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A SEMI-IMPLICIT EXPONENTIAL LOW-REGULARITY
INTEGRATOR FOR THE NAVIER--STOKES EQUATIONS\ast 

BUYANG LI\dagger , SHU MA\dagger , AND KATHARINA SCHRATZ\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . A new type of low-regularity integrator is proposed for the Navier--Stokes equations.
Unlike the other low-regularity integrators for nonlinear dispersive equations, which are all fully
explicit in time, the proposed method is a semi-implicit exponential method in time in order to
preserve the energy-decay structure of the Navier--Stokes equations. First-order convergence of the
proposed method is established independently of the viscosity coefficient \mu under weaker regularity
conditions than other existing numerical methods, including the semi-implicit Euler method and
classical exponential integrators. The proposed low-regularity integrator can be extended to full
discretization with either a stabilized finite element method or a spectral collocation method in
space, as illustrated in this article. Numerical results show that the proposed method is much more
accurate than the semi-implicit Euler method in the viscous case \mu = O(1) and more stable than the
classical exponential integrator in the inviscid case \mu \rightarrow 0.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . Navier--Stokes equations, L2 initial data, semi-implicit Euler scheme, finite element
method, error estimate

\bfM \bfS \bfC \bfc \bfo \bfd \bfe \bfs . 65M12, 65M15, 76D05
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1. Introduction. This article is concerned with the numerical solution of the
initial and boundary value problem of the incompressible Navier--Stokes (NS) equa-
tions

(1.1)

\left\{     
\partial tu+ u \cdot \nabla u - \mu \Delta u+\nabla p = 0 in \Omega \times (0, T ],

\nabla \cdot u = 0 in \Omega \times (0, T ],

u = u0 at \Omega \times \{ 0\} 

in a bounded domain \Omega \subset \BbbR d, with d \in \{ 2, 3\} , under appropriate boundary conditions,
where we have used the notation u \cdot \nabla u := (u \cdot \nabla )u. The well-posedness of the two-
and three-dimensional NS equations was discussed in [7, 14, 17, 19, 23].

The NS equations are the fundamental PDEs describing the motion of incom-
pressible viscous fluids. They are widely used in fluid dynamics to model water and
blood flows, air flow around a wing, and ocean currents. As the exact solution is not
known in most applications, the numerical solution of the NS equations plays a central
role. The development of accurate, stable numerical methods, together with their rig-
orous error analysis, is therefore crucial and of major practical importance to reliably
describe of the NS equations. Driven by the immense spectrum of applications, many
different numerical methods have been proposed for solving the NS equations.
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2274 BUYANG LI, SHU MA, AND KATHARINA SCHRATZ

In the smooth setting, i.e., for smooth solutions and regular initial data, the
numerical approximation of the NS equations is nowadays in large parts well un-
derstood, and sharp rigorous global error estimates could be established; see, e.g.,
[11, 15, 18, 25, 26, 33, 34]. The optimal-order error estimates generally use the vis-
cosity term to control the nonlinear term and therefore contain a viscosity-dependent
constant c(\mu  - 1) in the error bound in addition to certain Sobolev norms of the exact
solution. Note that in case of large viscosity \mu \sim 1 the solution of NS is regularized
such that nonsmooth initial data is not a big problem numerically. In particular, the
rigorous error analysis of semi- and full discretizations of the NS equations with H1

initial data can be found in [12] and [9, 10, 20], respectively. This, however, drastically
changes in the case of small viscosity \mu \ll 1, where no smoothing can be expected and
classical viscosity-dependent c(\mu  - 1) error bounds explode. Although there are explicit
Runge--Kutta methods for which the stability region includes part of the imaginary
axis, which would be stable in the case \mu \rightarrow 0 under the stepsize condition \tau = o(h),
such methods typically require a much stronger CFL condition \tau = o(h2) when \mu 
is not close to zero. Error estimates of the numerical methods for the NS equations
without using the viscosity term to bound the nonlinear term (therefore robust for
all range of \mu ) could recently be established for smooth solutions; see, for example,
in [1, 3, 36]. The analysis in these articles shows that the classical finite difference
methods in time, such as the semi-implicit Euler method\left\{   

un  - un - 1

\tau 
+ un - 1 \cdot \nabla un  - \mu \Delta un +\nabla pn = 0 in \Omega ,

\nabla \cdot un = 0 in \Omega 
(1.2)

and the backward differentiation formulae, typically requires the solution to satisfy
u \in L\infty (0, T ;H2(\Omega )d) and \partial ttu \in L2(0, T ;L2(\Omega )d) for first-order convergence in time
and space (when the error constants do not depend on the viscosity), where d denotes
the dimension of space. The condition \partial ttu \in L2(0, T ;L2(\Omega )d) actually requires u \in 
L2(0, T ;H4(\Omega )d) for the solution of the NS equations, as one time derivative of the
solution is related to two spatial derivatives of the solution. As a result, the classical
finite difference methods in time require

u \in H2(0, T ;L2(\Omega )d) \cap L2(0, T ;H4(\Omega )d) \lhook \rightarrow L\infty (0, T ;H3(\Omega )d)

for first-order convergence in time and space. The analysis in the current paper
further shows that the classical exponential integrators for the NS equations, such as
the exponential Euler method,

un = e\tau n\mu Aun - 1  - 
\int tn

tn - 1

e(tn - s)\mu APX(un - 1 \cdot \nabla un - 1)ds for n \geq 1,(1.3)

where A = PX\Delta denotes the Stokes operator (with PX being the projection onto
the divergence-free subspace), would also require u \in L\infty (0, T ;H3(\Omega )d) for first-order
convergence in time (if we require the error bound to be independent of the viscosity).

The objective of this article is to develop a new low-regularity integrator for NS
which allows for first-order convergence in time and space under a weaker regularity
condition u \in L\infty (0, T ;W 2,d+\epsilon (\Omega )d), where \epsilon can be arbitrarily small. In particular,
we present a stabilization technique by utilizing the nonlinear convection term in
the NS equations and establish global error estimates independent of \mu allowing for
low-regularity approximations also in regimes of small viscosity \mu \ll 1.
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Our new scheme also greatly extends previous works on low-regularity integrators
which mainly focus on semidiscretizations in time [30] and nonlinear dispersive equa-
tions, e.g., Schr\"odinger, Dirac, and Korteweg and de Vries [6, 13, 27, 28, 29, 32, 38, 39].
In this work we approach the the NS equations and for the first time couple the idea of
low-regularity time discretizations with a finite element based spatial discretization.
Note that fully discrete low-regularity integrators were so far restricted to pseudospec-
tral methods for the spatial discretization [22] which are not suitable for problems
posed on general bounded domains. The latter are, however, especially interesting
in the context of NS flow problems. The numerical experiments in this article show
that the proposed low-regularity integrator for the NS equations is much more accu-
rate than the classical semi-implicit Euler method in the viscous case \mu = O(1) and
more accurate and robust than the classical exponential integrator in the inviscid case
\mu \rightarrow 0. Therefore, the proposed method combines the advantages of the semi-implicit
Euler method and classical exponential integrator in both viscous and inviscid cases.

