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Abstract. We propose a high-order multistep projection method for the harmonic
map heat flow from a bounded domain Ω ⊂ Rd into a given n-dimensional smooth
surface Γ ⊂ RN+1. At every time level, an auxiliary numerical solution is solved by
a multistep backward difference formula with a mass-lumping finite element method
in space, and then projected onto the surface Γ. The projected numerical solution is
used in the backward difference formula and the extrapolation of nonlinearities in the
following time levels. Such projection algorithms are convenient in computation while
still preserving the pointwise geometric constraint of the solution to stay on the target
surface Γ. The convergence of some low-order single-step projection algorithms based
on the backward Euler and Crank–Nicolson schemes have been studied in many articles
for harmonic map heat flow and related models into the unit sphere, while the conver-
gence of high-order multistep projection methods still remains open. In this article, we
propose a high-order multistep projection method for harmonic map heat flows into a
general smooth surface (not necessarily the unit sphere) and prove its optimal-order
convergence by combining four techniques, i.e., decomposition of the Nevanlinna–Odeh
multiplier technique into approximately normal and tangential components separately,
an almost orthogonal relation between the error functions associated to the auxiliary
and projected numerical solutions, pointwise L∞ error estimates, the use of orthogonal
projection onto the target surface Γ. Numerical results are provided to support the
theoretical anlaysis on the convergence of the high-order multistep projection methods.

Key words: harmonic map heat flow, target surface, backward difference formula,
projection, finite element, mass lumping, error estimates, almost orthogonality

1. Introduction

We consider the harmonic map heat flow from a bounded domain Ω ⊂ Rd, d ∈ {1, 2, 3}, into
an N -dimensional closed smooth surface Γ ⊂ RN+1, defined as the solution of the following
initial-boundary value problem:

∂tm = ∆m−A(m)(∇m,∇m) in Ω × (0, T ], (1.1)
∂νm = 0 on ∂Ω × (0, T ], (1.2)
m = m0 in Ω × {0}, (1.3)

where A(m) is the second fundamental of the target surface Γ at point m ∈ Γ, ν denotes
the outward unit normal vector on ∂Ω, and m0 is a given initial value such that m0(x) ∈ Γ
for x ∈ Ω. It can be shown that the solution automatically satisfies the pointwise geometric
constraint m(x, t) ∈ Γ for all (x, t) ∈ Ω × (0, T ].

The harmonic map heat flows were first introduced by Eells and Sampson [26] to construct
the harmonic map in a homotopy class of any given smooth map. Applications of the harmonic
map heat flows can be found in color image denoising [51,53] and nematic liquid crystal theory
[16,43]. In the latter application, the harmonic map heat flow is coupled with the Navier-Stokes
equations to describe the molecular orientation. Closely related models to the harmonic map
heat flows include the Landau–Lifshitz equation of ferromagnetism dynamics [7, 46] and the
geometric evolution equation of the normal vector in the mean curvature flow [39, 40]. These
equations are all nonlinear with respect to the gradient of the solution, and their solutions
share the same structure of staying on the unit sphere. Many different numerical methods
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have been considered for approximating the harmonic map heat flow and the related models,
including the Landau–Lifshitz equation and the nematic liquid crystal equations.

Optimal-order convergence has been proved for many algorithms which do not preserve
the pointwise geometric constraint m(x, t) ∈ Γ. For example, Girault and Guillen-Gonzalez
[30] proved first-order convergence of mixed finite element approximations to a penalized
nematic liquid crystals model. Gao [29] proved optimal-order convergence of the linearly
implicit backward Euler (FEMs) for the Landau–Lifshitz equation. Akrivis, Feischl, Kovács
and Lubich [2] proved optimal H1-norm error estimates for the Landau–Lifshitz equation with
high-order backward difference formulae (BDF) in time and a linearly implicit FEM in space.
More convergence results of numerical approximations to the Landau–Lifshitz equation and
nematic liquid crystal equations can be found in [10,23,28].

Many nonlinearly implicit numerical algorithms were proposed to preserve the pointwise
geometric constraint for the harmonic map heat flows. For example, Bartels and Prohl [14]
proposed a nonlinearly implicit finite-element method based on a reformulation of equation
(1.1) and a reduced spatial integration. Bartels, Lubich and Prohl [13] proposed a constrained
FEM by introducing an approximate discrete Lagrange multiplier into the variational weak
formulation. Baňas, Prohl and Schätzle [15] constructed a fully discrete nonlinear FEM for
the harmonic map heat flows into spheres of nonconstant radii. Gutiérrez-Santacreu and
Restelli [36] considered a unified saddle-point FEM for both equation (1.1) and the Landau-
Lifshitz equation. These nonlinearly implicit constraint-preserving algorithms were all proved
to be convergent, whereas no convergence rates have been proved yet. In [31–34, 38] the
authors proposed a family of manifold-valued finite element spaces by which high-order con-
vergence can be shown for a large class of discrete elliptic variational problems including the
stationary harmonic map into general surfaces. In [12], Bartels proposed an iterative finite
element algorithm for harmonic map into general two-dimensional surfaces where the global
convergence can be shown under a mild mesh condition using compactness arguments.

The linearly implicit projection methods are computationally as cheap as the classical lin-
early implicit methods and capable of preserving the pointwise geometric constraint, and
therefore have attracted considerable attention from the numerical analysts in recent years.
In this class of methods, at every time level, the numerical solution is first solved by a linearly
implicit scheme and then projected onto the surface Γ before proceeding to the next time
level. Alouges and Jaissson [6] proposed a normalized tangent plane method for approximat-
ing the Landau–Lifshitz equation, which was later generalized to a θ-method by Alouges [5]
(based on the classical θ-scheme for solving the heat equation), and extended to second-order
discretizations by Alouges et al. [8]. These methods were proved convergent without explicit
convergence rates. More recently, error estimates of the projection methods were obtained
in [11] and [9] for the semi-implicit Euler method and the Crank–Nicolson method, respec-
tively, under the stepsize restriciton τ ∼ h. Under this condition, the error estimates are
O(τ + hr+1) = O(h) and O(τ2 + h2) = O(h2) for the semi-implicit Euler FEM (with finite
elements of degree r ⩾ 2) and Crank–Nicolson finite difference method, respectively. Gui,
Li and Wang [35] proved the optimal-order convergence O(τ + hr+1) of a projection method
under a less restrictive condition hr+1 ≲ τ , with the semi-implicit Euler method in time and
a mass-lumping FEM using tensor-product elements of degree r ⩾ 1. All these methods are
single-step methods based on the backward Euler and Crank–Nicoson schemes.

The convergence of a semi-projection method with two-step BDF for the Landau–Lifshitz
equation was proved in [19], where “semi-projection method” means that the numerical so-
lution is projected onto the unit sphere in the extrapolation of the nonlinear terms, but not
projected onto the unit sphere in the two-step BDF for approximating the time derivative.
The construction of an unconditionally stable projection method for the Landau–Lifshitz equa-
tion by considering fast solvers and large damping parameters was given in [18] without error
estimates. As far as we know, the convergence of projection methods with second- and higher-
order multistep time discretizations still remain open. The convergence of projection methods
with a general target surface (rather than the unit sphere) also remains open.

In this article, we propose a high-order multistep projection method for the harmonic map
heat flow into a general smooth surface Γ ⊂ RN+1, with k-step BDF in time (k = 2, . . . , 5) and
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a tensor-product mass-lumping FEM of degree r ⩾ 1 in space, and prove the optimal-order
convergence O(τk + hr+1) of the k-step projection method under a mild condition hr+1 ≲ τk.

Let 1
τ δ0m̃

n−j
h + 1

τ

∑k
j=1 δjm

n−j
h be the k-step BDF for approximating the time derivative

∂tm(tn) in a multistep projection method, where mn
h and m̃n

h denote the projected numerical
solution and the auxiliary numerical solution (before being projected onto the surface Γ),
respectively. Compared with the single-step projection methods, the main difficulty in the
error analysis for multistep projection methods is from the following term:(δ0

τ
ẽnh +

1

τ

k∑
j=1

δje
n−j
h

)
(ẽnh − θkẽ

n−1
h ) (1.4)

where en−1
h := Ihm(tn−1) − mn−1

h and ẽn−1
h := Ihm(tn−1) − m̃n−1

h denote the errors of the
projected numerical solution and auxiliary numerical solution, respectively, and ẽnh − θkẽ

n−1
h

is the Nevanlinna–Odeh multiplier for the k-step BDF with some parameter θk ∈ [0, 1); see
[1, 3, 4, 44, 45]. The mismatch between en−j

h and ẽn−j
h in (1.4) must be shown to have very

small (high-order) influence on the Nevanlinna–Odeh multiplier technique. Our approach is
to decompose ẽih into its approximately normal and tangential components, i.e.,

ẽih = ηi + eih with ηj = ẽjh − ejh,

and then rewrite (1.4) into the following four parts:(
δ0ẽ

n
h +

k∑
j=1

δje
n−j
h

)
· (ẽnh − θkẽ

n−1
h )

=
(
δ0η

n +

k∑
j=0

δje
n−j
h , (ηn − θkη

n−1) + (enh − θke
n−1
h )

)
h

=
(
δ0η

n
)
·
(
ηn − θkη

n−1
)
+
( k∑

j=0

δje
n−j
h

)
·
(
ηn − θkη

n−1
)

+
(
δ0η

n
)
·
(
enh − θke

n−1
h

)
+
( k∑

j=0

δje
n−j
h

)
·
(
enh − θke

n−1
h

)
.

The first and fourth parts are estimated directly by using the Nevanlinna–Odeh multiplier
technique, while the second and third parts (the cross-product terms) are estimated by utilizing
an almost orthogonality relation for a general target surface Γ:

|en−j
h · ηn−i| ⩽ Cτ(|en−j

h |2 + |ẽn−i
h |2 + |en−i

h |2), (1.5)
with an additional factor Cτ to eliminate the factor τ−1 in (1.4). This additional factor Cτ
is based on the proof of the pointwise error estimate

‖ẽn−j
h ‖L∞(Ω) ⩽ τ,

which guarantees that en−j
h is approximately tangential to the target surface Γ at point

m(tn−j) ∈ Γ up to a quantity of O(τ |en−j
h |), provided that we define the projection onto

the surface Γ through distance projection (orthogonal projection). The pointwise error esti-
mate and the almost orthogonality relation in (1.5) allow us to apply the Nevanlinna–Odeh
multiplier technique [1,3,4,44,45] in the presence of a projection stage and therefore is essen-
tial in proving optimal-order convergence of the multistep projection methods. The almost
orthogonality and the Nevanlinna–Odeh multiplier estimates are first established at the finite
element nodes and then utilized in the error analysis through the mass lumping technique.

