∆h)
1
2 e(t−s)∆h∂s[χ(s)(Ph −Rh)Γ (s)]ds

+

∫ t

0

(−∆h)
3
2 e(t−s)∆h(−∆h)

−1∂sχ(s)(Γh(s)− PhΓ (s))ds, (4.51)

and therefore
‖∇Rhη(t)‖L2 = ‖(−∆h)

1
2Rhη(t)‖L2

≤
∥∥∥∥ ∫ t

0

e(t−s)∆h(−∆h)
1
2 ∂s[χ(s)(Ph −Rh)Γ (s)]ds

∥∥∥∥
L2

+

∥∥∥∥ ∫ t

0

(−∆h)
3
2 e(t−s)∆h(−∆h)

−1∂sχ(s)(Γh(s)− PhΓ (s))ds

∥∥∥∥
L2

≤ C

∫ t

1
4

e−λ0(t−s)‖∇(Ph −Rh)∂s[χ(s)Γ (s)]‖L2ds

+ C

∫ 1
2

1
4

(t− s)−
3
2 ‖(−∆h)

−1(Γh(s)− PhΓ (s))‖L2ds, (4.52)

where λ0 > 0 is the smallest eigenvalue of −∆ and we have used the following expo-
nential decay estimate for the discrete semigroup in the last inequality:

‖et∆huh‖L2 ≤ Ce−λ0t‖uh‖L2 , (4.53)

for any t ≥ 0 and uh ∈ S̊h(Ω). In addition, we have used the following result in (4.52):
‖(−∆h)

3/2e(t−s)∆h‖L2(Ω)→L2(Ω) ≤ C(t− s)−3/2,

which follows from the smoothing estimates for the analytic semigroup e(t−s)∆h , which
means that (see [21, Theorem 2.1 and Remark 2.1])

‖∂ltet∆hχ‖L2(Ω) ≤ Ct−l‖χ‖L2(Ω) for ∀χ ∈ S̊h and l = 0, 1, 2, ...

Since ∂ltet∆hχ = ∆l
he

t∆hχ for χ ∈ S̊h, it follows that
‖(−∆h)

let∆hχ‖L2(Ω) ≤ Ct−l‖χ‖L2(Ω) for ∀χ ∈ S̊h and l = 1, 2,

which imply that

‖(−∆h)
3/2e(t−s)∆hχ‖2L2(Ω) =

(
(−∆h)

3/2e(t−s)∆hχ, (−∆h)
3/2e(t−s)∆hχ

)
=
(
(−∆h)

2e(t−s)∆hχ, (−∆h)e
(t−s)∆hχ

)
≤ ‖∆2

he
(t−s)∆hχ‖L2(Ω)‖∆he

(t−s)∆hχ‖L2(Ω)

≤ C

(t− s)3
‖χ‖2L2(Ω).

This proves the desired result which we use in (4.52).
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By integrating the above inequality for t ∈ [1,+∞) and using Fubini’s theorem
and (3.6)-(3.7), we obtain

‖∇Rhη‖L1(1,∞;L2)

≤ C‖∇(Ph −Rh)∂t(χΓ )‖L1( 1
4 ,+∞;L2) + C‖(−∆h)

−1(Γh − PhΓ )‖L1(0, 12 ;L
2)

≤ Chα‖∂t(χΓ )‖L1( 1
4 ,+∞;H1+α) + C‖Γh − Γ‖L1( 1

4 ,
1
2 ;L

1)

≤ Ch
1
2 , (4.54)

where we have used Lemma 4.3 in deriving the second and the last inequality.
From (4.54) and Poincaré inequality,

‖Γh −RhΓ‖L1(1,+∞;H1(Ω)) ≤ Ch
1
2 .

By using the triangle inequality, Hölder’s inequality on Dh, (3.7) and Lemma 4.3
(item 1), we obtain

‖Γh − Γ‖L1(1,∞;W 1,1(Dh))

≤ Ch
1
2 ‖Γh −RhΓ‖L1(1,∞;H1(Dh)) + Ch

1
2 ‖RhΓ − Γ‖L1(1,∞;H1(Dh))

≤ Ch+ Ch
1
2+α‖Γ‖L1(1,∞;H1+α(Ω))

≤ Ch. (4.55)
Estimates (4.45)–(4.55) imply (4.21). This completes the proof of Theorem 2.1. ut

5 Weak maximum principle of fully discrete FEM

To prove Theorem 2.2, it suffices to show
‖uNh ‖L∞(Ω) ≤ C max

1≤n≤k−1
‖unh‖L∞(Ω) + C max

k≤n≤N
‖gnh‖L∞(∂Ω) ∀N ≥ k, (5.1)

with a constant C independent of τ , h and N . To this end, we decompose the solution
into three parts, i.e.,

uNh = uNh,1 + uNh,2 + uNh,3, (5.2)
where unh,1, unh,2 and unh,3 are finite element solutions of the following problems:

(
1

τ

k∑
j=0

δju
n−j
h,1 , vh

)
+ (∇unh,1,∇vh) = 0 ∀ vh ∈ S̊h, n = k, . . . , N,

unh,1 = gnh(δn,N−1 + δn,N ) on ∂Ω, n = k, . . . , N,

ujh,1 = 0 in Ω, j = 0, . . . , k − 1,

(5.3)



(
1

τ

k∑
j=0

δju
n−j
h,2 , vh

)
+ (∇unh,2,∇vh) = 0 ∀ vh ∈ S̊h, n = k, . . . , N,

unh,2 = gnh(1− δn,N−1 − δn,N ) on ∂Ω, n = k, . . . , N,

ujh,2 = 0 in Ω, j = 0, . . . , k − 1,

(5.4)



(
1

τ

k∑
j=0

δju
n−j
h,3 , vh

)
+ (∇unh,3,∇vh) = 0 ∀ vh ∈ S̊h, n = k, . . . , N,

unh,3 = 0 on ∂Ω, n = k, . . . , N,

ujh,3 = ujh in Ω, j = 0, . . . , k − 1,

(5.5)
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with δn,N denoting the Kronecker symbol. In the following three subsections, we prove
the following three estimates:

‖uNh,1‖L∞(Ω)

≤ Cmax
n=N

‖gnh‖L∞(∂Ω), N = k,

≤ C max
n=N−1,N

‖gnh‖L∞(∂Ω), N ≥ k + 1,
(5.6)

‖uNh,2‖L∞(Ω)

{
= 0, N = k, k + 1,

≤ C max
k≤n≤N−2

‖gnh‖L∞(∂Ω), N ≥ k + 2,
(5.7)

‖uNh,3‖L∞(Ω) ≤ C max
1≤n≤k−1

‖unh‖L∞(Ω). (5.8)

Then, substituting these estimates into (5.2), we obtain the desired result in Theorem
2.2.

