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Abstract. A new spectral method is constructed for the linear and semilinear subdiffusion
equations with possibly discontinuous rough initial data. The new method effectively combines
several computational techniques, including the contour integral representation of the solutions, the
quadrature approximation of contour integrals, the exponential integrator using the de la Vallée
Poussin means of the source function, and a decomposition of the time interval geometrically refined
towards the singularity of the solution and the source function. Rigorous error analysis shows that the
proposed method has spectral convergence for the linear and semilinear subdiffusion equations with
bounded measurable initial data and possibly singular source functions under the natural regularity
of the solutions.
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1. Introduction. We consider the semilinear subdiffusion equation in a bounded
Lipschitz domain Ω ⊂ Rd up to a given time T > 0, under the Dirichlet boundary
condition, i.e., ∂α

t u(x, t)−∆u(x, t) = f(u(x, t), x, t) for (x, t) ∈ Ω × (0, T ],
u(x, t) = 0 for (x, t) ∈ ∂Ω × (0, T ],
u(x, 0) = u0(x) for x ∈ Ω,

(1.1)

where f : R × Rd × R+ → R and u0 are the given nonlinear function and initial
value, and ∂α

t u denotes the Caputo fractional derivative of order α ∈ (0, 1). The
subdiffusion equations which can model the sublinear growth of mean squared particle
displacement have generated much interests from physicists, engineers and applied
mathematicians in developing new computational methods and rigorous numerical
analyses because of their excellent capability in modelling the anomalous transport
processes. The construction and analysis of high-order computational methods for the
subdiffusion equations, especially for the semilinear subdiffusion equation, have been
challenging due to the possible singularity of the solution and the source function at
t = 0.

In general, for the linear subdiffusion equation with initial value u0 ∈ H1
0 (Ω) ∩

H2(Ω) and a temporally smooth source function f(x, t) (independent of u), the solu-
tion generally exhibits the following type of weak singularity at t = 0 (see [15, Theorem
1]):

∥∂m
t (u(·, t)− u0)∥L2 ≤ Cmtα−m for m ≥ 0. (1.2)

Under this limited regularity condition, the classical L1, L2, dG and convolution
quadrature (CQ) with a uniform stepsize generally have first-order convergence; for
example, see [12, 13, 33, 40]. The analyses in [17, 19, 35, 37] show that the L1 and L2
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methods, and a low-order dG time-stepping method, can have the desired optimal-
order convergence by using graded stepsizes locally refined towards t = 0. The ex-
tension of these low-order convergence results to the semilinear subdiffusion equation
may be established by using the fractional version of discrete Gronwall’s inequalities
in [14, 24, 25]. The sharp pointwise-in-time error bounds on quasi-graded temporal
meshes with arbitrary degree of grading are obtained in [16] using method of upper
and lower solutions for L1 scheme. Higher-order sub-optimal convergence in time was
proved for the dG time-stepping method in [34] under condition (1.2) and some addi-
tional regularity assumptions such as ∂tu ∈ L2(0, T ;H2(Ω)), which generally requires
the initial value to satisfy u0 ∈ H5/2(Ω) ∩ H1

0 (Ω) plus a compatibility condition
∆u0 = 0 on ∂Ω. In the case u0 = 0, high-order convergence of the Runge–Kutta
convolution quadrature was proved in [2].

The extension of the above-mentioned results to rough initial data in Lp(Ω) with
1 ≤ p ≤ ∞ (without any differentiability), using graded stepsizes to improve the
convergence orders, is still challenging due to the stronger singularity in this case
(see [15, Theorem 1]), i.e.,

∥∂m
t u(·, t)∥Lp ≤ Cmt−m for m ≥ 0. (1.3)

Under this regularity condition, the L1, L2 and CQ schemes with a uniform stepsize
and appropriate initial corrections can have high-order convergence at time levels far
away from t = 0, i.e.,

