CONVERGENT FINITE ELEMENT APPROXIMATIONS OF
SURFACE EVOLUTION WITH RELAXED MINIMAL DEFORMATION
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ABSTRACT. The finite element approximation of surface evolution under an external velocity
field is studied. An artificial tangential motion is designed by using harmonic map heat flow
from the initial surface onto the evolving surface. This makes the evolving surface have min-
imal deformation (up to certain relaxation) from the initial surface and therefore improves
the mesh quality upon discretization. By exploiting and utilizing an intrinsic cancellation
structure in this formulation and the role played by the relaxation term, convergence of
the proposed method in approximating surface evolution in the three-dimensional space is
proved for finite elements of degree k > 4. One advantage of the proposed method is that it
allows us to prove convergence of numerical approximations by using the normal vector of the
computed surface in the numerical scheme, instead of evolution equations of normal vector
(as in the literature). Another advantage of the proposed method is that it leads to better
mesh quality in some typical examples, and therefore prevents mesh distortion and break-
down of computation. Numerical examples are presented to illustrate the convergence of the
proposed method and its advantages in improving the mesh quality of the computed surfaces.
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1. Introduction

We consider the evolution of a two-dimensional surface I'(t) under a prescribed velocity
field w in the three-dimensional space. The evolving surface I'(¢) can be represented as the
image of the flow map X(-,¢) : T? — R3, satisfying

XX (-,t) =u(X(-,t),t) onTY (1.1)

with the initial condition X (-,0) = id on I'’, where id denotes the identity map such that
id(z) = z for € R3. The development of numerical approximations for surface evolution
described by (1.1) is fundamental for solving partial differential equations (PDEs) on dynam-
ically evolving surfaces [27, 28, 35, 16, 36, 21, 19, 22, 20, 23|, as well as PDEs in bulk domains
with moving boundaries or interfaces. The evolution of surfaces or interfaces can also be
integrated with fluid dynamics such as two-phase fluid flow [29, 3, 12, 30] and fluid-structure
interaction [42]. Additionally, the numerical techniques for solving (1.1) are intimately con-
nected to the approximation of geometric flows [13, 4, 14, 15, 25, 38|, underscoring their broad
applicability and significance in computational mathematics and applied sciences.

However, approximating surface evolution through numerical methods presents significant
challenges, particularly in maintaining the quality of the surface mesh. A key difficulty lies in
the potential of mesh distortion and degeneration over time, with nodes possibly clustering
and mesh distorting, especially when an evolving surface undergoes large deformation. Such
issues can result in breakdown of computation or substantial errors in approximating the
shape of an evolving surface. Furthermore, when surface evolution is coupled with PDEs in
the bulk domain enclosed by the surface, the quality of the approximate surface mesh directly
affects the accuracy of the numerical solutions to these PDEs. To address these challenges,
re-meshing techniques have been developed [4, 39, 41, 43]. These techniques can be employed
to restore mesh quality when it falls below a certain threshold, thereby ensuring reliable and
accurate numerical approximations of surface evolution and the associated PDEs.
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An alternative approach to re-meshing is the introduction of artificial tangential motion of
the evolving surface, which does not alter the shape of the evolving surface but improves the
mesh quality of the approximate surface. In their seminal works [10, 8, 9], Barrett, Garcke, and
Nirnberg (BGN) introduced a class of weak formulations that use the same normal velocity as
the geometric flow while incorporating artificial tangential motion which makes the map from
surface sz to surface F{fl approximately harmonic (since harmonic map between surfaces
tends to keep the shape of triangles unchanged), where ng denotes the approximate surface
at the time level ¢t = ¢;. Their method, known as the BGN method for this specific choice of
artificial tangential motion, has been extensively adopted and extended in the development of
numerical methods for various applications, including the development of energy-stable and
volume-preserving finite element methods (FEMs) for surface diffusion [5], interface evolution
in two-phase Navier-Stokes flow [12, 29, 30], solid-state dewetting with contact line migration
[6, 44, 7], and elastic flow with junctions [11].

The rigorous proof of convergence of the BGN methods for various problems remains open.
The convergence of a stabilized version of the BGN method for one-dimensional curve evolu-
tion under curve shortening flow was proved in [2] recently. However, the error analysis for
the stabilized BGN method still cannot be extended to general two-dimensional surfaces with
triangular mesh due to its necessity of using one-dimensional mass-lumping techniques.

In addition to the BGN methods, an alternative approach for constructing artificial tangen-
tial velocity to improve mesh quality of approximate surfaces was proposed by Elliott & Fritz
in [37, 26]. In this method, the tangential velocity is generated by a reparametrization of the
surface using DeTurck flow techniques. This approach enables the proof of convergence for
evolving FEMs that incorporate tangential motion. Convergence of evolving FEMs has been
successfully shown for curve shortening flow [37] and mean curvature flow of closed torus-type
surfaces [40]. However, proving the convergence of this class of algorithms for general surfaces
in three dimensions remains an open and challenging problem.

In [31], Hu & Li showed that, as the time stepsize tends to zero, the velocity produced by
the temporally semidiscrete BGN method (without spatial discretization) formally converges
to a limit velocity v satisfying the following equations:

v-n=wu-n onl(t)
(1.2)
Argv = Kkn on I'(¢),
where u is the original velocity of the surface, n is the unit ourward normal vector of surface
I'(t), and & is an unknown scalar function on I'(¢). It is shown that the tangential velocity
determined by equation (1.2) minimizes the following energy under constraint v -n = u - n:

BorlX(,] =5 [ [Frel
L)

which represents the deformation rate of the surface, and the function x in (1.2) represents a
Lagrange multiplier arising from the constrained optimization problem. Therefore, the tan-
gential motion determined by (1.2) makes the evolving surface have minimal deformation rate
(MDR). An advantage of this MDR formulation is that it can be coupled with the evolution
equations of geometric quantities (such as normal vector and mean curvature) to provide
stability, thereby proving convergence of evolving surface FEMs for closed evolving surfaces
under many fundamental geometric flows. This has been shown for mean curvature flow and
Willmore flow in [31] as well as surface evolution under a given velocity in [1]. However, the
MDR formulation requires solving an additional evolution equation of normal vector n in con-
vergence analysis and therefore requires higher smoothness of the initial surface in practical
computation (see Figure 5 in Example 6.3). Convergence of finite element approximations to
the MDR formulation of surface evolution by using normal vector of the numerically solved
surface could not be proved so far.

In a recent article [18], Duan & Li proposed an artificial tangential motion which has
minimal deformation energy (also known as the Dirichlet energy)

1

BolX(,0)] = 5 [ VX ()P (1.3)



under constraint v - n = u - n. This is equivalent to solving the following problem:
v-n=u-n on I'(t)

1.4
—AroX =k(noX) onT?, (1.4)

where (-, t) : T? — R represents a Lagrange multiplier arising from this constrained optimiza-
tion problem. The minimal deformation (MD) formulation in (1.4) guarantees that the flow
map X (-,t) : I'® — I'(¢) is a harmonic map with minimal deformation and therefore reduces
mesh distortion caused by deformation. For genus-zero surfaces, harmonic map is equivalent
to conformal map and therefore the flow map in the MD formulation maps triangles on I'”
to similar triangles on I'(t). However, the convergence of finite element approximations to
surface evolution by the MD formulation remains an open and challenging problem.

The aim of this paper is to address the aforementioned challenges by proposing novel contin-
uous formulation and evolving FEM which offer the following three advantages simultaneously:

e It contains an artificial tangential motion that could improve the mesh quality of
evolving surfaces as effectively as the MD formulation in (1.4).

o It allows us to prove the convergence of finite element approximations to surface evo-
lution with high-order accuracy.

e It avoids solving an additional evolution equation of n, which often causes the numer-
ical solution of n to differ from the normal vector of the numerically-solved surface
when the surface undergoes large deformation.

Through rigorous convergence analysis (for the second and third advantages) and numerical
tests (for the first advantage) we find that a “relaxed” minimal deformation (RMD) formula-
tion, which generates a tangential motion using harmonic map heat flow from I'? to I'(¢), has
all the three advantages above.

At the continuous level, the RMD formulation seeks flow map X (-, t) : T® — T'(¢), velocity
v(-,t) : TY = R? and an auxiliary function s(-,¢) : I'” — R such that

X =v on I (1.5a)
v-(noX)=(uoX) -(noX) onI? (1.5b)
X —ApoX =k (noX) on I'%, (1.5¢)

where n denotes the normal vector on I'(t), and no X is the pull-back of n from I'(¢) to I'°. An
additional relaxation term, 0y X, is introduced to guarantee the convergence of finite element
approximations. This is different from the DeTurck trick [37, 26] which uses harmonic map
heat flow from I' to I'° and solves non-divergence form of PDEs in local charts.

At the discrete level, we prove the convergence of semidiscrete finite element approximations
to (1.5) for finite elements of degree k > 4. This restriction of finite elements degree is a
technical requirement which ensures that the error of the numerical solution is sufficiently small
in order to bound some nonlinear terms appearing in the error analysis; see the discussions
in Section 7. In practical computation we observe that the evolving FEM based on the RMD
formulation in (1.5) is also convergent for low-order finite elements of degree k = 1,2, 3.

Our motivation for introducing the RMD formulation in (1.5), as well as the convergence
analysis for finite element approximations of (1.5), is mainly based on the following three
key observations. The first key observation is an intrinsic cancellation structure in the weak
formulation of (1.5), i.e., orthogonality at the nodes that could exhibit a cancellation structure
under the H! inner product (we refer readers to Lemma 3.8 for more details).

The second key observation is that the error equation for (1.5b) can be regarded as a discrete
approximation to a hyperbolic transport equation, which allows us to establish an L?-norm
stability estimate for the normal component of the error by mimicking (at the discrete level)
the stability estimates for hyperbolic transport equation; see the proof of Proposition 4.2.

The third key observation is that the presence of the relaxation term 9;X in (1.5¢) would
lead to good estimates for the tangential component of the error. This observation about the
role of relaxation term 0;X for convergence analysis is also our motivation to consider the
RMD formulation in (1.5).
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The rest of this article is organized as follows. In Section 2, we introduce basic notations
and the finite element scheme for approximating the surface evolution described by (1.5), and
then present the main theorem on the convergence of numerical approximations. In Section
3, we introduce several important technical tools and techniques developed in [31, 32, 33, 34]
and discuss about an important cancellation structure in the RMD formulation which allows
us to prove convergence of numerical approximations in the presence of tangential motion.
Stability of the numerical solutions is proved in Section 4, and error estimates are presented
in Section 5. This completes the proof of the main theorem. In Section 6, we present several
benchmark numerical examples to demonstrate the convergence of the proposed method and
its advantages in improving the mesh quality of the approximate surfaces. Some conclusions
and remarks are presented in Section 7. Some more details in the stability analysis are
presented in Appendix.

2. Notations and main theorem

This section begins with an outline of basic notations in finite element approximations
of surface evolution. Subsequently, we introduce the semidiscrete FEM for approximating
surface evolution described by the RMD formulation in (1.5). Then we formulate the main
theorem of this paper on the convergence of numerical approximations to surface evolution

described by (1.5).