5.1 Proof of (5.6)

We define the sector Σθ = {z ∈ C : | arg(z)| ≤ θ}. The following result will be used
in both this and next subsections.

Lemma 5.1 For θ ∈ (−π
2 ,

π
2 ) and z ∈ Σθ, the elliptic finite element problem{

(zφh, vh) + (∇φh,∇vh) = 0 ∀ vh ∈ S̊h,

φh = fh on ∂Ω,

is well defined for any fh ∈ Sh(∂Ω) and satisfies the following estimate:
‖φh‖L∞(Ω) ≤ C‖fh‖L∞(∂Ω),

where the constant C is independent of z ∈ Σθ.

Proof Let wh ∈ Sh be the finite element solution of the elliptic problem{
(∇wh,∇vh) = 0 ∀ vh ∈ S̊h,

wh = fh on ∂Ω.
(5.9)

Then φh−wh ∈ S̊h is the finite element solution of the zero Dirichlet boundary value
problem

(z(φh − wh), vh) + (∇(φh − wh),∇vh) = −(zwh, vh) ∀ vh ∈ S̊h,

which can equivalently be written as
(z −∆h)(φh − wh) = −zPhwh,

where Ph is the L2 projection operator from L2(Ω) onto its closed subspace S̊h. (Since
wh 6= 0 on ∂Ω, it follows that Phwh 6= wh.)

For the elliptic problem (5.9), it is known that the following weak maximum prin-
ciple holds (cf. [26] and [19] for 2D and 3D cases, respectively):

‖wh‖L∞(Ω) ≤ C‖fh‖L∞(∂Ω). (5.10)
Hence, we have

‖φh − wh‖L∞(Ω) = ‖z(z −∆h)
−1Phwh‖L∞(Ω) ≤ C‖wh‖L∞(Ω), (5.11)

where the last inequality is due to the L∞ stability of Ph (cf. [29, Lemma 6.1]) and
the resolvent estimate (cf. [22, Theorem 3.1])

‖z(z −∆h)
−1‖L∞(Ω)→L∞(Ω) ≤ C ∀ z ∈ C, z ∈ Σθ.

By using the triangle inequality and (5.10)–(5.11), we obtain (5.6). ut
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For N = k, according to the initial condition, unh,1 vanishes for 1 ≤ n ≤ k− 1, and
uNh,1 is the solution of the discrete elliptic equation

(
uNh,1
τ
, vh

)
+ (∇uNh,1,∇vh) = 0 ∀ vh ∈ S̊h,

uNh,1 = gNh on ∂Ω,

(5.12)

where we have used the fact that δ0 = 1 for all BDF-k methods with k = 1, ..., 6.
Then Lemma 5.1 implies that the solution of (5.12) satisfies (5.6).

If N ≥ k+1, the solution unh,1 of (5.3) is actually zero for 1 ≤ n ≤ N−2. Therefore
uN−1
h,1 satisfies the elliptic equation

(
uN−1
h,1

τ
, vh

)
+ (∇uN−1

h,1 ,∇vh) = 0 ∀ vh ∈ S̊h,

uN−1
h,1 = gN−1

h on ∂Ω,

(5.13)

and similarly uNh,1 is determined by
(
uNh,1
τ
, vh

)
+ (∇uNh,1,∇vh) = −

(
δ1u

N−1
h,1

τ
, vh

)
∀ vh ∈ S̊h,

uNh,1 = gNh on ∂Ω.

(5.14)

Since 1
τ ∈ Σθ, Lemma 5.1 implies that the solution of (5.13) satisfies

‖uN−1
h,1 ‖L∞(Ω) ≤ C‖gN−1

h ‖L∞(∂Ω). (5.15)

At the time level N , we decompose uNh,1 = uN,homo
h,1 +uN,inhomo

h,1 into homogeneous and
inhomogeneous parts. By applying Lemma 5.1 to homogeneous part of (5.14) to get

‖uN,homo
h,1 ‖L∞(Ω) ≤ C‖gNh ‖L∞(∂Ω),

and for the inhomogeneous part we have,
‖uN,inhomo

h,1 ‖L∞(Ω) = ‖(τ−1 −∆h)
−1Phτ

−1δ1u
N−1
h,1 ‖L∞(Ω) ≤ C‖uN−1

h,1 ‖L∞(Ω)

≤ C‖gN−1
h ‖L∞(∂Ω),

where we have used the resolvent estimate and the L∞ stability of Ph in the first in-
equality, and have used (5.15) in the second inequality. Then by the triangle inequality,
we conclude (5.6) as follows

‖uNh,1‖L∞(Ω) ≤ ‖uN,homo
h,1 ‖L∞(Ω) + ‖uN,inhomo

h,1 ‖L∞(Ω)

≤ C(‖gN−1
h ‖L∞(∂Ω) + ‖gNh ‖L∞(∂Ω)).

5.2 Proof of (5.7)

According to (5.4), unh,2, k ≤ n ≤ N is trivial for N ≤ k + 1. So in this subsection we
will assume N ≥ k + 2 in order to get at least one meaningful time-stepping.

We extend gnh to be zero for 0 ≤ n ≤ k− 1 and n ≥ N +1, and redefine gN−1
h = 0

and gNh = 0. Moreover we extend unh,2, n ≥ N + 1, to be the solution of the following
equation at the time level n ≥ N + 1:
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(
1

τ

k∑
j=0

δju
n−j
h,2 , vh

)
+ (∇unh,2,∇vh) = 0 ∀ vh ∈ S̊h, n ≥ k,

unh,2 = gnh on ∂Ω, n ≥ k,

ujh,2 = 0 in Ω, j = 0, . . . , k − 1.