∥u(·, tn)− un∥Lp ≤ Ct−k
n τk, (1.4)

where un denotes the numerical solution using a uniform stepsize τ . The results were
established in [13,31,40] in the L2-norm framework, i.e., with error estimates in the L2

norm and initial data in L2(Ω), by comparing the numerical solution with the solution
through their Laplace transform representations, a framework developed by Lubich for
the analysis of CQ for convolution integrals; see [27–29]. Nevertheless, the analyses
can be naturally extended to the Lp-norm framework by using the corresponding
resolvent estimate in Lp(Ω), i.e.,

∥(z −∆)−1∥Lp(Ω)→Lp(Ω) ≤ C|z|−1, 1 ≤ p ≤ ∞,

which holds for both the Laplacian ∆ and the finite element discrete Laplacian ∆h;
see [20, 21]. However, these high-order convergence results only hold for the linear
subdiffusion equation with a given temporally smooth source function.

The extension of the high-order methods to the semilinear subdiffusion equa-
tion with nonsmooth initial data is still challenging. The main difficulty in the nu-
merical solution of the semilinear subdiffusion equation is that the source function
f(u(x, t), x, t) also becomes singular at t = 0 due to the singularity of u(x, t). In this
case, the regularity of the solution and the source function is

∥∂m
t (u(·, t)− u0)∥L∞ + ∥∂m

t f(u(·, t), ·, t)∥L∞ ≤ Cmtα−m for m ≥ 0 (1.5)
and

∥∂m
t u(·, t)∥L∞ + ∥∂m

t f(u(·, t), ·, t)∥L∞ ≤ Cmt−m for m ≥ 0 (1.6)

for initial data in H1
0 (Ω) ∩ C2(Ω) and L∞(Ω), respectively; see [22, 39]. The con-

vergence of the backward Euler CQ was not affected by the singularity of the source
function, as shown in [14] and [1] for initial data in H1

0 (Ω)∩H2(Ω) and Hs(Ω), s > 0,
respectively. However, the convergence of higher-order CQs can be affected by the
singularity of the source function at t = 0. In particular, the analysis and numerical
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experiments in [39] show that the convergence order of high-order BDF-CQs, using
a uniform stepsize with appropriate initial corrections, is at most 1 + 2α for general
initial data in H1

0 (Ω) ∩ C2(Ω). More recently, a k-step exponential CQ was pro-
posed in [22] to achieve kth-order convergence for semilinear subdiffusion equation
with initial data in L∞(Ω), where k is an arbitrary prescribed positive integer which
determines the numerical scheme and the convergence order.

The above-mentioned methods all have fixed convergence orders. The develop-
ment of spectral methods, which converge faster than O(N−k) for any fixed positive
integer k (where N denotes the degrees of freedom in the time discretization), is still
challenging for the subdiffusion equation with singular solutions and source functions.
Many efficient spectral methods for the fractional ordinary and partial differential
equations have been proposed and analyzed:

• A new multi-domain spectral method for high-order time discretizations of
fractional ordinary differential equations (ODEs) and the subdiffusion equa-
tion was proposed in [4]. The stability of the method was studied by iden-
tifying the method as a generalized linear method. The rigorous analysis of
its spectral convergence for the subdiffusion equation with rough initial data
still remains challenging.

• A class of spectral collocation methods based on the generalized Jacobi func-
tions was proposed in [42, 43] for some fractional differential equations. The
approximation errors of the generalized Jacobi polynomials in weighted Sobolev
spaces, as well as the convergence of the spectral Petrov–Galerkin method
for fractional ordinary differential equations (ODEs), were presented in [7].
The current analysis requires some fractional derivatives of the solution to
be smooth, which is true for some fractional ODEs but cannot be readily
extended to the subdiffusion equation. The rigorous analysis of this class of
methods for the subdiffusion equation with rough initial data still remains
challenging.

• The generalied Jacobi polynomials were also used for calculating the eigen-
values of the space-fractional differential equations in [5] and for determining
the superconvergence points of fractional spectral interpolations in [44].