2.1. Basic notations

Let ' be a smooth surface with the outward unit normal vector n. For a function f :
I' — R, its surface gradient on T' is defined as a column vector Vrf = (I —nn")(Vf)|r,
where f! is an arbitrary extension of f to R?® (the tangential gradient defined in this way is
independent of the extension used to define it). The construction and associated differential-
geometric notions can be found in [15] and Appendix A of [25], as well as in standard texts
on differential geometry. For a column vector-valued function f = (f1, fo, f3)' : I' — R3,
its surface gradient is defined as a matrix Vrf = (Vrfi, Vrfa, Vrfs). For a matrix-valued
function P = (P, j)1<ij<s : I — R3*3, its surface gradient VP is a tensor with components
(Vpp)ijk = Di(f)jﬁ) for 1 < i,kj,j < 3.

An evolving surface I'(t), t € [0, 7], with initial condition T'(0) = ', can be described by a
flow map X : I'°x [0, 7] — R3 which is diffeomorphic between I'’ and T'(t) = { X (p,t) : p € I'°}.
For any function g defined on I'(t), we denote by g(X) or g o X the pullback function of g
onto I'°,

Throughout this article, we denote by C' and hg two generic positive constants which are
different at different occurrences, possibly depending on the exact solution, the given velocity
field w and T, but are independent of the mesh size h and t € [0,7]. The notation X <Y
means X < CY for some constant C', and X ~Y means X SY and Y < X.

2.2. Evolving surface and finite element method

Given a closed, smooth initial surface I'’ = I'(0) C R?, we denote by I') a piecewise curved
triangular surface that interpolates I'Y, with each piece of I') being the image of the reference
plane triangle under a polynomial map of degree k; see [21, 17, 35]. Specifically, let F?L, f be
the piecewise flat triangular surface whose vertices coincide with those of F?l. Let K be a
curved triangle on I'?, and let K; be the corresponding flat triangle on F% 7 with the same
three vertices. Define Fx : Ky — K as the unique polynomial of degree k that parametrizes
K. We assume that the initial triangulation is sufficiently good with the following property:

max (IFr llwnoo (ac) + 1F5 oo a) S 1, (2.1)

h

where the right-hand side is independent of the mesh size h of the intepolated surface F%. In
particular, we assume that the given closed, smooth initial surface I' is partitioned into an
admissible family of quasi-uniform triangulations with mesh size h.



We define a finite element space Sp(I')) of degree k on I') as
Sp(T9) := {v, € HY(TY) : vy, 0 Fx € PF(K}) for all K C T9},

where P¥(K ) denotes the space of polynomials of degree k on the flat triangle K.

Let x(0) = (21(0),---,2n5(0)) € R3N be the vector that collects all the finite element
nodes z;(0) on I'). Then we evolve vector x(0) in time and denote its position at time
t by x(t) = (z1(t), -+ ,zn(t)), which determines a surface I'y(t) = I',[x(t)] by piecewise
polynomial interpolation on the plane reference triangle. There exists a unique finite element
function Xj,(-,t) € Sp(I'))? satisfying the following relations:

Xh (a:j(O),t) ::Ej(t), ijl,...,N.
This is the discrete flow map which maps I') to I'y[x(¢)]. If w(-,¢) is a function defined on
Ip[x(t)] for ¢t € [0,T], then the material derivative 0f,w on I'p[x(t)] with respect to the
discrete flow map X}, is defined by
. d
Oppw(zw,t) = ¥ (Xn(p,t),t) for z = Xp(p,t) € Tn[x(t)].

The finite element basis functions on I'y[x(t)] are denoted by ¢;[x(t)],j = 1,..., N, which
satisfy the following identities:

ojx(t)] (x,(t)) =dij, Oppoix(t) =0, i,5=1,...,N.

The pullback of ¢;[x(¢)] from any curved triangle on I',[x(¢)] to the reference plane triangle
is a polynomial of degree k. The finite element space on the surface I';[x(t)] is defined as

Sn(Talx(t)]) := span{p1[x(t)],-- -, on[x(1)]}-
The evolving surface FEM for (1.5) is to find (X (-, t), v (- ), k(- 1)) € Sp(T9)3x S (T9)3x
Sp(I'?) such that

0: X, = vy, on I'Y, (2.2a)

/1“0 vp - R (Xp)xXn = / w(Xn, t) - p(Xp)Xn YV xn € Sh(f‘z), (2.2b)

FO
/0 8tXh “ Xk T /0 VF(,)Xh . VF?XK = /0 lih’flh(Xh) Xk VXK S Sh(F2)3, (2.2C)
ro ro ' ' ro

h

where 71j, denotes the piecewisely defined normal vector on surface I'y,(t) (possibly discontinu-
ous on the boundaries of the curved triangles), and ny(X},) is its pullback to surface I‘?L. The
initial condition for (2.2) is Xj,(+,0) = id on T'Y.

2.3. Interpolated surface and lifts

We denote by X;(-,t) € Sp(I'?)3 the interpolation of the exact flow map X (-, ¢) : I'® — R3
that satisfies equation (1.5). This interpolated flow map can be expressed as

N
Xi(ot) =Y @5 (t)g;[x(0)], (2.3)
j=1
where the nodal vector x*(t) = (27 (¢), - , 2% (t)) is determined by the exact flow map, i.e.,

zi(t) = X(zj(0),t) for j = 1,...,N. Then X;(-,#) determines the interpolated surface
I'p[x*(t)], which is often abbreviated as I';(¢) (in particular, I'; (0) = I',(0) = I'?). We denote
by n; = 7y (-,t) the normal vector of the piecewise polynomial surface I'y[x*(t)], which is
discontinuous across the boundaries of the curved triangles on I'y[x*(t)].

From [34, Lemma 7.1] or [17, (2.15)-(2.16)] we know that, for the smooth surface I'(t), there
exists a constant hg such that for h < hg and t € [0,7], any point x € I'}(¢) can be lifted to
I'(t) through a lift operator a : I'} (t) — I'(¢), i.e.,

ah = a(z) e D(t) for x € I}(t). (2.4)



6

The lift operator a : '} (t) — I'(t) is one-to-one and onto. Correspondingly, any function 7 on
' (t) can be lifted to a function ' on I'(t), defined by

n'(z!) :==n(z) for x e Ti(t).
The inverse lift of a function ¢ on I'(¢) can be expressed as

¢ (x) = ¢(a!) for z e Ti(1).
Moreover, the L? and H' norms on I') = T’} (0) and I'” = I'(0) are equivalent, i.e.,

191 2 roy ~ 1"l 22 ro) for n € L*(T'})
HVFQWHB(FQ) ~ HVFOWIHLQ(FO) for n e Hl(r?v,)-

2.4. Main theoretical result

We denote by P, : I — R3*3 and P.an : T? — R3*3 to be the normal and tangential
projection matrices, i.e.,

Po=(nmn")oX and Py = I3x3— P, (2.6)

where n = n(-,t) is the normal vector of I'(t). The main theoretical result of this article is
the following theorem.

Theorem 2.1. Let u : R3 x [0,T] — R3 be a given smooth velocity field, and assume that
problem (1.5) admits a smooth solution (X,v,k) such that the flow map X(-,t) : TV — T'(¢)
and its inverse map X (-, t)"1 : T'(t) — T° are smooth for all t € [0,T]. Then there exists a
constant hg > 0 such that the finite element scheme in (2.2), with finite elements of polynomial
degree k > 4, admits a unique finite element solution on the time interval [0, T]. Moreover,
the finite element solution satisfies the following error bound for 0 < h < hg:

T
sup [[(Xn)! = X 2o + / 19 r0 Pran((X0)! = X) 22 goydt < 2. (2.7)
t€[0,T] 0

In Theorem 2.1, the gradient estimate applies only to the tangential component of the error.
This is because the error estimate for the tangential part is derived from (2.2¢), which includes
a gradient term that enables us to obtain a gradient estimate for the tangential component
(see Proposition 4.1 for further details). In contrast, the estimate for the normal component
of the error is based on (2.2b), which only yields an L? estimate.

3. Basic tools for stability analysis

In this section, we present several fundamental tools for stability analysis. We begin by
summarizing the notations and introducing the results of norm equivalence between different
surfaces. Then we present results concerning the perturbation of normal vectors and charac-
terize the difference between the normal vectors on different surfaces (i.e., the interpolated
surface and the numerical-solution surface). This characterization plays a crucial role in the
subsequent stability analysis. Finally, we illustrate an important cancellation structure in
(2.2), another key to the stability analysis, by introducing the tangential and normal projec-
tions as well as utilizing the super-approximation properties.

3.1. Notations
We introduce I'j, (t) to denote the intermediate surface between the interpolated surface
I} (t) = I'y[x*(t)] and the numerical solution surface I'y(t) = I'y[x(t)], defined as
Tho(t) := (1 =0} (t) +0T(t) =Th[(1 — 0)x™(t) + 0x(t)], 6 €]0,1]. (3.1)
The flow map from T to T, ¢(t) is given by X? = (1 — 6)X; + 06X}, and the normal vector
of I'y ¢(t) is denoted by fzz = fLZ(-, t). For the readers’ clarity and convenience, we summarize

below the notations for functions on different surfaces, which will be frequently used in the
stability analysis.



ro: The smooth initial surface at ¢ = 0.

X(-,t): The exact flow map defined on I'?, satisfying (1.5).

I(t): The exact surface determined by X (-,t) at time ¢.

F(,)Z: The piecewise curved triangular surface that interpolates I'y.

Xp(-41): The discrete flow map defined on I'?, satisfying (2.2).

Tp(t): The numerical-solution surface determined by Xp(-,t) at time ¢.
Xi(,t): The interpolation of X (-, ¢) defined on I'Y, as given by (2.3).

Iy (t): The interpolated surface determined by X;(-,¢) at time ¢.

Lho(t): The intermediate surface between I'; (t) and I',(t), as given by (3.1).
X?(-,t) . The flow map from I') to 'y, g(t).

nro: The normal vector on I'°.

n,Mp(r): The normal vector on I'(t).

Py: The normal projection matrix P, = (nn') o X, defined on I'°,

Pian: The tangential projection matrix Pian = I3x3 — Py, defined on I'V.

nro, Hro: The piecewisely defined normal vector and mean curvature on I').

np: The piecewisely defined normal vector on surface I'j(t).

iy, nrs1y:  The piecewisely defined normal vector on surface Iy (t).

ny: The interpolation of n in Sp(I'}(¢))3, defined on I'} (¢), as given by (3.9).
Pr: The normal projection matrix P} = (n}(n})") o X}, defined on T'Y.
P The tangential projection matrix Py, = I3x3 — P, defined on I'.

ﬁg : The piecewisely defined normal vector on surface on I'y o(t).