(5.16)

We denote by

ũh,2(ζ) =

∞∑
n=k

unh,2ζ
n and g̃h(ζ) =

∞∑
n=k

gnhζ
n

the generating functions of the two sequences (unh,2)∞n=k and (gnh)
∞
n=k, respectively. By

definition, gnh = 0 for n ≥ N . From the standard energy decay estimate we know the
boundedness supn≥0 ‖unh,2‖L2(Ω) ≤ C supn≥N ‖unh,2‖L2(Ω) ≤ Ch,N , and moreover via
the inverse inequality and the Hölder’s inequality, it holds that supn≥0 ‖unh,2‖Lp(Ω) ≤
Ch,N for all p ∈ [1,∞]. Therefore the Lp-valued generating functions g̃h(ζ) and ũh,2(ζ)
are analytic in ζ ∈ C and in the open unit disk ζ ∈ D = {z ∈ C : |z| < 1} respectively
for any h > 0 and p ∈ [1,∞].

For any ζ ∈ D, we observe the following relation of generating functions

δ(ζ)ũh,2(ζ) =
( k∑

j=0

δjζ
j
)(+∞∑

j=k

ujh,2ζ
j
)

=

+∞∑
n=k

ζn
k∑

j=0,n−j≥k

δju
n−j
h,2

=

+∞∑
n=k

ζn
k∑

j=0

δju
n−j
h,2 −

2k−1∑
n=k

ζn
k∑

j=0,n−j<k

δju
n−j
h,2 . (5.17)

Multiplying (2.2) by ζn, summing up the results for n = k, k + 1, . . . and using the
identity (5.17) and the initial condition unh,2 = 0 for n = 0, ..., k − 1, we obtain the
following discrete elliptic equation of the generating function ũh,2(ζ):

(
δτ (ζ)ũh,2(ζ), vh

)
+ (∇ũh,2(ζ),∇vh) =

(
− 1

τ

2k−1∑
n=k

ζn
k∑

j=0,n−j<k

δju
n−j
h,2 , vh

)
= 0

∀ vh ∈ S̊h

ũh,2(ζ) = g̃h(ζ) on ∂Ω,

(5.18)

whose solution map is denoted by M̃h(ζ) : Sh(∂Ω) → Sh(Ω), g̃h(ζ) 7→ ũh,2(ζ).
We define the truncated sectors Στ

θ = {z ∈ Σθ : Im(z) ≤ π/τ} and Στ
θ,σ =

{z ∈ Σθ : |z| ≥ σ−1 and Im(z) ≤ π/τ} for any σ > τ/π. The following result of the
generating function of BDF-k method is shown in [12, Lemma 3.1].

Lemma 5.2 For any ε and k = 1, ..., 6, there exists θϵ ∈ (π/2, π) such that for any
θ ∈ (π/2, θϵ), there exist positive constants C, C1,and C2 (independent of τ) such that
for all z ∈ Στ

θ we have the inclusion δτ (e
−τz) ⊆ Σπ−θk+ϵ (Recall that θk is the angle

of A-stability region.) and the following estimates hold
C1|z| ≤ |δτ (e−τz)| ≤ C2|z|,

δτ (e
−zτ ) ∈ Σπ−θk+ϵ,

|δτ (e−zτ )− z| ≤ Cτk|z|k+1.
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For BDF-1 (i.e. backward Euler) time-stepping method, the results in Lemma 5.2 can
be furthermore improved.

Lemma 5.3 Let θ ∈ (π2 , arccot(−
2
π )). For z ∈ Σθ, we have 1−e−τz

τ ∈ Σθ. Moreover
there exist positive constants C, C1,and C2 such that for z ∈ Στ

θ

C1|z| ≤ |1− e−τz

τ
| ≤ C2|z|,

|1− e−τz

τ
− z| ≤ Cτ |z|2.

Additionally, for σ > τ/π, the following inequalities hold:∣∣∣∣1− eτz − 1

zτ

∣∣∣∣ ≤ C|z|τ and
∣∣∣∣eτz − 1

zτ

∣∣∣∣ ≤ C ∀ z ∈ Γ τ
θ,σ, (5.19)∣∣∣∣eτz − 1

zτ

∣∣∣∣ ≤ C and |z| ≤ C

∣∣∣∣1− e−τz

τ

∣∣∣∣ ∀ z ∈ Γθ,σ\Γ τ
θ,σ. (5.20)

The first part of this lemma results from [10, Lemma 3.4] and [9, Appendix C]. For
the second part, inequalities in (5.19) can be verified by using Taylor’s expansion
on a bounded domain. Inequalities in (5.20) can be proved by using the fact that
|z|τ ≥ π/| sin(θ)| for z ∈ Γθ,σ\Γ τ

θ,σ.
From now on, we fix any 0 < ε < min1≤k≤6 θk and an angle θ such that

π

2
< θ < min{θϵ, arccot(−

2

π
)} (5.21)

where θϵ is determined in Lemma 5.2. From Lemma 5.2, we know δτ (e
−zτ ) ∈ Σπ−θk+ϵ ⊆

ρ(∆h) for z ∈ Στ
θ , so the operator M̃(e−τz) is well-defined and analytic for z ∈ Στ

θ ,
satisfying the following estimate according to Lemma 5.1:

‖M̃h(e
−τz)‖L∞(∂Ω)→L∞(Ω) ≤ C ∀ z ∈ Στ

θ . (5.22)
Since ũh,2(·) is analytic in the open unit disk D, by Cauchy’s integral formula, we
derive for any 0 < ρ < 1 that

uNh,2 =
1

2πi

∫
|ζ|=ρ

ũh,2(ζ)ζ
−N−1dζ

=
τ

2πi

∫ − ln ρ
τ +iπ

τ

− ln ρ
τ −iπ

τ

ũh,2(e
−τz)etNzdz (change of variable ζ = e−τz)

=
τ

2πi

∫
Γ τ
θ,σ

ũh,2(e
−τz)etNzdz (deform the contour)