• A class of Müntz spectral Galerkin methods were proposed and analyzed
in [10,11] based on the Müntz polynomials and weighted Sobolev spaces. The
methods have spectral convergence for solutions with the following regularity:

t−1+m∂m
t [u(x, t1/λ)] ∈ L2(0, T ;H1

0 (Ω)) ∀m ≥ 0. (1.7)
This covers a wide class of solutions, including solutions in the form of

u(x, t) =

∞∑
j=1

tjαϕj(x),

which can be approximated with spectral convergence by choosing λ = 1/α.
For more general solutions of the subdiffusion equation with initial data in
H1

0 (Ω)∩H2(Ω), when the solutions have the regularity in (1.2) but may not
satisfy condition (1.7), the Müntz spectral Galerkin methods can still have a
fixed high order of convergence by choosing a sufficiently small parameter λ.

• A class of log-orthogonal spectral methods for the subdiffusion equation was
proposed and analyzed in [8] by using the log-orthogonal polynomials intro-
duced in [6]. It is shown that the method can have spectral convergence
if the initial value satisfies u0 ∈ Ḣ3(Ω), which is equivalent to requiring
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u0 ∈ H1
0 (Ω) ∩H3(Ω) plus one compatibility condition ∆u0 = 0 on ∂Ω.

As far as we know, the following questions are still unsolved in the development of
spectral methods for the subdiffusion equations.

• The current error analysis of spectral methods for the subdiffusion equation
requires the initial data to be smoother than H1

0 (Ω) ∩H2(Ω) and satisfying
some compatibility conditions, or satisfying a regularity condition in the form
of (1.5). The construction of spectral methods for the semilinear subdiffusion
equation with rough initial data in L∞(Ω) with strong singularity in the form
of (1.6) is still challenging.

• The existing error estimates for the spectral methods are all for the linear
subdiffusion equation based on the Hilbert space framework. The extension
of the error analysis for the spectral methods to the semilinear subdiffusion
equation, with nonlinear source functions which may not be globally Lip-
schitz continuous, requires error estimates in the L∞-norm based Banach
space framework and therefore still remains open. There are few analysis
of spectral methods in the L∞-norm framework. We are only aware of the
L∞-norm analysis of spectral methods in [23] by the effective maximum prin-
ciple of spatial discretizations. The techniques cannot be applied to the time
discretization of the subdiffusion equation in the presence of singularity.

These questions are addressed in this article.
We propose a new spectral method for the semilinear subdiffusion equation with

rough initial data in L∞(Ω) under the natural regularity condition (1.6), based on
quadrature approximations to the contour integral representation of the solution,
the exponential integrator using the de la Vallée Poussin means (i.e., VP means,
see [38]), and error estimates via a fixed-point argument in an L∞-norm framework.
The contour integral approximation techniques were used in [26] and [9] for evaluat-
ing exponential-type of operators and for solving linear convection–diffusion equations,
respectively. The techniques were also used in the construction of a high-order back-
ward extrapolated multi-step exponential convolution quadrature for the semilinear
subdiffusion equation in [22]. However, the method in [22] only has a fixed order of
convergence and cannot be extended to a spectral method directly due to the following
three challenges: (1) The temporal Lagrange interpolation used in [22] is not stable
in the L∞ norm as the degrees of freedom tend to infinity; (2) The integrals of the
exponential function times the Lagrange basis is difficult to be evaluated analytically
when the degree of the polynomial is large; (3) The source function is singular at
t = 0 and therefore the Lagrange interpolation on the whole time interval does not
have uniform high-order convergence.