The rest of this article is organized as follows: in section 2 we construct a low-
regularity integrator for the NS equations through analyzing and improving both the
consistency and the stability of the classical exponential Euler method. We first pres-
ent the construction of the method in the context of periodic boundary conditions and
then extend it to the widely used no-slip boundary conditions in NS flow problems.
The energy-decay property and and error estimates of the proposed low-regularity
integrator are proved for semidiscretization in time. In section 3 we extend the low-
regularity integrator to full discretization with a stabilized finite element method
in space and present error estimates for the fully discrete low-regularity integrator.
Numerical examples are presented in section 4 to compare the performance of the pro-
posed low-regularity integrator with the performance of both the semi-implicit Euler
method and the exponential Euler method. Conclusions and remarks are presented
in section 5.

2. The low-regularity integrator and its basic properties. In this sec-
tion, we present the construction of the low-regularity integrator by analyzing the
dependence of the consistency errors on the regularity of the solution. The construc-
tion is presented first for the NS equations under the periodic boundary condition in
subsection 2.1 and then extended to the no-slip boundary condition in subsection 2.2.

2.1. Construction of the time-stepping method. In this subsection, we
focus on the NS equations on the d-dimensional torus \Omega = [0, 1]d (under the periodic
boundary condition). Through integration by parts it is straightforward to verify the
following property of the divergence-free subspace:

\.H := \{ v \in L2(\Omega )d : \nabla \cdot v = 0\} .

If v \in \.H and q \in H1, then

(v,\nabla q) = 0.

Let PX : L2(\Omega )d \rightarrow \.H be the L2-orthogonal projection onto the divergence-free
subspace X = \.H. By using the above orthogonality, it is straightforward to verify
that

PXf = f  - \nabla q,(2.1)
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2276 BUYANG LI, SHU MA, AND KATHARINA SCHRATZ

where q is the solution (up to a constant) of the following PDE problem (under
periodic boundary conditions):

\Delta q = \nabla \cdot f.

Let A = PX\Delta : H2 \rightarrow \.H. Then the NS equations can be written as finding
u \in C([0, T ];H2) \cap C1([0, T ];L2) to the following problem:\Biggl\{ 

\partial tu+ PX(u \cdot \nabla u) - \mu Au = 0 for t \in (0, T ],

u(0) = u0.
(2.2)

From the definition of A and identity (2.1), it is easy to see that for f \in H2(\Omega )d

APXf = PX\Delta PXf = PX\Delta f  - PX\nabla \Delta q = PX\Delta f (since PX\nabla \eta \equiv 0).(2.3)

Moreover, if f \in \.H2 = \{ v \in H2(\Omega )d : \nabla \cdot v = 0\} , then \Delta f \in \.H, and therefore
PX\Delta f = \Delta f . As a result, the following identity holds:

Af = \Delta f for f \in \.H2.(2.4)

Let 0 = t0 < t1 < \cdot \cdot \cdot < tN = T be a partition of the time interval [0, T ] with
stepsize \tau n = tn  - tn - 1. According to the variation of constants formula, the solution
of (2.2) satisfies the following identity:

u(tn) = e\tau n\mu Au(tn - 1) - 
\int tn

tn - 1

e(tn - s)\mu APX(u(s) \cdot \nabla u(s))ds for n \geq 1.(2.5)

The classical exponential integrator (for example, the exponential Euler method) ap-
proximates u(s) by u(tn - 1) in (2.5). Since

u(s) = u(tn - 1) + \mu 

\int s

tn - 1

Au(\sigma )d\sigma  - 
\int s

tn - 1

PX(u(\sigma ) \cdot \nabla u(\sigma ))d\sigma ,(2.6)

substituting this identity into (2.5) yields that

u(tn) = e\tau n\mu Au(tn - 1) - 
\int tn

tn - 1

e(tn - s)\mu APX(u(tn - 1) \cdot \nabla u(tn - 1))ds+Rn,(2.7)

where the remainder Rn is given by

Rn = - 
\int tn

tn - 1

e(tn - s)\mu APX

\bigl[ 
u(s) \cdot \nabla u(s) - u(tn - 1) \cdot \nabla u(tn - 1)

\bigr] 
ds

= - 
\int tn

tn - 1

e(tn - s)\mu APX

\bigl[ 
(u(s) - u(tn - 1)) \cdot \nabla u(s)

\bigr] 
ds

 - 
\int tn

tn - 1

e(tn - s)\mu APX

\bigl[ 
u(tn - 1) \cdot \nabla (u(s) - u(tn - 1))

\bigr] 
ds.

By using the expression of u(s) - u(tn - 1) in (2.6), one can obtain the following esti-
mate:

\| Rn\| L2 \lesssim \tau n\| u(s) - u(tn - 1)\| L\infty (0,T ;L2)\| \nabla u\| L\infty (0,T ;L\infty )

+ \tau n\| u\| L\infty (0,T ;L\infty )\| \nabla (u(s) - u(tn - 1))\| L\infty (0,T ;L2)

\lesssim \mu \tau 2n\| u\| L\infty (0,T ;H2)\| u\| L\infty (0,T ;W 1,\infty ) + \tau 2n\| u \cdot \nabla u\| L\infty (0,T ;L2)\| u\| L\infty (0,T ;W 1,\infty )

+ \mu \tau 2n\| u\| L\infty (0,T ;L\infty )\| u\| L\infty (0,T ;H3) + \tau 2n\| u\| L\infty (0,T ;L\infty )\| u \cdot \nabla u\| L\infty (0,T ;H1)

\lesssim \mu \tau 2n\| u\| L\infty (0,T ;H2)\| u\| L\infty (0,T ;H3) + \tau 2n\| u\| 2L\infty (0,T ;H2)\| u\| L\infty (0,T ;H3).(2.8)
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This requires u \in L\infty (0, T ;H3) in order to have first-order convergence in time (with
second-order local truncation error).