Iy, Pro: The Lagrange interpolation and the L2-projection operators on Sh(Fg).
vy, Kp The interpolation of the exact solution of (1.5), v; = Iv=Y and Ky, = Ink(D,

defined on F?L.
ex,ey, s o The finite element error functions, ex = X; — X}, e, = v, — v}, and e, =
Kp — Ky, defined on I‘%.

ey : The error function of the normal vector, e, = nj o X — ny o X} defined on
0
Phc
% The finite element error function defined on I'y, »(t) with the same nodal vector
as ey, as given by (3.2).
ek : The finite element error function defined on I'} (¢) with the same nodal vector

as ey, as given by (3.2).

3.2. Norm equivalence between different surfaces

We consider the norm equivalence relations between the interpolated surface I'j(t) =
I'y[x*(t)] and the numerical-solution surface I'y(t) = I'y[x(t)]. Recall that I'j o(t) represents
the intermediate surface between I'} (¢) and I',(t), as defined in (3.1).

Let ex = X}, — X; be the finite element error function defined on I’?L, and let eg( =
exo (XfL)*1 be the finite element function on I'y, o(t) with the same nodal vector as ex. In the

case § = 0 we also write €% as e%. If we denote by e = (e1,--- ,en), with e; = ex(z;(0),1)
being the nodal values of the error function, then
N
ex =) ejoi[x*(0)] € Sp(I})° on T},
j=1
ek = ejdj[x"(t) + be] € Su(Tho(t)® on T (1), (3.2)
j=1

N
ek =exo (Xp)7 =) ejbilx* ()] € Su(T} (1) on Tj(1).
=1

In general, a finite element function on I'y g(¢) with nodal vector w = (w1, --- ,wy) can be
written as wf = Zjvz L w;p;[x*(t) + Oe]. The following theorem demonstrates that the norms
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on different intermediate surfaces I'y g(t) are actually equivalent to each other when the W 1>
norm of e% is bounded (see [32, Lemma 4.3] for more details).

Lemma 3.1 (Norm equivalence on I'y, ). If ||VF2 (t)e}HLoo(Fz(t)) < %, then the following norm
equivalence holds uniformly for 6 € [0,1] and 1 < p < co:
0
lwhllzor, o) S Nwhlews@y  and 1V, jowhllze@, o) S 1V @whllze s o)-
In addition, the norms of functions on I') and T'}(t) (related to each other through the
discrete flow map) are equivalent due to the boundedness of X;(-,t) and X;(-,¢)~! in the

W1 norm (this follows from the smoothness of flow map X(-,¢) and its inverse X (-,¢)~!
under the conditions of Theorem 2.1). We present this result in the following lemma.

Lemma 3.2 (Norm equivalence between I') and T} (¢)). For any function ¢ on I'), we denote
by ¢* = ¢ o [X;(-,t)7Y its push-forward function on T} (t) via the discrete flow map. Then,
under the conditions of Theorem 2.1, there exists hg > 0 such that for h < hg the following
estimates hold:

16" Le(rs 2y) ~ 10l Lo ro) V¢ e LP(T}),
IVrs ()8 Loy ) ~ IVr9 llocrey ¥ é € WHP(TR).
Proof. Since ¢ = ¢* o X}, it follows that (applying the chain rule of partial differentiation)
Vrg¢ = (VFQX;)[(VF;@)(Z’*) o Xp]
= (VFOX;Z + npo (nry ) © Xﬁ)T)[(VF* @) o Xpl,

where nro and nr ;) denote the normal vectors of I') and I';(t), respectively, and the last

(3.3)

(3.4)

equality follows from the orthogonality relation nrz(t)vpz( n®* = 0 on I';(t). Under the
conditions of Theorem 2.1 (smoothness of the surface and the flow map), we have

(Vo X5) — (VroX) ™! oo ro) S h* (3.5)

H”FO (nF*(t) OXh) — (npo(npe) © X)h)” ”Loo T9) ~ < ¥

which are standard estimates of errors related to an interpolation surface. Therefore, matrix
VF?L X +nro (np;(t) oX;:)—r can be well approximated by matrix Vo X +npo(nr 0X) ", while
the latter matrix and its inverse matrix are bounded uniformly for ¢ € [0,7]. This implies that
Vo Xp + npo (nrs () o X #)T and its inverse matrix are also bounded uniformly for ¢ € [0, 7.
By a similar approach, the Jacobian matrix of the integral transformation from I} () to F?L
satisfies the property that ]det(VFgX;;(VF%X;)T + nro (nF%)T)| has both upper bound and
positive lower bound. This immediately implies the norm equivalence relations in (3.3). O

Remark 1 (Approximation of Vo Xj, +npo (nrs 1y 0 X, #)T). In the proof of Theorem 2.1, we
often need to convert Vs ) to Vpo for which we need to use the chain rule of differentiation

n (3.4), where the transition matrix Vo X} 4+ nro (nr: 1) © Xj #)T is discontinuous on the

boundaries of the curved triangles on I‘(,)L. Nevertheless, as shown in the proof of Lemma 3.2,
it can be well approximated by a continuous matrix [VroX + nro (np@y o X )T~ with an error
bound of O(h¥).

The finite element scheme in (2.2) are defined on the discrete initial surface I'), which is glob-
ally continuous and piecewise smooth. Special attention needs to be paid to the integration-
by-parts argument on such piecewise smooth surfaces. To this end, we denote by E,? the
collection of curved edges in the triangulated surface F%, and present an integration-by-parts
formula which involves jump terms on the curved edges of F?L.

Lemma 3.3 (Integration by parts on I'Y). Let v € H'(I'))3 and w € HY(T'Y), for any fived
integer k > 1, there exists a constant hg > 0 such that for all mesh sizes satisfying 0 < h < hy,



it holds that,

[ o Irgul <] [ (Fr - ohu]+ Rl ol + 13 Tl ol (60
T T Eeg)

Moreover, if v and w are finite element functions then
[, v gl 5| [ (Frg o) + ol lolzg) (37)
h h

Proof. By using integration-by-parts on each curved triangle of F%, and summing up the
results for all the triangles, we can obtain

: — . H oW —
/ng Vrow Z/EME vw—i—/rg oo - U w /1“

Eeg

(Vl—‘% ’ ?})’U), (38)
h
where npo and Hro are the normal vector and mean curvature of surface T'), and [u]z denotes
the jump of conormal vector on edge E. For k = 1, the mean curvature HI‘% is zero, and, for
k > 2, based on Proposition 2.3 in [17], both the mean curvature Hro and the normal vector
nro converge to those of T'” as the mesh size h tends to zero (with k fixed). Consequently,
there exists a constant hg > 0 such that for all 0 < h < hy,
[, Hrgrey o] < ol ol
h

Moreover, on the interpolated surface I'?, it is well known that

Il ellze () S nlellpe @ S B
where [n]gp denotes the jump of the normal vector across an edge E. This estimate is de-
rived from (2.5) in [1] and Proposition 2.3 in [17]. Substituting those estimates into (3.8)
immediately yields (3.6).
If v and w are finite element functions then the edge integrals in h* ZEGEQ lwllr2m vl L2 (k)

can be reduced to surface integrals by using the trace inequality of finite element functions.
This would reduce (3.6) to (3.7). O

3.3. Perturbation of normal vectors

Let n} = nj(-,t) € Sp(I}(t))® denote the Lagrange interpolation of the normal vector
n =n(-t) of I'(t), given by

nj, (1) =) n(@ (1), )i [x" (1)]. (3.9)
j=1
It is noted that n} € Sy (I';(¢))® is continuous. This contrasts with the normal vectors 7y, of
I'y(t) and 7y of I';(t), which are discontinuous on the boundaries of curved triangles. The
error estimate between nj and nj is well established and is presented in the following lemma,
as stated in Proposition 2.3 of [17].

Lemma 3.4 (Approximation properties of ny and iy ). Under the conditions of Theorem 2.1,
the following estimates hold:

Inf, 0 Xj — (no X)ilHLoo(F(;l) < M (3.10a)
175, © X5, = (n 0 X) || oo (ro) S BF, (3.10b)
1727, © X _nZOX;zkHLOO(F?L) S hh. (3.10c)

We now focus on estimating the difference between normal vectors 7y, of I'y(t) and 72; of
I'}(t). Before we present the result, we briefly recall that ﬁi denotes the normal vector of
the intermediate surface I'y, g, as defined in the text below (3.1), and €% and egf are the error
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functions (with a common nodal vector) defined on the interpolated surface I'j(¢) and the

intermediate surface I'y, g, respectively; see their definitions in (3.2).

Lemma 3.5 (Characterization of 7, o X}, — ny o X). The following relation holds:
1
in o X — it 0 X7 = —/ (Ve %)) o X0 d6. (3.11)
0

Moreover, by comparing [(Vphﬁeg{)ﬁfL] o Xz with [(Vrze})ﬁ;] o X} wusing Newton-Leibniz
formula with respect to 8, we have

fp o Xp — 7y, 0 Xpy = <*Vrg(t)(€§( ny) + (Vrryny)ex + (Vs pex) (ny, — ﬁZ)) o Xy

—l—/Ol(/Oe([?(VFh,ae?()—’ﬁh( T (Vr,..e%) ](Vrh )’ﬁ%)oXﬁ‘da> do.
(3.12)

Proof. For a function w{ on T}, its material derivative in 6 is defined as (9qwf)(X}7) =
4 (w?(X?)). The following expression of 957l can be found in [13, Lemma 37]:

dé
. d i
(957) (XA) = —5(7f o X0) = ~[(r, ek )it o X (3.13)

Then we note that relation (3.11) is an application of the Newton-Leibniz formula with the
above expression of -4 0 (nh oX 9) By using the Newton—Leibniz formula again, the right-hand
side of (3.11) can be further written as

1
- /0 (Vi pe%)l] 0 X0 d0 = — (Vs ek )ik 0 X

_ /0 1 ( /0 9 (O1(Vr, .e%)f] 0 X72) dar) do,

where the first term on the right-hand side can be rewritten as follows, using the Leibniz rule
of differentiation:

—(Vrrwex)i, = =V (ex - npy) + (Vrrgna)ex + (Vo ek ) (ng, — ).
The second term on the right-hand side of (3.14) can also be rewritten into two terms, i.e.,
OV, e5)A5) = O8(Vr, €%V + (Vi . e§ )5S
= aé(vrh,aegf)ﬁ% - (vrh,a 6?{)(vrh,a 6%)’5%,
where the last equality follows from (3.13). We can further simplify the expression of 95 (Vr, ,e%)
by using [24, Leamma 2.6], which says that

(3.14)

08V, . e%) = Vi, 1 (0365) = (Vi uck — 70T (V)T ) (V)
In view of the expression of np, 0 X, —7f o X; in (3.11), substituting 0%e% = 0 and the above
three relations into (3.14) yields (3.12). O

We are now ready to define the normal projection matrix P € H'(I'), R3*3) and tangential

projection matrix P, € H'(I'),R3*3) on the discrete surface I'), i.e.,

Py = (nj(nj)") o X and Pl = Isxs — Py, (3.15)

where nj is the (globally continuous) interpolated normal vector on the interpolated surface
I'; (t). The gradient of the normal projection matrix, i.e., Vro Py, is defined as a third-order

tensor. While it is discontinuous on F?L, it can be approximated by a continuous tensor
(VroPy,)~!, where P, is defined in (2.6). In particular, (VF?LP;{) — (VpoP,) 7! has the same

error bound as nj — n~!. This is presented in the following lemma.
Lemma 3.6 (Approximation of VFQP;:). Under the conditions of Theorem 2.1, it holds that
1(Vr0 P2) = (Vo Pa) Ml ey S BE. (3.16)



11

Since our numerical scheme and error analysis are conducted on I'?, we typically need to
pull the normal vectors of I'y(t) and I'}(¢) back to I'), denoted by 7y o Xp,7f o X}, and
ny o X7, respectively. Therefore, for the simplicity of notation, we abbreviate them as 7y, n;,
and nj (omitting the composition with flow maps), respectively, in the subsequent text when
it does not cause ambiguity.

