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Abstract

A class of stochastic Besov spaces BpL2(Ω; Ḣα(O)), 1 ⩽ p ⩽ ∞ and α ∈ [−2, 2], is
introduced to characterize the regularity of the noise in the semilinear stochastic heat
equation

du−∆udt = f(u)dt+ dW (t),

under the following conditions for some α ∈ (0, 1]:∥∥∥∫ t

0

e−(t−s)AdW (s)
∥∥∥
L2(Ω;L2(O))

⩽ Ct
α
2 and

∥∥∥∫ t

0

e−(t−s)AdW (s)
∥∥∥
B∞L2(Ω;Ḣα(O))

⩽ C.

The conditions above are shown to be satisfied by both trace-class noises (with α = 1)
and one-dimensional space-time white noises (with α = 1

2 ). The latter would fail to
satisfy the conditions with α = 1

2 if the stochastic Besov norm ∥ · ∥B∞L2(Ω;Ḣα(O)) is
replaced by the classical Sobolev norm ∥ · ∥L2(Ω;Ḣα(O)), and this often causes reduction
of the convergence order in the numerical analysis of the semilinear stochastic heat equa-
tion. In this article, the convergence of a modified exponential Euler method, with a
spectral method for spatial discretization, is proved to have order α in both time and
space for possibly nonsmooth initial data in L4(Ω; Ḣβ(O)) with β > −1, by utilizing the
real interpolation properties of the stochastic Besov spaces and a class of locally refined
stepsizes to resolve the singularity of the solution at t = 0.
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1 Introduction
We consider the numerical approximation to the semilinear stochastic heat equation{

du−∆udt = f(u)dt+ dW (t) for t ∈ (0, T ],

u(0) = u0,
(1.1)

in a convex polygonal domain O ⊂ Rd, d ⩾ 1, up to a given time T > 0, with a given nonlinear
drift function f : R → R and a given initial value u0, where ∆ : H1

0 (O) ∩H2(O) → L2(O)
is the Dirichlet Laplacian operator, and W (t) is an L2(O)-valued Q-Wiener process on a
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probability space (Ω,F ,P) with a normal filtration {Ft}t⩾0. In particular, W (t) has the
following expression:

W (t) =
∞∑
k=1

√
µkφkWk(t), (1.2)

where Wk(t), k = 1, 2, . . . , are real-valued independent Brownian motions, and φk, k =
1, 2, . . . , are common eigenfunctions of the operators Q and A = −∆, i.e.,

Qφk = µkφk and Aφk = λkφk for k = 1, 2, . . .

It is well known that tr(Q) =
∑∞

k=1 µk < ∞ decides a genuine Wiener process which deter-
mines a trace-class noise, and Q = I gives a cylindrical Wiener process which determines a
space-time white noise; see Prato & Zabczyk [10] for more details. The trace-class noise is
much smoother than the space-time white noise, and therefore the analysis for the latter is
often more challenging.

When the initial value is sufficiently smooth, it is well known that problem (1.1) has a
unique mild solution satisfying the integral equation

u(t) = e−tAu0 +

∫ t

0
e−(t−s)Af(u(s))ds+

∫ t

0
e−(t−s)AdW (s), (1.3)

in L2(Ω;L2(O)) for all t ∈ (0, T ], where {e−tA : t ⩾ 0} is the analytic semigroup generated by
the operator A; see [23]. Based on the expression in (1.3), Jentzen & Kloeden [20] proposed
the exponential Euler method for semilinear stochastic problems, with the spectral Galerkin
method in space. For an abstract semilinear stochastic equation in a Hilbert space H, under
the assumptions

|f ′(x)− f ′(y)| ⩽ C|x− y|, |A−rf ′(x)Arv| ⩽ C|v|,

|A−1f ′′(x)(v, w)| ⩽ C|A− 1
2 v||A− 1

2w|,
where x, y, v, w ∈ H and r ∈ {0, 12 , 1}, Jentzen & Kloeden [20] proved the strong convergence
with an error bound of O(τ ln( 1τ ) + M− 1

2
+ε) for one-dimensional space-time white noises,

where ε can be an arbitrary small number. These assumptions exclude nonlinear Nemytskii
operators and therefore cannot be applied to the semilinear stochastic heat equations. For the
stochastic heat equations, Wang & Qi [38] proved that the exponential Euler method in [20]
has an L2-norm error bound of O(M−1 + τ) and O(M− 1

2
+ε + τ

1
2
−ε) for trace-class noises

and one-dimensional space-time white noises, respectively. Recently, Wang [36] proposed
a nonlinearity-tamed exponential integrator for the stochastic Allen–Cahn equation with a
locally Lipschitz nonlinear drift function and proved an L2-norm error bound of O(M− 1

2
+ε+

τ
1
2
−ε).
In addition to the exponential Euler method, many other numerical methods for problem

(1.1) have also been studied in the literature, including the semi-implicit Euler method in
time and the finite difference/element method in space; see [6, 12, 13, 29, 30, 35, 39]. The
temporal convergence orders proved in these articles are not greater than 1

2 − ε for ad-
ditive one-dimensional space-time white noises and not greater than 1

4 for multiplicative
one-dimensional space-time white noises. The sharp order 1

4 for multiplicative space-time
white noises was proved for sufficiently smooth initial value u0 ∈ C3(O) in [12,13]. Recently,
Anton, Cohen & Quer-Sardanyons proved the sharp convergence order 1

4 for multiplicative
space-time white noises noises for initial data only in H1(O); see [2].

For all the methods mentioned above, the suboptimal-order error bound O(M− 1
2
+ε +

τ
1
2
−ε) for additive one-dimensional space-time white noises was proved for initial data at

least in H1(O), and the sharper error bound O(M− 1
2 + τ

1
2 ) has not been proved yet. The

main reason is that the following conditions were often used to characterize the regularity of
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the noises:∥∥∥∫ t

0
e−(t−s)AdW (s)

∥∥∥
L2(Ω;L2(O))

⩽ Ct
α
2 and

∥∥∥∫ t

0
e−(t−s)AdW (s)

∥∥∥
L2(Ω;Ḣα(O))

⩽ C, (1.4)

which can be satisfied by the space-time white noise with α = 1
2 − ε, but cannot be satisfied

with the sharp order α = 1
2 .

Numerical approximations of related equations to (1.1) were also extensively studied. For
example, different kinds of stochastic differential equations were considered in [7, 16–19,24],
and the semilinear stochastic wave equations were discussed in [1, 3, 8, 9, 21, 32, 37], where
convergence rates are higher than that for the semilinear stochastic heat equation due to the
better regularity of the solution to the stochastic wave equations.

In this article, we show that by modifying the exponential Euler method at the starting
time level and use proper variable stepsizes locally refined towards t = 0, the temporal and
spatial convergence orders of the numerical solution can be improved to 1

2 for additive one-
dimensional space-time white noises, while the regularity of the initial data can be relaxed
to Hβ(O) with β > −1. This wider class of initial data includes discontinuous functions and
measures in one dimension, such as the Dirac delta measure. In particular, the following
error bound is proved:

∥Un
M − u(tn)∥L2(Ω;L2(O)) ⩽ C(τα +M−αt

−α−β
2

n ) for tn ∈ (0, T ], (1.5)
for u0 ∈ L4(Ω;Hβ(O)) with some constant β > −1, where α characterizes the regularity of
the noise, as described in Section 2.3. The result in (1.5), which includes the sharp order
α = 1

2 for one-dimensional space-time white noises, is obtained by using a class of locally
refined variable stepsizes to resolve the singularity of the solution at t = 0, and by utilizing
the real interpolation properties of a class of stochastic Besov spaces BqLp(Ω; Ḣs(O)), s ∈ R,
1 ⩽ p, q ⩽ ∞, defined in this article, replacing the condition (1.4) by∥∥∥∫ t

0
e−(t−s)AdW (s)

∥∥∥
L2(Ω;L2(O))

⩽ Ct
α
2 and

∥∥∥∫ t

0
e−(t−s)AdW (s)

∥∥∥
B∞L2(Ω;Ḣα(O))

⩽ C,

(1.6)
which incorporates the space-time white noise with α = 1

2 .
The rest of this article is organized as follows. In Section 2, we first introduce the

basic notations to be used in this article, as well as the definition and properties of the
stochastic Besov spaces. Then we present the numerical methods and the main theoretical
results. The proof of the main theorem is presented in Section 3. Numerical results for
several different initial data and noises are presented in Section 4 to support the theoretical
analysis. Conclusions are presented in Section 5.

2 Main results
2.1 Basic notations
For s ∈ [0, 2], we denote by A

s
2 : D(A

s
2 ) → L2(O) the linear operator with domain

D(A
s
2 ) =

{
v =

∞∑
k=1

vkφk : ∥A
s
2 v∥2L2(O) =

∞∑
k=1

λs
kv

2
k < ∞

}
,

where
A

s
2 v :=

∞∑
k=1

λ
s
2
k vkφk.

It is known that D(A
s
2 ) coincides with the following real interpolation space with equivalent

norms:
D(A

s
2 ) ∼= Ḣs(O) := (L2(O),H1

0 (O) ∩H2(O)) s
2
,2 for s ∈ (0, 2).
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Therefore, we simply define the norm of Ḣs(O) to be the same as D(A
s
2 ), i.e.,

∥v∥Ḣs(O) =
( ∞∑

k=1

λs
kv

2
k

) 1
2
.

The operator A
s
2 : Ḣs(O) → L2(O) is obviously invertible, and its inverse is given by

A− s
2 v =

∞∑
k=1

λ
− s

2
k vkφk. (2.7)

The dual space of Ḣs(O) is denoted by Ḣ−s(O). In particular, v ∈ Ḣ−s(O) if and only
if v =

∑∞
k=1 vkφk with

∥v∥Ḣ−s(O) =
( ∞∑

k=1

λ−s
k v2k

) 1
2
< ∞.

We denote by ⟨·, ·⟩Ḣs,Ḣ−s the pairing between Ḣs(O) and Ḣ−s(O). Namely, for g =∑∞
k=1 gkφk ∈ Ḣs(O) and h =

∑∞
k=1 hkφk ∈ Ḣ−s(O), we have

⟨g, h⟩Ḣs(O),Ḣ−s(O) :=

∞∑
k=1

gkhk,

which is well-defined as the series
∑∞

k=1 gkhk is absolutely convergent, i.e.,
∞∑
k=1

|gkhk| =
∞∑
k=1

λ
s
2
k |gk|λ

− s
2

k |hk| ⩽
( ∞∑

k=1

λs
kg

2
k

) 1
2
( ∞∑

k=1

λ−s
k h2k

) 1
2
= ∥g∥Ḣs(O)∥h∥Ḣ−s(O).