In contrast, the idea behind the low-regularity integrator recently developed in [30]
lies in iterating the variation of constants formula (2.5), i.e., approximating u(s) by
e(s - tn - 1)\mu Au(tn - 1) in (2.5) and utilizing the relation

u(s) = e(s - tn - 1)\mu Au(tn - 1) - 
\int s

tn - 1

e(tn - \sigma )\mu APX(u(\sigma ) \cdot \nabla u(\sigma ))d\sigma .(2.9)

We then rewrite the corresponding temporal integral by\int tn

tn - 1

e(tn - s)\mu APX(u(s) \cdot \nabla u(s))ds

=

\int tn

tn - 1

e(tn - s)\mu APX(e(s - tn - 1)\mu Au(tn - 1) \cdot \nabla e(s - tn - 1)\mu Au(tn - 1))ds+Rn,1.(2.10)

Compared with the formula (2.6) used in the classical exponential integrator, the
relation (2.9) does not contain the term Au. As a result, the remainder Rn,1 in (2.10)
satisfies the following improved estimate:

\| Rn,1\| L2 \lesssim \tau 2n\| u\| 2L\infty (0,T ;L\infty )\| u\| L\infty (0,T ;H2) + \tau 2n\| u\| L\infty (0,T ;L\infty )\| u\| 2L\infty (0,T ;W 1,4),

(2.11)

which does not contain the H3 norms of u that appear in (2.8).
By substituting (2.10) into (2.5), we obtain

u(tn) = e\tau n\mu Au(tn - 1)

 - 
\int tn

tn - 1

e(tn - s)\mu APX(e(s - tn - 1)\mu Au(tn - 1) \cdot \nabla e(s - tn - 1)\mu Au(tn - 1))ds - Rn,1

= e\tau n\mu Au(tn - 1) - 
\int tn

tn - 1

g(s)ds - Rn,1,(2.12)

where

g(s) = e(tn - s)\mu APX [v(s) \cdot \nabla v(s)] with v(s) = e(s - tn - 1)\mu Au(tn - 1).

Then we consider a Taylor series of the function g(s) at s = tn. Since (2.3) and (2.4)
imply that APXf = PX\Delta f = \Delta PXf , by using this relation with f = v(s) \cdot \nabla v(s) (in
the second equality below) we have

g\prime (s) =  - e(tn - s)\mu A\mu APX [v(s) \cdot \nabla v(s)]

+ e(tn - s)\mu APX [\mu Av(s) \cdot \nabla v(s) + v(s) \cdot \nabla \mu Av(s)]

=  - \mu e(tn - s)\mu APX\Delta [v(s) \cdot \nabla v(s)]

+ \mu e(tn - s)\mu APX [\Delta v(s) \cdot \nabla v(s) + v(s) \cdot \nabla \Delta v(s)]

=  - \mu e(tn - s)\mu APX

\bigl[ 
v(s) \cdot \nabla \Delta v(s) + \Delta v(s) \cdot \nabla v(s) +

\sum 
j\partial jv(s) \cdot \nabla \partial jv(s)

\bigr] 
+ \mu e(tn - s)\mu APX [\Delta v(s) \cdot \nabla v(s) + v(s) \cdot \nabla \Delta v(s)]

=  - \mu e(tn - s)\mu APX

\bigl[ \sum 
j\partial jv(s) \cdot \nabla \partial jv(s)

\bigr] 
.(2.13)

D
ow

nl
oa

de
d 

05
/2

4/
24

 to
 8

1.
10

.1
92

.1
86

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2278 BUYANG LI, SHU MA, AND KATHARINA SCHRATZ

Since g(s) = g(tn) - 
\int tn
s

g\prime (\sigma )d\sigma and

\| g\prime (\sigma )\| L2 \lesssim \mu \| \nabla v(\sigma )\| Lq\| \nabla 2v(\sigma )\| Lp when
1

p
+

1

q
=

1

2
,

W 2,p \lhook \rightarrow W 1,q when 1 =
d

p
 - d

q
and 1 \leq p \leq q < \infty ,

by choosing 1 \leq p \leq q < \infty satisfying 1
p + 1

q = 1
2 and 1 = d

p  - d
q = 2d

p  - d
2 we obtain

\| g\prime (\sigma )\| L2 \lesssim \mu \| v(\sigma )\| 2W 2,p(2.14)

with

p =

\left\{   
2d

1 + d/2
=

12

5
if d = 3,

2 + \epsilon if d = 2,

(2.15)

where \epsilon > 0 can be arbitrarily small. Therefore, the following result holds:

\| g(s) - g(tn)\| L2 \lesssim \mu \tau n\| v\| 2L\infty (0,T ;W 2,p) \lesssim \mu \tau n\| u\| 2L\infty (0,T ;W 2,p).

In view of this estimate, we can rewrite (2.12) as

u(tn) = e\tau n\mu Au(tn - 1) - 
\int tn

tn - 1

g(tn)ds - Rn,1  - Rn,2,(2.16)

with a new remainder Rn,2 which has the following bound:

\| Rn,2\| L2 \lesssim \mu \tau 2n\| u\| 2L\infty (0,T ;W 2,p).(2.17)

Inserting the expression of g(tn) into (2.16), we have

u(tn) = e\tau n\mu Au(tn - 1) - \tau nPX [e\tau n\mu Au(tn - 1) \cdot \nabla e\tau n\mu Au(tn - 1)] - Rn,1  - Rn,2.(2.18)

Dropping the remainders Rn,1 and Rn,2 in (2.18) would yield a fully explicit
scheme

un = e\tau n\mu Aun - 1  - \tau nPX [e\tau n\mu Aun - 1 \cdot \nabla e\tau n\mu Aun - 1].(2.19)

However, in the stability estimate the gradient on the right-hand side should be
bounded by the smoothing property of the semigroup e\tau n\mu A, and this would yield
a stability estimate which depends on \mu  - 1. This would not be suitable for solving the
NS equations when the viscosity \mu is small.

In order to construct a low-regularity integrator which is stable for small \mu , we
further approximate \nabla e\tau n\mu Au(tn - 1) by \nabla u(tn) and rewrite (2.18) into

u(tn) = e\tau n\mu Au(tn - 1) - \tau nPX [e\tau n\mu Au(tn - 1) \cdot \nabla u(tn)] - Rn,1  - Rn,2  - PXRn,3,

(2.20)

with

Rn,3 = \tau ne
\tau n\mu Au(tn - 1) \cdot \nabla [e\tau n\mu Au(tn - 1) - u(tn)]

= \tau ne
\tau n\mu Au(tn - 1) \cdot \nabla 

\int tn

tn - 1

e(tn - s)\mu APX(u(s) \cdot \nabla u(s))ds (here (2.5) is used)
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= \tau n[e
\tau n\mu Au(tn - 1)]j \cdot 

\int tn

tn - 1

e(tn - s)\mu APX(u(s) \cdot \nabla \partial ju(s))ds

+ \tau n[e
\tau n\mu Au(tn - 1)]j \cdot 

\int tn

tn - 1

e(tn - s)\mu APX(\partial ju(s) \cdot \nabla u(s))ds,

(2.21)

where we have used (2.5) in deriving the second to last inequality. The new remainder
has the following bound:

\| Rn,3\| L2 \lesssim \tau 2n\| e\tau n\mu Au(tn - 1)\| L\infty \| u\| L\infty (0,T ;L\infty )\| u\| L\infty (0,T ;H2)

+ \tau 2n\| e\tau n\mu Au(tn - 1)\| L\infty \| u\| 2L\infty (0,T ;W 1,4)

\lesssim \tau 2n\| u\| 3L\infty (0,T ;H2).(2.22)