3.4. Cancellation structure

Let I, and P2 be the Lagrange interpolation and the L?-projection operators on Sh(F?L),
respectively, and recall that P; and Pg, € H'(I'?)3*3 are the normal projection matrix and
tangential projection matrix defined in (3.15). For any wy, € S,(I'?)3, we define Ij,(Pzwp,)
and Pr2(Pfwy) as the interpolated and projected normal components of wy, respectively.
They are finite element functions in S, (I'7)? such that the differences Pwy, — Ip(P}wyp) and
Prwp— Pr2(Prwy) have better estimates than the usual results, as shown in Lemma 3.7. These
better estimates are referred to as super-approximation properties, which are frequently used
in this paper and summarized in the following lemma. We direct readers to [31, Lemma A]
for further details.

Lemma 3.7 (Super-approximation properties). For any wy € Sh(I’?l)g, under the condition
of Theorem 2.1, the following inequalities hold:

12w — In(Prwn)ll 0oy S B2 lwll g ro).s
||VFQ(P;wh) - vFglh(P;wh
| Prwn — Pr2(Pywn)|| 2 T9) ~ < B HwhHHl(FO)
HVFO(P*’wh) - VFOPL2(P*wh 22 T9) hHwh\\Hl(rO)-
PLQ(Ptan )

2 I9) h”whHHl(FO)

)
)
)
)

Similar estimates also hold for Py wp, — In(Ph,wn) and P wy,

By utilizing the super-approximation properties, we illustrate a cancellation structure be-
tween the normal projection and the tangential projection in the weak formulation (2.2),
which is crucial to proving convergence of the evolving FEM in this paper.

Lemma 3.8 (Cancellation structure). Under the conditions of Theorem 2.1, the following
estimates hold for any wy, z, € Sp(T'Y)3 (which are possibly time-dependent):

o VFQ(P;wh) VFO (InPanzn) < llwnll 2 FO)(”ZhHL2 oy + HVFO( Pianzn) I 2 FO)) (3.17)
h

[, 2:Piun) - GuPoan)  luwnl o2l (3.18)
h

+h2HatwhHLQ(F(}’l)(thHL2(F2)+||VF2(Pt2nzh)HL2(F2))'

Remark 2. Compared with the usual estimates without making use of the orthogonality
between P} and Py, the right-hand sides of (3.17) and (3.18) have either weaker norms or

tan»
some power of h. This is the reason that we refer to them as cancellation structure.

Proof. Due to the orthogonality between P} and P, it is easy to see that I Pr¢y = 0 for
the function ¢y, = I, P,z (simply verify that I, P} ¢p = 0 at the nodes). For this function

¢n, using Lemma 3.7 (super-approximation properties), we have
V0 (Pl ooy = Vr0 (Pién — In(Pion)) ooy < Blldnllmroy-  (3:19)
By applying the Leibniz rule of differentiation, we have
Vrg(P;fwh) ) VF2¢h :/ Vrgwh : VFQ(P;%) + / (VF?LP:)wh ) VF2¢h
ro 0

F?L h
- Vyowp, - (VF?LP:;)¢h

]
Fh

=: 11+ I, — Is, (320)
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where I; can be estimated directly using (3.19), i.e.,
1120 S IV rawnll ey Plnllar gy S loonll oo 0l s ooy

Moreover, I5 can be estimated directly with the boundedness of HVF(% P 1o (1), -e.,

12| HwhHLQ(F?L)‘|VF2¢hHL2(F2)'
The following estimate of I3 can be obtained through approximating Vrg P by (VoP,)™
using Lemma 3.6 and the inverse inequality vagwhHLz(F% < Ch_1|]wh||L2(F2):

[I3] < ‘/ vrﬁwh'(vl"opn)ilgbh +ChkilHwhHL2(F2)H‘?M‘L%F%)'
T

Then we can employ the integration by parts to transfer the gradient from wy to ¢p,. We
apply the integration-by-parts estimate in (3.6) of Lemma 3.3 with v = (Vo P,) !¢, and use
inverse inequality to reduce the edge integrals in (3.6) to surface integrals similarly as (3.7)
of Lemma 3.3. This leads to the following result (note that [[Vpo - vl|z2(roy S [l g1 (ro)):

1131 < Twnll e (16nlp2ra) + 1m0 dnllp2qray).

Therefore, substituting the estimates of I;, I and I3 into (3.20) and recalling that ¢, =
I, Py zn, we have

Vo (Prwn) - Vo (InPianzn) S llwnll 2oy (108l 22 ooy + [[Vro énll 2 (o))
o (3.21)
S HwhHLZ(Fg)(thHm(rg) + ||VF2(Pt2nzh)”L2(F2))v

where the last inequality follows from approximating Ip, P zn by Pg,zn with the super-
approximation properties in Lemma 3.7. This proves the first result of Lemma 3.8.
The second result of Lemma 3.8 can be proved similarly, utilizing the orthogonality between

P and P, as well as the super-approximation properties in Lemma 3.7. The former guar-

antees that I P¥oy = I Pr (1, Py, z1) = 0 and the latter guarantees the following estimate:
1By énll2ro) = I1Bndn — InPrdnll 2oy S B2 ldnllm ro)-
Therefore,

/ Or(Prwn) - én = / (P )wn - b + Dywn - (Pbw)
o o

h
S lwallzeroylénll 2oy + 0cwnll 2 ro) 1Pl 2ro)
S Hwh||L2(F2)||Zh||L2(F2) + h2\|8twh||L2(rg)||¢h||H1(Fg)-

Since H¢hHH1(Fg) S thHB(Fg) + HVFg(PthZh)HH(Fg)v as shown in (3.21) for ¢, = In P, 2n,
the above estimate gives the second result of Lemma 3.8. (]

4. Stability estimates

4.1. Error equations and defects

We denote by (X7, vi,r5) € Sp(T9)3 x Sp(T9)3 x S,(T'9) the interpolation of the exact
solution (X, v, ), and recall that n} € S,(I';(¢))? denotes the interpolation of normal vector
n on I'(t). Replacing (Xp,vp, kn,7n) by (X7, 05, k5, np) in weak formulation (2.2), we can
obtain a weak formulation satisfied by X, v}, x; and nj up to some defects, i.e.,

o Xj =y, on TY, (4.1a)
[ v i = [ a0 i (K= [ dvs Vn € Su(IP). (41b)
h h h

/FO O X xk + /1“0 VFQX;;VF%XN = /1“0 kpnp (Xp) - Xk — /FO di - X Y Xn € SH(TD)3, (4.1¢)
h h h

h
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where d,(-,t) € Sp(I'9) and dy (-, t) € Sp(I')? are the defects due to spatial discretization. In
the following error analysis, we need to estimate the defect function d, € Sh(Fg)B’ in both L?
norm and the discrete H~! norm. The latter is defined as

f o dxPn
ldill =1 roy = sup Th
h (Fh)

) Ay (4.2)
06nesn(0)3 1Ol (ro)

Upon subtracting equations (4.1) from equations (2.2), we derive the following error equations
forex = Xp — X} € Sh(F2)3, ey = Vp — V), € Sh(F2)3 and e, 1= Kk, — K}, € Sh(Fg):

dex =e,, onlY, (4.3a)
/ (on 7 (X0) — 0], - 0 (XT))xm = / (- ) (Xn) — (- 1) (X5))xn + / doxm, (4.3b)
ry ry ry
/ 8,56XXH+/ Vrgexvrgxﬁz/ (ﬁhﬁh(Xh)—m,’;nZ(X,’:))Xﬁ+/ d Xk (4.3¢)
ry ry ry ry

Additionally, we denote by e, := i 0 X, —nj o X on I‘% the error of the normal vector. The
stability analysis will be based on the error equations in (4.3).

4.2. Time derivative of the error

Let t* € (0,7] be the supremum of time such that the finite element scheme in (2.2) has
a unique finite element solution satisfying the following estimate (with coefficient 1 on the
right-hand side):

lex ()l 2oy < RF0L 0 for  t e 0,t7]. (4.4)

The choice of 0.1 in the exponent is not essential to the analysis, as any small positive number
0 < e < 1 would suffice for the following proof. Since ex(-,0) = 0 and the semidiscrete finite
element solution of (2.2) is continuous in time, it follows that t* > 0. Ultimately, our proof
will be completed by demonstrating that ¢* =T

Given condition k > 4 and the inverse inequality [lex (-, ¢)[[y1.00 (o) < ChszeX(-,t)HLg(pg),

(4.4) implies the boundedness of X},(-,t) and smallness of ey in the W1 norm for ¢ € [0, t*].
For sufficiently small i (smaller than some constant), Lemma 3.2 (norm equivalence between
I'Y and T (t)) implies that, for e} = ex o (X})71,

. (4.5)

N |

* - k—2.
Vs e llzoe s o) ~ IVroex |l poo(rg) S 72 llexl 2oy S A5 <
Therefore, Lemma 3.1 (norm equivalence on I'j, 9) holds for t € [0, ¢*].

Lemma 4.1 (Estimates of e,,). Under the conditions of Theorem 2.1 and (4.4), the following
estimates hold for t € [0, t*]:

leallzaqe) S B lex gy + A and lenllperay S B lexlloqey + 55 (46)
Proof. The estimates in (4.6) are consequences of formula (3.11) in Lemma 3.5, which implies

that
|17 © Xn — ity 0 Xl ooy S h ™ Hlex| o)  for 2 < p < co.

This, together with ||7}, — nj[|Leors 1) S h* and e, = fij, 0 X), — n} o X, implies (4.6). O

A direct application of Lemma 4.1, in combination with (4.4), is the following result:

”6nHL2(F2) < pFBLand Hen||Loo(F2) < hE2L for te[0,t7). (4.7)

Both (4.4) and (4.7) will be frequently used in the subsequent stability analysis.
We are now ready to estimate the time derivative of the error, i.e., e, = 0;ex. We start with

presenting a rough estimate and then improve the result by decomposing d:ex into 0:( P, ex)
and dilex - (nj o X)], and applying Lemma 3.8 (cancellation structure).