In the case g ∈ Ḣs(O) ⊂ L2(O) and h ∈ L2(O) ⊂ Ḣ−s(O), we have
⟨g, h⟩Ḣs(O),Ḣ−s(O) = (g, h),

where (·, ·) denotes the inner product of L2(Ω). Therefore, ⟨·, ·⟩Ḣs(O),Ḣ−s(O) is an extension
of the L2(O) inner product (·, ·). For this reason and the simplicity of notation, we simply
use (·, ·) to denote the pairing between Ḣs(O) and Ḣ−s(O) in this article.

The operator A− s
2 : Ḣ−s(O) → L2(O) is well defined by (2.7) and coincident with the

adjoint operator of A− s
2 : L2(O) → Ḣs(O), i.e.,

(u,A− s
2w) =

( ∞∑
i=1

uiφi,
∞∑
j=1

λ
− s

2
i wjφj

)
=

∞∑
i=1

λ
− s

2
i uiwi = (A− s

2u,w) ∀u ∈ L2(O) and w ∈ Ḣ−s(O),

where the right-hand side denotes the pairing between Ḣs(O) and Ḣ−s(O).
For a random variable v that takes values in a Banach space X and is measurable from

(Ω,F) to (X,B(X)), we define the following norm:

∥v∥Lp(Ω;X) :=
(∫

Ω
∥v∥pX P (dω)

) 1
p ∀ 1 ⩽ p ⩽ ∞.

If we denote by ∥ · ∥L2(O)→L2(O) the operator norm on L2(O), then the following estimate
holds (see [23, Appendix B.2]):

∥Ase−tA∥L2(O)→L2(O) ⩽ Ct−s ∀ t > 0, ∀ s ⩾ 0,

∥A−s(e−tA − I)∥L2(O)→L2(O) ⩽ Cts ∀ t ⩾ 0, ∀ s ∈ [0, 1]

Let L2 be the space of Hilbert Schmidt operators Φ from L2(O) to L2(O), with the
following norm:

∥Φ∥L2 :=
( ∞∑

k=1

∥Φφk∥2L2(O)

) 1
2
,
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Let L0
2 be the space of Hilbert Schmidt operators Ψ from Q

1
2L2(O) to L2(O), with the

following norm:

∥Ψ∥L0
2
:=
(∑

k

µk∥Ψφk∥2L2(O)

) 1
2
,

where we have adopted the notation L0
2 and Q

1
2L2(O) in [10, pages 54 and 96]. Let

N 2
W (0, T ;L2(O)) be the space of predictable processes Φ : [0, T ]×Ω → L0

2 satisfying∫ T

0
∥Φ(s)∥2L2(Ω;L0

2)
ds < ∞.

For 0 ⩽ t ⩽ T , it is known that the following Itô’s isometry holds (cf. [26, 31]):∥∥∥∫ t

0
Φ(s)dW (s)

∥∥∥2
L2(Ω;L2(O))

=

∫ t

0
∥Φ(s)∥2L2(Ω;L0

2)
ds ∀Φ ∈ N 2

W (0, T ;L2(O)), (2.8)

and the following Burkholder–Davis–Gundy-type inequality holds (cf. [10, 23])∥∥∥∫ t

0
Φ(s)dW (s)

∥∥∥
Lp(Ω;L2(O))

⩽ Cp

(
E
∫ t

0
∥Φ(s)∥2L0

2
ds
) 1

2 ∀Φ ∈ N 2
W (0, T ;L2(O)), (2.9)

where Cp is a constant dependent of p.
Throughout this article, we denote by C a generic positive constant which may be different

at different occurrences but always independent of τ (time stepsize), n (time level) and
M (degrees of freedom in each spatial direction). We denote by “A ∼ B’ the statement
“C−1B ⩽ A ⩽ CB for some constant C”.

2.2 Stochastic Besov Spaces
Let 1 ⩽ p, q ⩽ ∞ and s ∈ [−2, 2]. Since any function v ∈ Lp(Ω; Ḣ−2(O)) can be decomposed
into

v =
∞∑
k=1

vkφk with vk = (v, φk) ∈ Lp(Ω),

we can define a projection operator Πj : L
p(Ω; Ḣ−2(O)) → Lp(Ω; Ḣ2(O)) by

Πjv =
2j−1∑

k=2j−1

vkφk.

Then the stochastic Besov space BqLp(Ω; Ḣs(O)) is defined as the space of functions v ∈
Lp(Ω; Ḣ−2(O)) such that

∥v∥BqLp(Ω;Ḣs(O)) < ∞,

with

∥v∥BqLp(Ω;Ḣs(O)) :=


( ∞∑

j=1

∥Πjv∥qLp(Ω;Ḣs(O)

) 1
q if q ∈ [1,∞),

max
j∈N+

∥Πjv∥Lp(Ω;Ḣs(O)) if q = ∞.

2.3 Assumptions on the nonlinearity and noise
We consider the semilinear stochastic heat equation (1.1) with additive noises under the
following assumptions.

Assumption 2.1 (1) The function f : R → R is globally Lipschitz continuous, i.e.,
|f(x)− f(y)| ⩽ C|x− y|, ∀x, y ∈ R.
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(2) There exists η ∈ (0, 2) such that
∥(−A)−

η
2 [f ′′(u)vw]∥L2(O) ⩽ C∥v∥L2(O)∥w∥L2(O) ∀u, v, w ∈ L2(O).

(3) There exists an α ∈ (0, 1] such that for t ∈ [0, T ]∥∥∥∫ t

0
e−(t−s)AdW (s)

∥∥∥
L2(Ω;L2(O))

⩽ Ct
α
2 , (2.10)∥∥∥∫ t

0
e−(t−s)AdW (s)

∥∥∥
B∞L2(Ω;Ḣα(O))

⩽ C. (2.11)

In the case α = 1, we additionally assume that the noise is trace class.

(4) The initial value is F0 measurable and satisfies that u0 ∈ L4(Ω; Ḣβ(O)) for some
constant β ∈ (−1, α].

Remark 2.1 Assumption 2.1 (2) holds for d ∈ {1, 2, 3} if f : R → R is a function with
bounded derivatives up to second order; see [34, Example 3.2]. In one dimension, a large
number of measure-valued functions satisfy Assumption 2.1 (4). Actually, each measure
µ (including the Dirac delta function, i.e., the Dirac measure) corresponds to a linearly
bounded functional Λ(f) :=

∫
O fdµ on the continuous function space C(O); see [27, page

61] and [33, page 32]. And it is well-known that Ḣ
1
2
+ε(O) ↪→ C(O); see [28, page 86,

Theorem 3.26 ]. Therefore µ can regarded as a linearly bounded functional on Ḣ
1
2
+ε(O),

i.e., µ ∈ Ḣ− 1
2
−ε(O). Assumption 2.1 (3) naturally holds for trace-class noises with α = 1

and one-dimensional space-time white noises with α = 1/2, as shown below.

1. If the operator Q is of trace class, i.e., tr(Q) =
∞∑
k=1

µk < ∞, then Assumption 2.1 (3)

holds with α = 1. In fact, according to (2.8) the following relation holds∥∥∥∫ t

0
e−(t−s)AdW (s)

∥∥∥2
L2(Ω;L2(O))

=

∫ t

0
∥e−(t−s)A∥2L0

2
ds

=
∞∑
k=1

∫ t

0
e−2(t−s)λkµkds

=
∞∑
k=1

µk
1− e−2tλk

2λk
⩽ Ct

∞∑
k=1

µk. (2.12)

The equivalence relation in (2.11) can be shown similarly as (2.12), i.e.,∥∥∥∫ t

0
e−(t−s)AdW (s)

∥∥∥
L2(Ω;Ḣ1(O))

=
∥∥∥∫ t

0
A

1
2 e−(t−s)AdW (s)

∥∥∥2
L2(Ω;L2(O))

=

∫ t

0
∥A

1
2 e−(t−s)A∥2L0

2
ds

=
∞∑
k=1

µk

2
(1− e−2tλk)

⩽
∞∑
k=1

µk, (2.13)

which implies that∥∥∥Πj

∫ t

0
e−(t−s)AdW (s)

∥∥∥
L2(Ω;Ḣ1(O))

⩽
∥∥∥∫ t

0
e−(t−s)AdW (s)

∥∥∥
L2(Ω;Ḣ1(O))

⩽
∞∑
k=1

µk.

This proves (2.10)–(2.11) in the case α = 1.
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2. If d = 1 and µk = 1 (for a space-time white noise), then Assumption 2.1 (3) holds with
α = 1

2 . In fact, Weyl’s law (see Evans [11, Page 358]) says that the eigenvalues of the
Laplacian operator have the following asymptotic behaviour:

lim
j→∞

λ
d
2
j

j
=

(2π)d

|O|α(d)
, (2.14)

where |O| denotes the volume of O and α(d) denotes the volume of the unit ball in Rd.
Therefore, λk = O(k−2) in one dimension, and∥∥∥∫ t

0
e−(t−s)AdW (s)

∥∥∥2
L2(Ω;L2(O))

∼ C(1− e−2t) + C
∞∑
k=2

1− e−2tk2

k2

⩽ Ct
1
2 + C

∫ ∞

1

1− e−2ts2

s2
ds

= Ct
1
2 + C

∫ ∞

1

1− e−2tz

z
3
2

dz

⩽ Ct
1
2 + Ct

1
2Γ
(1
2

)
⩽ Ct

1
2 . (2.15)

This proves (2.10) with α = 1
2 for a space-time white noise.

For α = 1
2 we also see that

max
j∈N+

( 2j−1∑
k=2j−1

µkλ
α−1
k (1− e−2tλk)

) 1
2 ⩽ max

j∈N+

(
C

2j−1∑
k=2j−1

22(j−1)( 1
2
−1)
) 1

2 ⩽ C,

where the last inequality holds because there are only 2j−1 terms in the summation.
This proves (2.11).

Under Assumption 2.1 the existence, uniqueness and regularity of mild solutions to prob-
lem (1.1) are summarized below. The proof of these results is presented in Appendix.

Proposition 2.1 Under Assumption 2.1, problem (1.1) has a unique mild solution u in
the space

X =
{
v ∈ L1

(
0, T ;L2(Ω;L2(O))

)
: sup
t∈(0,T ]

(1 + t
β
2 )−1∥v(t)∥L2(Ω;L2(O)) < ∞

}
.

For 2 ⩽ p ⩽ 4 the mild solution has the following qualitative regularity:
u ∈ C

(
[0, T ];Lp(Ω; Ḣmin{β,0}(O))

)
∩ C

(
[ε, T ];Lp(Ω;L2(O))

)
which holds for arbitrary ε ∈ (0, T ). Moreover, the following quantitative estimates hold:

∥u(t)∥Lp(Ω;L2(O)) ⩽ C(1 + t
β
2 ) for t ∈ (0, T ], (2.16)

∥u(t)∥B∞Lp(Ω;Ḣα(O)) ⩽ Ct−
α−β
2 for t ∈ (0, T ]. (2.17)

Remark 2.2 For the trace-class noise, since (2.13) holds with the classical Sobolev space,
it follows that estimate (2.17) could be replaced by the following stronger result (with the
classical Sobolev space for α = 1):

∥u(t)∥Lp(Ω;Ḣ1(O)) ⩽ Ct−
1−β
2 for t ∈ (0, T ].

