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Abstract. The finite element approximation of surface evolution under an external velocity
field is studied. An artificial tangential motion is designed by using harmonic map heat flow
from the initial surface onto the evolving surface. This makes the evolving surface have min-
imal deformation (up to certain relaxation) from the initial surface and therefore improves
the mesh quality upon discretization. By exploiting and utilizing an intrinsic cancellation
structure in this formulation and the role played by the relaxation term, convergence of
the proposed method in approximating surface evolution in the three-dimensional space is
proved for finite elements of degree k ≥ 4. One advantage of the proposed method is that it
allows us to prove convergence of numerical approximations by using the normal vector of the
computed surface in the numerical scheme, instead of evolution equations of normal vector
(as in the literature). Another advantage of the proposed method is that it leads to better
mesh quality in some typical examples, and therefore prevents mesh distortion and break-
down of computation. Numerical examples are presented to illustrate the convergence of the
proposed method and its advantages in improving the mesh quality of the computed surfaces.

Keywords: Surface evolution, evolving FEM, mesh quality, tangential motion, convergence.

1. Introduction

We consider the evolution of a two-dimensional surface Γ(t) under a prescribed velocity
field u in the three-dimensional space. The evolving surface Γ(t) can be represented as the
image of the flow map X(·, t) : Γ0 → R3, satisfying

∂tX(·, t) = u(X(·, t), t) on Γ0, (1.1)

with the initial condition X(·, 0) = id on Γ0, where id denotes the identity map such that
id(x) = x for x ∈ R3. The development of numerical approximations for surface evolution
described by (1.1) is fundamental for solving partial differential equations (PDEs) on dynam-
ically evolving surfaces [27, 28, 35, 16, 36, 21, 19, 22, 20, 23], as well as PDEs in bulk domains
with moving boundaries or interfaces. The evolution of surfaces or interfaces can also be
integrated with fluid dynamics such as two-phase fluid flow [29, 3, 12, 30] and fluid-structure
interaction [42]. Additionally, the numerical techniques for solving (1.1) are intimately con-
nected to the approximation of geometric flows [13, 4, 14, 15, 25, 38], underscoring their broad
applicability and significance in computational mathematics and applied sciences.

However, approximating surface evolution through numerical methods presents significant
challenges, particularly in maintaining the quality of the surface mesh. A key difficulty lies in
the potential of mesh distortion and degeneration over time, with nodes possibly clustering
and mesh distorting, especially when an evolving surface undergoes large deformation. Such
issues can result in breakdown of computation or substantial errors in approximating the
shape of an evolving surface. Furthermore, when surface evolution is coupled with PDEs in
the bulk domain enclosed by the surface, the quality of the approximate surface mesh directly
affects the accuracy of the numerical solutions to these PDEs. To address these challenges,
re-meshing techniques have been developed [4, 39, 41, 43]. These techniques can be employed
to restore mesh quality when it falls below a certain threshold, thereby ensuring reliable and
accurate numerical approximations of surface evolution and the associated PDEs.
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An alternative approach to re-meshing is the introduction of artificial tangential motion of
the evolving surface, which does not alter the shape of the evolving surface but improves the
mesh quality of the approximate surface. In their seminal works [10, 8, 9], Barrett, Garcke, and
Nürnberg (BGN) introduced a class of weak formulations that use the same normal velocity as
the geometric flow while incorporating artificial tangential motion which makes the map from

surface Γjh to surface Γj+1
h approximately harmonic (since harmonic map between surfaces

tends to keep the shape of triangles unchanged), where Γjh denotes the approximate surface
at the time level t = tj . Their method, known as the BGN method for this specific choice of
artificial tangential motion, has been extensively adopted and extended in the development of
numerical methods for various applications, including the development of energy-stable and
volume-preserving finite element methods (FEMs) for surface diffusion [5], interface evolution
in two-phase Navier-Stokes flow [12, 29, 30], solid-state dewetting with contact line migration
[6, 44, 7], and elastic flow with junctions [11].

The rigorous proof of convergence of the BGN methods for various problems remains open.
The convergence of a stabilized version of the BGN method for one-dimensional curve evolu-
tion under curve shortening flow was proved in [2] recently. However, the error analysis for
the stabilized BGN method still cannot be extended to general two-dimensional surfaces with
triangular mesh due to its necessity of using one-dimensional mass-lumping techniques.

In addition to the BGN methods, an alternative approach for constructing artificial tangen-
tial velocity to improve mesh quality of approximate surfaces was proposed by Elliott & Fritz
in [37, 26]. In this method, the tangential velocity is generated by a reparametrization of the
surface using DeTurck flow techniques. This approach enables the proof of convergence for
evolving FEMs that incorporate tangential motion. Convergence of evolving FEMs has been
successfully shown for curve shortening flow [37] and mean curvature flow of closed torus-type
surfaces [40]. However, proving the convergence of this class of algorithms for general surfaces
in three dimensions remains an open and challenging problem.

In [31], Hu & Li showed that, as the time stepsize tends to zero, the velocity produced by
the temporally semidiscrete BGN method (without spatial discretization) formally converges
to a limit velocity v satisfying the following equations:

v · n = u · n on Γ(t)

∆Γ(t)v = κn on Γ(t),
(1.2)

where u is the original velocity of the surface, n is the unit ourward normal vector of surface
Γ(t), and κ is an unknown scalar function on Γ(t). It is shown that the tangential velocity
determined by equation (1.2) minimizes the following energy under constraint v · n = u · n:

EDR[X(·, t)] = 1

2

∫
Γ(t)

|∇Γ(t)v|2,

which represents the deformation rate of the surface, and the function κ in (1.2) represents a
Lagrange multiplier arising from the constrained optimization problem. Therefore, the tan-
gential motion determined by (1.2) makes the evolving surface have minimal deformation rate
(MDR). An advantage of this MDR formulation is that it can be coupled with the evolution
equations of geometric quantities (such as normal vector and mean curvature) to provide
stability, thereby proving convergence of evolving surface FEMs for closed evolving surfaces
under many fundamental geometric flows. This has been shown for mean curvature flow and
Willmore flow in [31] as well as surface evolution under a given velocity in [1]. However, the
MDR formulation requires solving an additional evolution equation of normal vector n in con-
vergence analysis and therefore requires higher smoothness of the initial surface in practical
computation (see Figure 5 in Example 6.3). Convergence of finite element approximations to
the MDR formulation of surface evolution by using normal vector of the numerically solved
surface could not be proved so far.

In a recent article [18], Duan & Li proposed an artificial tangential motion which has
minimal deformation energy (also known as the Dirichlet energy)

ED[X(·, t)] := 1

2

∫
Γ0

|∇Γ0X(·, t)|2 (1.3)
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under constraint v · n = u · n. This is equivalent to solving the following problem:

v · n = u · n on Γ(t)

−∆Γ0X = κ (n ◦X) on Γ0,
(1.4)

where κ(·, t) : Γ0 → R represents a Lagrange multiplier arising from this constrained optimiza-
tion problem. The minimal deformation (MD) formulation in (1.4) guarantees that the flow
map X(·, t) : Γ0 → Γ(t) is a harmonic map with minimal deformation and therefore reduces
mesh distortion caused by deformation. For genus-zero surfaces, harmonic map is equivalent
to conformal map and therefore the flow map in the MD formulation maps triangles on Γ0

to similar triangles on Γ(t). However, the convergence of finite element approximations to
surface evolution by the MD formulation remains an open and challenging problem.

The aim of this paper is to address the aforementioned challenges by proposing novel contin-
uous formulation and evolving FEM which offer the following three advantages simultaneously:

• It contains an artificial tangential motion that could improve the mesh quality of
evolving surfaces as effectively as the MD formulation in (1.4).

• It allows us to prove the convergence of finite element approximations to surface evo-
lution with high-order accuracy.

• It avoids solving an additional evolution equation of n, which often causes the numer-
ical solution of n to differ from the normal vector of the numerically-solved surface
when the surface undergoes large deformation.

Through rigorous convergence analysis (for the second and third advantages) and numerical
tests (for the first advantage) we find that a “relaxed” minimal deformation (RMD) formula-
tion, which generates a tangential motion using harmonic map heat flow from Γ0 to Γ(t), has
all the three advantages above.

At the continuous level, the RMD formulation seeks flow map X(·, t) : Γ0 → Γ(t), velocity
v(·, t) : Γ0 → R3 and an auxiliary function κ(·, t) : Γ0 → R such that

∂tX = v on Γ0 (1.5a)

v · (n ◦X) = (u ◦X) · (n ◦X) on Γ0 (1.5b)

∂tX −∆Γ0X = κ (n ◦X) on Γ0, (1.5c)

where n denotes the normal vector on Γ(t), and n◦X is the pull-back of n from Γ(t) to Γ0. An
additional relaxation term, ∂tX, is introduced to guarantee the convergence of finite element
approximations. This is different from the DeTurck trick [37, 26] which uses harmonic map
heat flow from Γ0 to Γ0 and solves non-divergence form of PDEs in local charts.

At the discrete level, we prove the convergence of semidiscrete finite element approximations
to (1.5) for finite elements of degree k ≥ 4. This restriction of finite elements degree is a
technical requirement which ensures that the error of the numerical solution is sufficiently small
in order to bound some nonlinear terms appearing in the error analysis; see the discussions
in Section 7. In practical computation we observe that the evolving FEM based on the RMD
formulation in (1.5) is also convergent for low-order finite elements of degree k = 1, 2, 3.

Our motivation for introducing the RMD formulation in (1.5), as well as the convergence
analysis for finite element approximations of (1.5), is mainly based on the following three
key observations. The first key observation is an intrinsic cancellation structure in the weak
formulation of (1.5), i.e., orthogonality at the nodes that could exhibit a cancellation structure
under the H1 inner product (we refer readers to Lemma 3.8 for more details).

The second key observation is that the error equation for (1.5b) can be regarded as a discrete
approximation to a hyperbolic transport equation, which allows us to establish an L2-norm
stability estimate for the normal component of the error by mimicking (at the discrete level)
the stability estimates for hyperbolic transport equation; see the proof of Proposition 4.2.

The third key observation is that the presence of the relaxation term ∂tX in (1.5c) would
lead to good estimates for the tangential component of the error. This observation about the
role of relaxation term ∂tX for convergence analysis is also our motivation to consider the
RMD formulation in (1.5).
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The rest of this article is organized as follows. In Section 2, we introduce basic notations
and the finite element scheme for approximating the surface evolution described by (1.5), and
then present the main theorem on the convergence of numerical approximations. In Section
3, we introduce several important technical tools and techniques developed in [31, 32, 33, 34]
and discuss about an important cancellation structure in the RMD formulation which allows
us to prove convergence of numerical approximations in the presence of tangential motion.
Stability of the numerical solutions is proved in Section 4, and error estimates are presented
in Section 5. This completes the proof of the main theorem. In Section 6, we present several
benchmark numerical examples to demonstrate the convergence of the proposed method and
its advantages in improving the mesh quality of the approximate surfaces. Some conclusions
and remarks are presented in Section 7. Some more details in the stability analysis are
presented in Appendix.

2. Notations and main theorem

This section begins with an outline of basic notations in finite element approximations
of surface evolution. Subsequently, we introduce the semidiscrete FEM for approximating
surface evolution described by the RMD formulation in (1.5). Then we formulate the main
theorem of this paper on the convergence of numerical approximations to surface evolution
described by (1.5).

2.1. Basic notations

Let Γ be a smooth surface with the outward unit normal vector n. For a function f :
Γ → R, its surface gradient on Γ is defined as a column vector ∇Γf = (I − nn⊤)(∇f l)|Γ,
where f l is an arbitrary extension of f to R3 (the tangential gradient defined in this way is
independent of the extension used to define it). The construction and associated differential-
geometric notions can be found in [15] and Appendix A of [25], as well as in standard texts
on differential geometry. For a column vector-valued function f = (f1, f2, f3)

⊤ : Γ → R3,
its surface gradient is defined as a matrix ∇Γf = (∇Γf1,∇Γf2,∇Γf3). For a matrix-valued
function P = (Pi,j)1≤i,j≤3 : Γ → R3×3, its surface gradient ∇ΓP is a tensor with components
(∇ΓP )ijk = Di(Pj,k) for 1 ≤ i, k, j ≤ 3.

An evolving surface Γ(t), t ∈ [0, T ], with initial condition Γ(0) = Γ0, can be described by a
flow mapX : Γ0×[0, T ] → R3 which is diffeomorphic between Γ0 and Γ(t) = {X(p, t) : p ∈ Γ0}.
For any function g defined on Γ(t), we denote by g(X) or g ◦ X the pullback function of g
onto Γ0.

Throughout this article, we denote by C and h0 two generic positive constants which are
different at different occurrences, possibly depending on the exact solution, the given velocity
field u and T , but are independent of the mesh size h and t ∈ [0, T ]. The notation X ≲ Y
means X ≤ CY for some constant C, and X ∼ Y means X ≲ Y and Y ≲ X.

2.2. Evolving surface and finite element method

Given a closed, smooth initial surface Γ0 = Γ(0) ⊂ R3, we denote by Γ0
h a piecewise curved

triangular surface that interpolates Γ0, with each piece of Γ0
h being the image of the reference

plane triangle under a polynomial map of degree k; see [21, 17, 35]. Specifically, let Γ0
h,f be

the piecewise flat triangular surface whose vertices coincide with those of Γ0
h. Let K be a

curved triangle on Γ0
h, and let Kf be the corresponding flat triangle on Γ0

h,f with the same
three vertices. Define FK : Kf → K as the unique polynomial of degree k that parametrizes
K. We assume that the initial triangulation is sufficiently good with the following property:

max
K⊂Γ0

h

(
∥FK∥Wk,∞(Kf )

+ ∥F−1
K ∥W 1,∞(K)

)
≲ 1, (2.1)

where the right-hand side is independent of the mesh size h of the intepolated surface Γ0
h. In

particular, we assume that the given closed, smooth initial surface Γ0 is partitioned into an
admissible family of quasi-uniform triangulations with mesh size h.
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We define a finite element space Sh(Γ
0
h) of degree k on Γ0

h as

Sh(Γ
0
h) := {vh ∈ H1(Γ0

h) : vh ◦ FK ∈ Pk(Kf ) for all K ⊂ Γ0
h},

where Pk(Kf ) denotes the space of polynomials of degree k on the flat triangle Kf .

Let x(0) = (x1(0), · · · , xN (0)) ∈ R3N be the vector that collects all the finite element
nodes xj(0) on Γ0

h. Then we evolve vector x(0) in time and denote its position at time
t by x(t) = (x1(t), · · · , xN (t)), which determines a surface Γh(t) = Γh[x(t)] by piecewise
polynomial interpolation on the plane reference triangle. There exists a unique finite element
function Xh(·, t) ∈ Sh(Γ

0
h)

3 satisfying the following relations:

Xh

(
xj(0), t

)
= xj(t), ∀j = 1, . . . , N.

This is the discrete flow map which maps Γ0
h to Γh[x(t)]. If w(·, t) is a function defined on

Γh[x(t)] for t ∈ [0, T ], then the material derivative ∂•t,hw on Γh[x(t)] with respect to the
discrete flow map Xh is defined by

∂•t,hw(x, t) =
d

dt
w
(
Xh(p, t), t

)
for x = Xh(p, t) ∈ Γh[x(t)].