14

Lemma 4.2 (A rough estimate of diex ). Under the conditions of Theorem 2.1, the following
estimate holds for t € [0, t*]:

e ) < h2llexlparo) + leallzrg) + Idall 2, + h¥- (4.8)

Proof. Choosing x := diex as the test function in weak formulation (4.3c), we have

2
HateXHLz(F?L) = — /FO Vrgexvrgatex —l—/r
h

S (hiz”e*XHLZ(F?L) + llexllpzo) + llenllpz o) + HdnHB(rg))H3t€XHL2(rg)a

dy - Orex
0
h

0
h

(eﬂﬁh + HZen) -Orex + /
T

where the inverse inequality Hvrgvhﬂm(rg) < Ch_1||vh\|L2(F%) is used with v, = ex and
vp, = Oex, respectively. Then (4.8) follows from applying Lemma 4.1. O

Then, by choosing test function x, = I Py, ¢n in weak formulation (4.3c), we can derive
the following estimate of 0; Py, ex. We refer to Appendix A for more details.

Lemma 4.3 (Estimate of 0P ex). Under the conditions of Theorem 2.1, the following
estimate holds for t € [0, t*]:

-1
10:Pimex | zgy < 57 (IVrg Pawex |z + lex ] pzges) (w9)
+ hllexll 2oy + lldill p2r) + P*.
Similarly, by choosing test function x, := Pr20;[ex - (nj o Xj)] in weak formulation (4.3b),
we can derive the following estimate of Oilex - (n} o X;)]; see Appendix B for more details.

Lemma 4.4 (Estimate of O;lex - (nj o X;)]). Under the conditions of Theorem 2.1, the

following estimate holds for t € [0, t*]:
18elex - (nf, 0 Xilll 2oy S B Hlexl 2oy + Rllesl 2o
. (4.10)
+ Blldel oo, + Il 2 gooy + B

Lemma 4.5 (Estimate of e;). Under the conditions of Theorem 2.1, the following estimate
holds for t € [0,t*]:

- k

lewllzzgray S h2lexlzaqra) + Idllparay + dullars) + ¥, (4.11)
for sufficiently small h < hy.
Proof. For the simplicity of notation, we abbreviate nj o X as n; here. In view of (3.10a) in
Lemma 3.4 (approximation properties of n; and 7} ), we have

* k
lewl2aqe) — llexnt2aqeoy | < lewlBagrgylm1 = Ulzera) < B lenl Zagro).
This implies the following equivalence of norms:
Hen”m(ro) ~ H‘?ngHH(FO)' (4.12)
h h

Then, choosing test function x, := Pr2(exn;}) in the weak formulation (4.3c), we obtain

H@/{,nZH%Q(F%) = /FO exny, - (exny, — Pra(esny,)) — / Khen - Prz(esny)
h

79
/rz

h
exen - Pra2(egny) — /
—I—/ Vioex - Vo Pra(egny),
1—‘2 h h

dy - PL2 (6,{712) + /
FO

Orex - Pra2(egny,)
h Ty

h

from which we can derive the result of Lemma 4.5; see Appendix C for more details. O

Remark 3 (An improved estimate of e,). In summary, by combining Lemma 4.3 (estimate
of 0, P ex), Lemma 4.4 (estimate of O[ex - (n} o X})]) and Lemma 4.5 (estimate of e,), we
can obtain the following results:

10 Pranex 2oy S h_l(”vl‘gptzneX”LQ(Fg) + ||6XHL2(F9L))
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+ ldellgzqro) + ldoll 2o, + ¥, (4.13)
94lex - (o Xl zaray S A llex zaqrgy + Alldullzaqroy + ol agray + A5 (4.14)
Compared with Lemma 4.2, the following improved estimate of e, = d;ex can be shown:
levll 2oy = 0rex L2y < N0:(Prex)lpz o) + 10:(Phanex )l 2 (ro)
S hil(HVFgPtheXHm(rg) + ||6XHL2(F2)) + lldell L2 roy + HdeL2(Fg) +R*.

Remark 4 (Existence and uniqueness of finite element solutions). For any given X}, satisfying
| Xn — X;||L2(F2) < hF=01 as assumed in (4.4), both T, (t) and 7y, (X)) are also determined.
Then (2.2b)—(2.2¢) can be viewed as an inhomogeneous linear system governing (vp, Kp).
This inhomogeneous linear system uniquely determines (vp, kp,). To see this, we consider the
corresponding homogeneous linear system of (0, ip,):

/ Op - [in © Xp] Xn = 0, Y Xn € Sp(I'Y), (4.16a)
I

0
h
/

We show that this homogeneous linear system admits only the trivial solution (v, #5) = (0,0),
thereby establishing the existence and uniqueness of solutions (v, kp,) for the inhomogeneous
linear system in (2.2b)—(2.2c).

In fact, by choosing x, = Rp, in (4.16a) and x, = 0, in (4.16b), we immediately obtain
0p, = 0. Moreover, by choosing x,. = In(kp[n} o X;]) and utilizing the closeness between
np, © Xp, and nf o X as shown in Lemma 4.1 (where e, := 7y, 0 X}, — nj o X}), we can derive
that <, = 0 when h is sufficiently small (the details are omitted here). This would show
that the homogeneous linear system in (4.16) admits only the trivial solution. Hence, for any
given X), in the h*~%1neighborhood of X; in L?(I'"Y), the system in (2.2b)—(2.2c) uniquely
determines (vp, kp,) as a function of Xp.

Moreover, under the condition || X — X;;HLQ(F?L) < BF01 45 assumed in (4.4) (ie., for

any X, in the h*~01neighborhood of X; in L*(I'?)), following the proofs of Lemma 4.2 and
Lemma 4.5, we can see that if X, is perturbed by a quantity ¢ in the L? norm (of course, with
§ < 2hF=91) then vy, is perturbed by Ch=2§ in the L? norm (in such stability estimates we
do not have the terms d,;, d, and h¥). Therefore, the function v;, determined by (2.2b)—(2.2¢c)
is locally Lipschitz continuous with respect to Xj. Therefore, according to the local well-
posedness of ODE problems, the ODE in (2.2a), with vp, being a locally Lipschitz continuous
function of X}, has a unique solution for ¢ € [ty,t, + €] for some small g5 > 0. This extends
the finite element solutions Xj, v;, and j, outside of the time interval [0, ¢,].

(4.15)

U+ Xk = /0 B [Ton © Xn] - X, VX € Sp(T9)3. (4.16b)

0
h 1_‘h

4.3. Stability estimates

We are now ready to establish the stability estimates for P ex and ex - (n} o X}), which
will be used to prove the error estimate in Theorem 2.1.

Proposition 4.1 (Stability estimate for Py ex). Under the conditions of Theorem 2.1, there
exists a constant hg > 0 such that the following stability result holds for 0 < h < hgy and
t €[0,t*]:

d * *
a”PtanexH%Q(F?L) + HVF‘})LPtaneXHiQ(Fg)

(4.17)
< llex 22z + HAd gy + B2y + Il g + 2
Proof. Testing the error equation (4.3c) with x, = I P,ex, we obtain
orex - IhPtimeX + / Vyoex - Vo IhPttmeX
FO FO h h
! " (4.18)

-,

[lﬁ:h(ﬁh o Xh) - :‘QZ(')”LZ o X;;)] . [hP{;nex —|—/ dy - [hP{;nex =: 11 + 5.

0 0
h 1_‘h
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The second term on the left-hand side can be decomposed to an approximately tangential
component and a remainder term, i.e.,

* _ * 2 * * *
/1"0 Vl"%erl"gIthaneX - /FO ‘Vfgptanex‘ + /I‘O vfgptanexvf‘% (IthaneX - Ptanex)
h h h

+ /0 VF?LP?;%XVF%IhPt*aneX =: 51+ 5% + 53,
1—‘h
where So can be estimated by utilizing the super-approximation property in Lemma 3.7, i.e.,
1
2 2
92| S ||Vrgpt2n€X||L2(rg)h||€XHH1(rg) < C||€X|\L2(pg) + TGHVF?LR:(aneXHL%F%)'
Moreover, S5 can be estimated by using (3.17) in Lemma 3.8 (cancellation structure), i.e.,

131 S llex 2oy (lexll 2y + 19r0 Pranesxllz2ro))

1 *
< C”eXH%z(r%) + T6||VF2PtaneX||%2(F2)'
The first term on the left-hand side of (4.18) can be rewrite as follows:

Oex - IhPttmeX = / atP;(iX . IhPt*meX +/ 8tP§;meX . IhPttmeX =:J1 + Jo,

Ty ) )

where J; can be estimated by using (3.18) in Lemma 3.8 (cancellation structure) and (4.15)
in Remark 3 (an improved estimate of e,), i.e.,

LS lex By, + B200kex e (lex ) + IV P raesy)
1 *
< C(HGXH%,?(F?I) + h4||at€X"%2(p2)) + T6||VF2Ptan6X||i2(rg)

1 *
S C(HeXH%Q(Fg) + h4||dn||%2(1"2) + h4||dv||%2(1—\2) + h4+2k) + (Ch‘2 + E)”VF%PtaneX”%%F%)‘

Furthermore, J; can be rewritten as follows:
Jo = / L OcPnex - Panex + / | OPranex - (InPanex — Panex)
1—‘h 1—‘h

h
where J3 can be estimated with the super-approximation properties in Lemma 3.7, i.e.,
1] £ Bllexllpa o) 10 Pomex 2o,

Then, using (4.13) in Remark 3 (an improved estimate of e,), we have
1 .
151 < Ol gy + H21de e, + A ldulZarg) + H24%) + | Vg Pnex [2aey,

Therefore, substituting the above estimates into (4.18), we have

1d
§£Hf)tan

< C(|’6XH%2(FQL) + h4Hde%2(p2) + thdn‘|i2(p2) + h2k+2) + |1 + |I2].

5)
2 * 2
€X||L2(F2) + g”vrgptan@XHL?(rg) (4.19)

It remains to estimate I; and I5, which are defined in (4.18). To this end, we rewrite Iy
into the following several parts:

b= [ ealii o X) BPlyex + |
1_‘h

r
o,
I

=T +To + T3+ Tj.