We overcome these difficulties by utilizing an exponential type of spectral method
in terms of the interpolation polynomial VP means on subintervals that are geometri-
cally refined towards t = 0 according to the singularity of the solution and the source
function. We derive analytical formulas for the exponential integrals arising from the
proposed method by utilizing the differentiation properties of the Jacobi polynomi-
als, and prove the spectral convergence of the proposed method based on the natural
regularity condition in (1.6) using the L∞ stability of the polynomial VP means and
their approximation properties on the geometrically refined subintervals. The spectral
convergence in the L∞ norm is established, which allows us to handle nonlinear source
functions which are only locally Lipschitz continuous (rather than globally Lipschitz
continuous). These results make the proposed method practically computable and
spectrally convergent for rough solutions of the semilinear subdiffusion equation in
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the most general setting.
In view of the equivalence between CQs and their Laplace transform representa-

tions, e.g., the Runge–Kutta (or BDF) CQ for a parabolic or subdiffusion equation
is equivalent to applying the Runge–Kutta method (or BDF) method to the ODE
arising from the Laplace transform representation of the solution (as shown in [30]),
the exponential spectral method proposed in this article can also be viewed as a con-
tour integral approximation to a spectrally convergent CQ constructed by utilizing an
exponential integrator for the ODE arising from the Laplace transform representation
of the solution, and by utilizing VP means of the source function on geometrically
refined subintervals adapted to the singularity at t = 0.

The rest of this article is organized as follows. The quadrature approximation
of the mild solution and the uniform polynomial approximation of functions by VP
means are presented in Section 2. The new spectral method and its error analysis for
the linear subdiffusion equation with a possibly singular source function are presented
in Section 3. The new spectral method and its error analysis for the semilinear
subdiffusion equation are presented in Section 4. Numerical experiments are presented
in Section 5 to illustrate the spectral convergence of the proposed method for linear
and semilinear subdiffusion problems with rough initial data in L∞(Ω). Concluding
remarks are presented in Section 6.

2. Construction of the spectral method. In this section, we introduce the
several ingredients we use to construct the spectral method, including the contour
integral representation of the solution, quadrature approximation to the contour in-
tegrals, polynomial approximation by the VP means, and the exponential integrator
using VP means. The construction of the spectral method is discussed at the end of
this section, while the complete algorithms are presented in the next two sections for
the linear and semilinear subdiffusion equations, respectively.

2.1. Bounded mild solutions to the subdiffusion equation. For the sim-
plicity of notations, we denote u(t) = u(·, t) for any function u defined on Ω × (0, T ].
A function u ∈ L∞(0, T ;L∞(Ω))∩C([0, T ];L2(Ω)) is called a bounded mild solution
of (1.1) if it satisfies the following equation

u(t) = F (t)u0 +

∫ t

0

E(t− s)f(u(s), ·, t) ds ∀ t ∈ (0, T ], (2.1)

where F (t) and E(t) are the solution operators associated to the subdiffusion equation,
defined as the inverse Laplace transform of the operators zα−1(zα −∆)−1 and (zα −
∆)−1, respectively, i.e.,

F (t) =
1

2πi

∫
Re(z)=σ

zα−1(zα −∆)−1ezt dz

E(t) =
1

2πi

∫
Re(z)=σ

(zα −∆)−1ezt dz,

with an arbitrary parameter σ > 0. The paths of integration in the expressions of F (t)
and E(t) can be respectively deformed to the following two contours on the complex
plane:

Γλ = {λ(1− sin(β + is)) : s ∈ R} and Γλ̃ = {λ̃(1− sin(β + is)) : s ∈ R}, (2.2)

where β ∈ (0, φ − π
2 ), φ ∈ (π2 , π) and λ, λ̃ > 0 can be arbitrary fixed parameters.

These contours are contained in the region between the two sectors Σφ = {z ∈ C :
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|arg(z)| ≤ φ} and λ+Σβ+π
2
; see [22, Figure 2.1]. Therefore,

Re(z) ∼ −|z| and |Im(z)| ∼ |Re(z)| for z ∈ Γλ ∪ Γλ̃.

The representation of the solutions to the subdiffusion equation in (2.1) has been
used in analyzing the regularity of solutions and the error of numerical approximations
in [14, 22, 31, 39, 40]. The integration contours in the form of (2.2) have been used in
approximating exponential-type functions of elliptic operators in [9, 26].