2.4 The numerical method
Let 0 = t0 < t1 < · · · < tN = T be a partition of the time interval [0, T ] with stepsizes
τn = tn− tn−1 ∼ tγnτ for n = 1, 2, · · · , N . The variable stepsizes defined in this way have the
following properties:
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1. τn ∼ τn−1 for two consecutive stepsizes.

2. τ1 = τ
1

1−γ . Hence, the starting stepsize is much smaller than the maximal stepsize.
This can resolve the solution’s singularity at t = 0.

3. The total number of time levels is O(T/τ). Hence, the total computational cost is
equivalent to using a uniform stepsize τ .

This type of stepsizes was shown to be able to resolve the singularity at t = 0 for semilinear
parabolic equations with nonsmooth initial data; see [25].

By using the variable stepsizes shown above, we consider the following modified expo-
nential Euler method in time:

u1 =e−τ1Au0,

un =e−τnAun−1 +

∫ tn

tn−1

e−(tn−s)Af(un−1)ds+

∫ tn

tn−1

e−(tn−s)AdW (s) for n ⩾ 2,
(2.18)

where we assume that
∫ tn
tn−1

e−(tn−s)AdW (s) can be computed sufficiently accurately. This
can be done by a spectral method in space with sufficiently many terms, as shown below.
The semidiscrete scheme in (2.18) differs from the exponential Euler method only at the first
time level, where we drop the nonlinear term and the noise term. This is because that the
nonlinear term f(u0) is generally not well defined for a nonsmooth initial value u0 ∈ Ḣβ(O).

Let PM be the L2-orthogonal projection onto SM = span{φ1, . . . , φMd}, defined by

PMf =

Md∑
k=1

fkφk for f =

∞∑
k=1

fkφk ∈ L2(O).

On a general bounded domain O, we consider the following fully discrete spectral Galerkin
method:
U1
M = e−τ1AU0

M with U0
M = PMu0, (2.19a)

Un
M = e−τnAUn−1

M +

∫ tn

tn−1

e−(tn−s)APMf(Un−1
M )ds+

∫ tn

tn−1

e−(tn−s)APMdW (s) for n ⩾ 2.

(2.19b)
In the one-dimensional case, e.g., O = (0, 1), we can change to consider the following fast

method which utilizes trigonometric interpolation and fast Fourier transform (FFT). Let PM

and IM be the L2-orthogonal projection and trigonometric interpolation operator (defined
below) onto the finite dimensional space

SM =
{ M∑

j=1

fj sin(jπx) : fj ∈ R
}
.

Then we can consider the Fourier sine collocation method:
U1
M = e−τ1AU0

M with U0
M = PMu0, (2.20a)

Un
M = e−τnAUn−1

M +

∫ tn

tn−1

e−(tn−s)AIMf(Un−1
M )ds+

∫ tn

tn−1

e−(tn−s)APMdW (s) for n ⩾ 2,

(2.20b)
which only requires computing the trigonometric interpolation of the nonlinear function
IMf(Un−1

M ) := I∗M [f(Un−1
M ) − f(0)] + f(0)PM1 instead of the L2 projection PMf(Un−1

M ),
where I∗M denotes the standard trigonometric interpolation operator onto SM . The definition
of IM guarantees that the standard trigonometric sine interpolation operator I∗M only acts
on a function in Ḣ1 (satisfying the zero boundary condition) and therefore has optimal-
order convergence; see the discussion below (3.36). The evaluation of the trigonometric
interpolation IMf(Un−1

M ) could be done with O(M logM) operations at every time level
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by using FFT. This fast algorithm using trigonometric interpolation and FFT can also be
extended to d-dimensional rectangular domains under the homogeneous Dirichlet boundary
condition.

Theorem 2.1 Let O be a bounded domain in Rd with d ⩾ 1. Under Assumption 2.1, by
choosing γ satisfying the following condition (γ is the constant from the relation τn ∼ tγnτ):

max
{1
2
, 1− 1 + β

α

}
< γ < 1, (2.21)

the numerical solution given by the fully discrete spectral Galerkin method (2.19) has the
following error bound:

∥Un
M − u(tn)∥L2(Ω;L2(O)) ⩽ Cτα + CM−αt

−α−β
2

n .

Theorem 2.2 Let d = 1 and O = (0, 1). Under Assumption 2.1, by choosing γ satisfying
the following condition (γ is the constant from the relation τn ∼ tγnτ):

max
{1
2
, 1− 1 + β

α

}
< γ < 1, (2.22)

the numerical solution given by the fully discrete Fourier sine collocation method (2.20) has
the following error bound:

∥Un
M − u(tn)∥L2(Ω;L2(O)) ⩽ Cτα + CM−αt

−α−β
2

n .

Since the spatial discretizations in (2.19) and (2.20) are both by spectral methods, the
proofs for Theorems 2.1 and 2.2 are similar. Therefore, we present the proof for Theorem
2.2 in the next section and omit the detailed proof for Theorem 2.1.

3 Proof of Theorem 2.2
The proof of Theorem 2.2 is divided into five subsections. In Section 3.1, we present the real
interpolation properties of the stochastic Besov spaces BqLp(Ω; Ḣs(O)), s ∈ [0, 2]. These
properties are used to prove the sharp convergence order in the case of one-dimensional space-
time white noise, which satisfies the second condition in Assumption 2.1 (3) with α = 1

2 for
the stochastic Besov norm ∥ · ∥B∞L2(Ω;Ḣα(O)), but not for the Sobolev norm ∥ · ∥L2(Ω;Ḣα(O)).
The error estimates are presented in Sections 3.2–3.4.

3.1 Real interpolation results
The K-functional and J-functional are defined as

K(t, f ;X0, X1) = inf
f=f0+f1

∥f0∥X0 + t∥f1∥X1 ∀ f ∈ X0 +X1, ∀ t > 0,

J(t, f ;X0, X1) = max{∥f∥X0 , t∥f∥X1} ∀f ∈ X0 ∩X1, ∀ t > 0.

Definition 3.1 (Discrete Kθ,q-functor [5, Page 41, Lemma 3.1.3]) Let 0 < θ < 1, 1 ⩽ q ⩽ ∞
and let (X0, X1) be a compatible couple. The interpolation space (X0, X1)θ,q;K consists of
functions f ∈ X0 +X1 such that ∥f∥(X0,X1)θ,q;K < ∞, where

∥f∥(X0,X1)θ,q;K :=


[∑
j∈Z

∣∣∣a−jθK(aj , f ;X0, X1)
∣∣∣q]1/q, 1 ⩽ q < ∞,

sup
j∈Z

a−jθK(aj , f ;X0, X1), q = ∞,

in which a is any fixed positive constant.
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Definition 3.2 (Discrete Jθ,q-functor [5, Page 43, Lemma 3.2.3]) Let 0 < θ < 1, 1 ⩽ q ⩽ ∞
and let (X0, X1) be a compatible couple. The interpolation space (X0, X1)θ,q;J consists of
function f ∈ X0 +X1 such that ∥f∥(X0,X1)θ,q;J < ∞, where

∥f∥(X0,X1)θ,q;J :=


inf

f=
∑

j fj

(∑
j∈Z

∣∣∣a−jθJ(aj , fj ;X0, X1)
∣∣∣q) 1

q
, 1 ⩽ q < ∞,

inf
f=

∑
j fj

(
sup
j∈Z

a−jθJ(aj , fj ;X0, X1)
)
, q = ∞,

in which a is any fixed positive constant, and the infimum extends over all possible decom-
positions

f =
∑
j∈Z

fj with fj ∈ X0 ∩X1 and convergence in X0 +X1. (3.23)

It is known that (X0, X1)θ,q;K and (X0, X1)θ,q;J are the same vector space with equivalent
norms; see [5, Page 44, Theorem 3.3.1]). For simplicity, we denote by (X0, X1)θ,q the common
vector space of (X0, X1)θ,q;K and (X0, X1)θ,q;J , with the norm ∥ · ∥(X0,X1)θ,q .

Lemma 3.1 ( [4, Page 301, Theorem 1.12]) Let (X0, X1) and (Y0, Y1) be compatible cou-
ples and let 0 < θ < 1, 1 ⩽ q < ∞ or 0 ⩽ θ ⩽ 1, q = ∞. Let T : X0 +X1 → Y0 + Y1 be a
linear operator such that T maps Xi to Yi and

∥Tf∥Yi ⩽ Mi∥f∥Xi ∀ f ∈ Xi, i = 0, 1.

Then T maps (X0, X1)θ,q to (Y0, Y1)θ,q and
∥Tf∥(Y0,Y1)θ,q ⩽ M1−θ

0 M θ
1 ∥f∥(X0,X1)θ,q ∀ f ∈ (X0, X1)θ,q.

The main results of this subsection are presented in the following lemma.

Lemma 3.2 For all 1 ⩽ p, q ⩽ ∞ and 0 < θ < 1 there holds
BqLp(Ω; Ḣs(O)) =

(
Lp(Ω; Ḣs0(O)), Lp(Ω; Ḣs1(O))

)
θ,q

, (3.24)(
B∞Lp(Ω; Ḣs0(O), B∞Lp(Ω; Ḣs1(O)

)
θ,q

= BqLp(Ω; Ḣs(O)), (3.25)
where −2 ⩽ s0 < s1 ⩽ 2 and s = (1− θ)s0 + θs1.

Proof. If 2j−1 ⩽ k ⩽ 2j − 1, then λs
k ∼ k

2s
d ∼ 2

2js
d , which implies that

∥Πjf∥Ḣs ∼ 2
js
d ∥Πjf∥L2(O). (3.26)

Hence for any f ∈ Lp(Ω; Ḣs0) + Lp(Ω; Ḣs1), there exists a decomposition f = f0 + f1 with
f0 ∈ Lp(Ω; Ḣs0) and f1 ∈ Lp(Ω; Ḣs1). Since

∥Πjf∥Lp(Ω;L2(O))

⩽ ∥Πjf0∥Lp(Ω;L2(O)) + ∥Πjf1∥Lp(Ω;L2(O))

= 2−
js0
d ∥2

js0
d Πjf0∥Lp(Ω;L2(O)) + 2−

js1
d ∥2

js1
d Πjf1∥Lp(Ω;L2(O))

⩽ 2−
js0
d

∥∥∥( ∞∑
j=1

2
2js0
d ∥Πjf0∥2L2(O)

) 1
2

∥∥∥
Lp(Ω)

+ 2−
js1
d

∥∥∥( ∞∑
j=1

2
2js1
d ∥Πjf1∥2L2(O)

) 1
2

∥∥∥
Lp(Ω)

⩽ C2−
js0
d ∥f0∥Lp(Ω;Ḣs0 (O)) + C2−

js1
d ∥f1∥Lp(Ω;Ḣs1 (O)),

it follows that
∥Πjf∥Lp(Ω;L2(O)) ⩽ C inf

f=f0+f1
2−

js0
d
(
∥f0
∥∥
Lp(Ω;Ḣs0 (O))

+ 2
j(s0−s1)

d ∥f1
∥∥
Lp(Ω;Ḣs1 (O))

)
⩽ C2−

js0
d K(2

j(s0−s1)
d , f ;X0, X1),
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where X0 = Lp(Ω; Ḣs0(O)) and X1 = Lp(Ω; Ḣs1(O)). This further implies that

2
js
d ∥Πjf∥Lp(Ω;L2(O)) ⩽ C2

j(s−s0)
d K(2

j(s0−s1)
d , f ;X0, X1)

⩽ C(2
s0−s1

d )−jθK((2
(s0−s1)

d )j , f ;X0, X1).