Hence, the remainders in (2.20) are bounded by O(\tau 2n) in the L2 norm, i.e.,

\| Rn,1\| L2 + \| Rn,2\| L2 + \| Rn,3\| L2 \lesssim \tau 2n,(2.23)

which only requires u \in L\infty (0, T ;W 2,p), where p is defined in (2.15).
By dropping the remainders Rn,1, Rn,2, and PXRn,3 in (2.20), we obtain the

following semi-implicit exponential method for the NS equations:

un + \tau nPX [e\tau n\mu Aun - 1 \cdot \nabla un] = e\tau n\mu Aun - 1.(2.24)

2.2. Extension to the no-slip boundary condition. If \Omega is a bounded do-
main in \BbbR d and the NS equations are considered under the no-slip boundary condition,
i.e., u = 0 on \partial \Omega , then the definition of \.H should be replaced by

\.H = \{ v \in L2(\Omega )d : \nabla \cdot v = 0, v \cdot \nu = 0 on \partial \Omega \} ,

where \nu denotes the unit outward normal vector on the boundary \partial \Omega . The L2-
orthogonal projection PX : L2(\Omega )d \rightarrow \.H is given by

PXf = f  - \nabla q,(2.25)

where q is the solution (up to a constant) of the following elliptic boundary value
problem: \Biggl\{ 

\Delta q =\nabla \cdot f,
\nabla q \cdot \nu =f \cdot \nu .

Let \.H2 = \{ v \in (H1
0 \times H2)d : \nabla \cdot v = 0\} and A = PX\Delta : \.H2 \rightarrow \.H. Then the

NS equations can be written as (2.2). Since PX\nabla q = 0 for q \in H1(\Omega )d, applying
A = PX\Delta to (2.25) yields

APXf = PX\Delta f for f \in (H1
0 \times H2)d,(2.26)

which is the same as (2.3). But (2.4) should be replaced by

Av = PX\Delta v = \Delta v  - \nabla r for v \in \.H2,(2.27)

where \Biggl\{ 
\Delta r =\nabla \cdot \Delta v,

\nabla r \cdot \nu =\Delta v \cdot \nu .
(2.28)
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2280 BUYANG LI, SHU MA, AND KATHARINA SCHRATZ

In a bounded Lipschitz domain it is known that the solution of (2.28) satisfies the
basic W 1,p estimate for some sufficiently small number \epsilon \ast > 0 (see [16, Theorem 2]):

\| r\| W 1,p \lesssim \| v\| W 2,p for 2 \leq p < 3 + \epsilon \ast .(2.29)

The change from (2.4) to (2.27) causes the change of analysis in the local trun-
cation errors in (2.13), i.e.,

g\prime (s) =  - e(tn - s)\mu A\mu APX [v(s) \cdot \nabla v(s)]

+ e(tn - s)\mu APX [\mu Av(s) \cdot \nabla v(s) + v(s) \cdot \nabla \mu Av(s)]

=  - \mu e(tn - s)\mu APX\Delta [v(s) \cdot \nabla v(s)]

+ \mu e(tn - s)\mu APX [(\Delta v(s) - \nabla r) \cdot \nabla v(s) + v(s) \cdot \nabla (\Delta v(s) - \nabla r)]

=  - \mu e(tn - s)\mu APX

\bigl[ 
v(s) \cdot \nabla \Delta v(s) + \Delta v(s) \cdot \nabla v(s) +

\sum 
j\partial jv(s) \cdot \nabla \partial jv(s)

\bigr] 
+ \mu e(tn - s)\mu APX [\Delta v(s) \cdot \nabla v(s) + v(s) \cdot \nabla \Delta v(s)]

 - \mu e(tn - s)\mu APX [\partial jr\partial jv(s) + vj(s)\partial j\nabla r]

=  - \mu e(tn - s)\mu APX

\bigl[ \sum 
j\partial jv(s) \cdot \nabla \partial jv(s)

\bigr] 
 - \mu e(tn - s)\mu APX [\partial jr\partial jv(s) + vj(s)\partial j\nabla r],(2.30)

where some additional terms involving \nabla 2r appear, compared with (2.13). Since
\| \nabla 2r\| L2 is equivalent to \| v\| H3 , the additional term involving \nabla 2r is not desired.
Fortunately, the projection operator PX in the last term of (2.30) cancels this bad
term, i.e.,

(2.30) =  - \mu e(tn - s)\mu APX

\bigl[ \sum 
j\partial jv(s) \cdot \nabla \partial jv(s)

\bigr] 
 - \mu e(tn - s)\mu APX [\partial jr \cdot \partial jv(s) - \nabla vj(s)\partial jr]

 - \mu e(tn - s)\mu APX [\nabla (vj(s) \cdot \partial jr)].(2.31)

Since PX\nabla q = 0 \forall q \in H1(\Omega ), it follows that the last term of (2.31) is zero. This
implies that

g\prime (s) =  - \mu e(tn - s)\mu APX

\bigl[ \sum 
j\partial jv(s) \cdot \nabla \partial jv(s)

\bigr] 
 - \mu e(tn - s)\mu APX [\partial jr \cdot \partial jv(s) - \nabla vj(s)\partial jr].(2.32)

If 2 \leq p \leq q < \infty , 1
p + 1

q = 1
2 , and p < 3 + \epsilon \ast , then

\| g\prime (s)\| L2 \lesssim \mu \| \nabla v(s)\| Lq (\| \nabla 2v(s)\| Lp + \| \nabla r\| Lp)

\lesssim \mu \| \nabla v(s)\| Lq\| \nabla 2v(s)\| Lp (here (2.29) is used).

Since

W 2,p \lhook \rightarrow W 1,q when 1 =
d

p
 - d

q
and 1 \leq p \leq q < \infty ,

by choosing 2 \leq p \leq q < \infty satisfying 1
p + 1

q = 1
2 and 1 = d

p  - d
q = 2d

p  - d
2 we obtain

\| g\prime (s)\| L2 \lesssim \mu \| v(s)\| 2W 2,p(2.33)
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with

p =

\left\{   
12

5
if d = 3,

2 + \epsilon if d = 2,

where \epsilon > 0 can be arbitrarily small. Indeed, this choice of p satisfies the condition
p < 3+\epsilon \ast required in (2.29). Since the estimate (2.33) we obtained here is the same as
(2.14), the rest of the analysis would be the same as the periodic boundary condition
and therefore omitted. In the end, we would obtain (2.20) under the no-slip boundary
condition, with remainders Rn,1, Rn,2, and Rn,3 satisfying the same estimates as those
under periodic boundary conditions. By dropping the remainders we would obtain
the same semi-implicit exponential method (2.24).

2.3. The energy-decay property. The proposed semi-implicit exponential
low-regularity integrator in (2.24) preserves the energy-decay structure of the NS
equations. This can be seen by testing (2.24) with un. Then we have

\| un\| 2L2 + \tau n(e
\tau n\mu Aun - 1 \cdot \nabla un, un) = (e\tau n\mu Aun - 1, un).(2.34)

Since e\tau n\mu Aun - 1 is divergence-free (the same as un - 1), it follows from integration by
parts that

\bigl( 
e\tau n\mu Aun - 1 \cdot \nabla un, un

\bigr) 
=

\biggl( 
e\tau n\mu Aun - 1,\nabla 

1

2
| un| 2

\biggr) 
=  - 

\biggl( 
\nabla \cdot (e\tau n\mu Aun - 1),

1

2
| un| 2

\biggr) 
= 0.