=
τ

2πi

∫
Γ τ
θ,σ

M̃h(e
−τz)g̃h(e

−τz)etNzdz (by the definition of Mh(ζ)), (5.23)

where we have deformed the contour of integration from
{z ∈ C : Re(z) = − ln ρ/τ, |Im(z)| ≤ π/τ}

to
Γ τ
θ,σ = Γ τ,1

θ,σ ∪ Γ τ,2
θ,σ with Γ τ,1

θ,σ = {z ∈ C : |arg(z)| = θ, |z| ≥ s−1 and |Im(z)| ≤ π/τ},

and Γ τ,2
θ,σ = {z ∈ C : |z| = s−1 and |arg(z)| ≤ θ},

(5.24)
where σ > τ/π can be arbitrary. The deformation of the contour is valid due to the
analyticity of the integrand and the periodicity in Im(z) with period 2π/τ .
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Let uh,2 ∈ C([0, T ]×Ω)∩C∞
pw([0, T ];Sh(Ω)) be the globally continuous piecewise

smooth solution of the semi-discrete FEM
(∂tuh,2(t), vh) + (∇uh,2(t),∇vh) = 0 ∀ vh ∈ S̊h, ∀ t ∈ (0, T ]

uh,2(t) = gh(t) on ∂Ω, ∀ t ∈ [0, T ],

uh,2(0) = 0 in Ω,

(5.25)

where gh(t) = gnh is the Sh(∂Ω)-valued globally continuous piecewise linear function
whose nodal values satisfy gh(tn) = gnh for n ≥ 0. In particular, gh(t) = 0 for t ∈
[tN−1, tN ], which implies that

uh,2(t) = e(t−tN−1)∆huh,2(tN−1) ∀ t ∈ [tN−1, tN ].

Hence, we can furthermore decompose uh,2(t) into
uh,2(t) = uh,21(t) + uh,22(t),

with

uh,21(t) =

{
uh,2(t) for t ∈ [0, tN−1],

0 for t ∈ (tN−1, tN ],

uh,22(t) =

{
0 for t ∈ [0, tN−1],

e(t−tN−1)∆huh,2(tN−1) for t ∈ (tN−1, tN ],

and denote by

v̂(z) =

∫ +∞

0

e−tzv(t)dt

the Laplace transform of a function v in time. Then
ûh,2(z) = ûh,21(z) + ûh,22(z) = ûh,21(z) + (z −∆h)

−1e−ztN−1uh,2(tN−1).

By considering the Lapalce transform of (5.25) in time, we get{
(zûh,2(z), vh) + (∇ûh,2(z),∇vh) = 0 ∀ vh ∈ S̊h,

ûh,2(z) = ĝh(z) on ∂Ω.
(5.26)

We also have the following formula for the Laplace transform of the piecewise linear
function gh(t).

Lemma 5.4

ĝh(z) =
e−τz + eτz − 2

z2τ
g̃h(e

−τz). (5.27)

Proof We use the change of variables ζ = e−τz. Straightforward calculations together
with the initial condition g0h = 0 lead to

ĝh(z) =

∫ +∞

0

gh(t)e
−ztdt

=

+∞∑
j=0

∫ tj+1

tj

(
gjh +

gj+1
h − gjh

τ
(t− tj)

)
e−ztdt

=

+∞∑
j=0

gjh
ζj+1 − ζj

−z
+

+∞∑
j=0

gj+1
h − gjh

τ

(
− τζj+1

z
− ζj+1 − ζj

z2

)

=

+∞∑
j=0

1− ζ

z
gjhζ

j −
+∞∑
j=0

1− ζ

z
gjhζ

j −
+∞∑
j=0

(ζj+1 − ζj)(gj+1
h − gjh)

z2τ
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= −
+∞∑
j=0

(1− ζ)(1− ζ−1)

z2τ
gjhζ

j

=
e−τz + eτz − 2

z2τ
g̃h(e

−τz).

ut
Analogous to (5.19) and (5.20), the estimates below follow from Taylor’s expansion.∣∣∣∣1− e−τz + eτz − 2

z2τ2

∣∣∣∣ ≤ C|z|2τ2 and
∣∣∣∣e−τz + eτz − 2

z2τ2

∣∣∣∣ ≤ C ∀ z ∈ Γ τ
θ,σ, (5.28)∣∣∣∣∣e−τz + eτz − 2

z2τ2

∣∣∣∣∣ ≤ C|e−τz| ∀ z ∈ Γθ,σ\Γ τ
θ,σ.

(5.29)
Then using the above lemma, we can rewrite (5.26) as

(
1− e−τz

τ
ûh,2(z), vh

)
+ (∇ûh,2(z),∇vh) =

((
1− e−τz

τ
− z

)
ûh,2(z), vh

)
∀ vh ∈ S̊h,

ûh,2(z) =
e−τz + eτz − 2

z2τ
g̃h(e

−τz) on ∂Ω.

(5.30)

We denote by L̃h(e
−τz) : Sh(∂Ω) → Sh(Ω) the solution map of the homogeneous part

of equation (5.30). By the property of θ (equation (5.21)) and Lemma 5.3, we have
‖L̃h(e

−τz)‖L∞(∂Ω)→L∞(Ω) ≤ C ∀ z ∈ Σθ. (5.31)

The estimate of the operator difference M̃h(e
−τz)− L̃h(e

−τz) is given in the following
lemma.

Lemma 5.5 Given any z ∈ Στ
θ , it holds that

‖M̃h(e
−τz)− L̃h(e

−τz)‖L∞(∂Ω)→L∞(Ω) ≤ Cτ |z|.

Proof Again, we use the change of variables ζ = e−τz. For any fixed z ∈ Στ
θ and

any given boundary data fh ∈ Sh(∂Ω), if we denote vh(ζ) := M̃h(ζ)fh and wh(ζ) :=
L̃h(ζ)fh, by the definitions of M̃h and G̃h, we know

(
δτ (e

−τz)vh, φh

)
+ (∇vh,∇φh) = 0 ∀φh ∈ S̊h,

vh = fh on ∂Ω,

and 
(
1− e−τz

τ
wh, φh

)
+ (∇wh,∇φh) = 0 ∀φh ∈ S̊h,

wh = fh on ∂Ω.