By considering the `q norm of the inequality above with respect to j and using Definition
3.1, we obtain

∥f∥BqLp(Ω;Ḣs(O)) ⩽ C∥f∥(Lp(Ω;Ḣs0 (O)),Lp(Ω;Ḣs1 (O)))θ,q
∀ 1 ⩽ q ⩽ ∞,

which means that
(Lp(Ω; Ḣs0(O)), Lp(Ω; Ḣs1(O)))θ,q ↪→ BqLp(Ω; Ḣs(O)) ∀ 1 ⩽ q ⩽ ∞. (3.27)

Conversely, since s0 < s < s1, if f ∈ BqLp(Ω; Ḣs(O)) then
f ∈ Lp(Ω; Ḣs0(O)) = Lp(Ω; Ḣs0(O)) + Lp(Ω; Ḣs1(O))

and

∥f∥Lp(Ω;Ḣs0 (O)) ⩽ C
∥∥∥( ∞∑

j=1

2
2js0
d ∥Πjf∥2L2(O)

) 1
2

∥∥∥
Lp(Ω)

⩽ C

∞∑
j=1

2
j(s0−s)

d 2
js
d ∥Πjf∥Lp(Ω;L2(O))

⩽ C
( ∞∑

j=1

2
j(s0−s)

d
q′
) 1

q′
( ∞∑

j=1

∥Πjf∥qLp(Ω;Ḣs(O))

) 1
q

⩽ C∥f∥BqLp(Ω;Ḣs(O)),

where q′ is the constant satisfying 1
q +

1
q′ = 1. Substituting this inequality into the expression

J(t, f ;X0, X1) = max{∥f∥X0 , t∥f∥X1} yields

2
j(s−s0)

d J(2
j(s0−s1)

d ,Πjf ;L
p(Ω; Ḣs0(O)), Lp(Ω; Ḣs1(O)))

= 2
j(s−s0)

d max
{
∥Πjf∥Lp(Ω;Ḣs0 (O)), 2

j(s0−s1)
d ∥Πjf∥Lp(Ω;Ḣs1 (O))

}
⩽ C2

js
d ∥Πjf∥Lp(Ω;L2(O))

⩽ C∥Πjf∥Lp(Ω;Ḣs(O)).

In view of the inequality above and Definition 3.2, we have
∥f∥(Lp(Ω;Ḣs0 (O)),Lp(Ω;Ḣs1 (O)))θ,q

⩽ C∥f∥BqLp(Ω;Ḣs(O)) ∀ 1 ⩽ q ⩽ ∞,

which means that
BqLp(Ω; Ḣs(O)) ↪→ (Lp(Ω; Ḣs0(O)), Lp(Ω; Ḣs1(O)))θ,q ∀ 1 ⩽ q ⩽ ∞. (3.28)

The two results in (3.27) and (3.28) imply (3.24). Then (3.25) follows from (3.24) as a
result of the reiteration theorem in the real interpolation theory; see [5, Page 50, Theorem
3.5.3]. □

The following inverse inequality will be often used in the error estimation: If f ∈ SM and
−2 ⩽ s0 ⩽ s ⩽ 2 then

∥f∥Ḣs(O) =
( M∑

k=1

λs
k|(f, φk)|2

) 1
2 ⩽ C

(
λs−s0
M

M∑
k=1

λs0
k |(f, φk)|2

) 1
2 ⩽ CM s−s0∥f∥Ḣs0 (O). (3.29)

Correspondingly, for a stochastic function f ∈ Lp(Ω;SM ) ↪→ Lp(Ω; Ḣs(O)) the following
result holds:

∥f∥Lp(Ω;Ḣs(O)) ⩽ CM s−s0∥f∥Lp(Ω;Ḣs0 (O)) for −2 ⩽ s0 ⩽ s ⩽ 2. (3.30)
By choosing −2 ⩽ s2 < s0 < s1 ⩽ s ⩽ 2 and consider the real interpolation between the two
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results,
∥f∥Lp(Ω;Ḣs(O)) ⩽ CM s−s1∥f∥Lp(Ω;Ḣs1 (O)) and ∥f∥Lp(Ω;Ḣs(O)) ⩽ CM s−s2∥f∥Lp(Ω;Ḣs2 (O)),

we obtain the following inequality for f ∈ Lp(Ω;SM ) ↪→ Lp(Ω; Ḣs(O)):
∥f∥Lp(Ω;Ḣs(O)) ⩽ CM s−s0∥f∥B∞Lp(Ω;Ḣs0 (O)) for −2 < s0 < s ⩽ 2. (3.31)

3.2 The error equation
By iterating the second relation in (2.20) for n ⩾ 2, the numerical solution in (2.20) can be
written as

Un
M = e−(tn−τ1)AU1

M +
n∑

j=2

∫ tj

tj−1

e−(tn−s)AIMf(U j−1
M )ds+

∫ tn

t1

e−(tn−s)APMdW (s). (3.32)

The difference between (3.32) and (1.3) yields the following expression for the error of the
numerical solution:

Un
M − u(tn) = e−(tn−τ1)AU1

M − e−(tn−τ1)Au(t1)

+

n∑
j=2

∫ tj

tj−1

(
e−(tn−s)AIMf(U j−1

M )− e−(tn−s)Af(U j−1
M )

)
ds

+
n∑

j=2

∫ tj

tj−1

(
e−(tn−s)Af(U j−1

M )− e−(tn−s)Af(u(tj−1))
)
ds

+

n∑
j=2

∫ tj

tj−1

(
e−(tn−s)Af(u(tj−1))− e−(tn−s)Af(u(s))

)
ds

+

∫ tn

t1

(
e−(tn−s)APM − e−(tn−s)A

)
dW (s)

=: En
1 + En

2 + En
3 + En

4 + En
5 , (3.33)

which is decomposed into five parts.
By using the first relation in (2.20) (when n = 1), the first part on the right-hand side of

(3.33) can be further written as
En
1 = e−tnAPMu0 − e−tnAu0

− e−(tn−t1)A

∫ t1

0
e−(t1−s)Af(u(s))ds− e−(tn−t1)A

∫ t1

0
e−(t1−s)AdW (s). (3.34)

The first term in (3.34) can be estimated by using the classical error estimates of spectral
method for the heat equation, i.e.,

∥e−tnAPMu0 − e−tnAu0∥L2(Ω;L2(O)) ⩽ CM−αt
−α−β

2
n ∥u0∥L2(Ω;Ḣβ(O)).

The second and third terms in (3.34) can be estimated by using the regularity results in
Proposition 2.1 and Assumption 2.1 (3) on the noise. Then we obtain

∥En
1 ∥L2(Ω;L2(O)) ⩽ CM−αt

−α−β
2

n ∥u0∥Ḣβ(O) +

∫ τ1

0
C(1 + s

β
2 )ds+ Cτ

α
2
1

⩽ CM−αt
−α−β

2
n + C(τ1 + τ

1+β
2

1 ) + Cτ
α
2
1

⩽ CM−αt
−α−β

2
n + C(τ

1
1−γ + τ

1
1−γ

(1+β
2
)
) + Cτ

1
1−γ

α
2 .

If γ ⩾ max
(
1
2 , 1 − (1 + β

2 )
1
α

)
, then the inequality above reduces to the following desired
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result:

∥En
1 ∥L2(Ω;L2(O)) ⩽ CM−αt

−α−β
2

n + Cτα. (3.35)
The following estimates are known for the standard trigonometric interpolation I∗M and

L2 projection PM :

∥v − I∗Mv∥L2(Ω;L2(O)) ⩽ CM−s∥v∥L2(Ω;Ḣs(O)) for v ∈ Ḣs(O),
1

2
< s ⩽ 2, (3.36)

∥v − PMv∥L2(Ω;L2(O)) ⩽ CM−s∥v∥L2(Ω;Ḣs(O)) for v ∈ Ḣs(O), 0 ⩽ s ⩽ 2, (3.37)
where the error estimates of trigonometric interpolation for periodic functions can be found
in [22, Page 209, Theorem 11.8]; the error estimates of trigonometric sine interpolation for
functions satisfying the Dirichlet boundary condition on O = (0, 1) follow by extending the
function to [−1, 1] as a periodic odd function. Since odd extension of a function preserves
the continuity of the function and its first-order derivative, it follows that the odd extension
maps Ḣs(0, 1) to the periodic function space Hs

per[−1, 1] for s ∈ [0, 2] (by considering the
real interpolation between the two endpoint cases s = 0 and s = 2).

For the function g = f(U j−1
M ) − f(0) which satisfies the zero boundary condition, the

following error estimate holds:
∥I∗Mg − g∥L2(Ω;L2(O)) ⩽ CM−1∥g∥L2(Ω;Ḣ1(O)).

Since e−(t−s)A commutes with the projection operator PM , it follows that
∥e−(t−s)A(PM1− 1)∥L2(Ω;L2(O)) = ∥PMe−(t−s)A1− e−(t−s)A1∥L2(Ω;L2(O))

⩽ CM−1∥e−(t−s)A1∥L2(Ω;Ḣ1(O))

⩽ C(t− s)−
1
2M−1∥1∥L2(Ω;L2(O))

⩽ C(t− s)−
1
2M−1.

Therefore, by using expression IMf(U j−1
M ) = I∗Mg + f(0)PM1 and the triangle inequality,

∥e−(t−s)A[IMf(U j−1
M )− f(U j−1

M )]∥L2(Ω;L2(O))

⩽ ∥e−(t−s)A(I∗Mg − g)∥L2(Ω;L2(O)) + |f(0)|∥e−(t−s)A(PM1− 1)∥L2(Ω;L2(O))

⩽ CM−1∥f(U j−1
M )− f(0)∥L2(Ω;Ḣ1(O)) + C|f(0)|(t− s)−

1
2M−1.