As a result, (2.34) reduces to

\| un\| 2L2 = (e\tau n\mu Aun - 1, un) \leq \| e\tau n\mu Aun - 1\| L2\| un\| L2 \leq \| un - 1\| L2\| un\| L2 ,

which implies that

\| un\| L2 \leq \| un - 1\| L2 .(2.35)

On the one hand, the energy-decay structure of the semi-implicit exponential low-
regularity integrator guarantees the energy boundedness of the numerical solution
without requiring any regularity of the solution and initial data. On the other hand,
this energy-decay structure also plays an important role in guaranteeing the conver-
gence of numerical solutions when the solution has sufficient regularity, as reflected
by the error analysis below.

2.4. Error estimates.

Theorem 2.1. Consider the NS equations either in a torus \Omega = [0, 1]d with the
periodic boundary condition or in a bounded domain \Omega under the Dirichlet bound-
ary condition, and assume that the solution of the NS equations has the following
regularity:

u \in C([0, T ];L2(\Omega )d) \cap L\infty (0, T ;W 1,\infty (\Omega )d) \cap L\infty (0, T ;W 2,p(\Omega )d),(2.36)

where p is given by (2.15). Then the numerical solution by the semi-implicit exponen-
tial method (2.24) has the following error bound:

max
1\leq n\leq N

\| en\| L2 \lesssim \tau .(2.37)
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Proof. If the solution has regularity (2.36) for some p > d, then p is bigger than the
value defined in (2.15), and therefore the regularity required in section 2 is satisfied.

Let en = un  - u(tn) be the error function. The difference between (2.24) and
(2.20) yields the following error equation:

en + \tau nPX [e\tau n\mu Aun - 1 \cdot \nabla en] = e\tau n\mu Aen - 1  - \tau nPX [e\tau n\mu Aen - 1 \cdot \nabla u(tn)]

+Rn,1 +Rn,2 + PXRn,3.(2.38)

Testing (2.38) by en and using the consistency error estimates in (2.23), we obtain

\| en\| 2L2 =(e\tau n\mu Aen - 1, en) - (\tau ne
\tau n\mu Aen - 1 \cdot \nabla u(tn), en) + (Rn,1 +Rn,2 + PXRn,3, en)

\leq 1

2
\| en - 1\| 2L2 +

1

2
\| en\| 2L2 + C\tau n\| \nabla u(tn)\| L\infty \| en - 1\| L2\| en\| L2 + C\tau 2n\| en\| L2

\leq 1

2
\| en - 1\| 2L2 +

1

2
\| en\| 2L2 + C\tau n\| en - 1\| 2L2 + C\tau n\| en\| 2L2 + C\tau 3n.

The second and fourth terms on the right-hand side can be absorbed by the left-hand
side. Therefore, we have

(1 - C\tau n)\| en\| 2L2 \leq (1 + C\tau n)\| en - 1\| 2L2 + C\tau 3n.

For sufficiently small stepsize \tau n we can apply Gronwall's inequality. This yields

max
1\leq n\leq N

\| en\| 2L2 \lesssim \tau 2.

This proves the desired error bound in Theorem 2.1.

3. Extension to full discretization. In this section, we show that the pro-
posed semi-implicit exponential method in (2.24) can be extended to full discretiza-
tion, for example, with finite element methods or spectral methods in space. Since
the error analyses of these two class of full discretizations are similar, we present the
error analyses only for the finite element method in this article.

3.1. A finite element method with postprocessing. In this subsection, we
extend the low-regularity integrator to full discretization by using a finite element
method with postprocessing at every time level. For simplicity we focus on the peri-
odic boundary condition.

We consider a conforming finite element subspace Xh \times Mh \subset H1(\Omega )d \times L2(\Omega )
with the following two properties:

(1) the inf-sup condition:

\| qh\| L2 \lesssim sup
vh\in Xh

vh \not =0

(\nabla \cdot vh, qh)
\| vh\| H1

;

(2) approximation properties:

inf
vh\in Xh

(\| v  - vh\| L2 + h\| v  - vh\| H1) \lesssim hk\| v\| Hk for v \in Hk(\Omega )d and 1 \leq k \leq 2,

inf
qh\in Mh

\| q  - qh\| L2 \lesssim hk\| q\| Hk for q \in Hk(\Omega ) and 0 \leq k \leq 1.

Examples of such finite element spaces include the Taylor--Hood Pk-Pk - 1 spaces (for
k \geq 2) and the minielement P1b-P1 space; see [2, 4, 5].
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We define the discrete divergence-free subspace of Xh by

\.Xh = \{ vh \in Xh : (\nabla \cdot vh, qh) = 0 \forall qh \in Mh\} 

and then define the discrete Stokes operator Ah : \.Xh \rightarrow \.Xh by

(Ahw
h, vh) =  - (\nabla wh,\nabla vh) \forall wh, vh \in \.Xh.

We define Uh to be the H(div,\Omega )-conforming Raviart--Thomas finite element
spaces of order 1, i.e.,

Uh := \{ w \in H(div,\Omega ) : w| K \in P1(K)d + xP1(K) for every triangle K\} 

and define the divergence-free subspace of Uh by

\.Uh := \{ vh \in Uh : \nabla \cdot vh = 0 in \Omega \} .(3.1)

Let P \.Uh
: L2(\Omega )d \rightarrow \.Uh be the L2-orthogonal projection, defined by

(v  - P \.Uh
v, wh) = 0 \forall wh \in \.Uh \forall v \in L2(\Omega )d.(3.2)

If v \in H2(\Omega )d is a divergence-free vector field, then the following approximation result
holds (see [21, inequality (3.4)]):

\| v  - P \.Uh
v\| L2 \leq Ch2\| v\| H2 .(3.3)

Note that the weak formulation of the time-stepping method in (2.24) can be
written as

(un, v) + (\tau ne
\tau n\mu Aun - 1 \cdot \nabla un, v) + (pn,\nabla \cdot v) = (e\tau n\mu Aun - 1, v) \forall v \in H1(\Omega )d,

(3.4)

(\nabla \cdot un, q) = 0 \forall q \in L2(\Omega ),

(3.5)

where pn is the function satisfying

\tau nPX [e\tau n\mu Aun - 1 \cdot \nabla un] = \tau ne
\tau n\mu Aun - 1 \cdot \nabla un  - \nabla pn.

By using the discrete Stokes operator Ah and the projection operator P \.Uh
introduced

in this section, we consider the following fully discrete finite element method for (3.4)--
(3.5): Find (uh

n, p
h
n) \in Xh \times Mh such that the following equations hold:

(uh
n, v

h)+\tau n([P \.Uh
e\tau n\mu Ahuh

n - 1] \cdot \nabla uh
n, v

h)+(phn,\nabla \cdot vh) = (e\tau n\mu Ahuh
n - 1, v

h) \forall vh \in Xh,

(3.6)

(\nabla \cdot uh
n, q

h) = 0 \forall qh \in Mh.