Since the projection method and its analysis proposed in this article is quite general, it may
also be applicable to other geometric partial differential equations with constrained target
manifolds. For example, the similar projection method may be applied to the heat flow of
Yang–Mills equation on Ω ⊂ Rd with image constrained on the Lie algebra so(d) [48, 52], as
well as the wave map into general smooth surfaces [49].

The rest of this article is organized as follows. In Section 2, we present the notations, the
numerical algorithm, and the main theorem on the convergence of the numerical solutions.
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The proof of the main theorem is presented in Section 3. Numerical results are presented in
Section 4 to support the theoretical analysis. Concluding remarks and extension to triangular
meshes are presented in Section 5.

2. Main results

In this section, we introduce the basic notations and the geometry of the target surface
Γ ⊂ RN+1, including the second fundamental form on the surface and the distance projection
onto the surface, which will be used in the definition of the multistep projection method for
harmonic map heat flows into a general target surface. Then we present the main theorem of
this article on the optimal-order convergence of the multistep projection method.

2.1. Notations

For 1 ⩽ p ⩽ +∞ and integer j ⩾ 0, we denote by Lp := (Lp)N+1 and Wj,p := (W j,p)N+1

the (N+1)-dimensional vector-valued Lebesgue and Sobolev spaces defined on Ω; see [27, page
261]. The norm and semi-norm on Wj,p are denoted by ‖ · ‖W j,p and | · |W j,p , respectively.
The abbreviations Hj := W j,2 and Hj := Wj,2 are used as usual. The space of uniformly
continuous functions on Ω is denoted by C(Ω).

Throughout the article, we use C to denote a generic positive constant, and ε a small generic
positive constant, which may assume different values at different occurrences but are always
independent of τ , h, and N . For brevity, we denote by “f ≲ g” the statement “f ⩽ Cg for
some constant C”.

Let Ω be a rectangular domain and consider the H1-conforming tensor-product finite ele-
ment space on a rectangular mesh, i.e.,

Sr
h := {v ∈ H1 : v|K ∈ (Qr)

N+1 ∀K ∈ K}, (2.1)
where K denotes the set of cuboids (d = 3) or rectangles (d = 2) in a quasi-uniform rectangular
partition of the domain Ω with mesh size h := maxK∈K diam(K), and Qr denotes the tensor-
product polynomial space composed of polynomials of degree up to r ⩾ 1 in each variable.
By using the piecewise Lagrange interpolation operator Ih, we can define the discrete inner
product (·, ·)h on Sr

h by

(f ,g)h :=

∫
Ω
Ih(f · g)dx =

∑
K∈K

∫
K
Ih(f · g)dx ∀ f ,g ∈ Sr

h,

where the interpolation nodes are chosen as Gauss–Lobatto points on each element K. Since
these quadrature points coincide with the finite element nodes, the mass matrix is thus lumped;
see [35, Section 2.1] and [42, Section 2] for more details. Similarly, the discrete Lp norm is
defined as

‖uh‖Lp
h
:=


(∫

Ω
Ih(|uh|p)dx

) 1
p

for uh ∈ Sr
h and 1 ⩽ p < +∞,

max
x∈Nodes(Sr

h)
|uh(x)| for uh ∈ Sr

h and p = +∞,

where Nodes(Sr
h) ⊆ Ω̄ denotes the set of all finite element nodes. which is equivalent to the

conventional Lp norm for finite element functions, i.e.,
‖uh‖Lp ≲ ‖uh‖Lp

h
≲ ‖uh‖Lp ∀uh ∈ Sr

h, 1 ⩽ p ⩽ +∞. (2.2)
A proof of this equivalence relation can be found in [35, Lemma 2.1].

2.2. Geometry of the target surface

Given a closed oritentable surface Γ ⊂ RN+1, there exists a smooth unit outward normal
vector field ννν : Γ → SN . The second fundamental form at point p ∈ Γ is a bilinear form
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defined by
A(p)(X,Y ) := −〈X, dννν(p)(Y )〉ννν(p) = −〈Y, dννν(p)(X)〉ννν(p) ∀X,Y ∈ TΓp, (2.3)

where TΓp denotes the space of vectors in RN+1 tangential to the surface at p ∈ Γ, and
〈·, ·〉 denotes the Euclidean inner product of RN+1. The last equality in (2.3) is due to the
self-adjointness of dννν(p) with respect to the inner product 〈·, ·〉.

We can extend the second fundamental form to vectors X,Y ∈ RN+1 which are not neces-
sarily in the tangent space TΓp, by first projecting X,Y onto the tangent space TΓp and then
substituting them into the second fundamental form, i.e.,

A(p)(X,Y ) := A(p)
(
X − (X · ννν(p))ννν(p), Y − (Y · ννν(p))ννν(p)

)
∀X,Y ∈ RN+1. (2.4)

Correspondingly, we can define a matrix H(p) ∈ R(N+1)×(N+1) associated to the second fun-
damental form by

H(p)X · Y = −〈X, dννν(p)(Y ) 〉 ∀X,Y ∈ TΓp.

If X and Y are matrices with rows Xi and Yi, i = 1, . . . , d, respectively, then we define

A(p)(X,Y ) :=
d∑

i=1

A(p)(Xi, Yi). (2.5)

For any column vector field u = (u1, · · · , uN+1)
⊤, we define ∇u = (∇u1, · · · ,∇uN+1) with

the gradient of the components as column vectors. According to the definition in (2.5), we
have

A(p)(∇u,∇v) =
d∑

i=1

A(p)(∂iu, ∂iv). (2.6)

For the simplicity of notation, we define the interpolated second fundamental form
Ah(u)(X,Y ) := −〈X, Ih(H ◦ u)Y 〉Ih(ννν ◦ u) (2.7)

for u ∈ C(Ω; Γ) and X,Y ∈ C(Ω;RN+1). If X,Y in (2.7) are two Rd×(N+1)-valued functions,
we define

Ah(u)(X,Y ) :=

d∑
i=1

Ah(u)(Xi, Yi). (2.8)

In the δ neighbourhood Uδ of Γ, with a sufficiently small δ, the distance function d : Uδ → R
defined by d(p) = infq∈Γ |p − q| is well-defined and smooth. Correspondingly, the distance
projection a : Uδ → Γ defined by

a(p) = p− d(p)ννν(p) (2.9)
is also smooth. The gradient of a at point p ∈ Uδ has the following expression:

∇a(p) = I− d(p)H(p)− ννν(p)⊗ ννν(p). (2.10)
Hence, if we are given a function u ∈ W 1,∞(Ω;Uδ), then a(u) ∈ W 1,∞(Ω)N+1 and therefore

‖∇[a(u)]‖L∞ = ‖(∇a)(u) · ∇u‖L∞ ≲ ‖∇u‖L∞ . (2.11)
Moreover, for two measurable functions u,v : Ω → Uδ ⊂ RN+1, we can use the local Lipschitz
continuity to obtain the following pointwise estimate:

|a(u(x))− a(v(x))| ≲ |u(x)− v(x)| ∀x ∈ Ω. (2.12)
The stability results in (2.11) and (2.12) also hold for ννν and H.

2.3. The numerical scheme and its error estimates
Let tn = nτ (n = 0, · · · , N) be a uniform partition of the interval [0, T ] with stepsize

τ = T/N . For k = 2, . . . , 5, we denote by δj and γj the coefficients of the following polynomials:

δ(ζ) =

k∑
j=1

1

j
(1− ζ)j =

k∑
j=0

δjζ
j and γ(ζ) =

1

ζ
[1− (1− ζ)k] =

k−1∑
j=0

γjζ
j ,
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where δ(ζ) and γ(ζ) are the generating polynomials of the linearly implicit k-step BDF; see [37].
For simplicity, we use the following notations to denote the k-step extrapolations of the exact
and numerical solutions, respectively:

û(tn) =
k−1∑
j=0

γju(tn−j−1) and ûnh =
k−1∑
j=0

γju
n−j−1
h .

For the k-step BDF, the following consistency estimates are well known.
Lemma 2.1. Let X be any given Banach space. Then the following two estimates hold:∥∥∥ k−1∑

j=0

γju(tn−j−1)− u(tn)
∥∥∥
X

≲ τk‖u‖Ck([0,T ];X) ∀u ∈ Ck([0, T ];X), (2.13)

∥∥∥ k∑
j=0

δju(tn−j)− ∂tu
∥∥∥
X

≲ τk‖u‖Ck+1([0,T ];X) ∀u ∈ Ck+1([0, T ];X). (2.14)

We assume that the numerical solutions mj
h = m̃j

h at the starting time levels j = 0, . . . , k−1
are given. Then we determine mn

h, k ⩽ n ⩽ N , by first solving an auxiliary numerical solution
m̃n

h ∈ Sr
h from the weak formulation(δ0

τ
m̃n

h +
1

τ

k∑
j=1

δjm
n−j
h ,vh

)
h
− (∆hm̃

n
h,vh) = −

(
Ah(a ◦ m̂n

h)(∇m̂n
h,∇m̂n

h),vh

)
(2.15)

where the discrete Laplacian operator ∆h : Sr
h → Sr

h is defined by
(∆hvh,wh) := −(∇vh,∇wh) ∀vh,wh ∈ Sr

h,

and then projecting m̃n
h onto Γ at the finite element nodes, i.e.,

mn
h = Ih (a ◦ m̃n

h) ∈ Sr
h, (2.16)

where a is the distance projection defined in (2.9).
Remark 2.1. Since the nonlinear terms are treated fully explicitly, the unique solvability of
(2.15) is clear. Then (2.16) is well defined provided the projection a is well defined. This is the
case when Γ encloses a convex domain. For a general smooth surface which does not enclose a
convex domain, (2.16) is well defined if m̃n

h is in a small neighbourhood of the surface Γ. This
can be guaranteed by the error estimates (3.43), since at each finite element node it holds that

‖m̃n
h − a ◦ m̃n

h‖L∞ ⩽ ‖m̃n
h − Ihm(tn)‖L∞ = ‖ẽnh‖L∞ ⩽ τ,

where ẽnh := Ihm(tn)− m̃n
h. Hence we can choose sufficiently small τ such that all of the finite

element nodal values lie in Uδ ensuring the nodal projection is well-defined.
In order to obtain error estimates for the k-step projection method defined in (2.15)–(2.16),

we shall work with the following conditions:
(C1) The solution of problem (1.1)–(1.3) is sufficiently smooth. More specifically, we require

m0 ∈ H2r ∩W2,4 and m ∈ L∞(0, T ;H2r ∩W2,4) ∩ C1(0, T ;H2r) ∩ Ck+1(0, T ;L2).