It is known that the resolvent operators (zα − ∆)−1 of the Dirichlet Laplacian
satisfy the following estimate for some constant C > 0 (for example, see [22, Appendix
A]):

∥(zα −∆)−1∥L∞→L∞ ≤ C(1 + |z|)−α for z ∈ Γλ. (2.3)

As a result of the resolvent estimate in (2.3), the solution operators F (t) and E(t)
were proved to satisfy the following estimates (cf. [22, Lemma 3.1]):

∥F (t)∥L∞→L∞ ≤ C and ∥E(t)∥L∞→L∞ ≤ Ctα−1. (2.4)
By using these properties of the solution operators, it can be shown that equation
(1.1) indeed has a bounded mild solution if the one of the following two conditions is
satisfied:

(1) The nonlinear function f(u) is Lipschitz continuous with respect to u. In this
case, the proof of well-posedness in [14] is still valid if the underlying space
L2(Ω) is replaced by L∞(Ω), as the proof only requires using the resolvent
estimate in (2.3).

(2) The nonlinear function f(u) = −F ′(u) is the derivative of a double-well
potential F (u) with two wells at ±α, and the initial value satisfies that |u0| ≤
α. For example, f(u) = (u − u3)/ε2 = −F ′(u) with F (u) = (1 − u2)2/(4ε2)
being the Ginzburg–Landau potential. In this case, the maximum principle
of the subdiffusion equation (cf. [41, Theorems 3.1–3.2], [32, Theorem 2.1]
and [18]) guarantees the boundedness of the solution, i.e., |u(x, t)| ≤ α.

In view of these results, we simply assume that the semilinear subdiffusion equa-
tion has a bounded mild solution and propose a class of spectral methods for the
linear and semilinear problems, respectively, with rigorous analysis for the existence,
uniqueness and spectral convergence of the numerical approximations.

Throughout this article, we denote by C a generic positive constant that may
be different at different occurrences but is independent of the number Nm, N1(m) of
subintervals, the time level tn, and the number M of quadrature points for approxi-
mating the contour integrals.

2.2. Quadrature approximation of the mild solution. By substituting the
contour integral expressions of F (t) and E(t) into (2.1), and make a change of variable
in the first integral of (2.1), we can express the mild solution as

u(t) =
1

2πi

∫
Γλ

ezzα−1(zα − tα∆)−1u0 dz

+
1

2πi

∫
Γλ̃

(zα −∆)−1

∫ t

0

ez(t−s)f(u(s), ·, s) ds dz, (2.5)

It is also known that the two contour integrals on the right-hand side of (2.5) can
be approximated by a quadrature which has spectral convergence with respect to the
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number of quadrature points, i.e.,

u(t) =

M∑
j=−M

ωje
zjzα−1

j (zαj − tα∆)−1u0 + E1,q(t)

+

M∑
j=−M

ω̃j(z̃
α
j −∆)−1y(z̃j , t) + E2,q(t),

(2.6)

where 2M + 1 quadrature points are used, (ωj , zj) and (ω̃j , z̃j) are two pairs of
quadrature weights and nodes, with E1,q(t) and E2,q(t) denoting the remainders of
the quadrature approximations, and y(z, t) =

∫ t

0
ez(t−s)f(u(s), ·, s) ds is the solution

of the following ordinary differential equation (ODE):
d

dt
y(z, t) = zy(z, t) + f(u(t), ·, t). (2.7)

The explicit expressions of the quadrature weights and nodes can be found in [22].
Moreover, the remainders satisfy the estimates in the following lemma.

Lemma 2.1 (cf. [22, Lemma 3.3]). If ∥f(u, ·, ·)∥L∞(0,t;L∞(Ω)) ≤ C then

∥E1,q(t)∥L∞(Ω) + ∥E2,q(t)∥L∞(Ω) ≤ Ce−
√
M/C . (2.8)

The representation of the mild solution by the discrete contour integrals in (2.6)–
(2.7) was proposed in [22] for solving the semilinear subdiffusion equation by an
exponential CQ with k-step extrapolation, which can only have kth-order convergence
with a fixed k ≥ 1. In the next subsection, we propose a spectrally convergent
method based on the expression in (2.6)–(2.7) and a uniform polynomial interpolation
technique using the VP means.