The finite element basis functions on Γh[x(t)] are denoted by ϕj [x(t)], j = 1, . . . , N , which
satisfy the following identities:

ϕj [x(t)]
(
xi(t)

)
= δij , ∂•t,hϕj [x(t)] = 0, i, j = 1, . . . , N.

The pullback of ϕj [x(t)] from any curved triangle on Γh[x(t)] to the reference plane triangle
is a polynomial of degree k. The finite element space on the surface Γh[x(t)] is defined as

Sh(Γh[x(t)]) := span{ϕ1[x(t)], · · · , ϕN [x(t)]}.
The evolving surface FEM for (1.5) is to find (Xh(·, t), vh(·, t), κh(·, t)) ∈ Sh(Γ

0
h)

3×Sh(Γ0
h)

3×
Sh(Γ

0
h) such that

∂tXh = vh on Γ0
h, (2.2a)∫

Γ0
h

vh · ñh(Xh)χn =

∫
Γ0
h

u(Xh, t) · ñh(Xh)χn ∀χn ∈ Sh(Γ
0
h), (2.2b)∫

Γ0
h

∂tXh · χκ +
∫
Γ0
h

∇Γ0
h
Xh · ∇Γ0

h
χκ =

∫
Γ0
h

κhñh(Xh) · χκ ∀χκ ∈ Sh(Γ
0
h)

3. (2.2c)

where ñh denotes the piecewisely defined normal vector on surface Γh(t) (possibly discontinu-
ous on the boundaries of the curved triangles), and ñh(Xh) is its pullback to surface Γ0

h. The
initial condition for (2.2) is Xh(·, 0) = id on Γ0

h.

2.3. Interpolated surface and lifts

We denote by X∗
h(·, t) ∈ Sh(Γ

0
h)

3 the interpolation of the exact flow map X(·, t) : Γ0 → R3

that satisfies equation (1.5). This interpolated flow map can be expressed as

X∗
h(·, t) :=

N∑
j=1

x∗j (t)ϕj [x(0)], (2.3)

where the nodal vector x∗(t) = (x∗1(t), · · · , x∗N (t)) is determined by the exact flow map, i.e.,
x∗j (t) = X(xj(0), t) for j = 1, . . . , N . Then X∗

h(·, t) determines the interpolated surface

Γh[x
∗(t)], which is often abbreviated as Γ∗

h(t) (in particular, Γ∗
h(0) = Γh(0) = Γ0

h). We denote
by ñ∗h = ñ∗h(·, t) the normal vector of the piecewise polynomial surface Γh[x

∗(t)], which is
discontinuous across the boundaries of the curved triangles on Γh[x

∗(t)].
From [34, Lemma 7.1] or [17, (2.15)-(2.16)] we know that, for the smooth surface Γ(t), there

exists a constant h0 such that for h ≤ h0 and t ∈ [0, T ], any point x ∈ Γ∗
h(t) can be lifted to

Γ(t) through a lift operator a : Γ∗
h(t) → Γ(t), i.e.,

xl := a(x) ∈ Γ(t) for x ∈ Γ∗
h(t). (2.4)
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The lift operator a : Γ∗
h(t) → Γ(t) is one-to-one and onto. Correspondingly, any function η on

Γ∗
h(t) can be lifted to a function ηl on Γ(t), defined by

ηl(xl) := η(x) for x ∈ Γ∗
h(t).

The inverse lift of a function ϕ on Γ(t) can be expressed as

ϕ−l(x) = ϕ(xl) for x ∈ Γ∗
h(t).

Moreover, the L2 and H1 norms on Γ0
h = Γ∗

h(0) and Γ0 = Γ(0) are equivalent, i.e.,

∥η∥L2(Γ0
h)

∼ ∥ηl∥L2(Γ0) for η ∈ L2(Γ0
h)

∥∇Γ0
h
η∥L2(Γ0

h)
∼ ∥∇Γ0ηl∥L2(Γ0) for η ∈ H1(Γ0

h).
(2.5)

2.4. Main theoretical result

We denote by Pn : Γ0 → R3×3 and Ptan : Γ0 → R3×3 to be the normal and tangential
projection matrices, i.e.,

Pn = (nn⊤) ◦X and Ptan = I3×3 − Pn, (2.6)

where n = n(·, t) is the normal vector of Γ(t). The main theoretical result of this article is
the following theorem.

Theorem 2.1. Let u : R3 × [0, T ] → R3 be a given smooth velocity field, and assume that
problem (1.5) admits a smooth solution (X, v, κ) such that the flow map X(·, t) : Γ0 → Γ(t)
and its inverse map X(·, t)−1 : Γ(t) → Γ0 are smooth for all t ∈ [0, T ]. Then there exists a
constant h0 > 0 such that the finite element scheme in (2.2), with finite elements of polynomial
degree k ≥ 4, admits a unique finite element solution on the time interval [0, T ]. Moreover,
the finite element solution satisfies the following error bound for 0 < h ≤ h0:

sup
t∈[0,T ]

∥(Xh)
l −X∥2L2(Γ0) +

∫ T

0
∥∇Γ0Ptan((Xh)

l −X)∥2L2(Γ0)dt ≲ h2k. (2.7)

In Theorem 2.1, the gradient estimate applies only to the tangential component of the error.
This is because the error estimate for the tangential part is derived from (2.2c), which includes
a gradient term that enables us to obtain a gradient estimate for the tangential component
(see Proposition 4.1 for further details). In contrast, the estimate for the normal component
of the error is based on (2.2b), which only yields an L2 estimate.

3. Basic tools for stability analysis

In this section, we present several fundamental tools for stability analysis. We begin by
summarizing the notations and introducing the results of norm equivalence between different
surfaces. Then we present results concerning the perturbation of normal vectors and charac-
terize the difference between the normal vectors on different surfaces (i.e., the interpolated
surface and the numerical-solution surface). This characterization plays a crucial role in the
subsequent stability analysis. Finally, we illustrate an important cancellation structure in
(2.2), another key to the stability analysis, by introducing the tangential and normal projec-
tions as well as utilizing the super-approximation properties.

3.1. Notations

We introduce Γh,θ(t) to denote the intermediate surface between the interpolated surface
Γ∗
h(t) = Γh[x

∗(t)] and the numerical solution surface Γh(t) = Γh[x(t)], defined as

Γh,θ(t) := (1− θ)Γ∗
h(t) + θΓh(t) = Γh[(1− θ)x∗(t) + θx(t)], θ ∈ [0, 1]. (3.1)

The flow map from Γ0
h to Γh,θ(t) is given by Xθ

h = (1 − θ)X∗
h + θXh, and the normal vector

of Γh,θ(t) is denoted by ñθh = ñθh(·, t). For the readers’ clarity and convenience, we summarize
below the notations for functions on different surfaces, which will be frequently used in the
stability analysis.
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Γ0: The smooth initial surface at t = 0.
X(·, t): The exact flow map defined on Γ0, satisfying (1.5).
Γ(t): The exact surface determined by X(·, t) at time t.
Γ0
h: The piecewise curved triangular surface that interpolates Γ0.
Xh(·, t): The discrete flow map defined on Γ0

h, satisfying (2.2).
Γh(t): The numerical-solution surface determined by Xh(·, t) at time t.
X∗
h(·, t): The interpolation of X(·, t) defined on Γ0

h, as given by (2.3).
Γ∗
h(t): The interpolated surface determined by X∗

h(·, t) at time t.
Γh,θ(t): The intermediate surface between Γ∗

h(t) and Γh(t), as given by (3.1).
Xθ
h(·, t) : The flow map from Γ0

h to Γh,θ(t).
nΓ0 : The normal vector on Γ0.
n, nΓ(t): The normal vector on Γ(t).

Pn: The normal projection matrix Pn = (nn⊤) ◦X, defined on Γ0.
Ptan: The tangential projection matrix Ptan = I3×3 − Pn, defined on Γ0.
nΓ0

h
, HΓ0

h
: The piecewisely defined normal vector and mean curvature on Γ0

h.

ñh: The piecewisely defined normal vector on surface Γh(t).
ñ∗h, nΓ∗

h(t)
: The piecewisely defined normal vector on surface Γ∗

h(t).

n∗h: The interpolation of n in Sh(Γ
∗
h(t))

3, defined on Γ∗
h(t), as given by (3.9).

P ∗
n : The normal projection matrix P ∗

n =
(
n∗h(n

∗
h)

⊤) ◦X∗
h, defined on Γ0

h.
P ∗
tan: The tangential projection matrix P ∗

tan = I3×3 − P ∗
n , defined on Γ0

h.
ñθh : The piecewisely defined normal vector on surface on Γh,θ(t).
Ih, PL2 : The Lagrange interpolation and the L2-projection operators on Sh(Γ

0
h).

v∗h, κ
∗
h : The interpolation of the exact solution of (1.5), v∗h = Ihv

(−l) and κ∗h = Ihκ
(−l),

defined on Γ0
h.

eX , ev, eκ : The finite element error functions, eX = Xh − X∗
h, ev = vh − v∗h, and eκ =

κh − κ∗h, defined on Γ0
h.

en : The error function of the normal vector, en = ñh ◦ Xh − n∗h ◦ X∗
h defined on

Γ0
h.

eθX : The finite element error function defined on Γh,θ(t) with the same nodal vector
as eX , as given by (3.2).

e∗X : The finite element error function defined on Γ∗
h(t) with the same nodal vector

as eX , as given by (3.2).

3.2. Norm equivalence between different surfaces

We consider the norm equivalence relations between the interpolated surface Γ∗
h(t) =

Γh[x
∗(t)] and the numerical-solution surface Γh(t) = Γh[x(t)]. Recall that Γh,θ(t) represents

the intermediate surface between Γ∗
h(t) and Γh(t), as defined in (3.1).

Let eX = Xh − X∗
h be the finite element error function defined on Γ0

h, and let eθX =

eX ◦ (Xθ
h)

−1 be the finite element function on Γh,θ(t) with the same nodal vector as eX . In the

case θ = 0 we also write eθX as e∗X . If we denote by e = (e1, · · · , eN ), with ej = eX(xj(0), t)
being the nodal values of the error function, then

eX =

N∑
j=1

ejϕj [x
∗(0)] ∈ Sh(Γ

0
h)

3 on Γ0
h,

eθX =

N∑
j=1

ejϕj [x
∗(t) + θe] ∈ Sh(Γh,θ(t))

3 on Γh,θ(t),

e∗X = eX ◦ (X∗
h)

−1 =

N∑
j=1

ejϕj [x
∗(t)] ∈ Sh(Γ

∗
h(t))

3 on Γ∗
h(t).

(3.2)

In general, a finite element function on Γh,θ(t) with nodal vector w = (w1, · · · , wN ) can be

written as wθh :=
∑N

j=1wjϕj [x
∗(t) + θe]. The following theorem demonstrates that the norms
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on different intermediate surfaces Γh,θ(t) are actually equivalent to each other when theW 1,∞

norm of e∗X is bounded (see [32, Lemma 4.3] for more details).

Lemma 3.1 (Norm equivalence on Γh,θ). If ∥∇Γ∗
h(t)

e∗X∥L∞(Γ∗
h(t))

≤ 1
2 , then the following norm

equivalence holds uniformly for θ ∈ [0, 1] and 1 ≤ p ≤ ∞:

∥wθh∥Lp(Γh,θ(t)) ≲ ∥w0
h∥Lp(Γ∗

h(t))
and ∥∇Γh,θ(t)w

θ
h∥Lp(Γh,θ(t)) ≲ ∥∇Γ∗

h(t)
w0
h∥Lp(Γ∗

h(t))
.

In addition, the norms of functions on Γ0
h and Γ∗

h(t) (related to each other through the
discrete flow map) are equivalent due to the boundedness of X∗

h(·, t) and X∗
h(·, t)−1 in the

W 1,∞ norm (this follows from the smoothness of flow map X(·, t) and its inverse X(·, t)−1

under the conditions of Theorem 2.1). We present this result in the following lemma.

Lemma 3.2 (Norm equivalence between Γ0
h and Γ∗

h(t)). For any function ϕ on Γ0
h, we denote

by ϕ∗ = ϕ ◦ [X∗
h(·, t)−1] its push-forward function on Γ∗

h(t) via the discrete flow map. Then,
under the conditions of Theorem 2.1, there exists h0 > 0 such that for h ≤ h0 the following
estimates hold:

∥ϕ∗∥Lp(Γ∗
h(t))

∼ ∥ϕ∥Lp(Γ0
h)

∀ϕ ∈ Lp(Γ0
h),

∥∇Γ∗
h(t)

ϕ∗∥Lp(Γ∗
h(t))

∼ ∥∇Γ0
h
ϕ∥Lp(Γ0

h)
∀ϕ ∈W 1,p(Γ0

h).
(3.3)

Proof. Since ϕ = ϕ∗ ◦X∗
h, it follows that (applying the chain rule of partial differentiation)

∇Γ0
h
ϕ = (∇Γ0

h
X∗
h)[(∇Γ∗

h(t)
ϕ∗) ◦X∗

h]

=
(
∇Γ0

h
X∗
h + nΓ0

h
(nΓ∗

h(t)
◦X∗

h)
⊤)[(∇Γ∗

h(t)
ϕ∗) ◦X∗

h],
(3.4)

where nΓ0
h
and nΓ∗

h(t)
denote the normal vectors of Γ0

h and Γ∗
h(t), respectively, and the last

equality follows from the orthogonality relation n⊤Γ∗
h(t)

∇Γ∗
h(t)

ϕ∗ = 0 on Γ∗
h(t). Under the

conditions of Theorem 2.1 (smoothness of the surface and the flow map), we have

∥(∇Γ0
h
X∗
h)− (∇Γ0X)−l∥L∞(Γ0

h)
≲ hk

∥nΓ0
h
(nΓ∗

h(t)
◦X∗

h)
⊤ − (nΓ0(nΓ(t) ◦X)⊤)−l∥L∞(Γ0

h)
≲ hk,

(3.5)

which are standard estimates of errors related to an interpolation surface. Therefore, matrix
∇Γ0

h
X∗
h+nΓ0

h
(nΓ∗

h(t)
◦X∗

h)
⊤ can be well approximated by matrix ∇Γ0X+nΓ0(nΓ(t)◦X)⊤, while

the latter matrix and its inverse matrix are bounded uniformly for t ∈ [0, T ]. This implies that
∇Γ0

h
X∗
h + nΓ0

h
(nΓ∗

h(t)
◦X∗

h)
⊤ and its inverse matrix are also bounded uniformly for t ∈ [0, T ].

By a similar approach, the Jacobian matrix of the integral transformation from Γ∗
h(t) to Γ0

h

satisfies the property that |det(∇Γ0
h
X∗
h(∇Γ0

h
X∗
h)

⊤ + nΓ0
h
(nΓ0

h
)⊤)| has both upper bound and

positive lower bound. This immediately implies the norm equivalence relations in (3.3). □

Remark 1 (Approximation of ∇Γ0
h
X∗
h +nΓ0

h
(nΓ∗

h(t)
◦X∗

h)
⊤). In the proof of Theorem 2.1, we

often need to convert ∇Γ∗
h(t)

to ∇Γ0
h
, for which we need to use the chain rule of differentiation

in (3.4), where the transition matrix ∇Γ0
h
X∗
h + nΓ0

h
(nΓ∗

h(t)
◦ X∗

h)
⊤ is discontinuous on the

boundaries of the curved triangles on Γ0
h. Nevertheless, as shown in the proof of Lemma 3.2,

it can be well approximated by a continuous matrix [∇Γ0X+nΓ0(nΓ(t) ◦X)⊤]−l with an error

bound of O(hk).