(C2) The starting values m̃j
h = mj

h ∈ Sr
h, j = 0, . . . , k − 1, are sufficiently accurate approx-

imations to the exact solution, satisfying the following estimates:
max

0⩽⩽k−1
‖mj

h − Ihm(tj)‖L∞ ⩽ τ, max
0⩽⩽k−1

‖∆h(m
j
h − Ihm(tj))‖L2 ⩽ τ

2
3 , (2.17)

max
0⩽⩽k−1

(
‖mj

h − Ihm(tj)‖2L2 + τ‖∇(mj
h − Ihm(tj))‖2L2

)
≲ τ2k + h2(r+1). (2.18)

Remark 2.2. The local existence and uniqueness of the smooth solutions to problem (1.1)–
(1.3) have been proved in [20] with some finite blow-up time T0 > 0. For T < T0 (before the
solution blows up), the solution can be assumed to be sufficiently smooth. Moreover, the global
existence and uniqueness of smooth solutions of harmonic map heat flow are available for a
large class of general target surfaces including surfaces with non-positive sectional curvature
(including hyperbolic spaces Hn and hyperplanes, see [50, Theorem 6.4]) and surfaces with
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vanishing 2nd homotopy group (including n-sphere, i.e. π2(Sn) = 0, for n ∈ N\{2}, see [50,
Theorem 6.5]).
Remark 2.3. If the solution is sufficiently smooth, then the starting values m̃j

h = mj
h ∈ Sr

h,
j = 0, . . . , k− 1, can be computed by a single-step high-order Runge–Kutta method or simply
by temporal Taylor expansion using the partial differential equation. The computed numerical
solution would have the desired accuracy satisfying (2.17)–(2.18).

The main theoretical result of this article is the following theorem.
Theorem 2.2. Let Ω be a rectangular domain in Rd with d ∈ {1, 2, 3}. Under conditions
(C1)–(C2), there exists a constant τ0 > 0 such that, under the stepsize condition κhr+1 ⩽
τk ⩽ τ0 (where κ > 0 can be any constant independent of τ and h), the numerical solutions
m̃n

h,m
n
h ∈ Sr

h given by the k-step projection method (2.15)–(2.16) satisfy the following estimate:
max

k⩽n⩽N
(‖mn

h −m(tn)‖L2 + ‖m̃n
h −m(tn)‖L2) ≲ τk + hr+1. (2.19)

The results in this article can also be extended to a more general bounded polyhedral
domain Ω ⊂ Rd with triangular meshes, and adapted to a curved domain by combining the
mass-lumping techniques [21,24] with the iso-parametric finite element method [22], and using
the approximation results for a fixed surface [25]. More detailed comments are presented in the
conclusion section. Moreover, our proofs apply to Dirichlet boundary condition and periodic
boundary condition as well. Instead of being closed and compact, the surface Γ can also
be open and unbounded (without boundary), since the boundedness of the exact solution is
sufficient to conclude the same results.

3. Proof of Theorem 2.2

The following three lemmas will be frequently used in the proof of Theorem 2.2. They are
concerned with the error of Lagrange interpolation, the inverse inequality of finite element
functions, and the multiplier technique for the k-step BDF.
Lemma 3.1 (Error of the interpolation operator [17, Theorem 4.4.20]). Let 0 ⩽ s ⩽ r and
p > d/(s+ 1). Then the following results hold

‖v − Ihv‖Lp + h‖v − Ihv‖W 1,p ≲ hs+1|v|W s+1,p , (3.1)

‖v − Ihv‖L∞ ≲ h2−
d
2 |v|H2 , (3.2)

where Ih : C(Ω) → Sr
h is the Lagrange interpolation operator.

Lemma 3.2 (Inverse inequalities [17, Lemma 4.5.3, Theorem 4.5.11]). Let vh ∈ Sr
h, and let

1 ⩽ p ⩽ ∞, 1 ⩽ q ⩽ ∞, 0 ⩽ m ⩽ l. Then
‖vh‖W l,p(K) ≲ hm−l+d/p−d/q‖vh‖Wm,q(K), (3.3)( ∑

K∈K
‖vh‖pW l,p(K)

)1/p
≲ hm−l+min{0,d/p−d/q}

( ∑
K∈K

‖vh‖qWm,q(K)

)1/q
. (3.4)

Lemma 3.3 (cf. [4, Section 2.4]). Suppose that 1 ⩽ k ⩽ 5, n ⩾ k, and uj
h ∈ Sr

h for 0 ⩽ j ⩽ k.
Then there exists a symmetric positive definite matrix G = (gij) ∈ Rk×k such that( k∑

j=0

δju
k−j
h ,uk

h − θku
k−1
h

)
h
⩾

k∑
i,j=1

gij(u
i
h,u

j
h)h −

k∑
i,j=1

gij(u
i−1
h ,uj−1

h )h, (3.5)

where θ1 = θ2 = 0, θ3 = 0.0836, θ4 = 0.2878, θ5 = 0.8160.

3.1. The consistency error
To start with, it can be easily seen that the exact solution of problem (1.1)–(1.3) satisfies

the following equation:
(∂tm,vh) + (∇m,∇vh) = −(A(m)(∇m,∇m),vh) ∀vh ∈ Sr

h,
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from which we further derive that(1
τ

k∑
j=0

δjIhm(tn−j),vh

)
h
+ (∇Ihm(tn),∇vh)

= −
(
Ah(a ◦ Ihm̂(tn))(∇Ihm̂(tn),∇Ihm̂(tn)),vh

)
+ E1(vh),

(3.6)

where E1(vh) is the consistency error due to the temporal discretization by the k-step BDF
and the spatial discretization by the mass-lumping FEM, i.e.,

E1(vh) :=
(1
τ
Ih

k∑
j=0

δjm(tn−j),vh

)
h
−
(1
τ
Ih

k∑
j=0

δjm(tn−j),vh

)
+
(1
τ
Ih

k∑
j=0

δjm(tn−j),vh

)
−
(
∂tm(tn),vh

)
+
(
∇(Ihm(tn)−m(tn)),∇vh

)
−
(
A(m(tn))(∇m(tn),∇m(tn))−Ah(a ◦ Ihm̂(tn))(∇Ihm̂(tn),∇Ihm̂(tn)),vh

)
=: E1,1(vh) + E1,2(vh) + E1,3(vh) + E1,4(vh).

The term E1,3(vh) is exactly the same as E3(vh) in [35, Section 3.2]. The following result has
been proved in [35, Lemma 3.7]:

|E1,3(vh)| ≲ hr+1‖vh‖H1 . (3.7)
Furthermore, with the help of Lemma 2.1, the remaining three terms E1,1(vh), E1,2(vh) and
E1,4(vh) can be estimated similarly as the estimates of E1(vh), E2(vh) and E4(vh) in [35, Section
3.2]. Specifically, the following results hold:

|E1,1(vh)|+ |E1,2(vh)|+ |E1,4(vh)|] ≲ hr+1‖vh‖H1 + τk‖vh‖L2 . (3.8)
Then, by collecting the results in (3.7)–(3.8), we obtain the following estimate of the consis-
tency error:

|E1(vh)| ≲ (τk + hr+1)‖vh‖L2 + hr+1‖∇vh‖L2 . (3.9)

3.2. Mathematical induction and error equation
We consider two types of error functions corresponding to the projected numerical solution

and the auxiliary numerical solution, respectively, i.e.,
enh := Ihm(tn)−mn

h and ẽnh := Ihm(tn)− m̃n
h. (3.10)

We shall prove the smallness of these error functions by mathematical induction: For 1 ⩽ n ⩽ l,
we assume that the numerical solution mn−1

h is uniquely determined and
‖ẽn−1

h ‖L∞ ⩽ τ, (3.11)

‖∆hẽ
n−1
h ‖L2 ⩽ τ

2
3 , (3.12)

‖ẽn−1
h ‖2L2 + τ‖∇ẽn−1

h ‖2L2 ⩽ τ2k−
2
5 + h2(r+

23
25

), (3.13)
which are all naturally true for 1 ⩽ n ⩽ k since the functions mj

h = m̃j
h, 0 ⩽ j ⩽ k − 1,

are given and satisfying (2.17)–(2.18). Under the induction assumption we shall prove that
(3.11)–(3.13) also hold for n = l + 1.