Upon subtraction, the following equation holds for all φh ∈ S̊h(Ω)(
1− e−τz

τ
(vh − wh), φh

)
+ (∇(vh − wh),∇φh) = −

((
δτ (e

−τz)− 1− e−τz

τ

)
vh, φh

)
,

and by inverting the elliptic operator

vh − wh = −
(
1− e−τz

τ
−∆h

)−1

Ph

((
δτ (e

−τz)− 1− e−τz

τ

)
vh

)
.
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Consequently, from the resolvent estimate, L∞ stability of Ph, Lemma 5.2–5.3 and
the mapping property of M̃h(ζ), we get

‖(M̃h(ζ)− L̃h(ζ))fh‖L∞(Ω) = ‖vh − wh‖L∞(Ω)

≤ C|z|−1τ |z|2‖M̃h(ζ)fh‖L∞(Ω)

≤ Cτ |z|‖fh‖L∞(∂Ω).

Therefore, it follows
‖M̃h(e

−τz)− L̃h(e
−τz)‖L∞(∂Ω)→L∞(Ω) ≤ Cτ |z|.

ut

The solution of (5.30) can be represented as
ûh,2(z)

= L̃h(e
−τz)

e−τz + eτz − 2

z2τ
g̃h(e

−τz) +

(
1− e−τz

τ
−∆h

)−1

Ph

(
1− e−τz

τ
− z

)
ûh,2(z)

= L̃h(e
−τz)

e−τz + eτz − 2

z2τ
g̃h(e

−τz) +

(
1− e−τz

τ
−∆h

)−1

Ph

(
1− e−τz

τ
− z

)
ûh,21(z)

+

(
1− e−τz

τ
−∆h

)−1(
1− e−τz

τ
− z

)
(z −∆h)

−1e−ztN−1uh,2(tN−1). (5.32)

By using the inverse Laplace transform and the expression in (5.32), we have

uh,2(tN ) =
1

2πi

∫
Γθ,σ

ûh,2(z)e
tNzdz

=
τ

2πi

∫
Γ τ
θ,σ

L̃h(e
−τz)

e−τz + eτz − 2

z2τ2
g̃h(e

−τz)etNzdz

+
τ

2πi

∫
Γθ,σ\Γ τ

θ,σ

L̃h(e
−τz)

e−τz + eτz − 2

z2τ2
g̃h(e

−τz)etNzdz

+
1

2πi

∫
Γθ,σ

(
1− e−τz

τ
−∆h

)−1

Ph

(
1− e−τz

τ
− z

)
ûh,21(z)e

tNzdz

+
1

2πi

∫
Γθ,σ

(
1− e−τz

τ
−∆h

)−1(
1− e−τz

τ
− z

)
(z −∆h)

−1uh,2(tN−1)e
τzdz,

(5.33)
where σ > τ/π can be arbitrary and different in each of the integral above.

Subtracting (5.33) from (5.23) and using the boundary condition gnh = 0 for n ≤
k − 1 and n ≥ N − 1, we obtain
uNh,2 − uh,2(tN )

=
τ

2πi

∫
Γ τ
θ,σ

(
1− e−τz + eτz − 2

z2τ2

)
M̃h(e

−τz)g̃h(e
−τz)etNzdz

+
τ

2πi

∫
Γ τ
θ,σ

e−τz + eτz − 2

z2τ2

(
M̃h(e

−τz)− L̃h(e
−τz)

)
g̃h(e

−τz)etNzdz

− τ

2πi

∫
Γθ,σ\Γ τ

θ,σ

e−τz + eτz − 2

z2τ2
L̃h(e

−τz)g̃h(e
−τz)etNzdz

− 1

2πi

∫
Γθ,σ

(
1− e−τz

τ
−∆h

)−1(
1− e−τz

τ
− z

)
ûh,21(z)e

tNzdz
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− 1

2πi

∫
Γθ,σ

(
1− e−τz

τ
−∆h

)−1(
1− e−τz

τ
− z

)
(z −∆h)

−1uh,2(tN−1)e
τzdz

=

N−2∑
j=k

FN−j
h gjh +

N−2∑
j=k

Gn−j
h gjh −

N−2∑
j=k

Ln−j
h gjh

−
∫ tN−1

tk−1

Kh(tN − s)Phuh,2(s)ds−Qhuh,2(tN−1), (5.34)

where

Fn
h =

τ

2πi

∫
Γ τ
θ,σ

(
1− e−τz + eτz − 2

z2τ2

)
M̃h(e

−τz)etnzdz, (5.35)

Gn
h =

τ

2πi

∫
Γ τ
θ,σ

e−τz + eτz − 2

z2τ2

(
M̃h(e

−τz)− L̃h(e
−τz)

)
etnzdz, (5.36)

Ln
h =

τ

2πi

∫
Γθ,σ\Γ τ

θ,σ

e−τz + eτz − 2

z2τ2
L̃h(e

−τz)etnzdz, (5.37)

Kh(s) =
1

2πi

∫
Γθ,σ

(
1− e−τz

τ
−∆h

)−1(
1− e−τz

τ
− z

)
eszdz, (5.38)

Qh =
1

2πi

∫
Γθ,σ

(
1− e−τz

τ
−∆h

)−1(
1− e−τz

τ
− z

)
(z −∆h)

−1eτzdz. (5.39)

First, by choosing σ = tn in (5.35) and using (5.22) and (5.28), we have

‖Fn
h ‖L∞(∂Ω)→L∞(Ω) ≤ Cτ

∫
Γ τ
θ,σ

|z|2τ2‖M̃h(e
−τz)‖L∞(∂Ω)→L∞(Ω)e

tnRe(z)|dz|

≤ Cτ3
∫
Γ τ,1
θ,tn

|z|2etnRe(z)|dz|+ Cτ3
∫
Γ τ,2
θ,tn

|z|2etnRe(z)|dz|

≤ Cτ3
∫ +∞

t−1
n

r2e−tnr| cos θ|dr + Cτ3
∫ θ

−θ

t−3
n e−| cos θ|dθ

≤ Cτ3

t3n
=

C

n3
.