(7 0 Xjy =m0 Xp) - I Pranex
h

ki (n 0 X — % 0 X3) - TPl ex + /

*
” exen - InPhpex

h
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Since I Piaex = InPh,InPhgex, it follows that (using the definition P, = I —nj(n})"
and the super-approximation properties)

T S| [, st (Pl Pranex = T Piawe)| | [ exni+ (1 =i () )T Pl
h h

S ||€n||L2(Fg)h2||IhPt2n€X||H1(Fg) +1 - |”Z’2HLOO(F2)Hen”L2(Fg)H€X||L2(Fg)

S h2”en||L2(rg) (HVFgPthBXHB(Fg) + ”eXHLQ(F?L))

1 «
< C(h4\|eHH%Q(F2) + llex\‘%z(pg)) + E”VF%PtaneX”%Q(Fg)’

where we abbreviate nj o X}’ as nj. By Lemma 3.4 (approximation properties of nj and n}),
we have |To| < h¥|lex|| 2 (ro)- If we decompose T3 into four parts by using the decomposition

of np o X, — 7y o Xj in (3.12) of Lemma 3.5 (characterization of 7, — 7)), denoted by
T3 = T3y + T3 + 133 + T34, then

Too = [ w3 ((Fryomi)eid o Xi)-TuPimesx S llexlBaqey

h

Ts3 = /ro mi (Vs ek) (nh, — )] o X5) - InPinex S h¥llexll 2 o),

h
T34 =/
v
1, 0
mi(/o (/0 (35 (A2) (Vi e%) T (Vr, . e%)7g] o X3 da) de)'IhP{;neX,

_/F :

where I'y, o = I', o(t) is the intermediate surface defined in (3.1), 7§ is the normal vector of
I'h.a, and e is the error function defined on I'y, o; see (3.2). We see that

1 0
Tl S Deilleirgy (] 1900w, V0 2, 0 0 8) el

S ”“ZHLOO(Fg)||VFQLGX”L0<>(FQL)”VrgeXHL?(F?L)||€X”L2(Fg)

1 0
([ (] 090050V, e50f] o X7 da) a0) 1, e
0 0

0
h

5 hk—?.l—l”e)(H%Q(F%),

where the last inequality follows from the inverse inequalities || Vo ex|| oo (ro) < € h=2|lex|| 2 (T?)
and \\VF26X|]L2(F2) < Ch*IHeXHLg(F%), as well as (4.4). This proves that

T34] S Hexlliz(pg) for k> 4. (4.20)
We estimate T3; by applying the chain rule of differentiation in (3.4), which implies that

T31 = — /FO RZ([VF;‘L(t) (63( ’ n;kz)] © X;:)'IhptzneX

h
/rz

In view of the discussion in Remark 1, we can approximate the possibly discontinuous matrix
Vo X + nro (s 1) © X;)" by the continuous matrix [VroX + npo (nr) © X) "7 with an

Fn[Vro Xy + npg (e © X3) '] Vo [ex - (), 0 X7)]-InPogex.

error bound of O(h*). This can be used to estimate T3; as follows:
(Tl < [, RV X)™ + (nroliry o X)) Vrglex - (0 Xi)-Tu P
h

+ OhFlexllroo ro) lex 2o -
In the first term on the right-hand side of the above inequality, we can transfer the gradient
from ex - (n} o X;) to I Pi,ex by using (3.6) of Lemma 3.3 (integration by parts on I'})
with v = &} [(VroX)™ + (npo(np@y o X)T) 77, Phyex. In this process, we can reduce
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the edge integrals to surface integrals similarly as (3.7) of Lemma 3.3. This, together with
||€XHW1,00(F91) < 1 as shown in (4.5), leads to the following result:

31| < Nlexllzzro) (Vo (Tn Poanex)l z2rg) + HaPianexlzzroy) + h*llex|l 2o
1 >k
< O(HeX”%Q(Fg) + h2k) + EHVF(}JL(PtanGX)H%%F}DL)'
In summary, we have proved
1
2 2k * 2
T3] < Clllex gy + %) + 11 Veq (Pinex) e
T4 can be estimated with Holder’s inequality and (4.7). The latter can be used to estimate
the bound ||enHL2(pg), ie.,
* —1.1-1 *
ITa| < llewllzaw) leall 2oy HnPanexlzowey S B* 175 llewll 2oy | n Panex Nl o)
S W Newll 2 o) I Pranex o) for k >4

< hZ'SHGHHLQ(F%) (HexHLz(Fg) + HVF(})LPtheXHLQ(F%)) (super-approximation property)

1 x
< Ch5H€HH%2(F%) + E(||6XH%2(F2) + ”Vl"?lptaneX”%%F,Ol))'

In summary, combining the above estimates of Ty, T5, T3, Ty and Lemma 4.5 (estimate of
ex), we have

3
Il S C(HGXH%Q(F}OL) + h4Hde2L2(F?L) + thdnH%2(p}0L) + th) + EHVI‘%(PtZHGX)||%2(F2)'
Finally, I5 can be estimated by using the definition of ||dy| ;-1 (ro) norm in (4.2) and the
h h

super-approximation properties in Lemma 3.7, i.e.,

Iy < |dull g1 0oy [nPranex |l rg)

1 *
< OHdNH?{}:l(F%) + E(H‘?Xﬂiqrg) + ||VF2PtaneX||%2(1"2))'

The proof is completed by combining (4.19) with the preceding estimates of |I;| and |I2|. O

We now turn to analyze the normal component of ex by considering the error equation in
(4.3b), which can be rewritten as follows:

/F Bilex - (0 X{)xn = / (X, 1) — (X7, )] - (1] 0 X7)xm + / (X, ) — 03] enn

r ro

0
h h

+/ dan-l-/ eX-Gt(n;fLoX,’;)Xn—/ €y * enXn-
9 o o

h h h

0
h

(4.21)
The following proposition is proved.

Proposition 4.2 (Stability estimate for ex -nj} ). Under the conditions of Theorem 2.1, there
exists a constant hg > 0 such that the following stability result holds uniformly for 0 < h < hg
and t € [0,t*]:

d * *
&HQX ) (nh ° Xh)”%?(pg) < C(H€X||2L2(r2) + ||dv||%2(r2) + h2‘|dre||%2(r2) + h%) (4.22)

1 *
+ Tﬁ ||VF2Ptan6X ||%2(F2)

Proof. For the simplicity of notation, we abbreviate nj o X; as n} here (thus nj is used to
denote both n} on I'f () and n} o X; on I') according to the context).
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An estimate of |lex ‘nZHLg(Fg) can be obtained by choosing x,, := Pr2(ex - nj) in equation
(4.21). This yields the following relation:

1 d *k ES *
Jex +wiag) = [ [0X00) = u(Xg, 0] 0j Praex -nj)
th 1'\0

h

+ /0 [u(Xp,t) —vr] - enPr2(ex 'n;;)—i—/o dyPr2(ex - np) —|—/ ex - (Omny)Pr2(ex - ny)
o r

0
h Fh

/., O(ex - ny)lex -ny — Pra2(ex -nyp,)] — /0 ey - enPr2(ex - nj)
Fh Fh
=: B1 + By + Bs + B4+ Bs + Bg.
(4.23)
Utilizing (4.14) in Remark 3 (an improved estimate of e,), and the super-approximation
properties in Lemma 3.7, the term |Bs| can be estimated as follows:

|Bs| < (h™Hlex| 2oy + hlldll 2ro) + ol 2oy + h*)Allex] 2 o)
S HeXH%ﬁ(rg) + h4HdnH%2(r2) + hQHde%%rg) + R,
Furthermore, |B1|, |Bs| and |By| can be estimated as follows:
|Bil S llexlZ2roy,  1Bsl S lldullzrg)lex ey, 1Bal S llexl72ro)-

Inequality (4.4) guarantees that both u(Xp,t) and v} are bounded in the W1 norm. There-
fore, using the approximation properties of n; and 7; in Lemma 3.4, we have the following
estimate of | Ba|:

2 5 | 000 ) G e w4 ] [ XK000) ) 5 e i)

+‘/FO (Xh,t) — vp) - en(Pra(ex - ny) — (eX'”Z))‘

S B3|+ CtheXHL?(Fg) + llenll 2oy bllexl L2 ro)
SIB5| + llexZaro) + A,

where we have used the approximation properties of n; and 7} in Lemma 3.4 in estimating
the second term, and the super-approximation property and Lemma 4.1 in estimating the
third term. The first term, B3, needs to be estimated by applying (3.12) in Lemma 3.5
(characterization of 7, — 7} ), which allows us to decompose B3 into four parts, i.e.,

B3 = B3, + B3y + Bys + By,
with

By = — /ro (w(Xh,t) = ) (Vs (€k - np)] 0 X)) (ex - nj) (4.24)

By = /ro ((Xn, 1) = v3) ([(Vry ni)ek] o Xi) (ex - ni) < lexZaro

h

By = /ro (w(Xn,t) = i) ([(Vry (ex) (i, — 73)] 0 Xi) (ex - m) S A¥llexcl a2 ro)
h
(lex lwreers @y S 1 and [Ing, = @tg[| oo (o) < h*; see Lemma 3.4) (4.25)

B | @00 = )| [(f ' 291, %)V, §)7

— )T (Vr,, %) (Vr, . €%)7i5] o X7t da) d6) (ex - nj)

S HvrgeXHLw(rg)HvrgeXHL2(F9L)H€XHL2(F2) S hkiQ'lflueX”%%rg)' (4.26)
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We further estimate B3, by using the chain rule of differentiation in (3.4), which allows us to
convert Vs (e - ny) to Vrg(eX -nj) in the expression of B3, i.e.,

B = - / (X0 ) — 07) Ve X+ g (nry y 0 X5) )7 Vg (ex - ) ex: - 7)

:_/Fh

The discontinuous matrix [VF% X, + npo (nrsy © X 7

* * * — 1 *
(u(Xn, t) — v3)[Vro X5, 4 npo (nry 1) © X)) = Vol(ex - nj)?.
0 2 “h
h
~1 can be further approximated by

the continuous matrix [(VroX) ™ + (npo(npg) o X)) 77" with an error of O(h*). Therefore,
using [lex[lyy1.00roy S 1, we have

* * — —l1— 1 *
B3l <] [ X0 0) = o) (TroX) "+ (ro(nry 0 X)) 7 59 ex ) ?l| + O ey
h

Similarly as we estimate T3; (proof of Proposition 4.1), we can transfer the gradient from
(ex - n})? to the other functions by using Lemma 3.3 (integration by parts on I')). Then we
can obtain the following estimate of B3, :

* k
1B31] < llexl 2y, + H.
Combining the estimates of B3, B3,, Bys and B5,, we obtain the following result for k& > 4:
k
1Bl < llex2aqeg, + %

Finally, Bg can be estimated by using Holder’s inequality and (4.7), as well as the improved
estimate of e, in Remark 3, i.e.,

1Bol S llenll ey ol lex lzageny S BE 2 eull oy lex ey
S (HVrgPJ;neme(rg) + HCXHL?(FQ) + h||dnHL2(rg) + thvHLQ(Fg) + hk+1) ”eXHLZ(F?L)
1 *
S C(H€X||%2(F2) + h2||dn||%2(1—\2) + h2||dv||i2(1—\(})b) + h2k+2) + EHvFnganeXH%?(F%)’
(4.27)

where the second to last inequality requires k > 4.
The proof of Proposition 4.2 is completed by combining the estimates of By, --,Bg. [

5. Error estimates

In this section, we prove Theorem 2.1 by combining Proposition 4.1 (stability estimate for
Py ex), Proposition 4.2 (stability estimate for ex-n} ), and estimates of the defects introduced
in (4.1). The latter is presented in the following lemma (we refer to Appendix D for more
details).