Recalling that the mesh size restriction hr+1 ≲ τk, the constant 23
25 in (3.13) is chosen so

that the term

h(r+
23
25

) ≲ τ
k(r+23

25 )

r+1 = τ
k− 2k

25(r+1) (3.14)

can always be bounded by τk−
1
5 for any r ⩾ 1 and k ⩽ 5. From (3.10) and (3.11) we

immediately get the following L∞-estimates for 1 ⩽ n ⩽ l:
‖Ihm(tn−1)‖L∞ ≲ 1 and ‖m̃n−1

h ‖L∞ ≲ 1. (3.15)
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These L∞-estimates will be frequently used.
The error equation can be obtained by substracting equation (2.15) from (3.6), i.e.,(δ0
τ
ẽnh +

1

τ

k∑
j=1

δje
n−j
h ,vh

)
h
− (∆hẽ

n
h,vh)

= −
(
Ah(a ◦ Ihm̂(tn))(∇Ihm̂(tn),∇Ihm̂(tn))−Ah(a ◦ m̂n

h)(∇m̂n
h,∇m̂n

h),vh

)
+ E1(vh)

(3.16)

= E1(vh)−
(
∇Ihm̂(tn) ·

(
IhH(a ◦ m̂n

h)∇Ihm̂(tn)
)
−∇m̂n

h · IhH(a ◦ m̂n
h)∇m̂n

h, Ihννν(m̂
n
h) · vh

)
−
(
∇Ihm̂(tn) ·

(
IhH(a ◦ Ihm̂(tn))− IhH(a ◦ m̂n

h)
)
∇Ihm̂(tn), Ihννν(m̂

n
h) · vh

)
−
(
∇Ihm̂(tn) · IhH(a ◦ Ihm̂(tn))∇Ihm̂(tn),

(
Ihννν(Ihm̂(tn))− Ihννν(m̂

n
h)
)
· vh

)
=: E1(vh) + E2(vh) + E3(vh) + E4(vh), (3.17)
which holds for all k ⩽ n ⩽ l and vh ∈ Sr

h. In view of the multiplier technique for the k-step
BDF in Lemma 3.3, we choose vh = ẽnh− θkẽ

n−1
h in (3.17) and estimate Ej(ẽnh− θkẽ

n−1
h ) below

for j = 1, 2, 3, 4.
The first term on the right-hand side of (3.17) can be estimated by using (3.9), i.e.,

|E1(ẽnh − θkẽ
n−1
h )| ≲ (τk + hr+1)(‖ẽnh − θkẽ

n−1
h ‖L2 + ‖∇(ẽnh − θkẽ

n−1
h )‖L2). (3.18)

The third and fourth terms on the right-hand side of (3.17) depend on the estimation of
‖IhH(a◦Ihm̂(tn))−IhH(a◦m̂n

h)‖L2 and ‖Ihννν(Ihm̂(tn))−Ihννν(m̂
n
h)‖L2 , which can be estimated

by using the interpolation error estimates in Lemma 3.1 (with p = 4 and s = 0 therein), i.e.,
‖IhH(a ◦ Ihm̂(tn))− IhH(a ◦ m̂n

h)‖L2

⩽ ‖H(a ◦ Ihm̂(tn))−H(a ◦ m̂n
h)‖L2 + ‖(Ih − 1)H(a ◦ Ihm̂(tn))− (Ih − 1)H(a ◦ m̂n

h)‖L2

(triangle inequality is used)
≲ ‖H(a ◦ Ihm̂(tn))−H(a ◦ m̂n

h)‖L2 + h|H(a ◦ Ihm̂(tn))−H(a ◦ m̂n
h)|W 1,4

(Lemma 3.1 and the inclusion H1 ⊆ W 1,4 are used)
⩽ ‖H(a ◦ Ihm̂(tn))−H(a ◦ m̂n

h)‖L2 + h‖∇(H ◦ a)(m̂n
h) · ∇(Ihm̂(tn)− m̂n

h)‖L4

+ h‖(∇(H ◦ a)(Ihm̂(tn))−∇(H ◦ a)(Ihm̂n
h)) · ∇Ihm̂(tn)‖L4

(chain rule and triangle inequality are used)
≲ ‖m̂(tn)− m̂n

h‖L2 + h‖∇(Ihm̂(tn)− m̂n
h)‖L4 + h‖Ihm̂(tn)− Ihm̂

n
h‖L4

(Lipschitz continuity of H ◦ a and ∇(H ◦ a) is used)

≲
k−1∑
j=0

‖en−j−1
h ‖L2 +

k−1∑
j=0

‖en−j−1
h ‖L4 (Lemma 3.2 is used)

⩽ Cε

k−1∑
j=0

‖en−j−1
h ‖L2 + ε

k−1∑
j=0

‖en−j−1
h ‖L6 , (3.19)

which holds for any ε > 0 (with a constant Cε depending on ε−1). In the second to last
inequality we have used the inverse inequality (Lemma 3.2), the local Lipschitz continuity of
∇(H ◦ a), and the boundedness of Ihm̂(tn−j−1) and m̂n−j−1

h as shown in (3.15). In the last
inequality we have used the Sobolev interpolation inequality for d ⩽ 3 and Young’s inequality.
Estimate (3.19) holds as well if IhH(a ◦ ·) is replaced by Ihννν(·). From (3.19) and the local
Lipschitz continuity of H and ννν we immediately obtain the following estimate:

|E3(ẽnh − θkẽ
n−1
h )|+ |E4(ẽnh − θkẽ

n−1
h )|

⩽
k−1∑
j=0

(Cε‖en−j−1
h ‖L2 + ε‖en−j−1

h ‖L6)‖ẽnh − θkẽ
n−1
h ‖L2 (3.20)
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for k ⩽ n ⩽ l and any ε > 0.
The estimation of |E2(ẽnh − θkẽ

n−1
h )| is presented in the next subsection.

3.3. Consequences of the induction assumption
Under the induction assumption (3.11)–(3.13), the two types of the errors defined in (3.10)

are connected through the following lemmas.

Lemma 3.4. Under the induction assumption in (3.11), the following inequality holds for
sufficient small τ :

|en−1
h | ≲ |ẽn−1

h | at all finite element nodes,
and

‖en−1
h ‖Lp

h
≲ ‖ẽn−1

h ‖Lp
h

and ‖en−1
h ‖Lp ≲ ‖ẽn−1

h ‖Lp ∀ 1 ⩽ p ⩽ +∞. (3.21)

Proof. The proof of these results in the case Γ = Sn can be found in [35, Lemma 3.9] (the case
p = ∞ was not explicitly stated in [35, Lemma 3.9] but the proof is the same as 1 ⩽ p < ∞).
The proof of these results for a general target surface Γ follows from a similar argument with
the help of smallness condition (3.11), which guarantees that m̃n−1

h is in a small neighborhood
of the surface Γ so that the distance projection onto the surface Γ is well defined. □

This lemma connects the two types of errors in Lp-norm. Hence using this lemma and result
(3.20), we can directly deduce that

|E3(ẽnh − θkẽ
n−1
h )|+ |E4(ẽnh − θkẽ

n−1
h )|

⩽
k−1∑
j=0

(Cε‖ẽn−j−1
h ‖L2 + ε‖ẽn−j−1

h ‖L6)‖ẽnh − θkẽ
n−1
h ‖L2

⩽
k−1∑
j=0

(Cε‖ẽn−j−1
h ‖L2 + ε‖∇ẽn−j−1

h ‖L2)‖ẽnh − θkẽ
n−1
h ‖L2 . (3.22)

Next we provide a lemma which connects the two types of errors in W 1,p-norm.

Lemma 3.5. Under the induction assumption in (3.11), the following estimate holds for
sufficiently small τ :

‖en−1
h ‖W 1,p ≲ ‖ẽn−1

h ‖W 1,p + hr ∀ 2 ⩽ p ⩽ +∞. (3.23)

Proof. The Lp-norm estimate is contained in Lemma 3.4. Hence, we focus on the estimation
of the W 1,p semi-norm, i.e.,

‖∇en−1
h ‖Lp = ‖∇

(
Ih(a ◦ m̃n−1

h )− Ihm(tn−1)
)
‖Lp

= ‖∇
(
Ih(a ◦ m̃n−1

h )− a ◦ m̃n−1
h

)
‖Lp + ‖∇

(
a ◦ m̃n−1

h − a ◦ (Ihm(tn−1))
)
‖Lp

+ ‖∇
(
a ◦ (Ihm(tn−1))− a ◦m(tn−1)

)
‖Lp + ‖∇

(
m(tn−1)− Ihm(tn−1)

)
‖Lp

=: A1 +A2 +A3 +A4. (3.24)
Since a is smooth in a neighborhood of Γ, it follows that |(∇ja)(m̃n−1

h )| ≲ 1 for j = 1, · · · ,m.
By using this result and the Hölder inequality, the inverse inequality, the Leibniz rule, and
the boundedness condition (3.11), we derive
‖∇

(
Ih(a ◦ m̃n−1

h )− a ◦ m̃n−1
h

)
‖Lp(K)

≲ hr+d/p|a ◦ m̃n−1
h |W r+1,∞(K)

≲ hr+d/p
(
‖(∇r+1a)(m̃n−1

h ) : (∇m̃n−1
h )r+1‖L∞(K) + · · ·+ ‖(∇a)(m̃n−1

h ) · ∇r+1m̃n−1
h ‖L∞(K)

)
≲ hr+d/p

(
‖∇m̃n−1

h ‖r+1
L∞(K) + · · ·+ ‖∇r+1m̃n−1

h ‖L∞(K)

)
≲ hr+d/p

(
‖∇ẽn−1

h ‖r+1
L∞(K) + · · ·+ ‖∇r+1ẽn−1

h ‖L∞(K)

)
+ hr+d/p

(
‖∇Ihm(tn−1)‖r+1

L∞(K) + · · ·+ ‖∇r+1Ihm(tn−1)‖L∞(K)

)
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≲ hd/p‖∇ẽn−1
h ‖L∞(K) + hr+d/p

(
‖∇Ihm(tn−1)‖L∞(K) + · · ·+ ‖∇r+1Ihm(tn−1)‖L∞(K)

)
≲ ‖∇ẽn−1

h ‖Lp(K) + hr‖m(tn−1)‖W r+1,p(K). (3.25)
The condition p ⩾ 2 is required to ensure that Ih is stable in W 2,p for d ⩽ 3. Then after
taking lp norm of the above estimate over K ∈ K, we get

A1 ≲ ‖∇ẽn−1
h ‖Lp + hr‖m(tn−1)‖W r+1,p . (3.26)

By using the Leibniz rule and the triangle inequality, we can estimate A2 as follows:
A2 = ‖∇a(m̃n−1

h ) · ∇m̃n−1
h −∇a(Ihm(tn−1)) · ∇(Ihm(tn−1))‖Lp

≲ ‖∇
(
m̃n−1

h − Ihm(tn−1)
)
‖Lp + ‖∇a(m̃n−1

h )−∇a(Ihm(tn−1))‖Lp

≲ ‖∇
(
m̃n−1

h − Ihm(tn−1)
)
‖Lp +

( ∑
K∈K

hd‖∇a(m̃n−1
h )−∇a(Ihm(tn−1))‖pL∞(K)