2.3. Uniform polynomial approximation by VP means. We denote the
space of polynomials of degree≤ m on the interval [−1, 1] by Pm([−1, 1]), and define
the L∞-norm polynomial approximation error as

Em(g)(x) := inf
p∈Pm

∥g(x, ·)− p(·)∥L∞(−1,1) for g ∈ C(Ω × [−1, 1]). (2.9)

In the approximation theory, the following results are known (see [3, (5.4.16)]).
Lemma 2.2. For 0 ≤ k ≤ m and g ∈ Ck([−1, 1];L∞(Ω)) the following estimates

hold:
|Em(g)(x)| ≤ Ckm

−k∥g(x, ·)∥Ck([−1,1]),

∥Em(g)∥L∞(Ω) ≤ Ckm
−k∥∂k

t g∥C([−1,1];L∞(Ω)).
(2.10)

It is known that the Lagrange interpolation operator Im : C([−1, 1]) → Pm([−1, 1])
is not stable with respect to m, i.e.,

∥Img∥C([−1,1]) ≤ C log(m)∥g∥C([−1,1]), (2.11)
where the logarithmic factor in m cannot be removed. This significantly affects the
stability of the spectral methods based on the Lagrange interpolation for nonlinear
problem, for which the error estimates require using Gronwall’s inequality. We shall
use a different interpolation technique in our spectral method, called the polynomial
VP means, which turns out to be not only stable in C([−1, 1];L∞(Ω)) but also con-
venient for the practical computations in combination with exponential integrators.

Let tm,1 < tm,2 < · · · < tm,m be the m zeros of the normalized Jacobi polynomial
Jα,β
m (t) of degree m on the interval [−1, 1], with the Jacobi weight ωα,β = (1− t)α(1+
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t)β . The following polynomial VP means of a function g ∈ C([−1, 1]) will be used:

V r
mg(t) =

m∑
i=1

g(tm,i)Φ
r
m,i(t) for g ∈ C([−1, 1]), (2.12)

where

Φr
m,i(t) =

∑m+r−1
j=0 µr

m,jJ
α,β
j (tm,i)J

α,β
j (t)∑m−1

j=0 [Jα,β
j (tm,i)]2

, j = 1, . . .m, (2.13)

with

µr
m,j :=


1 if 0 ≤ j ≤ m− r,
m+r−j

2r if m− r < j < m+ r,
0 if j ≥ m+ r.

(2.14)

For |α| = |β| = 1
2 , the VP means enjoy the interpolation properties, i.e., V r

mg(tm,i) =
g(tm,i) for i = 1, . . . ,m.

In this article, we simply choose r ≤ θm for some fixed θ ∈ (0, 1). Then the
approximation errors of the polynomial VP means are given in the following lemma,
which shows that the L∞-stability constant of the polynomial VP means is indepen-
dent of the polynomial degree.

Lemma 2.3 ( [38, Theorem 3.2]). For sufficiently large positive integers m
and r satisfying r ≤ θm, the following estimates hold:
∥V r

mg∥C([−1,1];L∞(Ω)) ≤ C sup
1≤i≤m

∥g(tm,i)∥L∞(Ω) for g ∈ C([−1, 1];L∞(Ω)), (2.15)

∥g − V r
mg∥C([−1,1];L∞(Ω)) ≤ C∥Em−r(g)∥L∞(Ω) for g ∈ C([−1, 1];L∞(Ω)), (2.16)

for some constant C which does not depend on m.