The finite element scheme in (2.2) are defined on the discrete initial surface Γ0
h, which is glob-

ally continuous and piecewise smooth. Special attention needs to be paid to the integration-
by-parts argument on such piecewise smooth surfaces. To this end, we denote by E0

h the
collection of curved edges in the triangulated surface Γ0

h, and present an integration-by-parts
formula which involves jump terms on the curved edges of Γ0

h.

Lemma 3.3 (Integration by parts on Γ0
h). Let v ∈ H1(Γ0

h)
3 and w ∈ H1(Γ0

h), for any fixed
integer k ≥ 1, there exists a constant h0 > 0 such that for all mesh sizes satisfying 0 < h ≤ h0,
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it holds that,∣∣∣ ∫
Γ0
h

v · ∇Γ0
h
w
∣∣∣ ≲ ∣∣∣ ∫

Γ0
h

(
∇Γ0

h
· v

)
w
∣∣∣+ ∥w∥L2(Γ0

h)
∥v∥L2(Γ0

h)
+ hk

∑
E∈E0

h

∥w∥L2(E)∥v∥L2(E). (3.6)

Moreover, if v and w are finite element functions then∣∣∣ ∫
Γ0
h

v · ∇Γ0
h
w
∣∣∣ ≲ ∣∣∣ ∫

Γ0
h

(
∇Γ0

h
· v

)
w
∣∣∣+ ∥w∥L2(Γ0

h)
∥v∥L2(Γ0

h)
. (3.7)

Proof. By using integration-by-parts on each curved triangle of Γ0
h, and summing up the

results for all the triangles, we can obtain∫
Γ0
h

v · ∇Γ0
h
w =

∑
E∈E0

h

∫
E
[µ]E · v w +

∫
Γ0
h

HΓ0
h
nΓ0

h
· v w −

∫
Γ0
h

(∇Γ0
h
· v)w, (3.8)

where nΓ0
h
and HΓ0

h
are the normal vector and mean curvature of surface Γ0

h, and [µ]E denotes

the jump of conormal vector on edge E. For k = 1, the mean curvature HΓ0
h
is zero, and, for

k ≥ 2, based on Proposition 2.3 in [17], both the mean curvature HΓ0
h
and the normal vector

nΓ0
h
converge to those of Γ0 as the mesh size h tends to zero (with k fixed). Consequently,

there exists a constant h0 > 0 such that for all 0 < h ≤ h0,∣∣∣ ∫
Γ0
h

HΓ0
h
nΓ0

h
· v w

∣∣∣ ≲ ∥w∥L2(Γ0
h)
∥v∥L2(Γ0

h)
.

Moreover, on the interpolated surface Γ0
h, it is well known that

∥[µ]E∥L∞(E) ≲ ∥[n]E∥L∞(E) ≲ hk,

where [n]E denotes the jump of the normal vector across an edge E. This estimate is de-
rived from (2.5) in [1] and Proposition 2.3 in [17]. Substituting those estimates into (3.8)
immediately yields (3.6).

If v and w are finite element functions then the edge integrals in hk
∑

E∈E0
h
∥w∥L2(E)∥v∥L2(E)

can be reduced to surface integrals by using the trace inequality of finite element functions.
This would reduce (3.6) to (3.7). □

3.3. Perturbation of normal vectors

Let n∗h = n∗h(·, t) ∈ Sh(Γ
∗
h(t))

3 denote the Lagrange interpolation of the normal vector
n = n(·, t) of Γ(t), given by

n∗h(·, t) :=
N∑
j=1

n(x∗j (t), t)ϕj [x
∗(t)]. (3.9)

It is noted that n∗h ∈ Sh(Γ
∗
h(t))

3 is continuous. This contrasts with the normal vectors ñh of
Γh(t) and ñ∗h of Γ∗

h(t), which are discontinuous on the boundaries of curved triangles. The
error estimate between n∗h and ñ∗h is well established and is presented in the following lemma,
as stated in Proposition 2.3 of [17].

Lemma 3.4 (Approximation properties of n∗h and ñ∗h). Under the conditions of Theorem 2.1,
the following estimates hold:

∥n∗h ◦X∗
h − (n ◦X)−l∥L∞(Γ0

h)
≲ hk+1, (3.10a)

∥ñ∗h ◦X∗
h − (n ◦X)−l∥L∞(Γ0

h)
≲ hk, (3.10b)

∥ñ∗h ◦X∗
h − n∗h ◦X∗

h∥L∞(Γ0
h)

≲ hk. (3.10c)

We now focus on estimating the difference between normal vectors ñh of Γh(t) and ñ∗h of

Γ∗
h(t). Before we present the result, we briefly recall that ñθh denotes the normal vector of

the intermediate surface Γh,θ, as defined in the text below (3.1), and e∗X and eθX are the error
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functions (with a common nodal vector) defined on the interpolated surface Γ∗
h(t) and the

intermediate surface Γh,θ, respectively; see their definitions in (3.2).

Lemma 3.5 (Characterization of ñh ◦Xh − ñ∗h ◦X∗
h). The following relation holds:

ñh ◦Xh − ñ∗h ◦X∗
h = −

∫ 1

0
[(∇Γh,θ

eθX)ñ
θ
h] ◦Xθ

h dθ. (3.11)

Moreover, by comparing [(∇Γh,θ
eθX)ñ

θ
h] ◦ Xθ

h with [(∇Γ∗
h
e∗X)ñ

∗
h] ◦ X∗

h using Newton–Leibniz
formula with respect to θ, we have

ñh ◦Xh − ñ∗h ◦X∗
h =

(
−∇Γ∗

h(t)
(e∗X · n∗h) + (∇Γ∗

h(t)
n∗h)e

∗
X + (∇Γ∗

h(t)
e∗X)(n

∗
h − ñ∗h)

)
◦X∗

h

+

∫ 1

0

(∫ θ

0

([
2(∇Γh,α

eαX)− ñαh(ñ
α
h)

⊤(∇Γh,α
eαX)

⊤](∇Γh,α
eαX)ñ

α
h

)
◦Xα

h dα
)
dθ.

(3.12)

Proof. For a function wθh on Γh,θ, its material derivative in θ is defined as (∂•θw
θ
h)(X

θ
h) :=

d
dθ (w

θ
h(X

θ
h)). The following expression of ∂•θ ñ

θ
h can be found in [13, Lemma 37]:

(∂•θ ñ
θ
h)(X

θ
h) =

d

dθ
(ñθh ◦Xθ

h) = −[(∇Γh,θ
eθX)ñ

θ
h] ◦Xθ

h. (3.13)

Then we note that relation (3.11) is an application of the Newton–Leibniz formula with the
above expression of d

dθ (ñ
θ
h ◦Xθ

h). By using the Newton–Leibniz formula again, the right-hand
side of (3.11) can be further written as

−
∫ 1

0
[(∇Γh,θ

eθX)ñ
θ
h] ◦Xθ

h dθ =− [(∇Γ∗
h(t)

e∗X)ñ
∗
h] ◦X∗

h

−
∫ 1

0

(∫ θ

0

(
∂•α[(∇Γh,α

eαX)ñ
α
h ] ◦Xα

h

)
dα

)
dθ,

(3.14)

where the first term on the right-hand side can be rewritten as follows, using the Leibniz rule
of differentiation:

−(∇Γ∗
h(t)

e∗X)ñ
∗
h = −∇Γ∗

h(t)
(e∗X · n∗h) + (∇Γ∗

h(t)
n∗h)e

∗
X + (∇Γ∗

h(t)
e∗X)(n

∗
h − ñ∗h).

The second term on the right-hand side of (3.14) can also be rewritten into two terms, i.e.,

∂•α[(∇Γh,α
eαX)ñ

α
h ] = ∂•α(∇Γh,α

eαX)ñ
α
h + (∇Γh,α

eαX)∂
•
αñ

α
h

= ∂•α(∇Γh,α
eαX)ñ

α
h − (∇Γh,α

eαX)(∇Γh,α
eαX)ñ

α
h ,

where the last equality follows from (3.13). We can further simplify the expression of ∂•α(∇Γh,α
eαX)

by using [24, Leamma 2.6], which says that

∂•α(∇Γh,α
eαX) = ∇Γh,α

(∂•αe
α
X)−

(
∇Γh,α

eαX − ñαh(ñ
α
h)

⊤(∇Γh,α
eαX)

⊤
)
(∇Γh,α

eαX).

In view of the expression of ñh ◦Xh− ñ∗h ◦X∗
h in (3.11), substituting ∂•αe

α
X = 0 and the above

three relations into (3.14) yields (3.12). □

We are now ready to define the normal projection matrix P ∗
n ∈ H1(Γ0

h,R3×3) and tangential
projection matrix P ∗

tan ∈ H1(Γ0
h,R3×3) on the discrete surface Γ0

h, i.e.,

P ∗
n =

(
n∗h(n

∗
h)

⊤) ◦X∗
h and P ∗

tan = I3×3 − P ∗
n , (3.15)

where n∗h is the (globally continuous) interpolated normal vector on the interpolated surface
Γ∗
h(t). The gradient of the normal projection matrix, i.e., ∇Γ0

h
P ∗
n , is defined as a third-order

tensor. While it is discontinuous on Γ0
h, it can be approximated by a continuous tensor

(∇Γ0Pn)
−l, where Pn is defined in (2.6). In particular, (∇Γ0

h
P ∗
n) − (∇Γ0Pn)

−l has the same

error bound as n∗h − n−l. This is presented in the following lemma.

Lemma 3.6 (Approximation of ∇Γ0
h
P ∗
n). Under the conditions of Theorem 2.1, it holds that

∥(∇Γ0
h
P ∗
n)− (∇Γ0Pn)

−l∥L∞(Γ0
h)

≲ hk. (3.16)
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Since our numerical scheme and error analysis are conducted on Γ0
h, we typically need to

pull the normal vectors of Γh(t) and Γ∗
h(t) back to Γ0

h, denoted by ñh ◦ Xh, ñ
∗
h ◦ X∗

h, and
n∗h ◦X∗

h, respectively. Therefore, for the simplicity of notation, we abbreviate them as ñh, ñ
∗
h,

and n∗h (omitting the composition with flow maps), respectively, in the subsequent text when
it does not cause ambiguity.

3.4. Cancellation structure

Let Ih and PL2 be the Lagrange interpolation and the L2-projection operators on Sh(Γ
0
h),

respectively, and recall that P ∗
n and P ∗

tan ∈ H1(Γ0
h)

3×3 are the normal projection matrix and
tangential projection matrix defined in (3.15). For any wh ∈ Sh(Γ

0
h)

3, we define Ih(P
∗
nwh)

and PL2(P ∗
nwh) as the interpolated and projected normal components of wh, respectively.

They are finite element functions in Sh(Γ
0
h)

3 such that the differences P ∗
nwh − Ih(P

∗
nwh) and

P ∗
nwh−PL2(P ∗

nwh) have better estimates than the usual results, as shown in Lemma 3.7. These
better estimates are referred to as super-approximation properties, which are frequently used
in this paper and summarized in the following lemma. We direct readers to [31, Lemma A]
for further details.

Lemma 3.7 (Super-approximation properties). For any wh ∈ Sh(Γ
0
h)

3, under the condition
of Theorem 2.1, the following inequalities hold:

∥P ∗
nwh − Ih(P

∗
nwh)∥L2(Γ0

h)
≲ h2∥wh∥H1(Γ0

h)
,

∥∇Γ0
h
(P ∗

nwh)−∇Γ0
h
Ih(P

∗
nwh)∥L2(Γ0

h)
≲ h∥wh∥H1(Γ0

h)
,

∥P ∗
nwh − PL2(P ∗

nwh)∥L2(Γ0
h)

≲ h2∥wh∥H1(Γ0
h)
,

∥∇Γ0
h
(P ∗

nwh)−∇Γ0
h
PL2(P ∗

nwh)∥L2(Γ0
h)

≲ h∥wh∥H1(Γ0
h)
.

Similar estimates also hold for P ∗
tanwh − Ih(P

∗
tanwh) and P

∗
tanwh − PL2(P ∗

tanwh).

By utilizing the super-approximation properties, we illustrate a cancellation structure be-
tween the normal projection and the tangential projection in the weak formulation (2.2),
which is crucial to proving convergence of the evolving FEM in this paper.

Lemma 3.8 (Cancellation structure). Under the conditions of Theorem 2.1, the following
estimates hold for any wh, zh ∈ Sh(Γ

0
h)

3 (which are possibly time-dependent):∫
Γ0
h

∇Γ0
h
(P ∗

nwh) · ∇Γ0
h
(IhP

∗
tanzh) ≲ ∥wh∥L2(Γ0

h)

(
∥zh∥L2(Γ0

h)
+ ∥∇Γ0

h
(P ∗

tanzh)∥L2(Γ0
h)

)
, (3.17)∫

Γ0
h

∂t(P
∗
nwh) · (IhP ∗

tanzh) ≲ ∥wh∥L2(Γ0
h)
∥zh∥L2(Γ0

h)
(3.18)

+ h2∥∂twh∥L2(Γ0
h)
(∥zh∥L2(Γ0

h)
+ ∥∇Γ0

h
(P ∗

tanzh)∥L2(Γ0
h)
).

Remark 2. Compared with the usual estimates without making use of the orthogonality
between P ∗

n and P ∗
tan, the right-hand sides of (3.17) and (3.18) have either weaker norms or

some power of h. This is the reason that we refer to them as cancellation structure.

Proof. Due to the orthogonality between P ∗
n and P ∗

tan, it is easy to see that IhP
∗
nϕh = 0 for

the function ϕh = IhP
∗
tanzh (simply verify that IhP

∗
nϕh = 0 at the nodes). For this function

ϕh, using Lemma 3.7 (super-approximation properties), we have

∥∇Γ0
h
(P ∗

nϕh)∥L2(Γ0
h)

= ∥∇Γ0
h
(P ∗

nϕh − Ih(P
∗
nϕh))∥L2(Γ0

h)
≲ h∥ϕh∥H1(Γ0

h)
. (3.19)

By applying the Leibniz rule of differentiation, we have∫
Γ0
h

∇Γ0
h
(P ∗

nwh) · ∇Γ0
h
ϕh =

∫
Γ0
h

∇Γ0
h
wh · ∇Γ0

h
(P ∗

nϕh) +

∫
Γ0
h

(∇Γ0
h
P ∗
n)wh · ∇Γ0

h
ϕh

−
∫
Γ0
h

∇Γ0
h
wh · (∇Γ0

h
P ∗
n)ϕh

=: I1 + I2 − I3, (3.20)
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where I1 can be estimated directly using (3.19), i.e.,

|I1| ≲ ∥∇Γ0
h
wh∥L2(Γ0

h)
h∥ϕh∥H1(Γ0

h)
≲ ∥wh∥L2(Γ0

h)
∥ϕh∥H1(Γ0

h)
.