Hence, ∥∥∥∥N−2∑
j=k

FN−j
h gjh

∥∥∥∥
L∞(Ω)

≤ C

N−2∑
j=k

C

(N − j)3
max

k≤n≤N−2
‖gnh‖L∞(∂Ω)

≤ C max
k≤n≤N−2

‖gnh‖L∞(∂Ω). (5.40)

Analogously, from (5.28), Lemma 5.5 and choosing σ = tn, we get

‖Gn
h‖L∞(∂Ω)→L∞(Ω) ≤ Cτ

∫
Γ τ
θ,σ

‖M̃h(e
−τz)− L̃h(e

−τz)‖L∞(∂Ω)→L∞(Ω)e
tnRe(z)|dz|

≤ Cτ2
∫
Γ τ,1
θ,tn

|z|etnRe(z)|dz|+ Cτ2
∫
Γ τ,2
θ,tn

|z|etnRe(z)|dz|

≤ Cτ2
∫ +∞

t−1
n

re−tnr| cos θ|dr + Cτ2
∫ θ

−θ

t−2
n e−| cos θ|dθ

≤ Cτ2

t2n
=

C

n2
.
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Therefore, it follows∥∥∥∥N−2∑
j=k

GN−j
h gjh

∥∥∥∥
L∞(Ω)

≤ C

N−2∑
j=k

C

(N − j)2
max

k≤n≤N−2
‖gnh‖L∞(∂Ω)

≤ C max
k≤n≤N−2

‖gnh‖L∞(∂Ω). (5.41)

Then, by choosing σ = tn−1 in (5.37) and using (5.31) and the estimates in (5.29),
we have

‖Ln
h‖L∞(∂Ω)→L∞(Ω) ≤ Cτ

∫
Γθ,σ\Γ τ

θ,σ

e−τRe(z)‖L̃h(e
−τz)‖L∞(∂Ω)→L∞(Ω)e

tnRe(z)|dz|

≤ Cτ

∫
Γθ,σ\Γ τ

θ,σ

e−tn−1|z|| cos(θ)||dz|

≤ Cτ

∫ +∞

π
τ sin(θ)

e−tn−1r| cos(θ)|dr

≤ C

∫ +∞

π
sin(θ)

e−
tn−1| cos(θ)|

τ r̃dr̃ (change of variables)

≤ C
1

(n− 1)| cos θ|
e−(n−1)π/| tan(θ)| for n ≥ 2,

and then∥∥∥∥N−2∑
j=k

LN−j
h gjh

∥∥∥∥
L∞(Ω)

≤ C

N−2∑
j=k

(N − 1− j)−1e−(N−1−j)π/| tan(θ)| max
k≤n≤N−2

‖gnh‖L∞(∂Ω)

≤ C max
k≤n≤N−2

‖gnh‖L∞(∂Ω). (5.42)

Since τ |z| ≥ π/ sin(θ) for z ∈ Γθ,σ\Γ τ
θ,σ, by using the second inequality of (5.20)

it is easy to verify that∣∣∣∣1− e−τz

τ
− z

∣∣∣∣ ≤ C

∣∣∣∣1− e−τz

τ

∣∣∣∣ ≤ Cτ |z|
∣∣∣∣1− e−τz

τ

∣∣∣∣ ∀ z ∈ Γθ,σ\Γ τ
θ,σ.

With this inequality and taking σ = s, we have

‖Kh(s)‖L∞(Ω)→L∞(Ω) ≤ C

∫
Γ τ
θ,σ

∣∣∣∣1− e−τz

τ

∣∣∣∣−1

τ |z|2esRe(z)|dz|

+ C

∫
Γθ,σ\Γ τ

θ,σ

∣∣∣∣1− e−τz

τ

∣∣∣∣−1

τ |z|
∣∣∣∣1− e−τz

τ

∣∣∣∣esRe(z)|dz|

≤ Cτ

∫
Γθ,s

|z|esRe(z)|dz|

≤ Cτ

∫ +∞

s−1

re−sr| cos(θ)|dr + Cτ

∫ θ

−θ

s−2e−| cos θ|dϕ

≤ Cτs−2 for s ≥ τ.

Hence,∥∥∥∥ ∫ tN−1

tk−1

Kh(tN − s)Phuh,2(s)ds

∥∥∥∥
L∞(Ω)

≤
∫ tN−1

tk−1

Cτ(tN − s)−2‖uh,2(s)‖L∞(Ω)ds

≤ C‖uh,2‖L∞(tk−1,tN−1;L∞(Ω))

≤ C‖gh‖L∞(tk−1,tN−1;L∞(∂Ω))
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= C max
k≤n≤N−2

‖gnh‖L∞(∂Ω), (5.43)

where we have used Theorem 2.1 in the last inequality.
Similarly, by choosing σ = τ in the expression of Qh, we have

‖Qh‖L∞(Ω)→L∞(Ω) ≤ C

∫
Γ τ
θ,σ

∣∣∣∣1− e−τz

τ

∣∣∣∣−1

τ |z|2|z|−1eτRe(z)|dz|

+ C

∫
Γθ,σ\Γ τ

θ,σ

∣∣∣∣1− e−τz

τ

∣∣∣∣−1

τ |z|
∣∣∣∣1− e−τz

τ

∣∣∣∣|z|−1eτRe(z)|dz|

≤ Cτ

∫
Γθ,τ

eτRe(z)|dz|

≤ Cτ

∫ +∞

τ−1

e−τr| cos(θ)|dr + Cτ

∫ θ

−θ

τ−1e−| cos θ|dϕ

≤ C.

Hence,
‖Qhuh,2(tN−1)‖L∞(Ω) ≤ C‖uh,2(tN−1)‖L∞(Ω) ≤ C‖gh‖L∞(0,tN−1;L∞(∂Ω))

= C max
k≤n≤N−2

‖gnh‖L∞(∂Ω), (5.44)

where we have used Theorem 2.1 again in the last inequality.
Finally, substituting (5.40)–(5.44) into (5.34), we obtain

‖uNh,2 − uh,2(tN )‖L∞(Ω) ≤ C max
k≤n≤N−2

‖gnh‖L∞(∂Ω). (5.45)

Then, using the triangle inequality and Theorem 2.1, we obtain (5.7).

5.3 Proof of (5.8)

For k ≤ N ≤ 2k − 1, at the time tk, we solve for ukh ∈ S̊h satisfying(
ukh
τ
, vh

)
+ (∇unh,∇vh) = −

(
1

τ

k∑
j=1

δju
n−j
h , vh

)
∀ vh ∈ S̊h,

which can be equivalently written as

ukh = −
(
1

τ
−∆h

)−1

Ph
1

τ

k∑
j=1

δju
k−j
h .