(3.7)

The presence of the postprocessing projection P \.Uh
is necessary for obtaining er-

ror estimates, as well as preserving the energy-decay structure. In particular, since
\tau nP \.Uh

e\tau n\mu Ahuh
n - 1 is divergence-free (due to the projection P \.Uh

), it follows that

\tau n([P \.Uh
e\tau n\mu Ahuh

n - 1] \cdot \nabla uh
n, u

h
n) = 0.
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As a result, choosing (vh, qh) = (uh
n, p

h
n) in (3.6)--(3.7) yields

\| uh
n\| 2L2 = (e\tau n\mu Ahuh

n - 1, u
h
n) \leq \| e\tau n\mu Ahuh

n - 1\| L2\| uh
n\| L2 \leq \| uh

n - 1\| L2\| uh
n\| L2 ,(3.8)

which implies the following energy-decay inequality:

\| uh
n\| L2 \leq \| uh

n - 1\| L2 .(3.9)

Theorem 3.1. Consider the NS equations either in a torus \Omega = [0, 1]d (with
periodic boundary condition), and assume that the solution of the NS problem (1.1)
has the following regularity:

u \in C([0, T ];L2(\Omega )d) \cap L\infty (0, T ;W 1,\infty (\Omega )d) \cap L\infty (0, T ;W 2,p(\Omega )d),(3.10)

where p is given by (2.15). Then, under mesh size restriction h \lesssim \tau min (the smallest
stepsize), the numerical solution given by the fully discrete method (3.6)--(3.7) has the
following error bound:

max
1\leq n\leq N

\| uh
n  - u(tn)\| L2 \lesssim \tau .(3.11)

Proof. By requiring the test function vh to be in the discrete divergence-free
subspace \.Xh, the weak formulation (3.6)--(3.7) can be equivalently written as the
following: Find uh

n \in \.Xh such that

(uh
n, v

h) + \tau n(P \.Uh
[e\tau n\mu Ahuh

n - 1] \cdot \nabla uh
n, v

h) = (e\tau n\mu Ahuh
n - 1, v

h) \forall vh \in \.Xh.(3.12)

The exact solution satisfies similar equations, i.e.,

(P \.Xh
u(tn), v

h) + \tau n(P \.Uh
[e\tau n\mu AhP \.Xh

u(tn - 1)] \cdot \nabla P \.Xh
u(tn), v

h)

= (e\tau n\mu AhP \.Xh
u(tn - 1), v

h) - (Rn,1 +Rn,2 + PXRn,3, v
h)

 - (En,1 + En,2 + En,3, v
h) \forall vh \in \.Xh,(3.13)

where

En,1 = \tau n
\bigl[ 
e\tau n\mu Au(tn - 1) - P \.Uh

e\tau n\mu AhP \.Xh
u(tn - 1)

\bigr] 
\cdot \nabla u(tn),(3.14)

En,2 = \tau nP \.Uh

\bigl[ 
e\tau n\mu AhP \.Xh

u(tn - 1)
\bigr] 
\cdot \nabla (u(tn) - P \.Xh

u(tn)),(3.15)

En,3 = e\tau n\mu AhP \.Xh
u(tn - 1) - P \.Xh

e\tau n\mu Au(tn - 1).(3.16)

By using the triangle inequality we can decompose En,1 into two parts, i.e.,

\| En,1\| L2 \leq \tau n
\bigm\| \bigm\| \bigl[ e\tau n\mu Au(tn - 1) - P \.Uh

e\tau n\mu Au(tn - 1)
\bigr] 
\cdot \nabla u(tn)

\bigm\| \bigm\| 
L2

(3.17)

+ \tau n
\bigm\| \bigm\| P \.Uh

\bigl[ 
e\tau n\mu Au(tn - 1) - e\tau n\mu AhP \.Xh

u(tn - 1)
\bigr] 
\cdot \nabla u(tn)

\bigm\| \bigm\| 
L2

\leq \tau nh
2\| e\tau n\mu Au(tn - 1)\| H2\| \nabla u(tn)\| L\infty + \tau nh

2\| u(tn - 1)\| H2\| \nabla u(tn)\| L\infty ,(3.18)

where the first term on the right-hand side of (3.17) is estimated by using (3.3) and
the second term is estimated by using the standard L2 error estimates of semidiscrete
finite element method for a linear parabolic equation with initial value u(tn - 1); see [35,
Theorem 3.1] (for the time-dependent Stokes equations the error estimation is the
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same). The standard approximation property of the L2 projection operator P \.Xh

implies that

\| En,2\| L2 \lesssim \tau nh\| u\| 2L\infty (0,T ;H2).(3.19)

Again, the standard L2 error estimates of semidiscrete finite element methods for
linear parabolic equations with initial value u(tn - 1) in [35, Theorem 3.1] implies that

\| En,3\| L2 \lesssim h2\| u(tn - 1)\| H2 .(3.20)

The three estimates above can be summarized as

\| En,1\| L2 + \| En,2\| L2 + \| En,3\| L2 \lesssim \tau nh+ h2.(3.21)

Let ehn = uh
n - P \.Xh

u(tn). Then the difference between (3.12) and (3.13) yields the
following error equation:

(ehn, v
h) + \tau n(P \.Uh

\bigl[ 
e\tau n\mu Ahuh

n - 1

\bigr] 
\cdot \nabla ehn, v

h) + \tau n(P \.Uh

\bigl[ 
e\tau n\mu Ahehn - 1

\bigr] 
\cdot \nabla P \.Xh

u(tn), v
h)

(3.22)

= (e\tau n\mu Ahehn - 1, v
h) - (Rn,1 +Rn,2 + PXRn,3, v

h)

 - (En,1 + En,2 + En,3, v
h) \forall vh \in \.Xh.

By choosing vh = ehn in (3.22) and using the property (thanks to the projection P \.Uh

onto the divergence-free space \.Uh)

(P \.Uh

\bigl[ 
e\tau n\mu Ahuh

n - 1

\bigr] 
\cdot \nabla ehn, e

h
n) = 0,

we obtain

\| ehn\| 2L2 + \tau n(P \.Uh

\bigl[ 
e\tau n\mu Ahehn - 1

\bigr] 
\cdot \nabla P \.Xh

u(tn), e
h
n)

= (e\tau n\mu Ahehn - 1, e
h
n) - (Rn,1 +Rn,2 + PXRn,3, e

h
n) - (En,1 + En,2 + En,3, e

h
n).