Then, using (3.36)–(3.37) and the inverse inequalities in (3.30)–(3.31), the second term on
the right-hand side of (3.33) can be estimated as follows for α ∈ (0, 1):
∥En

2 ∥L2(Ω;L2(O))

⩽ C
n∑

j=2

∫ tj

tj−1

M−1
(
∥f(U j−1

M )− f(0)∥L2(Ω;Ḣ1(O)) + |f(0)|(t− s)−
1
2
)
ds

⩽ C
n∑

j=2

∫ tj

tj−1

M−1
(
∥U j−1

M ∥L2(Ω;Ḣ1(O)) + (t− s)−
1
2
)
ds

⩽ C
n∑

j=2

∫ tj

tj−1

M−1
(
∥U j−1

M − PMu(tj−1)∥L2(Ω;Ḣ1(O)) + ∥PMu(tj−1)∥L2(Ω;Ḣ1(O))

)
ds+ CM−1

⩽ C

n∑
j=2

∫ tj

tj−1

(
∥U j−1

M − PMu(tj−1)∥L2(Ω;L2(O)) +M−α∥PMu(tj−1)∥B∞L2(Ω;Ḣα(O))

)
ds+ CM−1

⩽ C

n∑
j=2

∫ tj

tj−1

(
∥U j−1

M − PMu(tj−1)∥L2(Ω;L2(O)) +M−α∥u(tj−1)∥B∞L2(Ω;Ḣα(O))

)
ds+ CM−1,

(3.38)
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where we have used the inverse inequalities in (3.30)–(3.31) for α ∈ (0, 1) and the stability
of PM on the Besov space. The stochastic Besov norm ∥u(tj−1)∥B∞L2(Ω;Ḣα(O)) in the last in-
equality can be furthermore estimated by the regularity result in (2.17). In the case α = 1, for
trace class noise, we can simply replace the stochastic Besov norm ∥PMu(tj−1)∥B∞L2(Ω;Ḣα(O))

by the classical Sobolev norm ∥PMu(tj−1)∥L2(Ω;Ḣα(O)) and use the regularity result in Re-
mark 2.2. In both cases, we can furthermore obtain the following result:

∥En
2 ∥L2(Ω;L2(O)) ⩽ C

n∑
j=2

τj∥U j−1
M − PMu(tj−1)∥L2(Ω;L2(O)) + C

n∑
j=2

τjt
−α−β

2
j−1 M−α + CM−1

⩽ C
n∑

j=2

τj∥U j−1
M − u(tj−1)∥L2(Ω;L2(O)) + CM−α. (3.39)

The third term on the right-hand side of (3.33) can be estimated directly by using the
Lipschitz continuity of f , i.e.,

∥En
3 ∥L2(Ω;L2(O)) ⩽ C

n∑
j=2

τj∥U j−1
M − u(tj−1)∥L2(Ω;L2(O)). (3.40)

The estimation for the fourth and fifth terms on the right-hand side of (3.33) are the technical
parts in the proof, and are presented in the following two subsections, respectively.

3.3 Estimation of En
4

Lemma 3.3 Under Assumption 2.1, the remainder En
4 in (3.33) has the following bound:

∥En
4 ∥L2(Ω;L2(O)) ⩽ Cτα. (3.41)

Proof. The estimation of En
4 is by introducing an intermediate term f(e−(s−tj−1)Au(tj−1))

between f(u(s)) and f(u(tj−1). By this means, we decompose En
4 into the following two

parts:

En
4 =

n∑
j=2

∫ tj

tj−1

e−(tn−s)A[f(u(s))− f(u(tj−1)]ds

=
n∑

j=2

∫ tj

tj−1

e−(tn−s)A[f(e−(s−tj−1)Au(tj−1))− f(u(tj−1)]ds

+

n∑
j=1

∫ tj

tj−1

e−(tn−s)A[f(u(s))− f(e−(s−tj−1)Au(tj−1))]ds

=: En
4,1 + En

4,2. (3.42)
The two parts are estimated separately.

Since A = −∆, the first part on the right-hand side of (3.42) can be furthermore written
as

En
4,1 = −

n∑
j=2

∫ tj

tj−1

e−(tn−s)A

∫ s−tj−1

0
f ′(e−δAu(tj−1))∆(e−δAu(tj−1))dδds

= −
n∑

j=2

∫ tj

tj−1

e−(tn−s)A

∫ s−tj−1

0
∇ ·
(
f ′(e−δAu(tj−1))∇

(
e−δAu(tj−1)

))
dδds

+

n∑
j=2

∫ tj

tj−1

e−(tn−s)A

∫ s−tj−1

0
f ′′(e−δAu(tj−1))

∣∣∣∇(e−δAu(tj−1)
)∣∣∣2dδds.

Since Ḣ1(O) = H1
0 (O), it follows that Ḣ−1(O) = H1

0 (O)′. As a result, the following result
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holds for all ~h ∈ L2(O)d:

∥A− 1
2∇ · ~h∥L2(O) = ∥∇ · ~h∥H−1(O) = sup

g∈H1
0 (O)

|(∇ · ~h, g)|
∥g∥H1

0 (O)

= sup
g∈H1

0 (O)

|(~h,∇g)|
∥g∥H1

0 (O)

⩽ C∥~h∥L2(O).

By using this result and item (2) in Assumption 2.1, we have
∥En

4,1∥L2(Ω;L2(O))

⩽ C
n∑

j=2

∫ tj

tj−1

∫ s−tj−1

0

∥∥∥A 1
2 e−(tn−s)AA− 1

2∇ ·
(
f ′(e−δAu(tj−1))∇

(
e−δAu(tj−1)

))∥∥∥
L2(Ω;L2(O))

dδds

+ C
n∑

j=2

∫ tj

tj−1

∫ s−tj−1

0

∥∥∥A η
2 e−(tn−s)AA− η

2 f ′′(e−δAu(tj−1))
∣∣∇(e−δAu(tj−1)

)∣∣2∥∥∥
L2(Ω;L2(O))

dδds

⩽ C

n∑
j=2

∫ tj

tj−1

∫ s−tj−1

0
(tn − s)−

1
2

∥∥∥f ′(e−δAu(tj−1))∇
(
e−δAu(tj−1)

)∥∥∥
L2(Ω;L2(O))

dδds

+ C

n∑
j=2

∫ tj

tj−1

∫ s−tj−1

0
(tn − s)−

η
2

∥∥∇(e−δAu(tj−1)
)∥∥2

L4(Ω;L2(O))
dδds.

The analyticity of the semigoup e−tA implies the following estimates for all 1 ⩽ p ⩽ ∞:
∥e−δAu(t)∥Lp(Ω;Ḣ1(O)) ⩽ Cδ−

1
2 ∥u(t)∥Lp(Ω;L2(O)),

∥e−δAu(t)∥Lp(Ω;Ḣ1(O)) ⩽ C∥u(t)∥Lp(Ω;Ḣ1(O)).

By using Lemma 3.1, Lemma 3.2 and the result (2.17) in Proposition 2.1, we obtain

∥e−δAu(t)∥Lp(Ω;Ḣ1(O)) ⩽ Cδ
α−1
2 ∥u(t)∥(Lp(Ω;L2(O)),Lp(Ω;Ḣ1(O)))α,∞

⩽ Cδ
α−1
2 ∥u(t)∥B∞Lp(Ω;Ḣα(O))

⩽ Cδ
α−1
2 t−

α−β
2 ∥u0∥Lp(Ω;Ḣβ(O))

for p ∈ {2, 4} and β ∈ (−1, α]. Therefore, by using the inequality above, we have

∥En
4,1∥L2(Ω;L2(O)) ⩽ C

n∑
j=2

∫ tj

tj−1

∫ s−tj−1

0
(tn − s)−

1
2 δ

α−1
2 t

−α−β
2

j−1 dδds∥u0∥L2(Ω;Ḣβ(O))

+ C

n∑
j=2

∫ tj

tj−1

∫ s−tj−1

0
(tn − s)−

η
2 δα−1t

−(α−β)
j−1 dδds∥u0∥2

L4(Ω;Ḣβ(O))

⩽ C

n∑
j=2

∫ tj

tj−1

(
(tn − s)−

1
2 τ

α+1
2

j t
−α−β

2
j−1 + (tn − s)−

η
2 ταj t

−(α−β)
j−1

)
ds

⩽ C
n∑

j=2

∫ tj

tj−1

(
(tn − s)−

1
2 τ

α+1
2 s

γ(α+1)−α+β
2 + (tn − s)−

η
2 ταsαγ−α+β

)
ds,

(3.43)
where the second to last inequality has used τj ∼ tγj τ . Since condition (2.22) implies

γ(α+ 1)− α+ β

2
> −1 and αγ − α+ β > −1

it follows that
∥En

4,1∥L2(Ω;L2(O)) ⩽ Cτα. (3.44)
The second part on the right-hand side of (3.42) can be further decomposed into three
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parts by using Taylor’s expansion, i.e.,

En
4,2 =

n∑
i=1

∫ ti

ti−1

e−(tn−s)Af ′(e−(s−ti−1)Au(ti−1))
(
u(s)− e−(s−ti−1)Au(ti−1)

)
ds

+

n∑
i=1

∫ ti

ti−1

e−(tn−s)Af ′′(ξs)
∣∣u(s)− e−(s−ti−1)Au(ti−1)

∣∣2ds
=

n∑
i=1

∫ ti

ti−1

e−(tn−s)Af ′(e−(s−ti−1)Au(ti−1))

∫ s

ti−1

e−(s−δ)Af(u(δ))dδds

+
n∑

i=1

∫ ti

ti−1

e−(tn−s)Af ′(e−(s−ti−1)Au(ti−1))

∫ s

ti−1

e−(s−δ)AdW (δ)ds

+

n∑
i=1

∫ ti

ti−1

A
η
2 e−(tn−s)AA− η

2

(
f ′′(ξs)

∣∣u(s)− e−(s−ti−1)Au(ti−1)
∣∣2)ds

= En
∗,1 + En

∗,2 + En
∗,3. (3.45)

The first part on the right-hand side of (3.45) can be estimated directly by using the regularity
results in Proposition 2.1, i.e.,

∥En
∗,1∥L2(Ω;L2(O)) ⩽ C

n∑
i=1

∫ ti

ti−1

∫ s

ti−1

∥f(u(δ))∥L2(Ω;L2(O))dδds

⩽ C
n∑

i=1

∫ ti

ti−1

∫ s

ti−1

(1 + ∥u(δ)∥L2(Ω;L2(O)))dδds

⩽ C
n∑

i=1

∫ ti

ti−1

∫ s

ti−1

(1 + δ
β
2 )dδds

⩽ C
n∑

i=1

(
τi + t

1+β
2

i − t
1+β

2
i−1

)
τ + Cτ

⩽ Cτ.