)1/p

≲ ‖∇
(
m̃n−1

h − Ihm(tn−1)
)
‖Lp +

( ∑
K∈K

hd‖m̃n−1
h − Ihm(tn−1)‖pL∞(K)

)1/p

≲ ‖m̃n−1
h − Ihm(tn−1)‖W 1,p (the inverse inequality is used)

= ‖ẽn−1
h ‖W 1,p , (3.27)

where we have used the local Lipschitz continuity of ∇a and the boundedness of m̃n−1
h in the

third inequality. The term A3 can be estimated analogously, i.e.,
A3 = ‖∇

(
a ◦ (Ihm(tn−1))− a ◦m(tn−1)

)
‖Lp

≲ ‖∇
(
m(tn−1)− Ihm(tn−1)

)
‖Lp + ‖∇a(m(tn−1))−∇a(Ihm(tn−1))‖Lp

≲ ‖m(tn−1)− Ihm(tn−1)‖W 1,∞

≲ hr‖m(tn−1)‖W r+1,∞ . (3.28)
Substituting the estimates of A1, A2 and A3 into (3.24), and using the standard estimates for
the Lagrange interpolation error, we obtain

‖∇en−1
h ‖Lp ≲ ‖∇ẽn−1

h ‖Lp + hr‖m(tn−1)‖W r+1,p

+ ‖ẽn−1
h ‖W 1,p + hr‖m(tn−1)‖W r+1,∞ + hr‖m(tn−1)‖W r+1,p

≲ ‖ẽn−1
h ‖W 1,p + hr. (3.29)

This completes the proof of Lemma 3.5. □

Lemma 3.6. Under the induction assumptions in (3.11)–(3.12), the following result holds:
‖∇en−1

h ‖L6 ≲ τ
2
3 + hr. (3.30)

Proof. By using Lemma 3.5 and the following discrete Sobolev embedding inequality for d ⩽ 3
(see [35, Lemma 3.5]):

‖∇vh‖L6 ≲ ‖∆hvh‖L2 ∀vh ∈ Sr
h,

we have
‖∇en−1

h ‖L6 ≲ ‖ẽn−1
h ‖W 1,6 + hr ≲ ‖ẽn−1

h ‖L∞ + ‖∆hẽ
n−1
h ‖L2 + hr ≲ τ

2
3 + hr (3.31)

for 1 ⩽ n ⩽ l, where (3.11)–(3.12) and τ ≲ 1 are used. □

By using this lemma and the triangle inequality, we obtain the W 1,6-boundedness of the
numerical solutions, i.e.,

‖∇ml−j−1
h ‖L6 ⩽ ‖∇el−j−1

h ‖L6 + ‖∇Ihm(tl−j−1)‖L6 ≲ 1 for 0 ⩽ j ⩽ k − 1.

Now we turn to the estimation of E2(ẽnh − θkẽ
n−1
h ) for 1 ⩽ n ⩽ l by utilizing the estimates

in Lemma 3.4, Lemma 3.5, and Lemma 3.6.
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Lemma 3.7. Under the induction assumptions in (3.11)–(3.12), the following results hold for
1 ⩽ n ⩽ l:

|E2(ẽnh − θkẽ
n−1
h )| ⩽ Cε

k∑
j=0

‖ẽn−j
h ‖2L2 + ε

k∑
j=0

‖∇ẽn−j
h ‖2L2 , (3.32)

|E2(ẽnh)| ⩽ Cε

k∑
j=0

‖ẽn−j
h ‖2L2 + ε

k∑
j=0

‖∇ẽn−j
h ‖2L2 . (3.33)

Proof. Recall the definiton of E2. Since H is symmetric, IhH induces a symmetric bilinear
form. Hence we have
E2(vh) =

(
∇Ihm̂(tn) ·

(
IhH(a ◦ m̂n

h)∇Ihm̂(tn)
)
−∇m̂n

h · IhH(a ◦ m̂n
h)∇m̂n

h, Ihννν(m̂
n
h) · vh

)
= −

(
∇(Ihm̂(tn)− ênh) · IhH(a ◦ m̂n

h)∇(Ihm̂(tn)− ênh)

−∇Ihm̂(tn) ·
(
IhH(a ◦ m̂n

h)∇Ihm̂(tn)
)
, Ihννν(m̂

n
h) · vh

)
= −

(
∇Ihê

n
h ·

(
IhH(a ◦ m̂n

h)∇Ihê
n
h

)
− 2∇ênh · IhH(a ◦ m̂n

h)∇Ihm̂(tn), Ihννν(m̂
n
h) · vh

)
.

Then we estimate E2(ẽnh−θkẽ
n−1
h ) as follows, by utilizing Lemma 3.4, Lemma 3.5, and Lemma

3.6:
E2(ẽnh − θkẽ

n−1
h ) = −

(
∇ênh · IhH(a ◦ m̂n

h)(2∇Ihm̂(tn)−∇ênh), Ihννν(m̂
n
h) · (ẽnh − θkẽ

n−1
h )

)
(the symmetry of H is used)

= −
(
∇ênh · IhH(a ◦ m̂n

h)(2∇Ihm̂(tn)− 2∇m̂(tn)), Ihννν(m̂
n
h) · (ẽnh − θkẽ

n−1
h )

)
−
(
∇ênh · IhH(a ◦ m̂n

h)(2∇m̂(tn)−∇ênh), Ihννν(m̂
n
h) · (ẽnh − θkẽ

n−1
h )

)
≲

k−1∑
j=0

h‖∇en−j−1
h ‖L2‖m̂(tn)‖W 2,∞‖ẽnh − θkẽ

n−1
h ‖L2

+
∣∣∣(∇ênh · IhH(a ◦ m̂n

h)∇ênh, Ihννν(m̂
n
h) · (ẽnh − θkẽ

n−1
h )

)∣∣∣
+
∣∣∣(ênh∇ ·

(
IhH(a ◦ m̂n

h)2∇m̂(tn)
)
, Ihννν(m̂

n
h) · (ẽnh − θkẽ

n−1
h )

)∣∣∣
+

∣∣∣(ênh · IhH(a ◦ m̂n
h)2∇m̂(tn),∇

(
Ihννν(m̂

n
h) · (ẽnh − θkẽ

n−1
h )

))∣∣∣
(integration by parts)

≲
k−1∑
j=0

‖en−j−1
h ‖L2‖ẽnh − θkẽ

n−1
h ‖H1 (inverse inequality)

+
k−1∑
j=0

(‖ẽn−j−1
h ‖H1 + hr)

k−1∑
j=0

‖∇en−j−1
h ‖L4‖ẽnh − θkẽ

n−1
h ‖L4

(Lemma 3.5 is used)

+
k−1∑
j=0

‖en−j−1
h ‖L2(‖ẽnh − θkẽ

n−1
h ‖L2 + ‖∇(ẽnh − θkẽ

n−1
h )‖L2)

(Lemma 3.6 is used)

⩽ C

k−1∑
j=0

‖ẽn−j−1
h ‖2L2 + C‖ẽnh − θkẽ

n−1
h ‖2L2 + ε‖∇(ẽnh − θkẽ

n−1
h )‖2L2
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+ C
k−1∑
j=0

‖ẽn−j−1
h ‖H1‖ẽnh − θkẽ

n−1
h ‖L4 + C

k−1∑
j=0

‖ẽn−j−1
h ‖L4‖ẽnh − θkẽ

n−1
h ‖L4

(Lemma 3.4 and Lemma 3.6 are used)

⩽ Cε

k∑
j=0

‖ẽn−j
h ‖2L2 + ε

k∑
j=0

‖∇ẽn−j
h ‖2L2 ,

where we have used the Sobolev interpolation inequality and Young’s inequality in the last
inequality, i.e.,

‖u‖L4 ≲ ‖u‖
1
4

L2‖u‖
3
4

L6 ⩽ Cε‖u‖L2 + ε‖∇u‖L2 .

By setting θk = 0 we also obtain the following result:

|E2(ẽnh)| ⩽ Cε

k∑
j=0

‖ẽn−j
h ‖2L2 + ε

k∑
j=0

‖∇ẽn−j
h ‖2L2 . (3.34)

This completes the proof of Lemma 3.7. □

3.4. A sub-optimal error estimate
As a preliminary result, we prove a sub-optimal error estimate by choosing the test function

vh = ẽnh in equation (3.17). This sub-optimal error estimate will be used in the next subsection
to prove an L∞-norm error bound of O(τ), which is needed in proving the optimal-order
convergence.

For k ⩽ n ⩽ l, we choose vh = ẽnh in (3.17) and rewrite its left-hand side as follows:(δ0
τ
ẽnh +

1

τ

k∑
j=1

δje
n−j
h , ẽnh

)
h
− (∆hẽ

n
h, ẽ

n
h) =

δ0
τ
‖ẽnh‖2L2

h
+

1

τ

( k∑
j=1

δje
n−j
h , ẽnh

)
h
+ ‖∇ẽnh‖2L2 .

The second term on the right-hand side can be estimated by using (3.21), (2.2), induction
assumption (3.13), and hr+1 ≲ τk, which imply that∣∣∣1

τ

( k∑
j=1

δje
n−j
h , ẽnh

)
h

∣∣∣ ⩽ ε1
τ
‖ẽnh‖2L2

h
+

C

τ

k∑
j=1

‖en−j
h ‖2L2

h
⩽ ε1

τ
‖ẽnh‖2L2

h
+

C

τ
(τ2k−

2
5 + h2(r+

23
25

))

⩽ ε1
τ
‖ẽnh‖2L2

h
+ Cτ2k−

7
5 .