Then,

‖ukh‖L∞(Ω) ≤
∥∥∥∥(1

τ
−∆h

)−1∥∥∥∥
L∞(Ω)→L∞(Ω)

∥∥∥∥Ph
1

τ

k∑
j=1

δju
k−j
h

∥∥∥∥
L∞(Ω)

≤ C sup
0≤j≤k−1

‖ujh‖L∞(Ω).

Analogously, at the time tk+1, we have

uk+1
h = −

(
1

τ
−∆h

)−1

Ph
1

τ

k∑
j=1

δju
k+1−j
h ,

with
‖uk+1

h ‖L∞(Ω) ≤ C sup
1≤j≤k

‖ujh‖L∞(Ω) ≤ C sup
0≤j≤k−1

‖ujh‖L∞(Ω).
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Recursively, we conclude
‖uNh ‖L∞(Ω) ≤ C sup

0≤j≤k−1
‖ujh‖L∞(Ω),

for any k ≤ N ≤ 2k − 1.
If N ≥ 2k, multiplying (5.5) by ζn, summing up the results for n = k, k+1 . . . , and

using the identity (5.17), we obtain the following elliptic equation for the generating
function ũh,3(ζ) ∈ S̊h(Ω) satisfying zero Dirichlet boundary condition:(

δτ (ζ)ũh,3(ζ), vh

)
+ (∇ũh,3(ζ),∇vh) =

(
− 1

τ

2k−1∑
n=k

ζn
k∑

j=0,n−j<k

δju
n−j
h,3 , vh

)
,

whose solution can be represented by

ũh,3(ζ) = −
(
δτ (ζ)−∆h

)−1

Ph
1

τ

2k−1∑
n=k

ζn
k∑

j=0,n−j<k

δju
n−j
h,3 .

ũh,3(ζ) is analytic in D = {ζ ∈ C : |ζ| < 1} due to the standard energy estimate.
By Cauchy’s integral formula and the deformation of contour (cf. (5.23)), for any
0 < ρ < 1 we have

uNh,3 = − 1

2πi

∫
|ζ|=ρ

(
δτ (ζ)−∆h

)−1

Ph
1

τ

2k−1∑
n=k

ζn
k∑

j=0,n−j<k

δju
n−j
h,3 ζ

−N−1dζ

= − 1

2πi

∫
Στ

θ,σ

(
δτ (e

−τz)−∆h

)−1

Ph

2k−1∑
n=k

k∑
j=0,n−j<k

δju
n−j
h,3 e

tN−nzdz.

By choosing σ = tN−n (N − n ≥ 2k − (2k − 1) = 1) for each term of the summation
in the representation formula above, it follows
‖uNh,3‖L∞(Ω)

≤ C

∫
Γ τ
θ,σ

‖(δτ (ζ)−∆h)
−1‖L∞(Ω)→L∞(Ω)

2k−1∑
n=k

k∑
j=0,n−j<k

‖Phδju
n−j
h,3 ‖L∞(Ω)e

tN−nRe(z)dz

≤ C sup
0≤j≤k−1

‖ujh‖L∞(Ω)

2k−1∑
n=k

(∫
Γ τ,1
θ,tN−n

+

∫
Γ τ,2
θ,tN−n

)
|z|−1etN−nRe(z)dz

≤ C sup
0≤j≤k−1

‖ujh‖L∞(Ω)

2k−1∑
n=k

(∫ +∞

t−1
N−n

r−1e−tN−nr| cos θ|dr +

∫ θ

−θ

e−| cos θ|dθ

)
≤ C sup

0≤j≤k−1
‖ujh‖L∞(Ω),

where in the second inequality we have applied the resolvent estimate (Lemma 5.2)
and the L∞ stability of Ph.

This proves (5.8). The proof of Theorem 2.2 is complete.

6 Conclusions and further discussions

We have proved the weak maximum principle of semi-discrete FEM and fully discrete
FEM with k-step BDF time-stepping method for k = 1, . . . , 6, using the techniques of
generating polynomials and the discrete inverse Laplace transform (Cauchy integral
formula), which requires using a uniform time step size. Therefore, the analysis in
this article cannot be readily extended to k-step BDF methods or other single-step
methods (such as the Runge–Kutta methods or discontinous Galerkin (dG) methods)
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with variable time step sizes τn, n = 1, . . . , N . For the dG time-stepping method with
possibly variable step sizes satisfying the following conditions:

1. There are constants c, β > 0 independent of the maximal step size τ such that
τmin ≥ cτβ .

2. There is a constant κ > 0 independent on τ such that κ−1 ≤ τn
τn+1

≤ κ for
n = 1, . . . , N − 1.

3. It holds τ ≤ 1
4T ,

an application of the discrete semigroup estimates in [20] can yield the following result:

‖ukh‖L∞(I;L∞(Ω)) ≤ C ln
T

τ
‖gh‖L∞(I;L∞(∂Ω)),

with an additional logarithmic factor depending on the maximal step size τ . We
present a proof for dG(0) in Appendix. The general dG(k) can be treated similarly
by using the approach from [20]. The proof of weak maximum principle of dG with
variable step sizes without the logarithmic factor is interesting and nontrivial.
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Appendix: Weak maximum principle of dG with variable step sizes

The space-time finite element space of degree 0 in time and degree r ≥ 1 in space is
defined as

X0,r
τ,h = {vτh : vτh|In ∈ P0(S̊h), n = 1, 2, . . . , N, r ≥ 1}. (A.1)

The dG(0) method for the homogeneous parabolic equation
∂tv −∆v = 0 in (0, T ]×Ω,

v = 0 on [0, T ]× ∂Ω,

v|t=0 = v0 in Ω.

(A.2)

can be written as follows: For the given v0 ∈ Lp(Ω), find vτh ∈ X0,r
τ,h such that

vτh,1 − τ1∆hvτh,1 = v0,

vτh,m − τm∆hvτh,m = vτh,m−1, m = 2, 3, . . . ,M.
(A.3)

The following result was shown in [20].