The second part on the right-hand side of (3.45) can be estimated by using Itô’s isometry
and item (3) in Assumption 2.1, as shown in (A.53) (see Appendix), i.e.,

∥En
∗,2∥2L2(Ω;L2(O))

⩽ C
n∑

i=1

∥∥∥∫ ti

ti−1

e−(tn−s)Af ′(e−(s−ti−1)Au(ti−1))

∫ s

ti−1

e−(s−δ)AdW (δ)ds
∥∥∥2
L2(Ω;L2(O))

⩽ C
n∑

i=1

(∫ ti

ti−1

∥∥∥∫ s

ti−1

e−(s−δ)AdW (δ)
∥∥∥
L2(Ω;L2(O))

ds
)2

⩽ C
n∑

i=1

(∫ ti

ti−1

(s− ti−1)
α
2 ds
)2

(here (A.53) in Appendix is used)

⩽ Cτ1+α.

This proves the following result:
∥En

∗,2∥L2(Ω;L2(O)) ⩽ Cτ
1+α
2 .

The third part on the right-hand side of (3.45) can be estimated by using the following
identity for s ∈ [ti−1, ti]:

u(s) = e−(s−ti−1)Au(ti−1) +

∫ s

ti−1

e−(s−t)Af(u(t))dt+

∫ s

ti−1

e−(s−t)AdW (t),

16



which implies that
∥u(s)− e−(s−ti−1)Au(ti−1)∥L4(Ω;L2(O))

⩽
∥∥∥∫ s

ti−1

e−(s−t)Af(u(t))dt
∥∥∥
L4(Ω;L2(O))

+
∥∥∥∫ s

ti−1

e−(s−t)AdW (t)
∥∥∥
L4(Ω;L2(O))

⩽ C

∫ s

ti−1

(1 + ∥u(t)∥L4(Ω;L2(O)))dt+ C
∥∥∥∫ s−ti−1

0
e−(s−ti−1−t)AdW (t)

∥∥∥
L4(Ω;L2(O))

⩽ C

∫ s

ti−1

(1 + t
β
2 )dt+ C

∥∥∥∫ s−ti−1

0
e−(s−ti−1−t)AdW (t)

∥∥∥
L4(Ω;L2(O))

⩽ Cτ
α
2 ,

where the second to last inequality uses the regularity results in Proposition 2.1. Then, by
using item (2) in Assumption 2.1 on the nonlinearity, we have

∥En
∗,3∥L2(Ω;L2(O))

⩽ C
n∑

i=1

∫ ti

ti−1

(tn − s)−
η
2

∥∥∥A− η
2

(
f ′′(ξs)

∣∣u(s)− e−(s−ti−1)Au(ti−1)
∣∣2)∥∥∥

L2(Ω;L2(O))
ds

⩽ C

n∑
i=1

∫ ti

ti−1

(tn − s)−
η
2 ∥u(s)− e−(s−ti−1)Au(ti−1)∥2L4(Ω;L2(O))ds

⩽ C

n∑
i=1

(
(tn − ti−1)

1− η
2 − (tn − ti)

1− η
2

)
τα

⩽ Cτα.

By substituting the estimates of ∥En
∗,j∥L2(Ω;L2(O)), j = 1, 2, 3, into (3.45), we obtain

∥En
4,2∥L2(Ω;L2(O)) ⩽ Cτα. (3.46)

Estimates (3.44) and (3.46) imply the desired result of Lemma 3.3. □

3.4 Estimation of En
5

The last term on the right-hand side of (3.33) can be estimated as follows, by considering
two different cases and using the real interpolation method between two Besov spaces.

Case 1: tn > M−2. On the one hand, for any δ ∈ (0, α) the following estimate holds:

∥ΠjEn
5 ∥2L2(Ω;Ḣδ(O))

= ∥A
δ
2ΠjEn

5 ∥2L2(Ω;L2(O))

=

∫ tn

t1

∥A
δ
2Πj(e

−(tn−s)A − e−(tn−s)APM )∥2L2(Ω;L0
2)
ds

⩽ C

∫ tn−M−2

0

2j−1∑
k=2j−1

µkM
−2α(tn − s)−(α+δ+1−α)∥φk∥2Ḣ−(1−α)ds

+ C

∫ tn

tn−M−2

2j−1∑
k=2j−1

µk(tn − s)−(δ+1−α)∥φk∥2Ḣ−(1−α)ds

⩽ CM−2α

∫ tn−M−2

0
(tn − s)−(δ+1)ds

2j−1∑
k=2j−1

µkλ
α−1
k

+ C

∫ tn

tn−M−2

(tn − s)−(δ+1−α)ds
2j−1∑

k=2j−1

µkλ
α−1
k

17



⩽ C
(
M−2α(M2δ − t−δ

n ) + CM−2α+2δ
) 2j−1∑

k=2j−1

µkλ
α−1
k ,

where
2j−1∑

k=2j−1

µkλ
α−1
k ⩽ C

∥∥∥∫ T

0
e−(T−s)AdW (s)

∥∥∥
B∞L2(Ω;Ḣα(O))

⩽ C.

As a consequence,
∥ΠjEn

5 ∥2L2(Ω;Ḣδ(O))
⩽ CM−2α+2δ.

On the other hand, by choosing a constant δ0 such that δ0 − δ > 0, we have

∥ΠjEn
5 ∥2L2(Ω;Ḣ−δ(O))

=

∫ tn

0

2j−1∑
k=2j−1

µk∥A− δ
2 (e−(tn−s)A − e−(tn−s)APM )φk∥2L2(Ω;L2(O))ds

⩽ CM−2α−2δ0

∫ tn−M−2

0
(tn − s)−(α+δ0−δ+1−α)ds

2j−1∑
k=2j−1

µkλ
α−1
k

+ CM−2δ0

∫ tn

tn−M−2

(tn − s)−(δ0−δ+1−α)ds

2j−1∑
k=2j−1

µkλ
α−1
k

⩽ C
(
M−2α−2δ0(M2(δ0−δ)−t−(δ0−δ)

n )/(δ0 − δ)+M−2α−2δ
) 2j−1∑
k=2j−1

µkλ
α−1
k

⩽ CM−2α−2δ.

Case 2: tn ⩽ M−2. In this case, the integral from M−2 to tn vanishes in the estimates
above. The integral from 0 to M−2 can be estimated similarly.

Overall, in both cases, the following estimate holds for all δ ∈ (0, α) and and tn ∈ [t1, T ]:
∥ΠjEn

5 ∥B∞L2(Ω;Ḣ±δ(O)) ⩽ CM−α±δ.

By using the real interpolation method and the results in Lemma 3.2, we obtain
∥En

5 ∥L2(Ω;L2(O)) = ∥En
5 ∥(B∞L2(Ω;Ḣ−δ(O)),B∞L2(Ω;Ḣδ(O))) 1

2 ,2
⩽ CM−α. (3.47)

3.5 Completion of the proof
To conclude, by substituting the estimates of Ek, k = 1, 2, · · · , 5, into (3.33), we obtain that
∥Un

M − u(tn)∥L2(Ω;L2(O))

⩽ CM−αt
−α−β

2
n ∥u0∥L2(Ω;Ḣβ(O)) +

n∑
j=2

τj∥U j−1
M − u(tj−1)∥L2(Ω;L2(O)) + Cτα

⩽ CM−αt
−α−β

2
n ∥u0∥L2(Ω;Ḣβ(O)) +

n−1∑
j=1

τj∥U j
M − u(tj)∥L2(Ω;L2(O)) + Cτα for n ⩾ 2. (3.48)

By comparing the first relation of (2.20) with (1.3), we obtain that
τ1∥U1

M − u(t1)∥L2(Ω;L2(O))

⩽ τ1∥e−τ1AU0
M − e−τ1Au0∥L2(Ω;L2(O))

+ τ1

∥∥∥∫ τ1

0
e−(τ1−s)Af(u(s))ds+

∫ τ1

0
e−(τ1−s)AdW (s)

∥∥∥
L2(Ω;L2(O))

⩽ C(τ
1+β

2
1 + τ1)∥u0∥L2(Ω;Ḣβ(O)) + τ1

∥∥∥∫ τ1

0
(C + Cs

β
2 )ds

∥∥∥
L2(Ω;L2(O))

+ Cτ
1+α

2
1
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⩽ Cτ
1+β

2
1 + Cτ1 + Cτ

2+β
2

1 + Cτ
1+α

2
1 ⩽ Cτ

1
1−γ

(1+β
2
)
+Cτ

1
1−γ ,

where we have used the property τ1 = O(τ
1

1−γ ). Since condition (2.22) implies 1
1−γ (1+

β
2 ) ⩾ α

and 1
1−γ > 2 > α, it follows that

τ1∥U1
M − u(t1)∥L2(Ω;L2(O)) ⩽ Cτα.

Substituting this into (3.48) yields
∥Un

M − u(tn)∥L2(Ω;L2(O))

⩽ CM−αt
−α−β

2
n +

n−1∑
j=2

τj∥U j
M − u(tj)∥L2(Ω;L2(O)) + Cτα for n ⩾ 2. (3.49)

Then, by applying the discrete Gronwall’s inequality, we obtain

∥Un
M − u(tn)∥ ⩽ CM−αt

−α−β
2

n + Cτα for n ⩾ 2.

This proves the result of Theorem 2.2. □

4 Numerical experiments
In this section, we present numerical results to support the theoretical analysis. All computa-
tions are performed by Matlab with double precision (see [15] for algorithmic implementation
on Matlab for stochastic differential equations).

Let O = [0, 1] and T = 0.5. We solve problem (1.1) by the proposed modified exponential
Euler scheme with Fourier collocation method in (2.20), with the nonlinear drift function

f(u) =
√

1 + u2,

which satisfies items (1)–(2) in Assumption 2.1. The following two deterministic initial values
are tested

u01(x) = sin(πx) and u02(x) = δ
(
x− 1

2

)
,

where u01 ∈ H1
0 (O) ∩ C∞(O) and u02 ∈ Ḣ− 1

2
−ε(O) is the Dirac delta function, where ε > 0

can be an arbitrary small number.
The implementation of the numerical method is simple, i.e., the nonlinear term can be

calculated by ∫ tn

tn−1

e−(tn−s)AIMf(Un−1
M )ds =

(
1− e−τnA

A

)
IMf(Un−1

M ),

where IM can be calculated by using FFT with O(M lnM) operations at every time level.
The noise term can be calculated by∫ tn

tn−1

e−(tn−s)APMdW (s) =

M∑
k=1

√
µkφk

∫ tn

tn−1

e−(tn−s)λkdWk(s)

=
M∑
k=1

√
µkφk

(
1− e−2τnλk

2λk

) 1
2

ξnk

with independent and standard normally distributed random variables ξnk for 1 ⩽ k ⩽ M
and 1 ⩽ n ⩽ N . If the noises ξnk are generated with a fine mesh in time, then the following
identity can be used to calculate the numerical solution with a coarse mesh in time (with
stepsize tn+m − tn):∫ tn+m

tn

e−(tn+m−s)λkdWk(s) =
m∑
j=1

e−(tn+m−tn+j)λk

∫ tn+j

tn+j−1

e−(tn+j−s)λkdWk(s)
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=

m∑
j=1

e−(tn+m−tn+j)λk

(
1− e−2τn+jλk

2λk

) 1
2

ξn+j
k ∀m ⩾ 1.