The right-hand side of (3.17) can be estimated by using the estimates of |Ej(ẽnh − θkẽ
n−1
h )|,

j = 1, 2, 3, 4, in (3.18), (3.22) and (3.34). Then we obtain

δ0
τ
‖ẽnh‖2L2

h
+ ‖∇ẽnh‖2L2 ⩽ ε1

τ
‖ẽnh‖2L2

h
+ Cτ2k−

7
5 + Ch2(r+1) + C

k∑
j=0

‖ẽn−j
h ‖2L2 + ε2

k∑
j=0

‖∇ẽn−j
h ‖2L2

for k ⩽ n ⩽ l. By choosing sufficiently small constants ε1 and ε2, and multiplying the
inequality by τ , we have

δ0‖ẽnh‖2L2 + τ‖∇ẽnh‖2L2 ≲ τ2k−
2
5 + τh2(r+1) + τ

k∑
j=0

‖ẽn−j
h ‖2L2 + τ

k∑
j=1

‖∇ẽn−j
h ‖2L2

for k ⩽ n ⩽ l. Then, by using (2.18) and (3.13), we obtain

‖ẽnh‖2L2 + τ‖∇ẽnh‖2L2 ≲ τ2k−
2
5 + τh2(r+1) + τ

k∑
j=1

‖ẽn−j
h ‖2L2 + τ

k∑
j=1

‖∇ẽn−j
h ‖2L2

≲ τ2k−
2
5 + h2(r+

23
25

) ≲ τ2k−
2
5 for k ⩽ n ⩽ l. (3.35)

where the last inequality uses (3.14). Since k ⩾ 2, the inequality above also implies that
‖ẽnh‖L2 ≲ τ

9
5 and ‖∇ẽnh‖L2 ≲ τ

13
10 for k ⩽ n ⩽ l. (3.36)
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3.5. Proof of (3.11)–(3.12) for n = l + 1

When n = l the error equation (3.16) becomes(δ0
τ
ẽlh +

1

τ

k∑
j=1

δje
l−j
h ,vh

)
h
− (∆hẽ

l
h,vh) (3.37)

= −
(
Ah(Ihm̂(tl))(∇Ihm̂(tl),∇Ihm̂(tl))−Ah(m̂

l
h)(∇m̂l

h,∇m̂l
h),vh

)
+ E1(vh), (3.38)

which holds for all vh ∈ Sr
h. By using (3.9), the inverse inequality in Lemma 3.2, and hr+1 ≲

τk, we have
|E1(vh)| ≲ (τk + hr)‖vh‖L2 ≲ τ

rk
r+1 ‖vh‖L2 ≲ τ‖vh‖L2 , (3.39)

where the last inequality uses 2 ⩽ k ⩽ 5 and r ⩾ 1. From (3.36) we also conclude that∣∣∣(δ0
τ
ẽlh +

1

τ

k∑
j=1

δje
l−j
h ,vh

)
h

∣∣∣ ≲ 1

τ
‖ẽlh‖L2‖vh‖L2 +

1

τ

k∑
j=1

‖el−j
h ‖L2‖vh‖L2 ≲ τ

4
5 ‖vh‖L2 . (3.40)

As a result, we have∣∣∣(Ah(a ◦ Ihm̂(tl))(∇Ihm̂(tl),∇Ihm̂(tl))−Ah(a ◦ m̂l
h)(∇m̂l

h,∇m̂l
h),vh

)∣∣∣
⩽

∣∣∣(∇Ihm̂(tl) ·
(
IhH(a ◦ Ihm̂(tl))− IhH(a ◦ m̂l

h)
)
∇Ihm̂(tl), Ihννν(m̂

l
h) · vh

)∣∣∣
+
∣∣∣(∇Ihm̂(tl) · IhH(a ◦ Ihm̂(tl))∇Ihm̂(tl),

(
Ihννν(Ihm̂(tl))− Ihννν(m̂

l
h

)
· vh

)∣∣∣
+
∣∣∣(∇Ihm̂(tl) · IhH(a ◦ m̂l

h)∇Ihm̂(tl)−∇m̂l
h · IhH(a ◦ m̂l

h)∇m̂l
h, Ihννν(m̂

l
h) · vh

)∣∣∣
≲

k−1∑
j=0

‖el−j−1
h ‖L∞‖vh‖L2 +

k−1∑
j=0

(‖∇ẽl−j−1
h ‖L2 + ‖∇ẽl−j−1

h ‖2L4)‖vh‖L2

≲ τ‖vh‖L2 + (hr + τ
13
10 + τ

4
3 )‖vh‖L2

≲ τ‖vh‖L2 , (the condition hr+1 ≲ τk implies hr ≲ τ for k ⩾ 2 and r ⩾ 1). (3.41)
In the second to last inequality we have used (3.13) to estimate ‖el−j−1

h ‖L∞ and (3.36) to
estimate ‖∇ẽl−j−1

h ‖L2 , as well as Lemma 3.6 to estimate ‖∇ẽl−j−1
h ‖2L4 .

By substituting (3.39)–(3.41) into (3.37) and using the duality argument, we obtain the
following result:

‖∆hẽ
l
h‖L2 = sup

vh∈Sr
h

|(∆hẽ
l
h,vh)|

‖vh‖L2

≲ τ
4
5 + τ‖ẽlh‖L∞ ≲ τ

4
5 + τ‖∆hẽ

l
h‖L2 , (3.42)

where the last step is due to the discrete Sobolev embedding inequality ( [35, Lemma 3.5]).
For sufficiently small stepsize τ , we obtain

‖∆hẽ
l
h‖L2 ≲ τ

4
5 ⩽ τ

2
3 .

Then, by using the discrete Sobolev interpolation inequality ( [35, Lemma 3.5]), together with
(3.36), we have

‖ẽlh‖L∞ ≲ (‖∆hẽ
l
h‖L2 + ‖ẽlh‖L2)

d
4 ‖ẽlh‖

1− d
4

L2 ≲ (τ
4
5 + τ

9
5 )

d
4 τ

9
5
(1− d

4
) ≲ τ

9
5
− d

4 ⩽ τ (3.43)
for d = 1, 2, 3. This proves (3.11) and (3.12) for n = l + 1.

3.6. Error estimates and proof of (3.13) for n = l + 1

Before proceeding further, we turn to prove the almost orthogonality relation between the
two types of error functions. This lemma plays a crucial role later in proving the optimal-order
convergence.
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Lemma 3.8 (Almost orthogonality). If (3.11) holds for k ⩽ n ⩽ l + 1, then the following
inequality holds:

|(en−j
h , ẽn−i

h − en−i
h )h| ≲ τ(‖en−j

h ‖2L2
h
+ ‖ẽn−i

h ‖2L2
h
+ ‖en−i

h ‖2L2
h
) (3.44)

for all k ⩽ n ⩽ l and 0 ⩽ i, j ⩽ k.

Proof. In the proof, we consider a more general setting where the target surface Γ ⊂ RN+1 is
of arbitrary co-dimension. We denote the dimension of Γ as dim(Γ) = N ′ with 1 ⩽ N ′ ⩽ N .

In the first step we show that Γ can be locally identified as a vector-valued graph which
takes values in RN+1−N ′ . For any point p ∈ Γ, we denote the chart in which p lives as (Up, ϕp),
with ϕ−1

p : RN ′ ⊃ ϕp(Up) → Γ ⊂ RN+1 being a parametrization of Up. Since ϕp is a C∞-
diffeomorphism, it follows that dϕ−1

p : RN ′ → RN+1 is injective. In other words, if we denote
the coordinate systems on ϕp(Up) and Up as {xi}N

′
i=1 and {yi}N+1

i=1 respectively, the injectivity
implies that the Jacobian matrix

J(p) :=


∂x1(ϕ

−1
p )1 ∂x2(ϕ

−1
p )1 . . . ∂xN′ (ϕ

−1
p )1

∂x1(ϕ
−1
p )2 ∂x2(ϕ

−1
p )2 . . . ∂xN′ (ϕ

−1
p )2

...
... . . . ...

∂x1(ϕ
−1
p )N+1 ∂x2(ϕ

−1
p )N+1 . . . ∂xN′ (ϕ

−1
p )N+1

 ∈ R(N+1)×N ′ (3.45)

is of full rank N ′. Equivalently, there exists an (N ′×N ′)-minor which is invertible. We denote
the row labels of this minor as k1, ..., kN ′ , and denote the minor as

JN ′(p) :=
(
∂j(ϕ

−1
p )ki

)
i,j=1,...,N ′ .

Then we define the coordinate projection associated to this set of labels as
Πp : RN+1 → RN ′

, (y1, ..., yN+1) 7→ (yk1 , ..., ykN′ ).

Therefore, JN ′(p) is the Jacobian of Πp ◦ ϕ−1
p : RN ′ → RN ′ at point p. By the invertibility

and inverse function theorem we know that Πp ◦ ϕ−1
p is a diffeomorphism on some neighbour-

hood Wp ⊂ ϕp(Up) of p. This means that Π−1
p : Πp ◦ ϕ−1

p (Wp) → ϕ−1
p (Wp) ⊂ RN+1 is a

diffeomorphism and thus Π−1
p is the local vector-valued graph around point p taking values

in RN+1−N ′ . Therefore, we have shown that for any p ∈ Γ, there exists a neighborhood Vp of
p in Γ such that Vp is the graph of a smooth function which has one of the following

(N+1
N ′

)
forms: (yk1 , ..., ykN′ )

∧ = f(yk1 , ..., ykN′ ) where {k1, ..., kN ′} ⊆ {1, ...,N + 1} are N ′ different
labels determined by the process above.

In the second step, we are going to show that there exists r > 0 such that for any p ∈ Γ,
Γ ∩Br(p) can be identified as a vector-valued graph on TΓp.

Up to linear transformation, we can assume TΓp = RN ′ × {0}N+1−N ′ without loss of
generality. From the previous step, the only choice now is (yN ′+1, ..., yN+1) = f(y1, ..., yN ′)
otherwise the gradient of the graph will blow up at p contradicting with the smoothness. Then
we denote Brp(p) as the ball such that Γ ∩ Brp(p) ⊂ Vp according to the previous step. If
infp∈Γ rp = 0, we can pick out a sequence such that pi → p0 with rpi → 0 which contradicts
with the fact that rp0 > 0. So we may set r = infp∈Γ rp > 0. Hence this step is complete.

In the last step we are ready to conclude this lemma. Let r be that in step 2. For any p ∈ Γ
we define the corresponding bijective projection in step 1 as Πp : Γ ∩ Br(p) → TΓp. Using
this projection, we can define the smooth graph function associated to point p as gp := Π−1

p :
Πp(Γ ∩Br(p)) → Γ ∩Br(p) and moreover define the following two domains

Dp := Πp(Γ ∩Br/2(p)) and D∗
p := Πp(Γ ∩B2r/3(p)).