2.4. The exponential integrator using VP means. The only unknown on
the right-hand side of (2.6) is y(z̃j , t), which we shall approximate by the exponential
integrator

y(z̃j , tni) = ez̃j(tni−tn−1)y(z̃j , tn−1) +

∫ tni

tn−1

ez̃j(tni−s)V r
mf(u(s), ·, s) ds (2.17)

at the finitely many internal nodes tni ∈ (tn−1, tn], i = 1, . . . ,m, where the polynomial
VP mean V r

mf(u(s), ·, s) only depends on the finitely many values f(u(tni), ·, tni),
i = 1, . . . ,m.

Since the VP means can be expressed as linear combinations of the Jacobi poly-
nomials, the integral in (2.17) can be evaluated analytically by using the following
formula:∫ t

−1

ez(t−s)Jα,β
m (s) ds =

m∑
k=0

dα,βm,k

zk+1

√
γα+k,β+k
m−k

γα,β
m

(−Jα+k,β+k
m−k (t) + ez(t+1)Jα+k,β+k

m−k (−1)).

(2.18)
This formula can be derived by using integration by parts and the following differen-
tiation property of the Jacobi polynomials ([36, (3.101)]):

∂k
t J

α,β
m (t) = dα,βm,k

√
γα+k,β+k
m−k

γα,β
m

Jα+k,β+k
m−k (t),
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where

dα,βm,k =
Γ(m+ k + α+ β + 1)

2kΓ(m+ α+ β + 1)
,

γα,β
m =

2α+β+1Γ(m+ α+ 1)Γ(m+ β + 1)

(2m+ α+ β + 1)m!Γ(m+ α+ β + 1)
.

By a simple scaling transformation, we can use formula (2.18) to compute the
integral in (2.17) in terms of the values f(u(tni), ·, tni), i = 1, . . . ,m. Then, by sub-
stituting the computed values y(z̃j , tni) into (2.6), we can obtain the desired spectral
method. The complete algorithms are presented in the next two sections for the linear
and semilinear subdiffusion equations, respectively.

3. The linear problem with a singular source. In this section, we present
the spectral algorithm for the linear subdiffusion equation with a given source function
f(x, t) which may be singular at t = 0 (but is independent of u).

Since the solution representation in (2.6)–(2.7) does not depend on the history
values of the solution, i.e., it only depends on the value of y(z, t) which satisfies the
ODE problem in (2.7), which does not contain history integrals, the case T > 1 can be
reduced to the case T = 1 by dividing the time interval [0, T ] into several parts. The
case T < 1 can be converted to the case T = 1 via a temporal scaling transformation.
Therefore, without loss of generality, we focus on the case T = 1 and consider the
subdiffusion equation on the unit time interval [0, 1].

If the source function is smooth, i.e., f ∈ C∞([0, 1];L∞(Ω)), then we can ap-
proximate the source function f by its VP mean V r

mf on the whole interval [0, 1]. In
particular, let tm,1 < tm,2 < · · · < tm,m be the zeros of the Jacobi polynomial Jα,β

m (t)
of degree m on the time interval [0, 1]. For any fixed t ∈ [0, 1] we can approximate
y(z, t) by

ym(z, t) =

∫ t

0

ez(t−s)V r
mf(s) ds, (3.1)

which can be evaluated exactly by using formula (2.18). By substituting (3.1) into
(2.6) and dropping the two remainders E1,q(t) and E2,q(t), we obtain the following
algorithm for any t ∈ [0, 1]:

um(t) =

M∑
j=−M

ωje
zjzα−1

j (zαj − tα∆)−1u0 +

M∑
j=−M

ω̃j(z̃
α
j −∆)−1ym(z̃j , t). (3.2)

The error bound of this method is an immediate consequence of Lemma 2.1,
Lemma 2.2 and Lemma 2.3 (with r ≤ θm for some fixed parameter 0 < θ < 1). We
present the result in the following theorem and omit the proof.