Moreover, I2 can be estimated directly with the boundedness of ∥∇Γ0
h
P ∗
n∥L∞(Γ0

h)
, i.e.,

|I2| ≲ ∥wh∥L2(Γ0
h)
∥∇Γ0

h
ϕh∥L2(Γ0

h)
.

The following estimate of I3 can be obtained through approximating ∇Γ0
h
P ∗
n by (∇Γ0Pn)

−l

using Lemma 3.6 and the inverse inequality ∥∇Γ0
h
wh∥L2(Γ0

h)
≤ Ch−1∥wh∥L2(Γ0

h)
:

|I3| ≤
∣∣∣ ∫

Γ0
h

∇Γ0
h
wh · (∇Γ0Pn)

−lϕh

∣∣∣+ Chk−1∥wh∥L2(Γ0
h)
∥ϕh∥L2(Γ0

h)
.

Then we can employ the integration by parts to transfer the gradient from wh to ϕh. We
apply the integration-by-parts estimate in (3.6) of Lemma 3.3 with v = (∇Γ0Pn)

−lϕh, and use
inverse inequality to reduce the edge integrals in (3.6) to surface integrals similarly as (3.7)
of Lemma 3.3. This leads to the following result (note that ∥∇Γ0

h
· v∥L2(Γ0

h)
≲ ∥ϕh∥H1(Γ0

h)
):

|I3| ≲ ∥wh∥L2(Γ0
h)
(∥ϕh∥L2(Γ0

h)
+ ∥∇Γ0

h
ϕh∥L2(Γ0

h)
).

Therefore, substituting the estimates of I1, I2 and I3 into (3.20) and recalling that ϕh =
IhP

∗
tanzh, we have∫
Γ0
h

∇Γ0
h
(P ∗

nwh) · ∇Γ0
h
(IhP

∗
tanzh) ≲ ∥wh∥L2(Γ0

h)
(∥ϕh∥L2(Γ0

h)
+ ∥∇Γ0

h
ϕh∥L2(Γ0

h)
)

≲ ∥wh∥L2(Γ0
h)

(
∥zh∥L2(Γ0

h)
+ ∥∇Γ0

h
(P ∗

tanzh)∥L2(Γ0
h)

)
,

(3.21)

where the last inequality follows from approximating IhP
∗
tanzh by P ∗

tanzh with the super-
approximation properties in Lemma 3.7. This proves the first result of Lemma 3.8.

The second result of Lemma 3.8 can be proved similarly, utilizing the orthogonality between
P ∗
n and P ∗

tan, as well as the super-approximation properties in Lemma 3.7. The former guar-
antees that IhP

∗
nϕh = IhP

∗
n(IhP

∗
tanzh) = 0 and the latter guarantees the following estimate:

∥P ∗
nϕh∥L2(Γ0

h)
= ∥P ∗

nϕh − IhP
∗
nϕh∥L2(Γ0

h)
≲ h2∥ϕh∥H1(Γ0

h)
.

Therefore, ∫
Γ0
h

∂t(P
∗
nwh) · ϕh =

∫
Γ0
h

(∂tP
∗
n)wh · ϕh + ∂twh · (P ∗

nϕh)

≲ ∥wh∥L2(Γ0
h)
∥ϕh∥L2(Γ0

h)
+ ∥∂twh∥L2(Γ0

h)
∥P ∗

nϕh∥L2(Γ0
h)

≲ ∥wh∥L2(Γ0
h)
∥zh∥L2(Γ0

h)
+ h2∥∂twh∥L2(Γ0

h)
∥ϕh∥H1(Γ0

h)
.

Since ∥ϕh∥H1(Γ0
h)

≲ ∥zh∥L2(Γ0
h)

+ ∥∇Γ0
h
(P ∗

tanzh)∥L2(Γ0
h)
, as shown in (3.21) for ϕh = IhP

∗
tanzh,

the above estimate gives the second result of Lemma 3.8. □

4. Stability estimates

4.1. Error equations and defects

We denote by (X∗
h, v

∗
h, κ

∗
h) ∈ Sh(Γ

0
h)

3 × Sh(Γ
0
h)

3 × Sh(Γ
0
h) the interpolation of the exact

solution (X, v, κ), and recall that n∗h ∈ Sh(Γ
∗
h(t))

3 denotes the interpolation of normal vector
n on Γ(t). Replacing (Xh, vh, κh, ñh) by (X∗

h, v
∗
h, κ

∗
h, n

∗
h) in weak formulation (2.2), we can

obtain a weak formulation satisfied by X∗
h, v

∗
h, κ

∗
h and n∗h up to some defects, i.e.,

∂tX
∗
h = v∗h on Γ0

h, (4.1a)∫
Γ0
h

v∗h · n∗h(X∗
h)χn =

∫
Γ0
h

u(X∗
h, t) · n∗h(X∗

h)χn −
∫
Γ0
h

dvχn ∀χn ∈ Sh(Γ
0
h), (4.1b)∫

Γ0
h

∂tX
∗
hχκ +

∫
Γ0
h

∇Γ0
h
X∗
h∇Γ0

h
χκ =

∫
Γ0
h

κ∗hn
∗
h(X

∗
h) · χκ −

∫
Γ0
h

dκ · χκ ∀χκ ∈ Sh(Γ
0
h)

3, (4.1c)
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where dv(·, t) ∈ Sh(Γ
0
h) and dκ(·, t) ∈ Sh(Γ

0
h)

3 are the defects due to spatial discretization. In
the following error analysis, we need to estimate the defect function dκ ∈ Sh(Γ

0
h)

3 in both L2

norm and the discrete H−1 norm. The latter is defined as

∥dκ∥H−1
h (Γ0

h)
= sup

0̸=ϕh∈Sh(Γ
0
h)

3

∫
Γ0
h
dκϕh

∥ϕh∥H1(Γ0
h)

. (4.2)

Upon subtracting equations (4.1) from equations (2.2), we derive the following error equations
for eX = Xh −X∗

h ∈ Sh(Γ
0
h)

3, ev = vh − v∗h ∈ Sh(Γ
0
h)

3 and eκ := κh − κ∗h ∈ Sh(Γ
0
h):

∂teX = ev, on Γ0
h, (4.3a)∫

Γ0
h

(vh · ñh(Xh)− v∗h · n∗h(X∗
h))χn =

∫
Γ0
h

((u · ñh)(Xh)− (u · n∗h)(X∗
h))χn +

∫
Γ0
h

dvχn, (4.3b)∫
Γ0
h

∂teXχκ +

∫
Γ0
h

∇Γ0
h
eX∇Γ0

h
χκ =

∫
Γ0
h

(κhñh(Xh)− κ∗hn
∗
h(X

∗
h))χκ +

∫
Γ0
h

dκχκ. (4.3c)

Additionally, we denote by en := ñh ◦Xh−n∗h ◦X∗
h on Γ0

h the error of the normal vector. The
stability analysis will be based on the error equations in (4.3).

4.2. Time derivative of the error

Let t∗ ∈ (0, T ] be the supremum of time such that the finite element scheme in (2.2) has
a unique finite element solution satisfying the following estimate (with coefficient 1 on the
right-hand side):

∥eX(·, t)∥L2(Γ0
h)

≤ hk−0.1, for t ∈ [0, t∗]. (4.4)

The choice of 0.1 in the exponent is not essential to the analysis, as any small positive number
0 < ϵ < 1 would suffice for the following proof. Since eX(·, 0) = 0 and the semidiscrete finite
element solution of (2.2) is continuous in time, it follows that t∗ > 0. Ultimately, our proof
will be completed by demonstrating that t∗ = T .

Given condition k ≥ 4 and the inverse inequality ∥eX(·, t)∥W 1,∞(Γ0
h)

≤ Ch−2∥eX(·, t)∥L2(Γ0
h)
,

(4.4) implies the boundedness of Xh(·, t) and smallness of eX in theW 1,∞ norm for t ∈ [0, t∗].
For sufficiently small h (smaller than some constant), Lemma 3.2 (norm equivalence between
Γ0
h and Γ∗

h(t)) implies that, for e∗X = eX ◦ (X∗
h)

−1,

∥∇Γ∗
h(t)

e∗X∥L∞(Γ∗
h(t))

∼ ∥∇Γ0
h
eX∥L∞(Γ0

h)
≲ h−2∥eX∥L2(Γ0

h)
≲ hk−2.1 ≤ 1

2
. (4.5)

Therefore, Lemma 3.1 (norm equivalence on Γh,θ) holds for t ∈ [0, t∗].

Lemma 4.1 (Estimates of en). Under the conditions of Theorem 2.1 and (4.4), the following
estimates hold for t ∈ [0, t∗]:

∥en∥L2(Γ0
h)

≲ h−1∥eX∥L2(Γ0
h)

+ hk and ∥en∥L∞(Γ0
h)

≲ h−1∥eX∥L∞(Γ0
h)

+ hk. (4.6)

Proof. The estimates in (4.6) are consequences of formula (3.11) in Lemma 3.5, which implies
that

∥ñh ◦Xh − ñ∗h ◦X∗
h∥L2(Γ0

h)
≲ h−1∥eX∥Lp(Γ0

h)
for 2 ≤ p ≤ ∞.

This, together with ∥ñ∗h − n∗h∥L∞(Γ∗
h(t))

≲ hk and en = ñh ◦Xh − n∗h ◦X∗
h, implies (4.6). □

A direct application of Lemma 4.1, in combination with (4.4), is the following result:

∥en∥L2(Γ0
h)

≲ hk−1.1 and ∥en∥L∞(Γ0
h)

≲ hk−2.1 for t ∈ [0, t∗]. (4.7)

Both (4.4) and (4.7) will be frequently used in the subsequent stability analysis.
We are now ready to estimate the time derivative of the error, i.e., ev = ∂teX . We start with

presenting a rough estimate and then improve the result by decomposing ∂teX into ∂t(P
∗
taneX)

and ∂t[eX · (n∗h ◦X∗
h)], and applying Lemma 3.8 (cancellation structure).
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Lemma 4.2 (A rough estimate of ∂teX). Under the conditions of Theorem 2.1, the following
estimate holds for t ∈ [0, t∗]:

∥∂teX∥L2(Γ0
h)

≲ h−2∥eX∥L2(Γ0
h)

+ ∥eκ∥L2(Γ0
h)

+ ∥dκ∥L2(Γ0
h)

+ hk. (4.8)

Proof. Choosing χκ := ∂teX as the test function in weak formulation (4.3c), we have

∥∂teX∥2L2(Γ0
h)

= −
∫
Γ0
h

∇Γ0
h
eX∇Γ0

h
∂teX +

∫
Γ0
h

(eκñh + κ∗hen) · ∂teX +

∫
Γ0
h

dκ · ∂teX

≲
(
h−2∥eX∥L2(Γ0

h)
+ ∥eκ∥L2(Γ0

h)
+ ∥en∥L2(Γ0

h)
+ ∥dκ∥L2(Γ0

h)

)
∥∂teX∥L2(Γ0

h)
,

where the inverse inequality ∥∇Γ0
h
vh∥L2(Γ0

h)
≤ C h−1∥vh∥L2(Γ0

h)
is used with vh = eX and

vh = ∂teX , respectively. Then (4.8) follows from applying Lemma 4.1. □

Then, by choosing test function χκ = IhP
∗
tanϕh in weak formulation (4.3c), we can derive

the following estimate of ∂tP
∗
taneX . We refer to Appendix A for more details.

Lemma 4.3 (Estimate of ∂tP
∗
taneX). Under the conditions of Theorem 2.1, the following

estimate holds for t ∈ [0, t∗]:

∥∂tP ∗
taneX∥L2(Γ0

h)
≲ h−1

(∥∥∇Γ0
h
P ∗
taneX

∥∥
L2(Γ0

h)
+

∥∥eX∥∥L2(Γ0
h)

)
+ h∥eκ∥L2(Γ0

h)
+ ∥dκ∥L2(Γ0

h)
+ hk.

(4.9)

Similarly, by choosing test function χn := PL2∂t[eX · (n∗h ◦X∗
h)] in weak formulation (4.3b),

we can derive the following estimate of ∂t[eX · (n∗h ◦X∗
h)]; see Appendix B for more details.

Lemma 4.4 (Estimate of ∂t[eX · (n∗h ◦ X∗
h)]). Under the conditions of Theorem 2.1, the

following estimate holds for t ∈ [0, t∗]:

∥∂t[eX · (n∗h ◦X∗
h)]∥L2(Γ0

h)
≲ h−1∥eX∥L2(Γ0

h)
+ h∥eκ∥L2(Γ0

h)

+ h∥dκ∥L2(Γ0
h)

+ ∥dv∥L2(Γ0
h)

+ hk.
(4.10)

Lemma 4.5 (Estimate of eκ). Under the conditions of Theorem 2.1, the following estimate
holds for t ∈ [0, t∗]:

∥eκ∥L2(Γ0
h)

≲ h−2∥eX∥L2(Γ0
h)

+ ∥dκ∥L2(Γ0
h)

+ ∥dv∥L2(Γ0
h)

+ hk, (4.11)

for sufficiently small h ≤ h0.

Proof. For the simplicity of notation, we abbreviate n∗h ◦X∗
h as n∗h here. In view of (3.10a) in

Lemma 3.4 (approximation properties of n∗h and ñ∗h), we have∣∣∥eκ∥2L2(Γ0
h)

− ∥eκn∗h∥2L2(Γ0
h)

∣∣ ≤ ∥eκ∥2L2(Γ0
h)
∥|n∗h|2 − 1∥L∞(Γ0

h)
≲ hk+1∥eκ∥2L2(Γ0

h)
.

This implies the following equivalence of norms:

∥eκ∥L2(Γ0
h)

∼ ∥eκn∗h∥L2(Γ0
h)
. (4.12)

Then, choosing test function χκ := PL2(eκn
∗
h) in the weak formulation (4.3c), we obtain

∥eκn∗h∥2L2(Γ0
h)

=

∫
Γ0
h

eκn
∗
h · (eκn∗h − PL2(eκn

∗
h))−

∫
Γ0
h

κ∗hen · PL2(eκn
∗
h)

−
∫
Γ0
h

eκen · PL2(eκn
∗
h)−

∫
Γ0
h

dκ · PL2(eκn
∗
h) +

∫
Γ0
h

∂teX · PL2(eκn
∗
h)

+

∫
Γ0
h

∇Γ0
h
eX · ∇Γ0

h
PL2(eκn

∗
h),

from which we can derive the result of Lemma 4.5; see Appendix C for more details. □

Remark 3 (An improved estimate of ev). In summary, by combining Lemma 4.3 (estimate
of ∂tP

∗
taneX), Lemma 4.4 (estimate of ∂t[eX · (n∗h ◦X∗

h)]) and Lemma 4.5 (estimate of eκ), we
can obtain the following results:

∥∂tP ∗
taneX∥L2(Γ0

h)
≲ h−1

(
∥∇Γ0

h
P ∗
taneX∥L2(Γ0

h)
+ ∥eX∥L2(Γ0

h)

)
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+ ∥dκ∥L2(Γ0
h)

+ h∥dv∥L2(Γ0
h)

+ hk, (4.13)

∥∂t[eX · (n∗h ◦X∗
h)]∥L2(Γ0

h)
≲ h−1∥eX∥L2(Γ0

h)
+ h∥dκ∥L2(Γ0

h)
+ ∥dv∥L2(Γ0

h)
+ hk. (4.14)

Compared with Lemma 4.2, the following improved estimate of ev = ∂teX can be shown:

∥ev∥L2(Γ0
h)

= ∥∂teX∥L2(Γ0
h)

≤ ∥∂t(P ∗
neX)∥L2(Γ0

h)
+ ∥∂t(P ∗

taneX)∥L2(Γ0
h)

≲ h−1
(
∥∇Γ0

h
P ∗
taneX∥L2(Γ0

h)
+ ∥eX∥L2(Γ0

h)

)
+ ∥dκ∥L2(Γ0

h)
+ ∥dv∥L2(Γ0

h)
+ hk.