This allows us to test the errors and convergence orders by using a reference solution with a
very fine mesh in time.

To test the spatial convergence orders, we fix a sufficiently small time stepsize τ = 2−10

and calculate the error by

E1(M) =

(
1

I

I∑
i=1

∥UN
τ,M (ωi)− UN

τ,2M (ωi)∥2L2(O)

) 1
2

for M = 16, 32, 64, 128, i.e., the expectations of errors over I = 1000 samples at t = T , and
then present them in Tables 1–2 for different initial data.

Table 1: Spatial discretization error E1(M) with initial data u01 and γ = 0.7

µk\M 16 32 64 128 Order
µk ≡ 1 3.866e-2 2.786e-2 1.980e-2 1.402e-2 ≈ 0.50 (0.50)

µk = 1/k0.5 1.787e-2 1.076e-2 6.469e-3 3.859e-3 ≈ 0.75 (0.75)

µk = 1/k0.8 1.126e-2 6.188e-3 3.326e-3 1.780e-3 ≈ 0.90 (0.90)

µk = 1/k 8.243e-3 4.238e-3 2.126e-3 1.071e-3 ≈ 0.99 (1.00)

µk = 1/k1.1 7.156e-3 3.506e-3 1.710e-3 8.311e-4 ≈ 1.04 (1.00)

Table 2: Spatial discretization error E1(M) with initial data u02 and γ = 0.7

µk\M 16 32 64 128 Order
µk ≡ 1 3.858e-2 2.776e-2 1.971e-2 1.403e-2 ≈ 0.49 (0.50)

µk = 1/k0.5 1.787e-2 1.080e-2 6.443e-3 3.853e-3 ≈ 0.74 (0.75)

µk = 1/k0.8 1.127e-2 6.164e-3 3.310e-3 1.788e-3 ≈ 0.89 (0.90)

µk = 1/k 8.261e-3 4.205e-3 2.139e-3 1.072e-3 ≈ 1.00 (1.00)

µk = 1/k1.1 7.130e-3 3.511e-3 1.705e-3 8.293e-4 ≈ 1.04 (1.00)

In the case µk = 1/kδ (0 ⩽ δ < 1), the noise satisfies Assumption 2.1 (3) with α = 1+δ
2 .

This order of convergence in space is well illustrated by the numerical results in Tables 1–2.
From Tables 2 we see that the modified exponential Euler method with Fourier collocation
method in space is robust with respect to the regularity of the initial data, including measure-
valued functions such as the Diract delta function.

To test the temporal convergence orders, we choose M = N and calculate the error by

E2(τ) =

(
1

I

I∑
i=1

∥UN
τ,N (ωi)− UN2

τ/2,N2
(ωi)∥2L2(O)

) 1
2

,

where N2 is the number of the time levels for time stepsize τ/2. By Theorem 2.2, the
spatial convergence order equals the temporal convergence order. The numerical results are
given in Tables 3–4, where the observed temporal convergence orders are consistent with the
theoretical result proved in Theorem 2.2.
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Table 3: Temporal discretization error E2(τ) with initial data u01 and γ = 0.7

µk\τ 1/16 1/32 1/64 1/128 Order
µk ≡ 1 2.401e-2 1.665e-2 1.192e-2 8.476e-3 ≈ 0.49 (0.50)

µk = 1/k0.5 8.661e-3 5.055e-3 3.040e-3 1.824e-3 ≈ 0.74 (0.75)

µk = 1/k0.8 4.739e-3 2.509e-3 1.362e-3 7.315e-4 ≈ 0.90 (0.90)

µk = 1/k 3.187e-3 1.594e-3 8.085e-4 4.047e-4 ≈ 1.00 (1.00)

µk = 1/k1.1 2.671e-3 1.284e-3 6.283e-4 3.051e-4 ≈ 1.04 (1.00)

Table 4: Temporal discretization error E2(τ) with initial data u02 and γ = 0.7

µk\τ 1/16 1/32 1/64 1/128 Order
µk ≡ 1 2.399e-2 1.668e-2 1.187e-2 8.478e-3 ≈ 0.49 (0.50)

µk = 1/k0.5 8.659e-3 5.056e-3 3.054e-3 1.824e-3 ≈ 0.74 (0.75)

µk = 1/k0.8 4.728e-3 2.501e-3 1.361e-3 7.319e-4 ≈ 0.90 (0.90)

µk = 1/k 3.202e-3 1.587e-3 8.072e-4 4.042e-4 ≈ 1.00 (1.00)

µk = 1/k1.1 2.664e-3 1.294e-3 6.379e-4 3.085e-4 ≈ 1.05 (1.00)

5 Conclusions
We have considered a modified exponential Euler method for the semilinear stochastic heat
equation, with Fourier Galerkin and Fourier collocation method in space. Some new tech-
niques are introduced to the error analysis, including the stochastic Besov spaces and its
interpolation properties to characterize the noises, and a class of locally refined variable
stepsizes to resolve the singularity of the solution at t = 0. By using these new techniques,
we have proved that the method has αth-order convergence for initial data in L4(Ω;Hβ(O))
with β ∈ (−1, α], for a class of noises characterized by a parameter α ∈ (0, 1], which includes
trace-class noises (with α = 1) and one-dimensional space-time white noises (with α = 1

2).
The numerical results also support the theoretical analysis.

In the numerical schemes of (2.19) and (2.20), we have used variable stepsizes and mod-
ified the exponential integrator at the initial time level to address the singularity of the
solution at t = 0. This is needed when β < 0 because the initial data u0 may not be a point-
wisely defined function and therefore the term f(u0) in the standard exponential integrator
may not be pointwisely well-defined. In the case 0 ⩽ β ⩽ α, the variable stepsize and the
modification of the initial step may not be necessary. However, since the estimate of En

4,1 in
(3.43) involves t

−(α−β)/2
j−1 , the estimation of this term at the initial step needs to be changed

to a different way in the case 0 ⩽ β < α.
In estimates (3.38)–(3.39), we have used the additional assumption that in the case α = 1

the noise is trace class; see in Assumption 2.1 (3). This is only needed for the Fourier sine
collocation method in (2.20) with trigonometric interpolation. Theorem 2.1 (for the spectral
Galerkin method) still holds without requiring the noise to be trace class in the case α = 1.
This is because that e−(tn−s)A commutes with PM and therefore (3.38) can be estimated in
the following different way:

∥En
2 ∥L2(Ω;L2(O)) =

n∑
j=2

∫ tj

tj−1

(
PMe−(tn−s)Af(U j−1

M )− e−(tn−s)Af(U j−1
M )

)
ds
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⩽ C
n∑

j=2

∫ tj

tj−1

M−1∥e−(tn−s)Af(U j−1
M )∥L2(Ω;Ḣ1(O))ds

⩽ C

n∑
j=2

∫ tj

tj−1

M−1(tn − s)−
1
2 ∥f(U j−1

M )∥L2(Ω;L2(O))ds

⩽ C

n∑
j=2

∫ tj

tj−1

M−1(tn − s)−
1
2 (∥f(0)∥L2(Ω;L2(O)) + ∥U j−1

M ∥L2(Ω;L2(O)))ds

where we have used the smoothing property of the analytic semigroup e−tA, i.e.,
∥e−(tn−s)Ag∥Ḣ1(O) ⩽ C(tn − s)−

1
2 ∥g∥L2(O) for g ∈ L2(O).

From (2.19a) we see that

∥U1
M∥L2(Ω;L2(O)) = ∥e−τ1APMu0∥L2(Ω;L2(O)) = ∥A−β

2 e−τ1APMu0∥L2(Ω;Ḣβ(O))

⩽ C(1 + t
β
2
1 )∥u

0∥L2(Ω;Ḣβ(O)). (5.50)
From (2.19b) we can obtain the following expression of Un

M similarly as (3.32) (with IM
replaced by PM therein):

Un
M = e−(tn−τ1)AU1

M +

n∑
j=2

∫ tj

tj−1

e−(tn−s)APMf(U j−1
M )ds+

∫ tn

t1

e−(tn−s)APMdW (s),

which implies that
∥Un

M∥L2(Ω;L2(O))

⩽ ∥e−(tn−τ1)AU1
M∥L2(Ω;L2(O)) +

n∑
j=2

τj∥f(U j−1
M )∥L2(Ω;L2(O)) + t

α
2
n (here (2.10) is used)

⩽ ∥A−β
2 e−tnAPMu0∥L2(Ω;Ḣβ(O)) +

n∑
j=2

τj

(
∥U j−1

M ∥L2(Ω;L2(O)) + ∥f(0)∥L2(Ω;L2(O))

)
+ t

α
2
n

⩽ (1 + t
β
2
n )∥u0∥L2(Ω;Ḣβ(O)) +

n∑
j=2

τj∥U j−1
M ∥L2(Ω;L2(O)) for 2 ⩽ n ⩽ N,

where we have used the Lipschitz continuity of f in the second to last inequality. Applying
the discrete Gronwall inequality to this equation, together with equation (5.50), we can
derive

∥Un
M∥L2(Ω;L2(O)) ⩽ C(1 + t

β
2
n ) for 1 ⩽ n ⩽ N.

Therefore,

∥En
2 ∥L2(Ω;L2(O)) ⩽ C

n∑
j=2

∫ tj

tj−1

M−1(tn − s)−
1
2 (1 + t

β
2
j−1)ds

⩽ C

n∑
j=2

∫ tj

tj−1

M−1(tn − s)−
1
2 (1 + s

β
2 )ds

⩽ CM−1. (5.51)
For the Fourier sine collocation method in (2.20), if the noise is not trace class in the

case α = 1, Theorem 2.2 can still proved by using the inverse inequality (proof is omitted)
∥PMu(tj−1)∥L2(Ω;Ḣ1(O)) ⩽ C(lnM)

1
2 ∥PMu(tj−1)∥B∞L2(Ω;Ḣ1(O)).

This loses a logarithmic order of convergence in the case α = 1.
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Appendix: Proof of Proposition 2.1
A.1 Existence and uniqueness
We prove the existence and uniqueness of mild solutions by using the Banach fixed point
theorem.