Lemma 5.1 (Estimates of the defects). Under the conditions of Theorem 2.1, there exists
ho > 0 such that for all 0 < h < hy and t € [0,T], the defects d, and dy are bounded as
follows:

k k k—
HdeL2(F2) S R, HdeHgl(rg) Sh and HdnHL2(F2) S (5.1)
We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1. According to Proposition 4.1 (stability estimate for P, ex), Proposi-
tion 4.2 (stability estimate for ex - nj) and Lemma 5.1 (consistency estimate), there exists
ho > 0 such that for h < hg and ¢ € [0, ¢*] the following inequality holds:

d * k

a(HPta;neXH;(rg) +llex - ”h‘|i2(r2)) < H6X||%2(rg) + h?

* k
< (1Pt x 2oy, + llex - mil2aqeg) +h%,
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where the last inequality follows from the following equivalence of norms:
lexZaqeny ~ I Bamex Zaqeo + 1Prex sy ~ 1 Pmex s + llex - mh agrs),
which can be proved similarly as (4.12). By Gronwall’s inequality, we obtain
lexllzee ~ 1Pmex e, + llex - milae) S BF. (5:2)

By the continuity of the spatially semidiscrete finite element solution in time (which is essen-
tially the solution of an ODE problem as shown in Remark 4), the above estimate implies
that (4.4) still holds in a bigger interval [0, ¢* + ¢3] for some g;, > 0. This proves that ¢, =T
(otherwise t, is not maximal, contradicting the assumption at the beginning of Section 4.2).
The errors (Xp)! — X can be decomposed into (X;)! — X = (X5,)! — (X;)' 4+ (X;)! — X. Then,
utilizing inequality (5.2) and the estimates of interpolation error, we have
sup [[(Xn)' = X|[z2roy S sup_[lexllzaqrg) + sup [[(X5) = X[ z2(roy < A"
te[0,T] t€[0,T] te[0,T]

Moreover, integrating (4.17) from ¢ = 0 to t = T, we obtain
T

T
/0 (Vo Pranex)' [z poydt ~ /0 Vo Piex 72 oy dt < B2
Combining [17, Proposition 2.3] and [20, Remark 4.1], we have
IVro (Pin)' = (Vro Pian)' 220y S P*. [ Vro(ex)' = (Vrgex)' 2oy S h*.

Then, based on the error estimate between n and its interpolation n}; and the preceding
estimates, we have

IVro (Pran(ex)") = (Vro Panex)'ll 2oy < [Vro(Pran(ex)") = Veo(Pin)'(ex)") | 2ro)
+ (Vro(Prn) ) (ex)' = (Vro Pan)' (ex)' |2 ro)
+(Vro(ex)) (Pran)' = (Vo ex)' (Paw)'ll 2oy S 2*.

Therefore, combing the estimates above, we have

T
/0 190 (Pran (X! = X)) oyt
r [ 2 T )12
§/0 Vo (Pran((X7) —X))Hm(rt))d“r/o Vo (Pran(ex)) 172 (roydt

T T
S /0 IV ro (Pran((X5)" = X)) 172 (roydt +/0 1(V 10 Pianex)' | F2poydt + A% < B,

This completes the proof of Theorem 2.1. O

6. Numerical examples

In this section, we present numerical experiments to illustrate the convergence of the pro-
posed method based on the relaxed minimal deformation (RMD) formulation in (1.5), as well
as the improvement of mesh quality by the proposed method in comparison with the the
surface mesh by the original velocity and the tangential motion with minimal deformation
rate (MDR) [1]. In all the numerical examples, a 4-step linearly semi-implicit backward dif-
ferentiation formula (BDF) is used for time discretization, with a sufficiently small stepsize
to guarantee that the errors from time discretization is negligibly small compared with the
errors from spatial discretization. At every time level, only a linear system of v;, and sy, is
solved, with X} being expressed in terms of vp, using the BDF method for (2.2a).

Example 6.1 (Convergence rates). The errors and convergence rates of the proposed method
are tested on the evolution of a hypersurface I'(t) € R? (with d = 2,3) under the following
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velocity field:

=2,
(1= fz)z + (1 = [z])(=22,21,0), d=3,

with the initial surface T® = {# € R? : |z| = 1}. In this setting, the exact solution of the
equation (1.5) has the following explicit expression:

u(z) = {(1 —[z))a + (1= [2[)(~z2,21), d

X(p,t) = :((é))X(p,O), for p € T,

where X (-,0) = id(-) on I'? and r(t) is governed by the differential equation dr/dt = r(1 —r).
This solution, with initial condition 7(0) = 1/2, can be expressed as r(t) = 1/(1 +e?).

We test the errors of the numerical solutions with mesh sizes h = %, %, 1—12, 1—14, 1—18, 2%, using
a 4-step BDF for time discretization with a sufficiently small stepsize 7 = 27% such that the
time discretization errors are negligibly small compared with the spatial discretization errors.

The errors of the numerical solutions are measured in the discrete L>°(0,7; L?) norm of
ex plus the discrete L?(0,T; H') semi-norm norm of P ey, with T = 1/4, in order to be
consistent with the norm used in Theorem 2.1. The numerical results in Figure 1 show that
the errors of the numerical solutions are O(h*) for finite elements of degree k = 4,5,6. This

is consistent with the error estimate proved in Theorem 2.1.

Errors

- k=4
4 oY 1078
k=5
0O(h®)
-= k=6

-4 o)
6x 1072 1071 6x 1072 1071
h h

(a) 1D curve (the case d = 2) (b) 2D surface (the case d = 3)

I
IS

+$

O~xQO xQO ™

+

B

FIGURE 1. Errors and convergence rates (Example 6.1)

Example 6.2. (Improvement of mesh quality for curve evolution) In this example, we consider
the evolution of a 1D curve under the following velocity field:
T
u(z) = (1 — |z]?) + (1 - 1.2?"')(—@,9&1), z € R?, (6.1)
which is shown in Figure 2 (a). The initial curve is an ellipse, given by
TV = {z € R?: (21)* + 9(x2)* = 1}.

We compare the evolution of the curve computed by several different methods, including
the direct method with the original velocity, the MDR method in [1], and the proposed RMD
method in the current paper, using finite elements of degree k = 4 and a linearly semi-implicit
4-step BDF time discretization with a time step size of 7 = 0.001. The trajectories of the
mesh points determined by the original velocity field u, the MDR method in [1], and the
RMD method are presented in Figure 2, respectively. It can be observed that the mesh
points moving according to the original velocity in (6.1) and the MDR tangential motion both
cluster in the upper right corner (either significantly or slightly), while the proposed RMD
tangential motion in this paper distribute the mesh points more uniformly, leading to better
mesh quality.

Example 6.3. (Improvement of mesh quality for surface evolution) We illustrate the im-
provement of mesh quality by the RMD method for surfaces which evolve under the velocity
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FIGURE 2. Evolution of a curve under velocity (6.1).

field
u(z) = z(1 —|z]), z€R3 (6.2)
The numerical tests are done by using finite elements of degree k = 4. We measure the mesh
quality of a surface I'j, by
h(K)
Omax = Max ———,
¥ ke, r(K)
where h(K) represents the diameter of the circumcircle, and r(K) denotes the diameter of
the largest inscribed circle for K C I'y, respectively.

In the first example, we consider a smooth cell-shape surface given by the following parametriza-

tion:
(1= 0.7(cos(¢)* — 1)?) sin(p), S
= 2 cos(p) cos(d) , 0€l0,2m) pe€ [—5, 5]
2 cos(¢p) sin(6)

In this example, we divide the initial surface into 1678 triangles and utilize the linearly semi-
implicit 4-step BDF time discretization with a time step size of 7 = 0.01. The surface meshes
at different time steps are presented in Figure 3. The mesh qualities are shown in Figure
4, where we compare the RMD method with £ = 4, the MDR method with k£ = 4, and the
lower-order RMD method with k¥ = 1. Both results demonstrate that the MDR and RMD
tangential motions significantly improve the quality of the surface mesh in this smooth case.

In the second example, we consider a nonsmooth rectangular surface centered at the point
(1/8,1/8,1/8) with edge lengths of 5/16, 5/16, and 30/16. In this example, we triangulate
the initial surface into 6500 triangles and employ the linearly semi-implicit 4-step BDF time
discretization with a time step of 7 = 0.001. The velocity field in (6.2) exhibits large variation
on this initial surface, and the surface undergoes large deformation in the evolution. As a
result, the evolution equations for the normal vector and the Weingarten matrix in the MDR
method [1] resulted in large errors which make the computation break down at ¢ = 1.47. In
contrast, our algorithm based on the RMD formulation is stable in the whole process. The
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surface meshes at different time steps and the mesh qualities are presented in Figures 5 and
6, where the numerical result obtained using the MDR method is not displayed due to the
breakdown of computation, while the proposed RMD method in this paper still produces a
good shape of triangles with significantly improved mesh quality.
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(f) RMD (our method), (g) Original velocity, t = 4
t=14

FIGURE 3. Evolution of surface under velocity (6.2) (smooth initial surface).
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FIGURE 4. Mesh quality of surface under velocity (6.2) (smooth initial surface).
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FIGURE 6. Mesh quality of surface under velocity (6.2) (nonsmooth initial surface).

We have proposed a relaxed minimal deformation (RMD) formulation of surface evolution
with a tangential motion generated by harmonic map heat flow from the initial surface I'° onto
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the evolving surface I'(¢). Differently from the MDR formulation studied in [1], the proposed
RMD formulation intentionally avoids solving an additional evolution equation of n, which
often causes the numerical solution of n to differ from the normal vector of the numerically-
solved surface when the surface undergoes large deformation. Numerically, the tangential
motion generated by this RMD formulation improves the mesh quality of evolving surfaces as
effectively as the MD formulation in (1.4). Theoretically, we have proved convergence of finite
element approximations to the RMD formulation of surface evolution with high-order accuracy
for finite elements of degree k > 4 (this cannot be proved for the MD formulation so far).
The restriction to finite elements of degree k > 4 in the convergence proof is used at several
places, i.e., (4.20), (4.26) and (4.27), to control some nonlinear terms appearing in the error
analysis. Convergence of finite element approximations to the RMD formulation for low-order
finite elements of degree k = 1, 2, 3, as well as the development of other convergent algorithms
which have similar advantages as the RMD formulation and could be proved convergent for
low-order finite elements, is an interesting and challenging task.
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Appendix. More details in the stability estimates

Appendix A. Proof of Lemma 4.3
Note that 0,( P, ex) can be well approximated by 0,1y, ( P, ex) with the super-approximation
properties in Lemma 3.7, i.e.,
10 (Pranex) — OcIn( taneX)”L2(F0 = [10:(Pranex) — InOe(Pianex )l r2(ro)
< (0 Pn)ex — In((OePian)ex ) 2 ro) + ([ Phan(Orex) — In(Pan(Oex ) 2roy - (A1)
S h(HeXHL2(F2) + HateX||L2(F2))-

By using this result and the super-approximation properties in Lemma 3.7 again, we derive
the following estimates for any test function ¢ € S, (Fg)?’:

/ 0t(IhP€;nex)¢>h=/ I (0 Plonex ) on
F F(})L
/ Oy (Pranex ) én + n (0 Pranex) — 0i( taneX)||L2(F2)||¢h||L2(F2) (triangle inequality)