(4.15)

Remark 4 (Existence and uniqueness of finite element solutions). For any given Xh satisfying
∥Xh −X∗

h∥L2(Γ0
h)

≤ hk−0.1 as assumed in (4.4), both Γh(t) and ñh(Xh) are also determined.

Then (2.2b)–(2.2c) can be viewed as an inhomogeneous linear system governing (vh, κh).
This inhomogeneous linear system uniquely determines (vh, κh). To see this, we consider the
corresponding homogeneous linear system of (v̂h, κ̂h):∫

Γ0
h

v̂h · [ñh ◦Xh]χn = 0, ∀χn ∈ Sh(Γ
0
h), (4.16a)∫

Γ0
h

v̂h · χκ =

∫
Γ0
h

κ̂h [ñh ◦Xh] · χκ, ∀χκ ∈ Sh(Γ
0
h)

3. (4.16b)

We show that this homogeneous linear system admits only the trivial solution (v̂h, κ̂h) = (0, 0),
thereby establishing the existence and uniqueness of solutions (vh, κh) for the inhomogeneous
linear system in (2.2b)–(2.2c).

In fact, by choosing χn = κ̂h in (4.16a) and χκ = v̂h in (4.16b), we immediately obtain
v̂h = 0. Moreover, by choosing χκ = Ih(κ̂h[n

∗
h ◦ X∗

h]) and utilizing the closeness between
ñh ◦Xh and n∗h ◦X∗

h as shown in Lemma 4.1 (where en := ñh ◦Xh − n∗h ◦X∗
h), we can derive

that κ̂h = 0 when h is sufficiently small (the details are omitted here). This would show
that the homogeneous linear system in (4.16) admits only the trivial solution. Hence, for any
given Xh in the hk−0.1-neighborhood of X∗

h in L2(Γ0
h), the system in (2.2b)–(2.2c) uniquely

determines (vh, κh) as a function of Xh.
Moreover, under the condition ∥Xh − X∗

h∥L2(Γ0
h)

≤ hk−0.1 as assumed in (4.4) (i.e., for

any Xh in the hk−0.1-neighborhood of X∗
h in L2(Γ0

h)), following the proofs of Lemma 4.2 and
Lemma 4.5, we can see that if Xh is perturbed by a quantity δ in the L2 norm (of course, with
δ ≤ 2hk−0.1) then vh is perturbed by Ch−2δ in the L2 norm (in such stability estimates we
do not have the terms dκ, dv and hk). Therefore, the function vh determined by (2.2b)–(2.2c)
is locally Lipschitz continuous with respect to Xh. Therefore, according to the local well-
posedness of ODE problems, the ODE in (2.2a), with vh being a locally Lipschitz continuous
function of Xh, has a unique solution for t ∈ [t∗, t∗ + εh] for some small εh > 0. This extends
the finite element solutions Xh, vh and κh outside of the time interval [0, t∗].

4.3. Stability estimates

We are now ready to establish the stability estimates for P ∗
taneX and eX · (n∗h ◦X∗

h), which
will be used to prove the error estimate in Theorem 2.1.

Proposition 4.1 (Stability estimate for P ∗
taneX). Under the conditions of Theorem 2.1, there

exists a constant h0 > 0 such that the following stability result holds for 0 < h ≤ h0 and
t ∈ [0, t∗]:

d

dt
∥P ∗

taneX∥2L2(Γ0
h)

+ ∥∇Γ0
h
P ∗
taneX∥2L2(Γ0

h)

≲ ∥eX∥2L2(Γ0
h)

+ h4∥dv∥2L2(Γ0
h)

+ h2∥dκ∥2L2(Γ0
h)

+ ∥dκ∥2H−1
h (Γ0

h)
+ h2k.

(4.17)

Proof. Testing the error equation (4.3c) with χκ = IhP
∗
taneX , we obtain∫

Γ0
h

∂teX · IhP ∗
taneX +

∫
Γ0
h

∇Γ0
h
eX · ∇Γ0

h
IhP

∗
taneX

=

∫
Γ0
h

[
κh(ñh ◦Xh)− κ∗h(n

∗
h ◦X∗

h)
]
· IhP ∗

taneX +

∫
Γ0
h

dκ · IhP ∗
taneX =: I1 + I2.

(4.18)
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The second term on the left-hand side can be decomposed to an approximately tangential
component and a remainder term, i.e.,∫

Γ0
h

∇Γ0
h
eX∇Γ0

h
IhP

∗
taneX =

∫
Γ0
h

|∇Γ0
h
P ∗
taneX |2 +

∫
Γ0
h

∇Γ0
h
P ∗
taneX∇Γ0

h
(IhP

∗
taneX − P ∗

taneX)

+

∫
Γ0
h

∇Γ0
h
P ∗
neX∇Γ0

h
IhP

∗
taneX =: S1 + S2 + S3,

where S2 can be estimated by utilizing the super-approximation property in Lemma 3.7, i.e.,

|S2| ≲ ∥∇Γ0
h
P ∗
taneX∥L2(Γ0

h)
h∥eX∥H1(Γ0

h)
≤ C∥eX∥2L2(Γ0

h)
+

1

16
∥∇Γ0

h
P ∗
taneX∥2L2(Γ0

h)
.

Moreover, S3 can be estimated by using (3.17) in Lemma 3.8 (cancellation structure), i.e.,

|S3| ≲ ∥eX∥L2(Γ0
h)

(
∥eX∥L2(Γ0

h)
+ ∥∇Γ0

h
P ∗
taneX∥L2(Γ0

h)

)
≤ C∥eX∥2L2(Γ0

h)
+

1

16
∥∇Γ0

h
P ∗
taneX∥2L2(Γ0

h)
.

The first term on the left-hand side of (4.18) can be rewrite as follows:∫
Γ0
h

∂teX · IhP ∗
taneX =

∫
Γ0
h

∂tP
∗
neX · IhP ∗

taneX +

∫
Γ0
h

∂tP
∗
taneX · IhP ∗

taneX =: J1 + J2,

where J1 can be estimated by using (3.18) in Lemma 3.8 (cancellation structure) and (4.15)
in Remark 3 (an improved estimate of ev), i.e.,

|J1| ≲ ∥eX∥2L2(Γ0
h)

+ h2∥∂teX∥L2(Γ0
h)

(
∥eX∥L2(Γ0

h)
+ ∥∇Γ0

h
P ∗
taneX∥L2(Γ0

h)

)
≤ C

(
∥eX∥2L2(Γ0

h)
+ h4∥∂teX∥2L2(Γ0

h)

)
+

1

16
∥∇Γ0

h
P ∗
taneX∥2L2(Γ0

h)

≤ C
(
∥eX∥2L2(Γ0

h)
+ h4∥dκ∥2L2(Γ0

h)
+ h4∥dv∥2L2(Γ0

h)
+ h4+2k

)
+ (Ch2 +

1

16
)∥∇Γ0

h
P ∗
taneX∥2L2(Γ0

h)
.

Furthermore, J2 can be rewritten as follows:

J2 =

∫
Γ0
h

∂tP
∗
taneX · P ∗

taneX +

∫
Γ0
h

∂tP
∗
taneX · (IhP ∗

taneX − P ∗
taneX)

=:
1

2

d

dt

∫
Γ0
h

|P ∗
taneX |2 + J3,

where J3 can be estimated with the super-approximation properties in Lemma 3.7, i.e.,

|J3| ≲ h∥eX∥L2(Γ0
h)
∥∂tP ∗

taneX∥L2(Γ0
h)
.

Then, using (4.13) in Remark 3 (an improved estimate of ev), we have

|J3| ≤ C
(
∥eX∥2L2(Γ0

h)
+ h2∥dκ∥2L2(Γ0

h)
+ h4∥dv∥2L2(Γ0

h)
+ h2+2k

)
+

1

16
∥∇Γ0

h
P ∗
taneX∥2L2(Γ0

h)
.

Therefore, substituting the above estimates into (4.18), we have

1

2

d

dt
∥P ∗

taneX∥2L2(Γ0
h)

+
5

8
∥∇Γ0

h
P ∗
taneX∥2L2(Γ0

h)

≤ C
(
∥eX∥2L2(Γ0

h)
+ h4∥dv∥2L2(Γ0

h)
+ h2∥dκ∥2L2(Γ0

h)
+ h2k+2

)
+ |I1|+ |I2|.

(4.19)

It remains to estimate I1 and I2, which are defined in (4.18). To this end, we rewrite I1
into the following several parts:

I1 =

∫
Γ0
h

eκ(n
∗
h ◦X∗

h) · IhP ∗
taneX +

∫
Γ0
h

κ∗h(ñ
∗
h ◦X∗

h − n∗h ◦X∗
h) · IhP ∗

taneX

+

∫
Γ0
h

κ∗h(ñh ◦Xh − ñ∗h ◦X∗
h) · IhP ∗

taneX +

∫
Γ0
h

eκen · IhP ∗
taneX

=: T1 + T2 + T3 + T4.
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Since IhP
∗
taneX = IhP

∗
tanIhP

∗
taneX , it follows that (using the definition P ∗

tan = I − n∗h(n
∗
h)

⊤

and the super-approximation properties)

|T1| ≲ |
∫
Γ0
h

eκn
∗
h · (IhP ∗

tanIhP
∗
taneX − P ∗

tanIhP
∗
taneX)|+ |

∫
Γ0
h

eκn
∗
h · (I − n∗h(n

∗
h)

⊤)IhP
∗
taneX |

≲ ∥eκ∥L2(Γ0
h)
h2∥IhP ∗

taneX∥H1(Γ0
h)

+ ∥1− |n∗h|2∥L∞(Γ0
h)
∥eκ∥L2(Γ0

h)
∥eX∥L2(Γ0

h)

≲ h2∥eκ∥L2(Γ0
h)

(
∥∇Γ0

h
P ∗
taneX∥L2(Γ0

h)
+ ∥eX∥L2(Γ0

h)

)
≤ C(h4∥eκ∥2L2(Γ0

h)
+ ∥eX∥2L2(Γ0

h)
) +

1

16
∥∇Γ0

h
P ∗
taneX∥2L2(Γ0

h)
,

where we abbreviate n∗h ◦X∗
h as n∗h. By Lemma 3.4 (approximation properties of n∗h and ñ∗h),

we have |T2| ≲ hk∥eX∥L2(Γ0
h)
. If we decompose T3 into four parts by using the decomposition

of ñh ◦ Xh − ñ∗h ◦ X∗
h in (3.12) of Lemma 3.5 (characterization of ñh − ñ∗h), denoted by

T3 = T31 + T32 + T33 + T34, then

T32 =

∫
Γ0
h

κ∗h
(
[(∇Γ∗

h(t)
n∗h)e

∗
X ] ◦X∗

h

)
·IhP ∗

taneX ≲ ∥eX∥2L2(Γ0
h)
,

T33 =

∫
Γ0
h

κ∗h
(
[(∇Γ∗

h(t)
e∗X)(n

∗
h − ñ∗h)] ◦X∗

h

)
·IhP ∗

taneX ≲ hk∥eX∥L2(Γ0
h)
,

T34 =

∫
Γ0
h

κ∗h

(∫ 1

0

(∫ θ

0

[
2(∇Γh,α

eαX)(∇Γh,α
eαX)ñ

α
h

]
◦Xα

h dα
)
dθ

)
·IhP ∗

taneX

−
∫
Γ0
h

κ∗h

(∫ 1

0

(∫ θ

0

[
ñαh(ñ

α
h)
T (∇Γh,α

eαX)
T (∇Γh,α

eαX)ñ
α
h

]
◦Xα

h dα
)
dθ

)
·IhP ∗

taneX ,

where Γh,α = Γh,α(t) is the intermediate surface defined in (3.1), ñαh is the normal vector of
Γh,α, and e

α
X is the error function defined on Γh,α; see (3.2). We see that

|T34| ≲ ∥κ∗h∥L∞(Γ0
h)

(∫ 1

0

∫ θ

0
∥∇Γh,α

eαX∥L∞(Γh,α)∥∇Γh,α
eαX∥L2(Γh,α) dα dθ

)
∥eX∥L2(Γ0

h)

≲ ∥κ∗h∥L∞(Γ0
h)
∥∇Γ0

h
eX∥L∞(Γ0

h)
∥∇Γ0

h
eX∥L2(Γ0

h)
∥eX∥L2(Γ0

h)

≲ hk−2.1−1∥eX∥2L2(Γ0
h)
,

where the last inequality follows from the inverse inequalities ∥∇Γ0
h
eX∥L∞(Γ0

h)
≤ C h−2∥eX∥L2(Γ0

h)

and ∥∇Γ0
h
eX∥L2(Γ0

h)
≤ C h−1∥eX∥L2(Γ0

h)
, as well as (4.4). This proves that

|T34| ≲ ∥eX∥2L2(Γ0
h)

for k ≥ 4. (4.20)

We estimate T31 by applying the chain rule of differentiation in (3.4), which implies that

T31 = −
∫
Γ0
h

κ∗h
(
[∇Γ∗

h(t)
(e∗X · n∗h)] ◦X∗

h

)
·IhP ∗

taneX

= −
∫
Γ0
h

κ∗h[∇Γ0
h
X∗
h + nΓ0

h
(nΓ∗

h(t)
◦X∗

h)
⊤]−1∇Γ0

h
[eX · (n∗h ◦X∗

h)]·IhP ∗
taneX .

In view of the discussion in Remark 1, we can approximate the possibly discontinuous matrix
∇Γ0

h
X∗
h + nΓ0

h
(nΓ∗

h(t)
◦ X∗

h)
⊤ by the continuous matrix [∇Γ0X + nΓ0(nΓ(t) ◦ X)⊤]−l with an

error bound of O(hk). This can be used to estimate T31 as follows:

|T31| ≤
∣∣∣ ∫

Γ0
h

κ∗h[(∇Γ0X)−l + (nΓ0(nΓ(t) ◦X)⊤)−l]−1∇Γ0
h
[eX · (n∗h ◦X∗

h)]·IhP ∗
taneX

∣∣∣
+ Chk∥eX∥W 1,∞(Γ0

h)
∥eX∥L2(Γ0

h)
.