(3.23)

The right-hand side of the above inequality can be estimated by using the consistency
error estimates in (2.23) and (3.21). This yields

\| ehn\| 2L2 + \tau n(P \.Uh

\bigl[ 
e\tau n\mu Ahehn - 1

\bigr] 
\cdot \nabla P \.Xh

u(tn), e
h
n)

\leq 1

2
\| ehn - 1\| 2L2 +

1

2
\| ehn\| 2L2 + C\tau n(\tau n + h)\| ehn\| L2 + Ch2\| ehn\| L2

\leq 1

2
\| ehn - 1\| 2L2 +

1 + \tau n
2

\| ehn\| 2L2 + C[\tau n(\tau 
2
n + h2) + h4/\tau n]

\leq 1

2
\| ehn - 1\| 2L2 +

1 + \tau n
2

\| ehn\| 2L2 + C\tau 3n when h \lesssim \tau n.(3.24)

The second term on the left-hand side of the above inequality can be estimated by

| \tau n(P \.Uh

\bigl[ 
e\tau n\mu Ahehn - 1

\bigr] 
\cdot \nabla P \.Xh

u(tn), e
h
n)| \lesssim \tau n\| ehn - 1\| L2\| ehn\| L2 .(3.25)

By combining the two inequalities above, we obtain

(1 - \tau n)\| ehn\| 2L2 \leq (1 + C\tau n)\| ehn - 1\| 2L2 + C\tau 3n when h \lesssim \tau n.(3.26)

Then, iterating the inequality for n = 1, 2, . . . , N , we obtain the following error bound:

max
1\leq n\leq N

\| ehn\| 2L2 \lesssim \tau 2 when h \lesssim \tau min.(3.27)

This completes the proof of Theorem 3.1.
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3.2. A spectral collocation method. In this subsection, we show that the
proposed semi-implicit low-regularity exponential integrator can also be combined
with some spectral methods which can be performed with less computational cost
by using the Fast Fourier transform (FFT). For illustration, we present a Fourier
collocation method in the two-dimensional torus. The three-dimensional case can
be treated similarly by using the eigenfunctions expansion of the Stokes operator;
see [37, Theorem 2.11] or [31, section 7].

It is known that the eigenfunctions of the Stokes operator A = PX\Delta on the torus
\Omega = [ - \pi , \pi ]\times [ - \pi , \pi ] are the constant vector fields

\phi 01 =

\Biggl( 
1

0

\Biggr) 
and \phi 02 =

\Biggl( 
0

1

\Biggr) 

and the vector fields

\phi k = k\bot eik\cdot x, k \in \BbbZ 2
0 := \BbbZ 2\setminus \{ (0, 0)\} , where k\bot :=

\Biggl( 
k2

 - k1

\Biggr) 
,

with eigenvalues  - k2 for k \in \BbbZ 2
0. Let XM = span\{ \phi 01, \phi 02\} \oplus span\{ \phi k : | k| \leq M\} . If

the numerical solution at time level t = tn - 1 is known to be

uM
n - 1 = un - 1,1\phi 01 + un - 1,2\phi 02 +

\sum 
| k| \leq M

un - 1,k\phi k \in XM ,

then we seek a numerical solution at t = tn, i.e.,

uM
n = un,1\phi 01 + un,2\phi 02 +

\sum 
| k| \leq M

un,k\phi k \in XM ,

satisfying the following equation:

uM
n + \tau nPXM

[e\tau n\mu AuM
n - 1 \cdot \nabla uM

n ] = e\tau n\mu AuM
n - 1.(3.28)

where PXM
: L2 \rightarrow XM is the L2-orthogonal projection.

The Fourier spectral method in (3.28) can be computed by the FFT. In fact,
direct calculation yields

e\tau n\mu AuM
n - 1 = un - 1,1\phi 01 + un - 1,2\phi 02 +

\sum 
| k| \leq M

e - \tau n\mu k
2

un - 1,kk
\bot eik\cdot x,

\nabla uM
n =

\sum 
| j| \leq M

iun,jj \otimes j\bot eij\cdot x,

and therefore

e\tau n\mu AuM
n - 1 \cdot \nabla uM

n =
\sum 

| m| \leq M

(un - 1,1\phi 01 + un - 1,2\phi 02)iun,mm\otimes m\bot eim\cdot x

+
\sum 

| m| \leq 2M

\sum 
k+j=m

ie - \tau n\mu k
2

un - 1,k(k
\bot \cdot j)un,jj

\bot eim\cdot x

=:
\sum 

| m| \leq 2M

vmeim\cdot x.
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This is a product of two 2M -term Fourier series, and therefore the coefficients vm,
| m| \leq 2M , can be computed by FFT with the computational cost of O(M lnM); see
the appendix. Its projection onto XM is given by

PXM
[e\tau n\mu AuM

n - 1 \cdot \nabla uM
n ] =

\sum 
| m| \leq M

vm \cdot m
\bot \otimes m\bot 

(2\pi )d| m| 2
eim\cdot x,

which is equivalent to cutting the length of a vector and then multiplying the vector
by a diagonal matrix, and therefore can be computed with O(M) operations.

Overall, the matrix-vector product on the left-hand side of (3.28) can be computed
by FFT with computational cost of O(M lnM). Under the condition \tau n = O(h), the
condition number of the coefficient matrix in (3.28) is O(1). In this case, we can
solve the linear system of (3.28) by using GMRES, which converges well when the
condition number of the matrix is O(1). The errors of the numerical solutions given
by this method (versus CPU time) are shown in the numerical experiments in the
next section.

4. Numerical experiments. In this section, we present numerical tests to sup-
port the theoretical analysis and to illustrate the advantages of the proposed method
in comparison with the semi-implicit Euler method and classical exponential integra-
tor (i.e., the exponential Euler method).

We solve the NS equations in the two-dimensional torus [0, 1] \times [0, 1] under the
periodic boundary condition by the proposed exponential low-regularity integrator
(LRI), with initial value

u0 = (u0
1(x, y), u

0
2(x, y)),

where

u0
1(x, y) = m\pi sinm(\pi x) sinm - 1(\pi y) cos(\pi y),

u0
2(x, y) =  - m\pi sinm - 1(\pi x) sinm(\pi y) cos(\pi x).

By choosing m = 2.6, the initial value satisfies u0 \in H2+\epsilon (\Omega )2 for 0 < \epsilon < 0.1.
Therefore, the initial value satisfies the conditions in Theorem 3.1. The algorithm
in [24] is used to evaluate the exponential operators in the low-regularity integrator
and exponential Euler method.

We present the time discretization errors \| u(\tau )
N  - u

(\tau /2)
N \| L2(\Omega ) of the numerical

solutions at time T = 1/8 in Figure 1 for \mu = 0.5, 10 - 2 and 10 - 4. The NaN in the
case \mu = 10 - 4 indicates that the numerical solution of the exponential Euler method
blows up due to instability. From the numerical results in Figure 1 we see that
the proposed exponential LRI has first-order convergence in time, as proved in this
article. Moreover, the proposed exponential LRI is about 1000 times more accurate
than the semi-implicit Euler method when \mu = O(1) (similarly to the exponential
Euler method in this case) and is more stable than the exponential Euler method
when \mu \rightarrow 0 (similarly to the semi-implicit Euler method in this case). Either the
exponential Euler method or the semi-implicit Euler method only works well in one
of the two cases \mu = O(1) and \mu \rightarrow 1, while the proposed exponential LRI works well
for both cases, as well as the intermediate case \mu = 10 - 2.