If τ is sufficiently small, then by the induction assumption in (3.11) and the estiamte in (3.43)
we know that, at each finite element node x ∈ Nodes(Sr

h) ⊆ Ω̄, mn−j
h (x) and Ihm(x, tn−j)

are both on the surface Γ and contained in Γ ∩ Br/4(m
n
h(x)) and therefore, by the triangle

inequality, contained in Γ ∩ Br/2(m
n−i
h (x)) for any 0 ⩽ i, j ⩽ k. We now work locally on the
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graph of Γ ∩Br(m
n−i
h (x)). It holds that

en−j
h · (ẽn−i

h − en−i
h ) = |en−j

h | · |ẽn−i
h − en−i

h | sin γ, (3.46)
where γ is the angle between en−j

h and TΓmn−i
h (x). Then by applying Taylor’s theorem around

Πmn−i
h

◦ Ihm(tn−j) and Πmn−i
h

◦mn−i
h successively, at each element node x ∈ Nodes(Sr

h), we
have

| sin γ| = |gmn−i
h (x)(Πmn−i

h (x) ◦m
n−j
h (x))− gmn−i

h (x)(Πmn−i
h (x) ◦ Ihm(x, tn−j))|/|en−i

h |

≲ |∇gmn−i
h (x)(Πmn−i

h (x) ◦ Ihm(x, tn−j))|+ max
z∈D̄

mn−i
h

(x)

|∇2gmn−i
h (x)(z)| · |e

n−i
h |

≲ max
z∈D̄

mn−i
h

(x)

|∇2gmn−i
h (x)(z)| · (|m(x, tn−j)−m(x, tn−i)|+ |en−i

h |)

≲ max
z∈D̄

mn−i
h

(x)

|∇2gmn−i
h (x)(z)| · τ. (3.47)

The second to last inequality of (3.47) follows from the fact that we are considering the graph
with domain TΓmn−i

h (x), so the gradient of this graph at mn−i
h (x) vanishes by the tangency.

The last inequality follows from ‖en−i
h ‖L∞ ≲ τ , as shown in (3.43).

The last thing we need to show is that maxw∈Γmaxz∈D̄w
|∇2gw(z)| < +∞. Note that this

is a pure geometric quantity, so it doesn’t depend on τ . Suppose that it is not true. Then,
by the compactness of Γ, there exist sequences wi ∈ Γ and zi ∈ D̄wi such that wi → w0 ∈ Γ
for some w0 and |∇2gwi(zi)| → +∞. We take sufficiently large i such that |wi − w0| < 1

6r.
Then Γ ∩Br/2(wi) ⊂ Γ ∩B2r/3(w0) is also a graph locally on TΓw0 . This means the quantity
|∇2gwi(zi)| can not blow up because of the smoothness of the local graph of Γ ∩ B2r/3(w0),
leading to contradiction.

Substituting the boundedness of maxw∈Γmaxz∈D̄w
|∇2gw(z)| into (3.46)–(3.47), we obtain

|en−j
h · (ẽn−i

h − en−i
h )| ≲ τ |en−j

h | · |ẽn−i
h − en−i

h | at the nodes.
Then the result of Lemma 3.8 follows from the application of Young’s inequality. □
Remark 3.1. Since this technical lemma holds for the surface Γ with arbitrary co-dimension,
it will allow us to extend the results in this paper to the surface of arbitrary co-dimension
without any difficulty. Many equations of interests fall into this category. For example, the
constraint of Yang-Mills equation on Ω ⊂ Rd, i.e., so(d) ↪→ Rd×d, has co-dimension (d−1)d

2 .

In the following, we choose vh = ẽnh − θkẽ
n
h in the error equation (3.17), i.e.,(δ0

τ
ẽnh +

1

τ

k∑
j=1

δje
n−j
h , ẽnh − θkẽ

n−1
h

)
h
− (∆hẽ

n
h, ẽ

n
h − θkẽ

n−1
h )

= E1(ẽnh − θkẽ
n−1
h ) + E2(ẽnh − θkẽ

n−1
h ) + E3(ẽnh − θkẽ

n−1
h ) + E4(ẽnh − θkẽ

n−1
h )

(3.48)

for k ⩽ n ⩽ l. If we denote
ηj = ẽjh − ejh

for 0 ⩽ j ⩽ l, then replacing ẽih with ηi+eih for i ∈ {n−1, n} in the first term of the left-hand
side of equation (3.48) provides(

δ0ẽ
n
h +

k∑
j=1

δje
n−j
h , ẽnh − θkẽ

n−1
h

)
h
=

(
δ0η

n +
k∑

j=0

δje
n−j
h , (ηn − θkη

n−1) + (enh − θke
n−1
h )

)
h

=
(
δ0η

n, ηn − θkη
n−1

)
h
+
( k∑

j=0

δje
n−j
h , ηn − θkη

n−1
)
h

+
(
δ0η

n, enh − θke
n−1
h

)
h
+

( k∑
j=0

δje
n−j
h , enh − θke

n−1
h

)
h

=: I1 + I2 + I3 + I4.
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Since 0 < δ0 and 0 ⩽ θk < 1 for 2 ⩽ k ⩽ 5, it follows that

I1 ⩾ δ0‖ηn‖2L2
h
− δ0θk

2
(‖ηn‖2L2

h
+ ‖ηn−1‖2L2

h
)

= δ0(1− θk)‖ηn‖2L2
h
+

δ0θk
2

(‖ηn‖2L2
h
− ‖ηn−1‖2L2

h
) (3.49)

for k ⩽ n ⩽ l. And from Lemma 3.3 we know that

I4 ⩾
k∑

i,j=1

gij(e
n−k+i
h , en−k+j

h )h −
k∑

i,j=1

gij(e
n−k+i−1
h , en−k+j−1

h )h (3.50)

for all k ⩽ n ⩽ l, where (gij)
k
i,j=1 ∈ Rk×k is a given positive definite matrix.

On the other hand, by using ηi = ẽih − eih for i ∈ {n− 1, n}, we have

|I2| ⩽
k∑

j=0

|δj | |(en−j
h , ηn)h|+

k∑
j=0

|δjθk| |(en−j
h , ηn−1)h|

=
k∑

j=0

|δj | |(en−j
h , ẽnh − enh)h|+

k∑
j=0

|δjθk| |(en−j
h , ẽn−1

h − en−1
h )h|

for all k ⩽ n ⩽ l. Recall that ‖ẽih‖L∞ ⩽ τ holds for all 0 ⩽ i ⩽ l, which is proved by
the mathematical induction method, namely it is firstly assumed by the induction hypothesis
(3.11) for 0 ⩽ i ⩽ l − 1 and then proved by Subsection 3.5 for i = l. Hence it follows from
Lemma 3.8 that

|I2| ≲
k∑

j=0

τ(‖en−j
h ‖2L2

h
+ ‖ẽnh‖2L2

h
+ ‖enh‖2L2

h
) +

k∑
j=0

τ(‖en−j
h ‖2L2

h
+ ‖ẽn−1

h ‖2L2
h
+ ‖en−1

h ‖2L2
h
)

≲ τ
k∑

j=0

‖en−j
h ‖2L2

h
+ τ‖ẽnh‖2L2

h
+ τ‖ẽn−1

h ‖2L2
h

(3.51)

for k ⩽ n ⩽ l. Similarly,
|I3| ⩽ δ0|

(
enh, η

n
)
h
|+ δ0θk|

(
en−1
h , ηn

)
h
| = δ0|

(
enh, ẽ

n
h − enh

)
h
|+ δ0θk|

(
en−1
h , ẽnh − enh

)
h
|

≲ τ(‖enh‖2L2
h
+ ‖ẽnh‖2L2

h
+ ‖en−1

h ‖2L2
h
) (3.52)

holds for all k ⩽ n ⩽ l. By (3.51) and (3.52) we have

|I2|+ |I3| ≲ τ

k∑
j=0

‖en−j
h ‖2L2 + τ‖ẽnh‖2L2 + τ‖ẽn−1

h ‖2L2 , (3.53)

where the norm equivalence relation (2.2) has been used.
Combining the error equation (3.48) and the estimates of |Ej(ẽnh − θkẽ

n−1
h )|, j = 1, 2, 3, 4,

in (3.18), (3.22) and (3.32), and noting that
−(∆hẽ

n
h, ẽ

n
h − θkẽ

n−1
h ) =

(
∇ẽnh,∇(ẽnh − θkẽ

n−1
h )

)
⩾ (1− θk)‖∇ẽnh‖2L2 +

θk
2
(‖∇ẽnh‖2L2 − ‖∇ẽn−1

h ‖2L2),

we obtain the following result for k ⩽ n ⩽ l:
I1
τ

+
I4
τ

+ (1− θk)‖∇ẽnh‖2L2 +
θk
2
(‖∇ẽnh‖2L2 − ‖∇ẽn−1

h ‖2L2)

⩽ C
|I2|+ |I3|

τ
+ Cτ2k + Ch2(r+1) + C

k∑
j=0

‖ẽn−j
h ‖2L2 + ε

k∑
j=0

‖∇ẽn−j
h ‖2L2 .