In the first term on the right-hand side of the above inequality, we can transfer the gradient
from eX · (n∗h ◦ X∗

h) to IhP
∗
taneX by using (3.6) of Lemma 3.3 (integration by parts on Γ0

h)

with v = κ∗h[(∇Γ0X)−l + (nΓ0(nΓ(t) ◦X)⊤)−l]−1IhP
∗
taneX . In this process, we can reduce
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the edge integrals to surface integrals similarly as (3.7) of Lemma 3.3. This, together with
∥eX∥W 1,∞(Γ0

h)
≲ 1 as shown in (4.5), leads to the following result:

|T31| ≲ ∥eX∥L2(Γ0
h)

(
∥∇Γ0

h
(IhP

∗
taneX)∥L2(Γ0

h)
+ ∥IhP ∗

taneX∥L2(Γ0
h)

)
+ hk∥eX∥L2(Γ0

h)

≤ C(∥eX∥2L2(Γ0
h)

+ h2k) +
1

16
∥∇Γ0

h
(P ∗

taneX)∥2L2(Γ0
h)
.

In summary, we have proved

|T3| ≤ C(∥eX∥2L2(Γ0
h)

+ h2k) +
1

16
∥∇Γ0

h
(P ∗

taneX)∥2L2(Γ0
h)
.

T4 can be estimated with Hölder’s inequality and (4.7). The latter can be used to estimate
the bound ∥en∥L2(Γ0

h)
, i.e.,

|T4| ≤ ∥eκ∥L3(Γ0
h)
∥en∥L2(Γ0

h)
∥IhP ∗

taneX∥L6(Γ0
h)

≲ hk−1.1− 1
3 ∥eκ∥L2(Γ0

h)
∥IhP ∗

taneX∥H1(Γ0
h)

≲ h2.5∥eκ∥L2(Γ0
h)
∥IhP ∗

taneX∥H1(Γ0
h)

for k ≥ 4

≲ h2.5∥eκ∥L2(Γ0
h)

(
∥eX∥L2(Γ0

h)
+ ∥∇Γ0

h
P ∗
taneX∥L2(Γ0

h)

)
(super-approximation property)

≤ Ch5∥eκ∥2L2(Γ0
h)

+
1

16

(
∥eX∥2L2(Γ0

h)
+ ∥∇Γ0

h
P ∗
taneX∥2L2(Γ0

h)

)
.

In summary, combining the above estimates of T1, T2, T3, T4 and Lemma 4.5 (estimate of
eκ), we have

I1 ≤ C
(
∥eX∥2L2(Γ0

h)
+ h4∥dv∥2L2(Γ0

h)
+ h2∥dκ∥2L2(Γ0

h)
+ h2k

)
+

3

16
∥∇Γ0

h
(P ∗

taneX)∥2L2(Γ0
h)
.

Finally, I2 can be estimated by using the definition of ∥dκ∥H−1
h (Γ0

h)
norm in (4.2) and the

super-approximation properties in Lemma 3.7, i.e.,

I2 ≤ ∥dκ∥H−1
h (Γ0

h)
∥IhP ∗

taneX∥H1(Γ0
h)

≤ C∥dκ∥2H−1
h (Γ0

h)
+

1

16

(
∥eX∥2L2(Γ0

h)
+ ∥∇Γ0

h
P ∗
taneX∥2L2(Γ0

h)

)
.

The proof is completed by combining (4.19) with the preceding estimates of |I1| and |I2|. □

We now turn to analyze the normal component of eX by considering the error equation in
(4.3b), which can be rewritten as follows:∫

Γ0
h

∂t[eX · (n∗h ◦X∗
h)]χn =

∫
Γ0
h

[u(Xh, t)− u(X∗
h, t)] · (n∗h ◦X∗

h)χn +

∫
Γ0
h

[u(Xh, t)− v∗h] · enχn

+

∫
Γ0
h

dvχn +

∫
Γ0
h

eX · ∂t(n∗h ◦X∗
h)χn −

∫
Γ0
h

ev · enχn.

(4.21)
The following proposition is proved.

Proposition 4.2 (Stability estimate for eX ·n∗h). Under the conditions of Theorem 2.1, there
exists a constant h0 > 0 such that the following stability result holds uniformly for 0 < h ≤ h0
and t ∈ [0, t∗]:

d

dt
∥eX · (n∗h ◦X∗

h)∥2L2(Γ0
h)

≤ C
(
∥eX∥2L2(Γ0

h)
+ ∥dv∥2L2(Γ0

h)
+ h2∥dκ∥2L2(Γ0

h)
+ h2k

)
+

1

16
∥∇Γ0

h
P ∗
taneX∥2L2(Γ0

h)
.

(4.22)

Proof. For the simplicity of notation, we abbreviate n∗h ◦ X∗
h as n∗h here (thus n∗h is used to

denote both n∗h on Γ∗
h(t) and n

∗
h ◦X∗

h on Γ0
h according to the context).
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An estimate of ∥eX · n∗h∥L2(Γ0
h)

can be obtained by choosing χn := PL2(eX · n∗h) in equation

(4.21). This yields the following relation:

1

2

d

dt
∥eX · n∗h∥2L2(Γ0

h)
=

∫
Γ0
h

[u(Xh, t)− u(X∗
h, t)] · n∗hPL2(eX · n∗h)

+

∫
Γ0
h

[u(Xh, t)− v∗h] · enPL2(eX · n∗h)+
∫
Γ0
h

dvPL2(eX · n∗h) +
∫
Γ0
h

eX · (∂tn∗h)PL2(eX · n∗h)

+

∫
Γ0
h

∂t(eX · n∗h)[eX · n∗h − PL2(eX · n∗h)]−
∫
Γ0
h

ev · enPL2(eX · n∗h)

=: B1 +B2 +B3 +B4 +B5 +B6.
(4.23)

Utilizing (4.14) in Remark 3 (an improved estimate of ev), and the super-approximation
properties in Lemma 3.7, the term |B5| can be estimated as follows:

|B5| ≲ (h−1∥eX∥L2(Γ0
h)

+ h∥dκ∥L2(Γ0
h)

+ ∥dv∥L2(Γ0
h)

+ hk)h∥eX∥L2(Γ0
h)

≲ ∥eX∥2L2(Γ0
h)

+ h4∥dκ∥2L2(Γ0
h)

+ h2∥dv∥2L2(Γ0
h)

+ h2k+2.

Furthermore, |B1|, |B3| and |B4| can be estimated as follows:

|B1| ≲ ∥eX∥2L2(Γ0
h)
, |B3| ≲ ∥dv∥L2(Γ0

h)
∥eX∥L2(Γ0

h)
, |B4| ≲ ∥eX∥2L2(Γ0

h)
.

Inequality (4.4) guarantees that both u(Xh, t) and v
∗
h are bounded in the W 1,∞ norm. There-

fore, using the approximation properties of n∗h and ñ∗h in Lemma 3.4, we have the following
estimate of |B2|:

|B2| ≲
∣∣∣ ∫

Γ0
h

(u(Xh, t)− v∗h) · (ñh − ñ∗h)(eX · n∗h)
∣∣∣+ ∣∣∣ ∫

Γ0
h

(u(Xh, t)− v∗h) · (ñ∗h − n∗h)(eX · n∗h)
∣∣∣

+
∣∣∣ ∫

Γ0
h

(u(Xh, t)− v∗h) · en(PL2(eX · n∗h)− (eX · n∗h))
∣∣∣

≲ |B∗
2 |+ Chk∥eX∥L2(Γ0

h)
+ ∥en∥L2(Γ0

h)
h∥eX∥L2(Γ0

h)

≲ |B∗
2 |+ ∥eX∥2L2(Γ0

h)
+ h2k,

where we have used the approximation properties of n∗h and ñ∗h in Lemma 3.4 in estimating
the second term, and the super-approximation property and Lemma 4.1 in estimating the
third term. The first term, B∗

2 , needs to be estimated by applying (3.12) in Lemma 3.5
(characterization of ñh − ñ∗h), which allows us to decompose B∗

2 into four parts, i.e.,

B∗
2 = B∗

21 +B∗
22 +B∗

23 +B∗
24,

with

B∗
21 = −

∫
Γ0
h

(u(Xh, t)− v∗h)
(
[∇Γ∗

h(t)
(e∗X · n∗h)] ◦X∗

h

)
(eX · n∗h) (4.24)

B∗
22 =

∫
Γ0
h

(u(Xh, t)− v∗h)
(
[(∇Γ∗

h(t)
n∗h)e

∗
X ] ◦X∗

h

)
(eX · n∗h) ≲ ∥eX∥2L2(Γ0

h)

B∗
23 =

∫
Γ0
h

(u(Xh, t)− v∗h)
(
[(∇Γ∗

h(t)
e∗X)(n

∗
h − ñ∗h)] ◦X∗

h

)
(eX · n∗h) ≲ hk∥eX∥L2(Γ0

h)

(∥e∗X∥W 1,∞(Γ∗
h(t))

≲ 1 and ∥n∗h − ñ∗h∥L∞(Γ0
h)

≲ hk; see Lemma 3.4) (4.25)

B∗
24 =

∫
Γ0
h

(u(Xh, t)− v∗h)
[ ∫ 1

0

(∫ θ

0

[
2(∇Γh,α

eαX)(∇Γh,α
eαX)ñ

α
h

− ñαh(ñ
α
h)
T (∇Γh,α

eαX)
T (∇Γh,α

eαX)ñ
α
h

]
◦Xα

h dα
)
dθ

]
(eX · n∗h)

≲ ∥∇Γ0
h
eX∥L∞(Γ0

h)
∥∇Γ0

h
eX∥L2(Γ0

h)
∥eX∥L2(Γ0

h)
≲ hk−2.1−1∥eX∥2L2(Γ0

h)
. (4.26)
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We further estimate B∗
21 by using the chain rule of differentiation in (3.4), which allows us to

convert ∇Γ∗
h(t)

(e∗X · n∗h) to ∇Γ0
h
(eX · n∗h) in the expression of B∗

21, i.e.,

B∗
21 = −

∫
Γ0
h

(u(Xh, t)− v∗h)[∇Γ0
h
X∗
h + nΓ0

h
(nΓ∗

h(t)
◦X∗

h)
⊤]−1∇Γ0

h
(eX · n∗h)(eX · n∗h)

= −
∫
Γ0
h

(u(Xh, t)− v∗h)[∇Γ0
h
X∗
h + nΓ0

h
(nΓ∗

h(t)
◦X∗

h)
⊤]−1 1

2
∇Γ0

h
[(eX · n∗h)2].

The discontinuous matrix [∇Γ0
h
X∗
h + nΓ0

h
(nΓ∗

h(t)
◦ X∗

h)
⊤]−1 can be further approximated by

the continuous matrix [(∇Γ0X)−l+(nΓ0(nΓ(t) ◦X)⊤)−l]−1 with an error of O(hk). Therefore,
using ∥eX∥W 1,∞(Γ0

h)
≲ 1, we have

|B∗
21| ≤

∣∣∣ ∫
Γ0
h

(u(Xh, t)− v∗h)[(∇Γ0X)−l + (nΓ0(nΓ(t) ◦X)⊤)−l]−1 1

2
∇Γ0

h
[(eX · n∗h)2]

∣∣∣+ Chk∥eX∥L2(Γ0
h)
.

Similarly as we estimate T31 (proof of Proposition 4.1), we can transfer the gradient from
(eX · n∗h)2 to the other functions by using Lemma 3.3 (integration by parts on Γ0

h). Then we
can obtain the following estimate of B∗

21 :

|B∗
21| ≲ ∥eX∥2L2(Γ0

h)
+ h2k.

Combining the estimates of B∗
21, B

∗
22, B

∗
23 and B∗

24, we obtain the following result for k ≥ 4:

|B2| ≲ ∥eX∥2L2(Γ0
h)

+ h2k.

Finally, B6 can be estimated by using Hölder’s inequality and (4.7), as well as the improved
estimate of ev in Remark 3, i.e.,

|B6| ≲ ∥en∥L∞(Γ0
h)
∥ev∥L2(Γ0

h)
∥eX∥L2(Γ0

h)
≲ hk−2.1∥ev∥L2(Γ0

h)
∥eX∥L2(Γ0

h)

≲
(
∥∇Γ0

h
P ∗
taneX∥L2(Γ0

h)
+ ∥eX∥L2(Γ0

h)
+ h∥dκ∥L2(Γ0

h)
+ h∥dv∥L2(Γ0

h)
+ hk+1

)
∥eX∥L2(Γ0

h)

≤ C
(
∥eX∥2L2(Γ0

h)
+ h2∥dκ∥2L2(Γ0

h)
+ h2∥dv∥2L2(Γ0

h)
+ h2k+2

)
+

1

16
∥∇Γ0

h
P ∗
taneX∥2L2(Γ0

h)
,

(4.27)

where the second to last inequality requires k ≥ 4.
The proof of Proposition 4.2 is completed by combining the estimates of B1, · · · , B6. □

5. Error estimates

In this section, we prove Theorem 2.1 by combining Proposition 4.1 (stability estimate for
P ∗
taneX), Proposition 4.2 (stability estimate for eX ·n∗h), and estimates of the defects introduced

in (4.1). The latter is presented in the following lemma (we refer to Appendix D for more
details).

Lemma 5.1 (Estimates of the defects). Under the conditions of Theorem 2.1, there exists
h0 > 0 such that for all 0 < h ≤ h0 and t ∈ [0, T ], the defects dv and dκ are bounded as
follows:

∥dv∥L2(Γ0
h)

≲ hk, ∥dκ∥H−1
h (Γ0

h)
≲ hk and ∥dκ∥L2(Γ0

h)
≲ hk−1. (5.1)

We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1. According to Proposition 4.1 (stability estimate for P ∗
taneX), Proposi-

tion 4.2 (stability estimate for eX · n∗h) and Lemma 5.1 (consistency estimate), there exists
h0 > 0 such that for h ≤ h0 and t ∈ [0, t∗] the following inequality holds:

d

dt

(
∥P ∗

taneX∥2L2(Γ0
h)

+ ∥eX · n∗h∥2L2(Γ0
h)

)
≲ ∥eX∥2L2(Γ0

h)
+ h2k

≲
(
∥P ∗

taneX∥2L2(Γ0
h)

+ ∥eX · n∗h∥2L2(Γ0
h)

)
+ h2k,
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where the last inequality follows from the following equivalence of norms:

∥eX∥2L2(Γ0
h)

∼ ∥P ∗
taneX∥2L2(Γ0

h)
+ ∥P ∗

neX∥2L2(Γ0
h)

∼ ∥P ∗
taneX∥2L2(Γ0

h)
+ ∥eX · n∗h∥2L2(Γ0

h)
,

which can be proved similarly as (4.12). By Grönwall’s inequality, we obtain

∥eX∥L2(Γ0
h)

∼ ∥P ∗
taneX∥L2(Γ0

h)
+ ∥eX · n∗h∥L2(Γ0

h)
≲ hk. (5.2)

By the continuity of the spatially semidiscrete finite element solution in time (which is essen-
tially the solution of an ODE problem as shown in Remark 4), the above estimate implies
that (4.4) still holds in a bigger interval [0, t∗ + εh] for some εh > 0. This proves that t∗ = T
(otherwise t∗ is not maximal, contradicting the assumption at the beginning of Section 4.2).
The errors (Xh)

l−X can be decomposed into (Xh)
l−X = (Xh)

l− (X∗
h)
l+(X∗

h)
l−X. Then,

utilizing inequality (5.2) and the estimates of interpolation error, we have

sup
t∈[0,T ]

∥(Xh)
l −X∥L2(Γ0) ≲ sup

t∈[0,T ]
∥eX∥L2(Γ0

h)
+ sup
t∈[0,T ]

∥(X∗
h)
l −X∥L2(Γ0) ≲ hk.