For v ∈ X =
{
v ∈ L1

(
0, T ;L2(Ω;L2(O))

)
: sup
t∈(0,T ]

(1 + t
β
2 )−1∥v(t)∥L2(Ω;L2(O)) < ∞

}
we

define a nonlinear operator M : X → X by

Mv(t) = e−tAu0 +

∫ t

0
e−(t−s)Af(v(s))ds+

∫ t

0
e−(t−s)AdW (s),

which is well-defined as

∥Mv(t)∥L2(Ω;L2(O)) ⩽ C(1 + t
β
2 )∥u0∥L2(Ω;Ḣβ(O)) + C

∫ t

0
(1 + ∥v(s)∥L2(Ω;L2(O)))ds+ Ct

α
2

⩽ C(1 + t
β
2 )∥u0∥L2(Ω;Ḣβ(O)) + C

∫ t

0
(1 + s

β
2 )∥v∥Xds+ Ct

α
2 .

We consider the space Xλ, which is defined as the vector space X with the equivalent norm

∥v∥Xλ
:= sup

t∈(0,T ]
e−λt(1 + t

β
2 )−1∥v(t)∥L2(Ω;L2(O)),

where λ ⩾ 1 is a fixed constant to be determined later. Therefore, v ∈ Xλ if and only if
v ∈ X. If v1, v2 ∈ Xλ then

e−λt(1 + t
β
2 )−1∥Mv1(t)−Mv2(t)∥L2(Ω;L2(O))

⩽ C

∫ t

0
e−λt∥f(v1(s))− f(v2(s))∥L2(Ω;L2(O))ds

⩽ C

∫ t

0
e−λ(t−s)(1 + s

β
2 )e−λs(1 + s

β
2 )−1∥v1(s)− v2(s)∥L2(Ω;L2(O))ds

⩽ C∥v1 − v2∥Xλ

∫ t

0
e−λ(t−s)(1 + s

β
2 )ds

⩽ C∥v1 − v2∥Xλ

∫ λt

0
e−λt+δ(λ−1 + λ−β

2
−1δ

β
2 )dδ

⩽ C∥v1 − v2∥Xλ

(1− e−λt

λ
+ λ−β

2
−1

∫ 1

0
e−λt+δδ

β
2 dδ + λ−β

2
−1

∫ max{λt,1}

1
e−λt+δδ

β
2 dδ
)

⩽ C∥v1 − v2∥Xλ

(
λ−1 + λ−β

2
−1

∫ 1

0
δ

β
2 dδ + λ−β

2
−1

∫ max{λt,1}

1
e−λt+δδ

β
2 dδ
)
.

Since

λ−β
2
−1
∫ max{λt,1}
1 e−λt+δδ

β
2 dδ ⩽

λ−β
2
−1
∫ max{λt,1}
1 e−λt+δdδ if β ∈ (−1, 0]

λ−β
2
−1
∫ max{λt,1}
1 e−λt+δ(λt)

β
2 dδ if β ∈ (0, α]

⩽
{
λ−β

2
−1 if β ∈ (−1, 0]

λ−1 if β ∈ (0, α],

it follows that
e−λt(1 + t

β
2 )−1∥Mv1(t)−Mv2(t)∥L2(Ω;L2(O)) ⩽ Cλ−min(β,0)

2
−1∥v1 − v2∥Xλ

⩽ Cλ− 1
2 ∥v1 − v2∥Xλ

for β ∈ (−1, α].

Therefore, M is a contraction map on Xλ when λ is sufficiently large. This and the Banach
fixed point theorem imply that there exists a unique fixed point of M on Xλ = X. This
fixed point of M is denoted by u, which is the mild solution of problem (1.1).
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A.2 Regularity
By using the expression of the mild solution in (1.3) and the property of the noise in (2.10),
we have

∥u(t)∥Lp(Ω;L2(O)) ⩽ ∥A−β
2 e−tAA

β
2 u0∥Lp(Ω;L2(O)) +

∥∥∫ t
0e

−(t−s)Af(u(s))ds
∥∥
Lp(Ω;L2(O))

+
∥∥∫ t

0e
−(t−s)AdW (s)

∥∥
Lp(Ω;L2(O))

Since e−tA is an analytic semigroup, it follows that

∥A−β
2 e−tAA

β
2 u0∥Lp(Ω;L2(O)) ⩽

Ct
β
2 ∥A

β
2 u0∥Lp(Ω;L2(O)) if β ∈ (−1, 0],

C∥A
β
2 u0∥Lp(Ω;L2(O)) if β ∈ (0, α].

And with the help of (2.8) and (2.9) it follows that∥∥∫ t
0e

−(t−s)AdW (s)
∥∥
Lp(Ω;L2(O))

⩽ C
∥∥∫ t

0e
−(t−s)AdW (s)

∥∥
L2(Ω;L2(O))

holds for p ⩾ 2. Therefore,

∥u(t)∥Lp(Ω;L2(O)) ⩽ C(1 + t
β
2 )∥u0∥Lp(Ω;Ḣβ(O)) +

∫ t
0∥f(u(s))∥Lp(Ω;L2(O))ds+ Ct

α
2

⩽ C(1 + t
β
2 ) +

∫ t
0 (∥f(0)∥Lp(Ω;L2(O)) + C∥u(s)∥Lp(Ω;L2(O)))ds+ Ct

α
2

⩽ C(1 + t
β
2 ) +

∫ t
0C∥u(s)∥Lp(Ω;L2(O))ds.

Then applying Gronwall’s inequality (see [14, Lemma 7.1.1]) yields (2.16).
By applying the projection operator Πj to (1.3) and considering the result in the Lp(Ω; Ḣα(O))

norm, we have
∥Πju(t)∥Lp(Ω;Ḣα(O)) = ∥A

α
2 Πju(t)∥Lp(Ω;L2(O))

⩽ ∥A
α−β
2 e−tAA

β
2Πju

0∥Lp(Ω;L2(O))

+
∥∥∥∫ t

0
A

α
2 e−(t−s)AΠjf(u(s))ds

∥∥∥
Lp(Ω;L2(O))

+
∥∥∥Πj

∫ t

0
A

α
2 e−(t−s)AdW (s)

∥∥∥
Lp(Ω;L2(O))

⩽ Ct−
α−β
2 ∥A

β
2Πju

0∥Lp(Ω;L2(O))

+ C

∫ t

0
(t− s)−

α
2 ∥f(u(s))∥Lp(Ω;L2(O))ds+

∥∥∥Πj

∫ t

0
e−(t−s)AdW (s)

∥∥∥
Lp(Ω;Ḣα(O))

⩽ Ct−
α−β
2 ∥u0∥Lp(Ω;Ḣβ(O))

+ C

∫ t

0
(t− s)−

α
2 (1 + s

β
2 )ds+

∥∥∥Πj

∫ t

0
e−(t−s)AdW (s)

∥∥∥
Lp(Ω;Ḣα(O))

(here we use the Lipschitz continuity of f and (2.16), which is already proved)

⩽ Ct−
α−β
2 + C(t1−

α
2 + t1−

α−β
2 ) + C,

where the last inequality uses assumptions (2.10)–(2.11). Then, by taking maximum in the
above inequality among all j ⩾ 1, we obtain (2.17).

Next we prove that u ∈ C
(
(ε, T ];Lp(Ω;L2(O))

)
. Obviously, by (2.12) for 0 < t2 < t1 ⩽ T

there hold ∥∥∥∫ t2

0
(e−(t1−s)A − e−(t2−s)A)dW (s)

∥∥∥2
Lp(Ω;L2(O))

⩽ C

∫ t2

0

∞∑
k=1

µk∥(e−(t1−s)A − e−(t2−s)A)φk∥2L2(O)ds

⩽ C

∞∑
k=1

µk(e
−t1λk − e−t2λk)2

e2t2λk − 1

2λk
(A.52)
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⩽ C
∞∑
k=1

µk

λk
(1− e−2(t1−t2)λk)

⩽ C
∥∥∫ t1−t2

0 e−(t1−t2−s)AdW (s)
∥∥2
L2(Ω;L2(O))

⩽ C(t1 − t2)
α

and ∥∥∫ t1
t2
e−(t1−s)AdW (s)

∥∥2
Lp(Ω;L2(O))

⩽ C
∫ t1−t2
0

∞∑
k=1

µk∥e−(t1−t2−σ)Aφk∥2L2(O)dσ

∼
∥∥∫ t1−t2

0 e−(t1−t2−s)AdW (s)
∥∥2
L2(Ω;L2(O))

∼ (t1 − t2)
α,

(A.53)

where the last inequality is due to item (3) in Assumption 2.1. Combining these estimates
with (2.16), we derive for 0 < ε ⩽ t2 < t1 ⩽ T and 0 < δ < 1 that

∥u(t1)− u(t2)∥Lp(Ω;L2(O))

⩽ ∥e−t1Au0 − e−t2Au0∥Lp(Ω;L2(O))

+
∥∥∫ t2

0 (e−(t1−s)A − e−(t2−s)A)f(u(s))ds+
∫ t1
t2
e−(t1−s)Af(u(s))ds

∥∥
Lp(Ω;L2(O))

+
∥∥∫ t2

0 (e−(t1−s)A − e−(t2−s)A)dW (s) +
∫ t1
t2
e−(t1−s)AdW (s)

∥∥
Lp(Ω;L2(O))

⩽ ∥A−β
2
+δe−t2AA−δ(e−(t1−t2)A − I)A

β
2 u0∥Lp(Ω;L2(O))

+
∫ t2
0 ∥Aδe−(t2−s)AA−δ(e−(t1−t2)A − I)f(u(s))∥Lp(Ω;L2(O))ds

+ C
∫ t1
t2
(1 + s

β
2 )ds

+
∥∥∫ t2

0 (e−(t1−s)A − e−(t2−s)A)dW (s)
∥∥
Lp(Ω;L2(O))

+
∥∥∫ t1

t2
e−(t1−s)AdW (s)

∥∥
Lp(Ω;L2(O))

⩽ C(t
β
2
−δ

2 + 1)(t1 − t2)
δ∥u0∥Lp(Ω;Ḣβ(O))

+
∫ t2
0 (t2 − s)−δ(t1 − t2)

δ(1 + s
β
2 )ds+ C(t1 − t2 + t

1+β
2

1 − t
1+β

2
2 )

+ C(t1 − t2)
α
2

⩽ C(ε
β
2
−δ + 1)(t1 − t2)

δ + C(t1 − t2)
1+

min{0,β}
2 + C(t1 − t2)

α
2 .

This means u ∈ Cδ
(
[ε, T ];Lp(Ω;L2(O))

)
for δ ∈

(
0,min{1 + min{0,β}

2 , α2 }
)
. The last two

terms in the inequality above indicate that the second and third terms in expression (1.3)
are in C([0, T ];L2(Ω;L2(O))). Provided β̄ = min{0, β}, the first term in expression (1.3)
is clearly in C([0, T ];L2(Ω; Ḣ β̄(O))) because e−tA is a strongly continuous semigroup on
Ḣ β̄(O). As a result, the mild solution u is in C([0, T ];L2(Ω; Ḣ β̄(O))). This completes the
proof of Proposition 2.1.

□
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