Hence, by applying (3.49)–(3.50) and (3.53) we get
δ0(1− θk)

τ
‖ηn‖2L2

h
+

δ0θk
2τ

(‖ηn‖2L2
h
− ‖ηn−1‖2L2

h
)
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+
1

τ

k∑
i,j=1

gij(e
n−k+i
h , en−k+j

h )h −
1

τ

k∑
i,j=1

gij(e
n−k+i−1
h , en−k+j−1

h )h

+ (1− θk)‖∇ẽnh‖2L2 +
θk
2
(‖∇ẽnh‖2L2 − ‖∇ẽn−1

h ‖2L2)

⩽ Cτ2k + Ch2(r+1) + C
k∑

j=0

‖en−j
h ‖2L2 + C

k∑
j=0

‖ẽn−j
h ‖2L2 + ε

k∑
j=0

‖∇ẽn−j
h ‖2L2

for k ⩽ n ⩽ l. Then multiplying both sides by τ and summing up this inequality over
n = k, · · · , q with k ⩽ q ⩽ l lead to

δ0(1− θk)

q∑
n=k

‖ηn‖2L2
h
+

δ0θk
2

(‖ηq‖2L2
h
− ‖ηk−1‖2L2

h
) (3.54)

+
k∑

i,j=1

gij(e
q−k+i
h , eq−k+j

h )h −
k∑

i,j=1

gij(e
i−1
h , ej−1

h )h

+ (1− θk)τ

q∑
n=k

‖∇ẽnh‖2L2 +
θkτ

2
(‖∇ẽqh‖

2
L2 − ‖∇ẽk−1

h ‖2L2)

⩽ Cτ2k + Ch2(r+1) + Cτ

q∑
n=k

k∑
j=0

(‖en−j
h ‖2L2 + ‖ẽn−j

h ‖2L2) + ετ

q∑
n=k

k∑
j=0

‖∇ẽn−j
h ‖2L2 . (3.55)

Since the matrix (gij)
k
i,j=1 is positive definite, it follows that

k∑
i,j=1

gij(e
q−k+i
h , eq−k+j

h )h ⩾ λ1‖eqh‖
2
L2
h

and
k∑

i,j=1

gij(e
i−1
h , ej−1

h )h ≲
k∑

j=1

‖ej−1
h ‖2L2

h
,

where λ1 is the smallest eigenvalue of (gij)
k
i,j=1. Using these results and rearranging (3.55)

yield

δ0(1− θk)

q∑
n=k

‖ηn‖2L2
h
+

δ0θk
2

‖ηq‖2L2
h
+ λ1‖eqh‖

2
L2
h
+ (1− θk)τ

q∑
n=k

‖∇ẽnh‖2L2 +
θkτ

2
‖∇ẽqh‖

2
L2

⩽ Cτ2k + Ch2(r+1) + Cτ

q∑
n=0

(‖enh‖2L2 + ‖ẽnh‖2L2) + ετ

q∑
n=0

‖∇ẽnh‖2L2

+
δ0θk
2

‖ηk−1‖2L2
h
+ C

k∑
j=1

‖ej−1
h ‖2L2

h
+

θkτ

2
‖∇ẽk−1

h ‖2L2 (3.56)

for k ⩽ q ⩽ l. Moreover, we can duduce from
‖ẽqh‖

2
L2
h
⩽ 2(‖eqh‖

2
L2
h
+ ‖ẽqh − eqh‖

2
L2
h
) = 2(‖eqh‖

2
L2
h
+ ‖ηq‖2L2

h
),

that

δ0(1− θk)

q∑
n=k

‖ηn‖2L2
h
+

δ0θk
2

‖ηq‖2L2
h
+ λ1‖eqh‖

2
L2
h

⩾ δ0(1− θk/2)‖ηq‖2L2
h
+ λ1‖eqh‖

2
L2
h

⩾
{

λ1
4 ‖ẽqh‖L2

h
+ λ1

2 ‖eqh‖L2
h
, if δ0(1− θk/2) ⩾ λ1

2 ,

δ0(1/2− θk/4)‖ẽqh‖L2
h
+ λ1

2 ‖eqh‖L2
h
, if δ0(1− θk/2) <

λ1
2 .

Due to λ1, δ0 > 0 and 0 ⩽ θk < 1 for all k = 2, 3, 4, 5, we substitute this into (3.56) and get

‖ẽqh‖
2
L2 + ‖eqh‖

2
L2 + τ

q∑
n=k

‖∇ẽnh‖2L2

⩽ Cτ2k + Ch2(r+1) + Cτ

q∑
n=0

(‖enh‖2L2 + ‖ẽnh‖2L2) + Cετ

q∑
n=0

‖∇ẽnh‖2L2
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+ C‖ηk−1‖2L2 + C
k∑

j=1

‖ej−1
h ‖2L2 + Cτ‖∇ẽk−1

h ‖2L2

for k ⩽ q ⩽ l, where we have also used the norm equivalence (2.2). Therefore a sufficiently
small ε and the discrete Gronwall inequality give

‖ẽqh‖
2
L2 + ‖eqh‖

2
L2 + τ

q∑
n=k

‖∇ẽnh‖2L2

⩽ Cτ2k + Ch2(r+1) + C‖ηk−1‖2L2 + C

k∑
j=1

(‖ej−1
h ‖2L2 + ‖ẽj−1

h ‖2L2 + τ‖∇ẽj−1
h ‖2L2)

⩽ Cτ2k + Ch2(r+1)

for all k ⩽ q ⩽ l, where the last inequality has employed the condition (C2). This not only
proves (3.13) for n = l + 1 (when τ and h are sufficiently small) but also completes the proof
of Theorem 2.2 in view of the interpolation error estimates in Lemma 3.1.

4. Numerical Results

In this section we present numerical results to support the theoretical analysis for the
optimal-order convergence of the k-step projection method. All the computations are per-
formed by Firedrake [47] with double precision.

We consider the harmonic map heat flow from a rectangular domain Ω = [0, 1]× [0, 1] to the
two-dimensional unit sphere Γ = S2 ⊂ R3 and the three-dimensional unit sphere Γ = S3 ⊂ R4,
respectively. The corresponding initial functions are chosen as m0 = 1

S [m
0
1,m

0
2,m

0
3]
⊤ and

m0 = 1
M [m0

1,m
0
2,m

0
3,m

0
4]
⊤ where

m0
1(x, y) = e−x +

(1− e)

2e
x2 + x,

m0
2(x, y) = e−

1
2
y(y2 + 3y + 6),

m0
3(x, y) = e−

1
2
y
(
e−x +

1− e

2e
x2 + x

)
(y2 + 3y + 6),

m0
4(x, y) = e−

1
2
x(x2 + 3x+ 6)

(
− ln(y + 1)− y2

4
+ y + 4

)
,

and
S(x, y) =

√
m0

1(x, y)
2 +m0

2(x, y)
2 +m0

3(x, y)
2,

M(x, y) =
√
m0

1(x, y)
2 +m0

2(x, y)
2 +m0

3(x, y)
2 +m0

4(x, y)
2.

Clearly, m0 ∈ S2 and m0 ∈ S3 both satisfy the boundary condition (1.2). With the
two initial functions, we solve problem (1.1)–(1.3) by the proposed k-step projection method
(2.15)–(2.16) up to time T = 0.5.

And the starting values are calculated by l-step (1 ⩽ l ⩽ k− 1) projection methods (2.15)–
(2.16) with sufficiently small time stepsizes so that the temporal k-th convergence order can
be maintained.

We compare the numerical solution with the reference solution to calculate both temporal
and spatial discretization errors. The corresponding L2 errors of the numerical solutions at
time T = 0.5 are respectively depicted in Figures 1–4.

To verify the temporal convergence rates, we set the reference time step τref =
1

1000 , and
calculate the errors for τ = 1

100 ,
1

120 ,
1

140 ,
1

160 , with sufficiently small mesh sizes used to ensure
that spatial discretization errors are negligible. To access the spatial convergence orders, we
set the reference mesh size href =

1
150 , and calculate the errors for h = 1

15 ,
1
20 ,

1
25 ,

1
30 , with high-

order BDF temporal schemes and adequately small time steps empolyed so that the temporal
discretization errors do not impact the observation of optimal spatial convergence.
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Figure 1. Time discretization errors
for Γ = S2 ⊂ R3
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Figure 2. Spatial discretization errors
for Γ = S2 ⊂ R3
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Figure 3. Time discretization errors
for Γ = S3 ⊂ R4
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Figure 4. Spatial discretization errors
for Γ = S3 ⊂ R4

From Figures 1–4 we see that the temporal and spatial discretization errors are O(τk) and
O(hr+1), respectively. These results are consistent with the theoretical analysis in Theorem
2.2. Moreover, the numerical results in Figure 4 also indicate that the stepsize restriction
τk ≳ hr+1 may not be necessary, though it is required in the error analysis.

5. Conclusions

We have proposed a k-step projection method for solving the harmonic map heat flow from
a rectangular domain into a general smooth surface Γ ⊂ RN+1, and proved the optimal-order
convergence of the proposed method under the mesh size condition hr+1 ≲ τk, where r ⩾ 1
denotes the degree of finite elements in a tensor-product mass-lumping FEM. The proof utilizes
a new geometric relation between the error functions associated to the auxiliary and projected
numerical solutions. The geometric relation allows us to apply the Nevanlinna–Odeh multiplier
technique [4, 45] in the presence of a projection stage. We have only considered an explicit
treatment of the nonlinearity for the simplicity of implementation (with time-independent
matrix assembling at every time level, thus the matrix only needs to be assembled once and
for all time levels), while the convergence analysis actually could be extended to schemes with
semi-implicit treatment of the nonlinearity.

We have proved the optimal-order convergence based on mass-lumping techniques on rect-
angular meshes. The proof can be extended to triangular meshes by using the mass-lumping
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techniques in [21, 24] based on the P̃r finite element space for 1 ⩽ r ⩽ 5. In this case, the
quadrature error bound and the superconvergence result should be replaced by

|E1,2(vh)| ≲ hr‖vh‖H1 , (5.1)
|E1,3(vh)| ≲ hr‖vh‖H1 , (5.2)

respectively, where (5.1) holds due to [24, Lemma 5.2], and (5.2) is the standard approximation
property of the Lagrange interpolation. These changes will lead to the following sub-optimal
error estimate under the mesh size condition hr ≲ τk:

max
k⩽n⩽N

(‖mn
h −m(tn)‖L2 + ‖m̃n

h −m(tn)‖L2) ≲ τk + hr. (5.3)

The extension to curved domain using triangular mesh and iso-parametric finite element
method is also possible.

The analysis in this article also applies to unbounded surfaces without boundary, provided
that the exact solution of the problem is sufficiently smooth. For example, if Γ is a hyperbolic
surface, i.e., HN ⊂ (RN+1, 〈·, ·〉L) with L being the Lorentz product [41], then the theorems
in [26] imply the existence of a unique smooth global solution given smooth initial data. In
this case, error estimates can also be obtained for the proposed multistep projection method.

Since the projection method in this article is quite general, it may also be applicable to
other geometric partial differential equations with constrained target manifolds. For example,
the similar projection method may be applied to the heat flow of Yang–Mills equation on
Ω ⊂ Rd whose image is constrained on the Lie algebra so(d) [48,52], as well as the wave map
into general smooth surfaces [49].
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