The spatial discretization errors by the finite element method is presented in Fig-
ure 2, where we see that the spatial discretization has second-order convergence, which
is better than the result proved in Theorem 3.1. The rigorous proof of second-order
convergence in space is still challenging for this newly proposed method. Moreover,
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Fig. 1. Time discretization errors versus stepsizes, with H2 initial data (m = 2.6).
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Fig. 2. Finite element spatial discretization errors versus stepsizes, with H2 initial data (m =
2.6).

the proposed exponential LRI is as stable as the semi-implicit Euler method, unlike
the exponential Euler method which blows up in the case \mu \rightarrow 0.

We present the time discretization errors versus CPU time in Figure 3 for the
initial value u0 = (u0

1(x, y), u
0
2(x, y)) in the domain [ - \pi , \pi ]\times [ - \pi , \pi ] up to time T = 1,

where

u0
1(x, y) =  - m

2
cosm(x/2) cosm - 1(y/2) sin(y/2),

u0
2(x, y) =

m

2
cosm - 1(x/2) cosm(y/2) sin(x/2).

The Fourier collocation method is used for the spatial discretization under the CFL
condition \tau = 2/M , which is used to guarantee the fast convergence of the GMRES
solver for the linear systems. We see that the proposed exponential LRI is about 1000
times more accurate than the semi-implicit Euler method in the case \mu = O(1) when
using the same CPU time (similarly to the exponential Euler method in this case)
and is more stable than the exponential Euler method when \mu \rightarrow 0 (similarly to the
semi-implicit Euler method in this case). Again, either the exponential Euler method
or the semi-implicit Euler method only works well in one of the two cases \mu = O(1)
and \mu \rightarrow 1, while the proposed Exponential LRI works well for both cases as well as
the intermediate case \mu = 10 - 2.

The time discretization errors for H1, H2, and H3 initial data with Fourier col-
location method in space are presented in Figures 4--6 for the three cases \mu = 1,
\mu = 10 - 2, and \mu = 10 - 4, respectively. The spatial discretization is performed by
the Fourier collocation method with FFT, with a sufficiently large M so that the
spatial discretization errors is negligibly small in observing the temporal discretiza-
tion errors. From Figures 4--6 we see that the regularity of the initial data does not
affect the first-order convergence of the time discretizations. However, the theoretical
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Fig. 3. Time discretization errors versus CPU time, with the fast Fourier collocation method
in space.
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Fig. 4. Time discretization errors with \mu = 1.
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Fig. 5. Time discretization errors with \mu = 0.01.
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Fig. 6. Time discretization errors with \mu = 0.0001.

analysis of first-order convergence for all range of \mu with initial data below H3 is still
challenging. In this paper, we have set a first step toward weakening the regularity
condition of the NS equations for first-order convergence and improving the accuracy
of classical methods in both viscous and inviscid cases, as well as the intermediate
case.
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5. Conclusions. In this paper we set a first step toward weakening the regu-
larity condition of the NS equations for first-order convergence and improving the
accuracy of classical methods in both viscous and inviscid cases. We have proposed a
semi-implicit fully discrete low-regularity integrator for the NS equations under both
periodic and Dirichlet boundary condition. This is the first time a low-regularity
integrator is coupled with a finite element method in space. The proposed method
can be shown to have first-order convergence under weaker regularity conditions than
the semi-implicit Euler method and classical exponential integrators. Under periodic
boundary conditions, the numerical results show that the proposed method combines
the advantages of the semi-implicit Euler method and classical exponential integrator
in both viscous and inviscid cases. In particular, the proposed method is as good as
the classical exponential Euler method (much more accurate than the semi-implicit
Euler method) in the viscous case \mu = O(1) when diffusion dominates and more ro-
bust than the classical exponential Euler method in the inviscid case \mu \rightarrow 0 when
convection dominates.

In the practical computation, whether diffusion dominates not only depends on
the size of \mu but also depends on other factors, such as the size and shape of the
domain and the largeness of the velocity. It is also possible that convection domi-
nates in one region, but diffusion dominates in another region. One advantage of the
proposed method, in addition to its theoretical value which weakens the regularity
condition for first-order convergence, is that one does not need to distinguish whether
diffusion dominates or not and whether the solution is sufficiently smooth as required
by the classical exponential integrator. In either case, \mu = O(1) or \mu << 1, the pro-
posed method is automatically as good as the better method between the classical
exponential integrator and the semi-implicit Euler method.

The semi-implicit exponential low-regularity integrator constructed in this pa-
per is more expensive than typical popular projection methods (for example, see
[8, 33, 34]), as it requires the computation of an exponential of the Stokes operator.
The development of low-regularity integrators which have a similar feature of the pro-
jection methods is interesting and challenging. The construction of a low-regularity
integrator which allows low-regularity approximations and simultaneously resolves
the boundary layer effect under the Dirichlet boundary condition in the inviscid case
\mu \rightarrow 0 is an interesting and challenging future research direction.

Appendix. FFT. For any positive integer N , we denote by I2N the (4N + 1)-
point trigonometric interpolation operator, which can be obtained through the discrete
Fourier transform

I2Nf(x) =

2N\sum 
k= - 2N

eikx \~fk with \~fk =
1

4N + 1

2N\sum 
n= - 2N

e - ikxnf(xn),(A.1)

where

xn =
2\pi n

4N + 1
for n =  - 2N, . . . , 2N.

If the Fourier coefficient \^fk of the function f satisfies that \^fk = 0 for | k| > 2N , then

I2Nf = f , and therefore \~fk = \^fk in the formula (A.1). In this case, both

f(xn) =

2N\sum 
k= - 2N

eikxn \^fk, n =  - 2N, . . . , 2N,(A.2)
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and

\^fk =
1

4N + 1

2N\sum 
n= - 2N

e - ikxnf(xn) k =  - 2N, . . . , 2N,

can be computed with cost O(N lnN) by using the FFT.

Let SN be the subspace of functions f \in L2([0, 2\pi ]) such that \^fk = 0 for | k| > N .
If w, v \in SN and their Fourier coefficients \^wk and \^vk, k =  - 2N, . . . , 2N , are stored
in the computer (with \^wk = \^vk = 0 for N < | k| \leq 2N), then the values w(xn) and
v(xn), n =  - 2N, . . . , 2N , can be computed exactly by using (A.2) and FFT. Since
\widehat (wv)k = 0 for | k| > 2N , it follows that wv = I2N (wv). If we denote by \scrF k[v] the kth
Fourier coefficient of the function v, then

\scrF k[wv] =
1

4N + 1

2N\sum 
n= - 2N

e - ikxnw(xn)v(xn), k =  - 2N, . . . , 2N,

which can also be computed exactly by using FFT.
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