Moreover, integrating (4.17) from t = 0 to t = T , we obtain∫ T

0
∥(∇Γ0

h
P ∗
taneX)

l∥2L2(Γ0)dt ∼
∫ T

0
∥∇Γ0

h
P ∗
taneX∥2L2(Γ0

h)
dt ≲ h2k.

Combining [17, Proposition 2.3] and [20, Remark 4.1], we have

∥∇Γ0(P ∗
tan)

l − (∇Γ0
h
P ∗
tan)

l∥L2(Γ0) ≲ hk, ∥∇Γ0(eX)
l − (∇Γ0

h
eX)

l∥L2(Γ0) ≲ hk.

Then, based on the error estimate between n and its interpolation n∗h and the preceding
estimates, we have

∥∇Γ0(Ptan(eX)
l)− (∇Γ0

h
P ∗
taneX)

l∥L2(Γ0) ≤ ∥∇Γ0(Ptan(eX)
l)−∇Γ0((P ∗

tan)
l(eX)

l)∥L2(Γ0)

+ ∥(∇Γ0(P ∗
tan)

l)(eX)
l − (∇Γ0

h
P ∗
tan)

l(eX)
l∥L2(Γ0)

+ ∥(∇Γ0(eX)
l)(P ∗

tan)
l − (∇Γ0

h
eX)

l(P ∗
tan)

l∥L2(Γ0) ≲ hk.

Therefore, combing the estimates above, we have∫ T

0
∥∇Γ0(Ptan((Xh)

l −X))∥2L2(Γ0)dt

≲
∫ T

0
∥∇Γ0(Ptan((X

∗
h)
l −X))∥2L2(Γ0)dt+

∫ T

0
∥∇Γ0(Ptan(eX)

l)∥2L2(Γ0)dt

≲
∫ T

0
∥∇Γ0(Ptan((X

∗
h)
l −X))∥2L2(Γ0)dt+

∫ T

0
∥(∇Γ0

h
P ∗
taneX)

l∥2L2(Γ0)dt+ h2k ≲ h2k.

This completes the proof of Theorem 2.1. □

6. Numerical examples

In this section, we present numerical experiments to illustrate the convergence of the pro-
posed method based on the relaxed minimal deformation (RMD) formulation in (1.5), as well
as the improvement of mesh quality by the proposed method in comparison with the the
surface mesh by the original velocity and the tangential motion with minimal deformation
rate (MDR) [1]. In all the numerical examples, a 4-step linearly semi-implicit backward dif-
ferentiation formula (BDF) is used for time discretization, with a sufficiently small stepsize
to guarantee that the errors from time discretization is negligibly small compared with the
errors from spatial discretization. At every time level, only a linear system of vh and κh is
solved, with Xh being expressed in terms of vh using the BDF method for (2.2a).

Example 6.1 (Convergence rates). The errors and convergence rates of the proposed method
are tested on the evolution of a hypersurface Γ(t) ⊂ Rd (with d = 2, 3) under the following
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velocity field:

u(x) =

{
(1− |x|)x+ (1− |x|)(−x2, x1), d = 2,

(1− |x|)x+ (1− |x|)(−x2, x1, 0), d = 3,

with the initial surface Γ0 = {x ∈ Rd : |x| = 1
2}. In this setting, the exact solution of the

equation (1.5) has the following explicit expression:

X(p, t) =
r(t)

r(0)
X(p, 0), for p ∈ Γ0,

where X(·, 0) = id(·) on Γ0 and r(t) is governed by the differential equation dr/dt = r(1− r).
This solution, with initial condition r(0) = 1/2, can be expressed as r(t) = 1/(1 + e−t).

We test the errors of the numerical solutions with mesh sizes h = 1
8 ,

1
10 ,

1
12 ,

1
14 ,

1
18 ,

1
20 , using

a 4-step BDF for time discretization with a sufficiently small stepsize τ = 2−8 such that the
time discretization errors are negligibly small compared with the spatial discretization errors.

The errors of the numerical solutions are measured in the discrete L∞(0, T ;L2) norm of
eX plus the discrete L2(0, T ;H1) semi-norm norm of P ∗

taneX , with T = 1/4, in order to be
consistent with the norm used in Theorem 2.1. The numerical results in Figure 1 show that
the errors of the numerical solutions are O(hk) for finite elements of degree k = 4, 5, 6. This
is consistent with the error estimate proved in Theorem 2.1.
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10−4
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O(h4)
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k=6
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(a) 1D curve (the case d = 2)
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rs

k=4
O(h4)
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(b) 2D surface (the case d = 3)

Figure 1. Errors and convergence rates (Example 6.1)

Example 6.2. (Improvement of mesh quality for curve evolution) In this example, we consider
the evolution of a 1D curve under the following velocity field:

u(x) = x(1− |x|2) + (1− 1.2
x2
|x|

)(−x2, x1), x ∈ R2, (6.1)

which is shown in Figure 2 (a). The initial curve is an ellipse, given by

Γ0 = {x ∈ R2 : (x1)
2 + 9(x2)

2 = 1}.
We compare the evolution of the curve computed by several different methods, including

the direct method with the original velocity, the MDR method in [1], and the proposed RMD
method in the current paper, using finite elements of degree k = 4 and a linearly semi-implicit
4-step BDF time discretization with a time step size of τ = 0.001. The trajectories of the
mesh points determined by the original velocity field u, the MDR method in [1], and the
RMD method are presented in Figure 2, respectively. It can be observed that the mesh
points moving according to the original velocity in (6.1) and the MDR tangential motion both
cluster in the upper right corner (either significantly or slightly), while the proposed RMD
tangential motion in this paper distribute the mesh points more uniformly, leading to better
mesh quality.

Example 6.3. (Improvement of mesh quality for surface evolution) We illustrate the im-
provement of mesh quality by the RMD method for surfaces which evolve under the velocity
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(a) Velocity field u (b) Original velocity

(c) MDR in [1] (d) RMD (our method)

Figure 2. Evolution of a curve under velocity (6.1).

field
u(x) = x(1− |x|), x ∈ R3. (6.2)

The numerical tests are done by using finite elements of degree k = 4. We measure the mesh
quality of a surface Γh by

σmax = max
K⊂Γh

h(K)

r(K)
,

where h(K) represents the diameter of the circumcircle, and r(K) denotes the diameter of
the largest inscribed circle for K ⊂ Γh, respectively.

In the first example, we consider a smooth cell-shape surface given by the following parametriza-
tion:

Γ0 =

 (1− 0.7(cos(φ)2 − 1)2) sin(φ),
2 cos(φ) cos(θ)
2 cos(φ) sin(θ)

 , θ ∈ [0, 2π) φ ∈ [−π
2
,
π

2
].

In this example, we divide the initial surface into 1678 triangles and utilize the linearly semi-
implicit 4-step BDF time discretization with a time step size of τ = 0.01. The surface meshes
at different time steps are presented in Figure 3. The mesh qualities are shown in Figure
4, where we compare the RMD method with k = 4, the MDR method with k = 4, and the
lower-order RMD method with k = 1. Both results demonstrate that the MDR and RMD
tangential motions significantly improve the quality of the surface mesh in this smooth case.

In the second example, we consider a nonsmooth rectangular surface centered at the point
(1/8, 1/8, 1/8) with edge lengths of 5/16, 5/16, and 30/16. In this example, we triangulate
the initial surface into 6500 triangles and employ the linearly semi-implicit 4-step BDF time
discretization with a time step of τ = 0.001. The velocity field in (6.2) exhibits large variation
on this initial surface, and the surface undergoes large deformation in the evolution. As a
result, the evolution equations for the normal vector and the Weingarten matrix in the MDR
method [1] resulted in large errors which make the computation break down at t = 1.47. In
contrast, our algorithm based on the RMD formulation is stable in the whole process. The



24

surface meshes at different time steps and the mesh qualities are presented in Figures 5 and
6, where the numerical result obtained using the MDR method is not displayed due to the
breakdown of computation, while the proposed RMD method in this paper still produces a
good shape of triangles with significantly improved mesh quality.

(a) Initial surface

(b) MDR in [1], t = 2 (c) RMD (our method),
t = 2

(d) Original velocity, t = 2

(e) MDR in [1], t = 4 (f) RMD (our method),
t = 4

(g) Original velocity, t = 4

Figure 3. Evolution of surface under velocity (6.2) (smooth initial surface).

Figure 4. Mesh quality of surface under velocity (6.2) (smooth initial surface).
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(a) Initial surface (b) RMD (our method),
t = 3.3

(c) Original velocity, t =
3.3

(d) MDR in [1] (computa-
tion breaks down)

(e) RMD (our method),
t = 4.5

(f) Original velocity, t =
4.5

(g) RMD (our method),
t = 10

(h) Original velocity, t =
10

Figure 5. Evolution of surface under velocity (6.2) (nonsmooth initial surface).

Figure 6. Mesh quality of surface under velocity (6.2) (nonsmooth initial surface).

7. Conclusion

We have proposed a relaxed minimal deformation (RMD) formulation of surface evolution
with a tangential motion generated by harmonic map heat flow from the initial surface Γ0 onto
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the evolving surface Γ(t). Differently from the MDR formulation studied in [1], the proposed
RMD formulation intentionally avoids solving an additional evolution equation of n, which
often causes the numerical solution of n to differ from the normal vector of the numerically-
solved surface when the surface undergoes large deformation. Numerically, the tangential
motion generated by this RMD formulation improves the mesh quality of evolving surfaces as
effectively as the MD formulation in (1.4). Theoretically, we have proved convergence of finite
element approximations to the RMD formulation of surface evolution with high-order accuracy
for finite elements of degree k ≥ 4 (this cannot be proved for the MD formulation so far).
The restriction to finite elements of degree k ≥ 4 in the convergence proof is used at several
places, i.e., (4.20), (4.26) and (4.27), to control some nonlinear terms appearing in the error
analysis. Convergence of finite element approximations to the RMD formulation for low-order
finite elements of degree k = 1, 2, 3, as well as the development of other convergent algorithms
which have similar advantages as the RMD formulation and could be proved convergent for
low-order finite elements, is an interesting and challenging task.
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Appendix. More details in the stability estimates

Appendix A. Proof of Lemma 4.3

Note that ∂t(P
∗
taneX) can be well approximated by ∂tIh(P

∗
taneX) with the super-approximation

properties in Lemma 3.7, i.e.,

∥∂t(P ∗
taneX)− ∂tIh(P

∗
taneX)∥L2(Γ0

h)
= ∥∂t(P ∗

taneX)− Ih∂t(P
∗
taneX)∥L2(Γ0

h)

≤ ∥(∂tP ∗
tan)eX − Ih((∂tP

∗
tan)eX)∥L2(Γ0

h)
+ ∥P ∗

tan(∂teX)− Ih(P
∗
tan(∂teX))∥L2(Γ0

h)

≲ h
(
∥eX∥L2(Γ0

h)
+ ∥∂teX∥L2(Γ0

h)

)
.

(A.1)

By using this result and the super-approximation properties in Lemma 3.7 again, we derive
the following estimates for any test function ϕh ∈ Sh(Γ

0
h)

3:∫
Γ0
h

∂t(IhP
∗
taneX)ϕh =

∫
Γ0
h

Ih(∂tP
∗
taneX)ϕh

≲
∫
Γ0
h

∂t(P
∗
taneX)ϕh + ∥Ih(∂tP ∗

taneX)− ∂t(P
∗
taneX)∥L2(Γ0

h)
∥ϕh∥L2(Γ0

h)
(triangle inequality)

≲
∫
Γ0
h

(∂teX)P
∗
tanϕh +

∫
Γ0
h

(∂tP
∗
tan)eXϕh + h(∥eX∥L2(Γ0

h)
+ ∥∂teX∥L2(Γ0

h)
)∥ϕh∥L2(Γ0

h)

≲
∫
Γ0
h

∂teX
[
Ih(P

∗
tanϕh) + P ∗

tanϕh − Ih(P
∗
tanϕh)

]
+ (∥eX∥L2(Γ0

h)
+ h∥∂teX∥L2(Γ0

h)
)∥ϕh∥L2(Γ0

h)

≲
∫
Γ0
h

∂teXIh(P
∗
tanϕh) + (∥eX∥L2(Γ0

h)
+ h∥∂teX∥L2(Γ0

h)
)∥ϕh∥L2(Γ0

h)
. (A.2)

The first term on the right-hand side of (A.2) can be estimated by choosing test function
χκ = IhP

∗
tanϕh in weak formulation (4.3c), i.e.,∫

Γ0
h

∂teXIhP
∗
tanϕh = −

∫
Γ0
h

∇Γ0
h
P ∗
taneX∇Γ0

h
IhP

∗
tanϕh −

∫
Γ0
h

∇Γ0
h
P ∗
neX∇Γ0

h
IhP

∗
tanϕh

+

∫
Γ0
h

eκn
∗
h · IhP ∗

tanϕh +

∫
Γ0
h

κ∗hen · IhP ∗
tanϕh +

∫
Γ0
h

eκen · IhP ∗
tanϕh +

∫
Γ0
h

dκ · IhP ∗
tanϕh

=:T1 + T2 + T3 + T4 + T5 + T6.

where T1 is estimated by converting ∥∇Γ0
h
IhP

∗
tanϕh∥L2(Γ0

h)
to ∥∇Γ0

h
P ∗
tanϕh∥L2(Γ0

h)
+∥ϕh∥L2(Γ0

h)

using the super-approximation properties in Lemma 3.7:

|T1| ≲ ∥∇Γ0
h
P ∗
taneX∥L2(Γ0

h)
(∥∇Γ0

h
P ∗
tanϕh∥L2(Γ0

h)
+ ∥ϕh∥L2(Γ0

h)
)

≲ h−1∥∇Γ0
h
P ∗
taneX∥L2(Γ0

h)
∥ϕh∥L2(Γ0

h)
,

where the inverse inequality ∥∇Γ0
h
P ∗
tanϕh∥L2(Γ0

h)
≤ C h−1∥P ∗

tanϕh∥L2(Γ0
h)

≤ C h−1∥ϕh∥L2(Γ0
h)

is used. Similarly, T3 can be estimated with the following decomposition and the super-
approximation properties again:

T3 =

∫
Γ0
h

eκn
∗
h · (IhP ∗

tanϕh − P ∗
tanϕh) +

∫
Γ0
h

eκn
∗
h · P ∗

tanϕh

≲ h∥eκ∥L2(Γ0
h)
∥ϕh∥L2(Γ0

h)
+
∣∣∣ ∫

Γ0
h

eκn
∗
h · (I3×3 − n∗h(n

∗
h)
T )ϕh

∣∣∣
≲

(
h+ ∥1− |n∗h|2∥L∞(Γ0

h)

)
∥eκ∥L2(Γ0

h)
∥ϕh∥L2(Γ0

h)

≲ h∥eκ∥L2(Γ0
h)
∥ϕh∥L2(Γ0

h)
,

where the last inequality follows from Lemma 3.4 (approximation properties of n∗h and ñ∗h).
Moreover, T2 can be estimated with the cancellation structure stated in (3.17) of Lemma

3.8, i.e.,

|T2| ≲ ∥eX∥L2(Γ0
h)

(
∥ϕh∥L2(Γ0

h)
+ ∥∇Γ0

h
(P ∗

tanϕh)∥L2(Γ0
h)

)
≲ h−1∥eX∥L2(Γ0

h)
∥ϕh∥L2(Γ0

h)
.