Proposition A (Discrete semigroup estimates in Lp(Ω)) Let vτh ∈ X0,r
τ,h be

the solution of (A.3) with v0 ∈ Lp(Ω), 1 ≤ p ≤ ∞. Then there exists a constant C
independent of τ such that

‖vτh,m‖Lp(Ω) + (tm − tl)‖∆hvτh,m‖Lp(Ω) ≤ C‖vτh,l‖Lp(Ω), ∀m > l ≥ 1.
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Now we consider uτh ∈ X0,r
τ,h to be the dG(0) solution to the parabolic equation with

nonzero right hand side f , i.e., uτh satisfies,

ukh,1 − τ1∆hukh,1 = τ1Phf1,

ukh,m − τm∆hukh,m = ukh,m−1 + τmPhfm, m = 2, 3, . . . ,M,
(A.4)

where
fm(·) = 1

τm

∫
Im

f(t, ·)dt

and Ph : L2(Ω) → S̊h is the L2 projection. Since fm is the L2 projection of f onto
the piecewise constant functions on each subinterval Im, we have

max
1≤m≤M

‖fm‖Lp(Ω) ≤ C‖f‖L∞(I;Lp(Ω)), 1 ≤ p ≤ ∞. (A.5)

Using (A.4), we can write the dG(0) solution as

ukh,m =

m∑
l=1

τl

m−l+1∏
j=1

r(−τm−j+1∆h)

Phfl, m = 1, 2, . . . ,M, (A.6)

where r(z) = (1 + z)−1.
Consider the parabolic equation

∂tu−∆u = 0 in (0, T ]×Ω,

u = g on [0, T ]× ∂Ω,

u|t=0 = 0 in Ω.

(A.7)

With the help of the previous result we establish:

Theorem A (Weak maximum principle of dG(0)) Let u0 = 0. Then, there
exists a constant C independent of k and h such that for ukh be the fully discrete
dG(0) solution to (A.7), we have

‖ukh‖L∞(I;L∞(Ω)) ≤ C ln
T

τ
‖gh‖L∞(I;L∞(∂Ω)),

where gh is some finite element approximation of g.

Proof First we define Let Gh be the discrete harmonic extension of gh, i.e. Gh(t)
satisfies (pointwise in t) {

(∇Gh,∇χ)Ω = 0 ∀χ ∈ S̊h,

Gh = gh on ∂Ω.
(A.8)

Then the difference vh = uh − Gh ∈ S̊h (zero on ∂Ω) satisfies the semi-discrete
problem, {

(∂tvh, χ)Ω + (∇vh,∇χ)Ω = (∂tGh, χ)Ω in (0, T ]×Ω,

vh|t=0 = 0 in Ω,
(A.9)

for any χ ∈ S̊h, and as a result the fully discrete difference vkh = ukh−PhGkh ∈ X0,r
k,h,

where Ph is the L2-orthogonal projection onto S̊h, using (A.4) satisfies

vkh,m =

m∑
l=1

τl

m−l+1∏
j=1

r(−τm−j+1∆h)

 PhGkh,l − PhGkh,l−1

τl
, m = 1, 2, . . . ,M,



32

where r(z) = (1 + z)−1 and with the convention that Gkh,0 = 0. Using the discrete
integration by parts, we have

m∑
l=1

m−l+1∏
j=1

r(−τm−j+1∆h)

 (PhGkh,l − PhGkh,l−1)

=r(−τm∆h)PhGkh,m −
m∏
j=1

r(−τm−j+1∆h)PhGkh,0

+

m−1∑
l=2

(Id−r(−τl∆h))

m−l+1∏
j=1

r(−τm−j+1∆h)

PhGkh,l

=r(−τm∆h)PhGkh,m +

m−1∑
l=2

τl∆hr(−τl∆h)

m−l+1∏
j=1

r(−τm−j+1∆h)

PhGkh,l,

where we used that Id−r(−τl∆h) = τl∆hr(−τl∆h) and PhGkh,0 = 0. Using the
properties of the rational function r and the elliptic theory, we have

‖r(−τm∆h)Gkh,m+1‖L∞(Ω) ≤ C‖g‖L∞(I;L∞(∂Ω)).

Hence for m = 1, 2, . . . ,M ,

‖vkh,m‖L∞(Ω) ≤ C‖g‖L∞(I;L∞(∂Ω)) +

m∑
l=1

τl

∥∥∥∥∥∥
∆h

m−l+1∏
j=1

r(−τm−j+1∆h)

PhGkh,l

∥∥∥∥∥∥
L∞(Ω)

.

From Proposition A, since each term in the sum on the right-hand side can be thought
of as a homogeneous solution with initial condition PhGkh,l at t = tl−1, we have∥∥∥∥∥∥

∆h

m−l+1∏
j=1

r(−τm−j+1∆h)

PhGkh,l

∥∥∥∥∥∥
L∞(Ω)

≤ C

tm − tl−1
‖Gkh,l‖L∞(Ω).

Thus, we obtain

‖vkh,m‖L∞(Ω) ≤ C‖g‖L∞(I;L∞(∂Ω))+C

m∑
l=1

τl
tm − tl−1

‖Gkh,l‖L∞(Ω), m = 1, 2, . . . ,M.

(A.10)
From the above estimate and using (A.5),

‖vkh‖L∞(I;L∞(Ω)) = max
1≤m≤M

‖vkh,m‖L∞(Ω)

≤ C‖g‖L∞(I;L∞(∂Ω)) + C max
1≤m≤M

m∑
l=1

τl
tm − tl−1

‖Gkh,l‖L∞(Ω)

≤ C‖g‖L∞(I;L∞(∂Ω)) + C max
1≤l≤M

‖Gkh,l‖L∞(Ω) max
1≤m≤M

m∑
l=1

τl
tm − tl−1

≤ C ln
T

τ
‖g‖L∞(I;L∞(∂Ω)),

where in the last step we used that

max
1≤l≤M

‖Gkh,l‖L∞(Ω) ≤ C‖g‖L∞(I;L∞(∂Ω))
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and
m∑
l=1

τl
tm − tl−1

≤ 1 +

∫ tm−1

0

dt

tm − t
= 1 + ln

tm
τm

≤ C ln
T

τ
, (A.11)

by using the assumption τmin ≥ Cτβ and τ ≤ T
4 . Finally, using the triangle inequality,

it follows that

‖ukh‖L∞(I;L∞(Ω)) ≤ ‖vkh‖L∞(I;L∞(Ω))+‖PhGkh‖L∞(I;L∞(Ω)) ≤ C ln
T

τ
‖g‖L∞(I;L∞(∂Ω)).

Thus we obtain the result. ut
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