§/FO(3t€X) tan¢h+/ (OrPran)ex dn + h(llexllpzro) + 10ex|l pz o)) | dnll L2 o)

h

N /ro Orex [In(Prandn) + Piandn — In(Piandn)] + (lex |l 2oy + hlldrexl2wo)) | 6nll L2ro)
h

S /ro OexIn(Pandn) + (lex 2oy + hllOwex!l 2oyl dnll 2 ro)- (A.2)
h

The first term on the right-hand side of (A.2) can be estimated by choosing test function
X = In P, ¢n in weak formulation (4.3c), i.e.,

/F JOex InPrndn = / V1o Pranex Vo In Py, dn — /F L Vg Prex Vo InPrn
h h

+ /O 6,&12 - Iy, tan¢h + /0 Iizen . Ihpttm¢h + /0 €xen * IhP{';n¢h + /0 d,.. - I, tan¢h
Fh

I 133 ¥

=Ti+To+T5+Ty+Ts5+ Tg.
where T is estimated by converting ||VF2 In P onll 2 (ro) to ||VF2 Ptgngbh”LQ(Fg) + ||thHL2(p2)
using the super-approximation properties in Lemma 3.7:

| < ”VFO taneX”L2 ro) (||Vr0 tanﬁf)hHL?(Fg) + ||¢h||L2(I‘2))
Sh 1||V1“0 tan€X||L2(rg)”¢h||L2(F0

where the inverse inequality ||VF0 tan¢h||L2(rg Ch= tan¢h||L2(F2) < Ch*1||¢h\|L2(p2)

is used. Similarly, 75 can be estlmated with the following decomposition and the super-
approximation properties again:

T5 = /0 eﬁn;kl . (Ihpt2n¢h tan¢h) /0 eﬁnz tan¢h

Fh Fh
S hllexll 2oyl dnll 2oy + ’ /FO exny, - (I3xz — n(nf)")on
h
S(h+11- |”2|2|\Loo(rg))||€n”L2(rg)H¢hHL2(rg)
S hllexll 2oyl dnll L2 o),

where the last inequality follows from Lemma 3.4 (approximation properties of nj, and 7} ).
Moreover, T can be estimated with the cancellation structure stated in (3.17) of Lemma
3.8, i.e.,

15| S HeX”L?(F?L)("¢h”L2(F2) + ||Vrg(Pt2n¢h)”L2(rg)) S fleexllm(rg)Héhl!m(rg)-
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Additionally, by employing (4.7) and Lemma 4.1 (an estimate of e,), we can estimate T}
and Ty as follows:

ITa| S NI8hll oo o) lenll 2oy 10nll z2rg) S (R lexlzzy + BF) I énllz2 o),
T5| < H€n||L°<>(F2)”€n||L2(rg)”QbhHL?(rg) S hHQIiHL?(Fg)H¢h|’L2(Fg) for k=>4
Finally, we also observe that |Ts| < Hd,ﬁHLypg)H¢hHL2(F2).

Therefore, by choosing ¢, = 0(IPiex) in (A.2), and substituting the estimates for
Ty,---,Ts into (A.2), we obtain

18 In Prnex | 2 gy S Blldrex 2oy + 27 (Vo Pinex 2oy + lex 2 o))
+ldill 2oy + hllexll 2oy + 2"

The left-hand side of (A.3) can be replaced by ||8tP€;n€X||L2(r?) with (A.1), and h||0rex HL2(F(})L)
from Lemma 4.2. This proves Lemma 4.3. U

(A.3)

Appendix B. Proof of Lemma 4.4

Choosing test function x, := Pr20;(ex - n}j) in weak formulation (4.3b), we obtain the
following relation:

[ ovtex ni) o+ [ aitex i) (Pradiex - ni) — dy(ex -ni)
r ro

h

).

[u(Xn,t) = u(X, )] - 03, P2 (Oe(ex - ny)) + /O (u(Xn) = vp) - enPr2(0c(ex - ny))

: Iy
- /0 ev - enPr2(0i(ex - nyp)) + /0 (ex - Ogny, — dy) Pr2(9¢(ex - ny))
ry I
=t A1 + Ay + A3z + Ay. (B.1)

The second term on the left-hand side of (B.1) can be estimated with the following result
(which follows from the Leibniz rule of differentiation and the super-approximation properties
in Lemma 3.7):

[1Pr20(ex - ny) — O(ex - np )l 2 (o)
< |[Pr2(8rex - np) — Oex - npllp2ro) + | Pra(ex - Oing) — ex - Oynp [l L2 (ro)
S hllGrex |l zaroy + llex N2 ro))-

The right-hand side of (B.1) can be estimated by using Lemma 4.1 (an estimate of e,),
smoothness of velocity field u, and (4.7):

[Axl S llexllzzroy 10 (ex - i)l L2 (ro),

1421 lleall gy 101 (ex - ni)lzaqeey S (" llexclzogrgy + B9k (ex - i)l agenys

4015 lleall e rpylleoll ey 104 (ex - ni)laqeey S Bldrex Lz I19u(ex - nill e

144l S (dull gy + lex s 19eCex 20l
where the above estimate of |As| requires k > 4 to guarantee that | e, || Loo(I9) < h.

The term ||Owex|| 2(r9) in the above inequalities can be estimated by using Lemma 4.2.

Then, substituting the estimates of || Pr20;(ex -n}) — 0i(ex -n;‘L)HLz(F%) and |4;], j =1,2,3,4,
into (B.1), we obtain the result of Lemma 4.4. O

Appendix C. Proof of Lemma 4.5

By using estimate (3.10a) in Lemma 3.4 (approximation properties of nj and nj) we can
derive the following inequality:

k
llewlZaqp) — lewnfZaray| < lewlZaqy 1512 = o) < A5 flenlZagepy-
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For sufficiently small A (smaller than some constant), thHe,@Hig (roy 1 much smaller than
h

||e,€||%2(1“2 ) In this case, the last inequality implies the following equivalence of norms:

lewll ) ~ llewntlo2qrs). (C.1)

By choosing test function x, := Pr2(exn;) in weak formulation (4.3c), we obtain the
following expression of [lexnj || z2(ro):

||e,{n2||%2(rg) = /1“0 exny - (exny, — Prz(exny)) — /1‘0 Kjen - Pr2(exny)
h

—/ exen - Pra2(exny,) — / dy - Pr2(exny) +/ Orex - Pra2(egny)
ro ro ro

h h

+ o Vpgex . VF?LPLQ (exny)
h

=: My + My + M3+ My + Ms + Mg,

where M;, j =1,...,6, can be estimated by using Lemma 3.7 (super-approximation proper-
ties), Lemma 4.1 (estimate of e,;) and (4.7), i.e.,

M| S llewnyll p2roy Pllexll 2roy S BllexllF2 oy,
h h ( }L)
— k
1Mo S Nl ooy lentillzzeey S (B llexllzaqray + A)llewllzzqooy,
0] S leall ey lewllany lesnill iz S BllealZag) for k24

|Ma| < ||dn||L2(F2)||en||L2(r2)a
M) < | / Quex - (Pra(eant) — exny)| + | / (@lex i) — (ex - i) el
1_‘h Fh

S (hHateXHL?(rg) + (|0 (ex - ”Z)HH(F?L) + HeXHL?(F%))HeHHL?(F?L)a
IMs] S h=2lex ey lenll ey

Therefore, combining Lemma 4.2 (a rough estimate of diex) and Lemma 4.4 (estimate of
Oilex - (n}, 0o X})] ), we can estimate ]\6H||L2(F2) as follows:

lexllzaeg) S Pllexlzaqeg) + Plldex ey + 19:ex - mi)llay)
+ h_2H€X||L2(F?L) + lldell 2oy + ¥
S Bllewllzzrg) + b2 llexlzag) + Il zzeg) + Idoll gy + R

For sufficiently small h (smaller than some constant), the term h|ley]| L2(r9) can be absorbed
by the left-hand side of the inequality. This yields the result of Lemma 4.5. (|

Appendix D. Proof of Lemma 5.1

For the simplicity of notation, we abbreviate n} o X; as n} here. The defects d, € Si(I')
and dy; € S,(T9)? introduced in (4.1) are characterized by the following relations:

/rz o= (/rg i mien — [ (-0

- (/F w(Xp, t) - npdn — /FO u(X,t) - n(X)(¢h)l) =G — Go, (D.1)
and

[y awein=( [ oiein= [ o-n)) = ([, simi-vn= [ on(x)- @)

h h h

0
h
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+ ([ VogXii - Vign— | VeoX - Vio(n)') i=Gs — Ga+ G5, (D2)
ro " h ro

where ¢p, € S,(I'Y) and ¢y, € S,(I'))3. Under the conditions of Theorem 2.1, these defects can
be estimated by using the following surface perturbation estimates (we refer to [31, Lemma
3.6] and [35, Lemma 5.6] for further details of such results):

| [ wo= [ 0] < B o logeo ez (D 3a)
h

| /F Vo2 Vipod — /F Vroz' - Vroo! | € W Vros 2o [Vrod 2oy, (D.3b)
h

where w, p € L*(T')) and z,¢ € H'(I')).
The term G; defined in (D.1) can be estimated by using triangle inequality and the surface
perturbation estimates in (D.3), i.e.,

Gal <] [, i miden = [ i)' i on)]

] [0 @i = [ om0 < K o)

Since [u(-,t) o X;]' = u(-,t) o (X;)! as functions on TV, it follows that (using the Lipschitz
continuity of velocity field u) |u(X},#)! — u(X, 2oy S (Xt — Xlr2roy S h*+1. Then
the term |G| in (D.1) can be estimated as follows:

Gal < | [ ulXit) - wion = [ XG0 ) (00

70

] [ G ) o) = [ w0 (X)) S Bl
By taking ¢p = d, in (D.1) and the estimates of |G| and |G2|, we obtain HdeLz(F%) < R

The term |G3| defined in (D.2) can also be estimated by using triangle inequality and the
surface perturbation estimates in (D.3), i.e.,

Gl <| [ o= [+ | [ i @' = [ o @] S5 ey

The estimate of |G4| is also similar, with |G4| S hk+1|’/l/]hHL2(Fg)l). Moreover, utilizing the
second result of (D.3), we have

Gal < [, Vg Xi- Vg — [ Vro (i)' Vo)
h

] [ T Troa) = [ TroX - Vroun)|
To o

S (hk+1 ||VFO (X;;)ZHLQ(FO) + hk) ||VF21/}}L||L2(F?L)
This proves that

fFO disthn
Hdn||H;1(rg) = sup L < hE.

055, (103 [¥nll i (ro)
Additionally, using the inverse inequality ||VF2 Uyl L2(ro) < Ch=1||¢n|| L2(r9), we have |G5| <
hkile/JhHLg(Fg). Then, by taking ¢, = d,; in (D.2) and the estimates of |G3|, |G4] and |G5],
we obtain ||d,$||L2(F2) < Bk O
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