29

Additionally, by employing (4.7) and Lemma 4.1 (an estimate of en), we can estimate T4
and T5 as follows:

|T4| ≲ ∥κ∗h∥L∞(Γ0
h)
∥en∥L2(Γ0

h)
∥ϕh∥L2(Γ0

h)
≲

(
h−1∥eX∥L2(Γ0

h)
+ hk

)
∥ϕh∥L2(Γ0

h)
,

|T5| ≲ ∥en∥L∞(Γ0
h)
∥eκ∥L2(Γ0

h)
∥ϕh∥L2(Γ0

h)
≲ h∥eκ∥L2(Γ0

h)
∥ϕh∥L2(Γ0

h)
for k ≥ 4.

Finally, we also observe that |T6| ≲ ∥dκ∥L2(Γ0
h)
∥ϕh∥L2(Γ0

h)
.

Therefore, by choosing ϕh = ∂t(IhP
∗
taneX) in (A.2), and substituting the estimates for

T1, · · · , T6 into (A.2), we obtain

∥∂tIhP ∗
taneX∥L2(Γ0

h)
≲ h∥∂teX∥L2(Γ0

h)
+ h−1

(
∥∇Γ0

h
P ∗
taneX∥L2(Γ0

h)
+ ∥eX∥L2(Γ0

h)

)
+ ∥dκ∥L2(Γ0

h)
+ h∥eκ∥L2(Γ0

h)
+ hk.

(A.3)

The left-hand side of (A.3) can be replaced by ∥∂tP ∗
taneX∥L2(Γ0

h)
with (A.1), and h∥∂teX∥L2(Γ0

h)

from Lemma 4.2. This proves Lemma 4.3. □

Appendix B. Proof of Lemma 4.4

Choosing test function χn := PL2∂t(eX · n∗h) in weak formulation (4.3b), we obtain the
following relation:∫

Γ0
h

|∂t(eX · n∗h)|2 +
∫
Γ0
h

∂t(eX · n∗h)(PL2∂t(eX · n∗h)− ∂t(eX · n∗h))

=

∫
Γ0
h

[u(Xh, t)− u(X∗
h, t)] · n∗hPL2(∂t(eX · n∗h)) +

∫
Γ0
h

(u(Xh)− v∗h) · enPL2(∂t(eX · n∗h))

−
∫
Γ0
h

ev · enPL2(∂t(eX · n∗h)) +
∫
Γ0
h

(eX · ∂tn∗h − dv)PL2(∂t(eX · n∗h))

=: A1 +A2 +A3 +A4. (B.1)

The second term on the left-hand side of (B.1) can be estimated with the following result
(which follows from the Leibniz rule of differentiation and the super-approximation properties
in Lemma 3.7):

∥PL2∂t(eX · n∗h)− ∂t(eX · n∗h)∥L2(Γ0
h)

≤ ∥PL2(∂teX · n∗h)− ∂teX · n∗h∥L2(Γ0
h)

+ ∥PL2(eX · ∂tn∗h)− eX · ∂tn∗h∥L2(Γ0
h)

≲ h(∥∂teX∥L2(Γ0
h)

+ ∥eX∥L2(Γ0
h)
).

The right-hand side of (B.1) can be estimated by using Lemma 4.1 (an estimate of en),
smoothness of velocity field u, and (4.7):

|A1| ≲ ∥eX∥L2(Γ0
h)
∥∂t(eX · n∗h)∥L2(Γ0

h)
,

|A2|≲ ∥en∥L2(Γ0
h)
∥∂t(eX · n∗h)∥L2(Γ0

h)
≲ (h−1∥eX∥L2(Γ0

h)
+ hk)∥∂t(eX · n∗h)∥L2(Γ0

h)
,

|A3|≲ ∥en∥L∞(Γ0
h)
∥ev∥L2(Γ0

h)
∥∂t(eX · n∗h)∥L2(Γ0

h)
≲ h∥∂teX∥L2(Γ0

h)
∥∂t(eX · n∗h)∥L2(Γ0

h)
,

|A4| ≲ (∥dv∥L2(Γ0
h)

+ ∥eX∥L2(Γ0
h)
)∥∂t(eX · n∗h)∥L2(Γ0

h)
,

where the above estimate of |A3| requires k ≥ 4 to guarantee that ∥en∥L∞(Γ0
h)

≲ h.

The term ∥∂teX∥L2(Γ0
h)

in the above inequalities can be estimated by using Lemma 4.2.

Then, substituting the estimates of ∥PL2∂t(eX ·n∗h)−∂t(eX ·n∗h)∥L2(Γ0
h)

and |Aj |, j = 1, 2, 3, 4,

into (B.1), we obtain the result of Lemma 4.4. □

Appendix C. Proof of Lemma 4.5

By using estimate (3.10a) in Lemma 3.4 (approximation properties of n∗h and ñ∗h) we can
derive the following inequality:

|∥eκ∥2L2(Γ0
h)

− ∥eκn∗h∥2L2(Γ0
h)
| ≤ ∥eκ∥2L2(Γ0

h)
∥|n∗h|2 − 1∥L∞(Γ0

h)
≲ hk+1∥eκ∥2L2(Γ0

h)
.
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For sufficiently small h (smaller than some constant), hk+1∥eκ∥2L2(Γ0
h)

is much smaller than

∥eκ∥2L2(Γ0
h)
. In this case, the last inequality implies the following equivalence of norms:

∥eκ∥L2(Γ0
h)

∼ ∥eκn∗h∥L2(Γ0
h)
. (C.1)

By choosing test function χκ := PL2(eκn
∗
h) in weak formulation (4.3c), we obtain the

following expression of ∥eκn∗h∥L2(Γ0
h)
:

∥eκn∗h∥2L2(Γ0
h)

=

∫
Γ0
h

eκn
∗
h · (eκn∗h − PL2(eκn

∗
h))−

∫
Γ0
h

κ∗hen · PL2(eκn
∗
h)

−
∫
Γ0
h

eκen · PL2(eκn
∗
h)−

∫
Γ0
h

dκ · PL2(eκn
∗
h) +

∫
Γ0
h

∂teX · PL2(eκn
∗
h)

+

∫
Γ0
h

∇Γ0
h
eX · ∇Γ0

h
PL2(eκn

∗
h)

=:M1 +M2 +M3 +M4 +M5 +M6,

where Mj , j = 1, . . . , 6, can be estimated by using Lemma 3.7 (super-approximation proper-
ties), Lemma 4.1 (estimate of en) and (4.7), i.e.,

|M1| ≲ ∥eκn∗h∥L2(Γ0
h)
h∥eκ∥L2(Γ0

h)
≲ h∥eκ∥2L2(Γ0

h)
,

|M2| ≲ ∥en∥L2(Γ0
h)
∥eκn∗h∥L2(Γ0

h)
≲ (h−1∥eX∥L2(Γ0

h)
+ hk)∥eκ∥L2(Γ0

h)
,

|M3| ≲ ∥en∥L∞(Γ0
h)
∥eκ∥L2(Γ0

h)
∥eκn∗h∥L2(Γ0

h)
≲ h∥eκ∥2L2(Γ0

h)
for k ≥ 4,

|M4| ≲ ∥dκ∥L2(Γ0
h)
∥eκ∥L2(Γ0

h)
,

|M5| ≲ |
∫
Γ0
h

∂teX · (PL2(eκn
∗
h)− eκn

∗
h)|+ |

∫
Γ0
h

(
∂t(eX · n∗h)− (eX · ∂tn∗h)

)
eκ|

≲
(
h∥∂teX∥L2(Γ0

h)
+ ∥∂t(eX · n∗h)∥L2(Γ0

h)
+ ∥eX∥L2(Γ0

h)

)
∥eκ∥L2(Γ0

h)
,

|M6| ≲ h−2∥eX∥L2(Γ0
h)
∥eκ∥L2(Γ0

h)
.

Therefore, combining Lemma 4.2 (a rough estimate of ∂teX) and Lemma 4.4 (estimate of
∂t[eX · (n∗h ◦X∗

h)] ), we can estimate ∥eκ∥L2(Γ0
h)

as follows:

∥eκ∥L2(Γ0
h)

≲ h∥eκ∥L2(Γ0
h)

+ h∥∂teX∥L2(Γ0
h)

+ ∥∂t(eX · n∗h)∥L2(Γ0
h)

+ h−2∥eX∥L2(Γ0
h)

+ ∥dκ∥L2(Γ0
h)

+ hk

≲ h∥eκ∥L2(Γ0
h)

+ h−2∥eX∥L2(Γ0
h)

+ ∥dκ∥L2(Γ0
h)

+ ∥dv∥L2(Γ0
h)

+ hk.

For sufficiently small h (smaller than some constant), the term h∥eκ∥L2(Γ0
h)

can be absorbed

by the left-hand side of the inequality. This yields the result of Lemma 4.5. □

Appendix D. Proof of Lemma 5.1

For the simplicity of notation, we abbreviate n∗h ◦X∗
h as n∗h here. The defects dv ∈ Sh(Γ

0
h)

and dκ ∈ Sh(Γ
0
h)

3 introduced in (4.1) are characterized by the following relations:∫
Γ0
h

dvϕh =
(∫

Γ0
h

(v∗h · n∗h)ϕh −
∫
Γ0

(v · n(X))(ϕh)
l
)

−
(∫

Γ0
h

u(X∗
h, t) · n∗hϕh −

∫
Γ0

u(X, t) · n(X)(ϕh)
l
)
:= G1 −G2, (D.1)

and∫
Γ0
h

dκ · ψh =
(∫

Γ0
h

v∗h · ψh −
∫
Γ0

v · (ψh)l
)
−
(∫

Γ0
h

κ∗hn
∗
h · ψh −

∫
Γ0

κn(X) · (ψh)l
)
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+
(∫

Γ0
h

∇Γ0
h
X∗
h · ∇Γ0

h
ψh −

∫
Γ0

∇Γ0X · ∇Γ0(ψh)
l
)
:= G3 −G4 +G5, (D.2)

where ϕh ∈ Sh(Γ
0
h) and ψh ∈ Sh(Γ

0
h)

3. Under the conditions of Theorem 2.1, these defects can
be estimated by using the following surface perturbation estimates (we refer to [31, Lemma
3.6] and [35, Lemma 5.6] for further details of such results):∣∣∣ ∫

Γ0
h

wφ−
∫
Γ0

wℓφℓ
∣∣∣ ≲ hk+1∥wℓ∥L2(Γ0)∥φℓ∥L2(Γ0) (D.3a)∣∣∣ ∫

Γ0
h

∇Γ0
h
z · ∇Γ0

h
ϕ−

∫
Γ0

∇Γ0zℓ · ∇Γ0ϕℓ
∣∣∣ ≲ hk+1∥∇Γ0zℓ∥L2(Γ0)∥∇Γ0ϕℓ∥L2(Γ0), (D.3b)

where w,φ ∈ L2(Γ0
h) and z, ϕ ∈ H1(Γ0

h).
The term G1 defined in (D.1) can be estimated by using triangle inequality and the surface

perturbation estimates in (D.3), i.e.,

|G1| ≤
∣∣∣ ∫

Γ0
h

(v∗h · n∗h)ϕh −
∫
Γ0

(v∗h)
l · (n∗h)l(ϕh)l

∣∣∣
+
∣∣∣ ∫

Γ0

(v∗h)
l · (n∗h)l(ϕh)l −

∫
Γ0

(v · n(X))(ϕh)
l
∣∣∣ ≲ hk+1∥ϕh∥L2(Γ0

h)
.

Since [u(·, t) ◦ X∗
h]
l = u(·, t) ◦ (X∗

h)
l as functions on Γ0, it follows that (using the Lipschitz

continuity of velocity field u) ∥u(X∗
h, t)

l − u(X, t)∥L2(Γ0) ≲ ∥(X∗
h)
l −X∥L2(Γ0) ≲ hk+1. Then

the term |G2| in (D.1) can be estimated as follows:

|G2| ≤
∣∣∣ ∫

Γ0
h

u(X∗
h, t) · n∗hϕh −

∫
Γ0

(u(X∗
h, t))

l · (n∗h)l(ϕh)l
∣∣∣

+
∣∣∣ ∫

Γ0

(u(X∗
h, t))

l · (n∗h)l(ϕh)l −
∫
Γ0

u(X, t) · n(X)(ϕh)
l
∣∣∣ ≲ hk+1∥ϕh∥L2(Γ0

h)
.

By taking ϕh = dv in (D.1) and the estimates of |G1| and |G2|, we obtain ∥dv∥L2(Γ0
h)

≲ hk+1.

The term |G3| defined in (D.2) can also be estimated by using triangle inequality and the
surface perturbation estimates in (D.3), i.e.,

|G3| ≤
∣∣∣ ∫

Γ0
h

v∗h · ψh −
∫
Γ0

(v∗h)
l · (ψh)l

∣∣∣+ ∣∣∣ ∫
Γ0

(v∗h)
l · (ψh)l −

∫
Γ0

v · (ψh)l
∣∣∣ ≲ hk+1∥ψh∥L2(Γ0

h)
.

The estimate of |G4| is also similar, with |G4| ≲ hk+1∥ψh∥L2(Γ0
h)
. Moreover, utilizing the

second result of (D.3), we have

|G5| ≤
∣∣∣ ∫

Γ0
h

∇Γ0
h
X∗
h · ∇Γ0

h
ψh −

∫
Γ0

∇Γ0(X∗
h)
l · ∇Γ0(ψh)

l
∣∣∣

+
∣∣∣ ∫

Γ0

∇Γ0(X∗
h)
l · ∇Γ0(ψh)

l −
∫
Γ0

∇Γ0X · ∇Γ0(ψh)
l
∣∣∣

≲
(
hk+1∥∇Γ0(X∗

h)
l∥L2(Γ0) + hk

)
∥∇Γ0

h
ψh∥L2(Γ0

h)
.

This proves that

∥dκ∥H−1
h (Γ0

h)
= sup

0̸=ψh∈Sh(Γ
0
h)

3

∫
Γ0
h
dκψh

∥ψh∥H1(Γ0
h)

≲ hk.

Additionally, using the inverse inequality ∥∇Γ0
h
ψh∥L2(Γ0

h)
≤ Ch−1∥ψh∥L2(Γ0

h)
, we have |G5| ≲

hk−1∥ψh∥L2(Γ0
h)
. Then, by taking ψh = dκ in (D.2) and the estimates of |G3|, |G4| and |G5|,

we obtain ∥dκ∥L2(Γ0
h)

≲ hk−1. □
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