Theorem 3.1. Let u0 ∈ L∞(Ω) and f ∈ C∞([0, 1];L∞(Ω)). Then the numerical
solution defined in (3.1)–(3.2) has the following error bound for the linear subdiffusion
equation:

max
t∈[0,1]

∥u(t)− um(t)∥L∞(Ω) ≤ Ckm
−k + Ce−

√
M/C , (3.3)

which holds for all fixed integer k ≥ 1, all M and all sufficiently large m.
We are more interested in the development of high-order methods for the subdif-

fusion equation with a source function singular at t = 0. This is often the case when
the source function is related to the solution of a subdiffusion equation. The strength
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of such a singularity at t = 0 can be characterized by the following condition with a
parameter γ ∈ (0, 1]:

∥(tγ∂t)kf(·, t)∥L∞(Ω) ≤ Ck for k ≥ 0 and t ∈ (0, 1]. (3.4)
The larger value of γ, the stronger of the singularity.

For a source function which exhibits a singularity at t = 0 in the form of (3.4), we
choose a fixed parameter λ > 1 and divide the time interval [0, 1] into N subintervals,
i.e.,
I1 = [t0, t1] := [0, λ1−N ] and In = (tn−1, tn] := (λn−1−N , λn−N ], 2 ≤ n ≤ N,

where N = Nm can be any integer satisfying limm→∞ Nm/ logm = ∞ (this require-
ment will become clear in the error analysis). On each subinterval In, we approximate
the source function f(·, t) by its VP means V r

mf(·, t) and substitute the value

yn(z) = ez(tn−tn−1)yn−1(z) +

∫ tn

tn−1

ez(tn−s)V r
mf(s) ds (3.5)

into (2.6). Then, by dropping the two remainders E1,q(t) and E2,q(t) in (2.6), we
obtain the following algorithm:

un =

M∑
j=−M

ωje
zjzα−1

j (zαj − tαn∆)−1u0 +

M∑
j=−M

ω̃j(z̃
α
j −∆)−1yn(z̃j). (3.6)

The algorithm in (3.5)–(3.6) only requires polynomial interpolation based on the
VP means, the evaluation of the exponential integrals in (3.5), and the solution of
the linear systems associated to the operators zαj −∆ and z̃αj −∆. This is different
from the spectral method for the semilinear problem to be presented in the next
section, which requires solving certain nonlinear systems by fixed-point iterations or
the Newton iterations.

For the linear problem with singular source function, the accuracy of the numerical
approximation by (3.6) is guaranteed by the following theorem.

Theorem 3.2. Let u0 ∈ L∞(Ω) and assume that the source function f(x, t)
satisfies the regularity condition in (3.4). Let un, n = 1, . . . , N be the numerical
solutions given by (3.5)–(3.6) with N = Nm satisfying

lim
m→∞

Nm

log(m)
= ∞. (3.7)

Then the following error bound holds (for all integer k ≥ 1, all M and all sufficiently
large m.):

max
1≤n≤N

∥u(tn)− un∥L∞(Ω) ≤ Ckm
−k + Ce−

√
M/C . (3.8)

Remark 3.1. The total number of degrees of freedom in the time discretization
is mN with N = Nm satisfying condition (3.7). By choosing a moderate growing
Nm, such as Nm = m/2, the total number of degrees of freedom is O(m2) while the
error of the numerical approximation is O(m−k) for arbitrarily large k. This means
that the proposed method has spectral convergence (i.e., arbitrarily large convergence
orders) with respect to the total number of degrees of freedom.

Remark 3.2. Theorems 3.1 and 3.2 are still valid if the L∞ norms are changed
to L2 norms. Namely, if u0 ∈ L2(Ω) and ∥(tγ∂t)kf(·, t)∥L2(Ω) ≤ Ck for k ≥ 0 and
t ∈ (0, 1], then the numerical solution defined in (3.5)–(3.6) has the following error
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bound for the linear subdiffusion equation:

max
1≤n≤N

∥u(tn)− un∥L2(Ω) ≤ Ckm
−k + Ce−

√
M/C ,

which holds for all fixed integer k ≥ 1 and sufficiently large m and M . The proof
of this result is the same as the proof of Theorem 3.2 below by changing all the L∞

norms to L2 norms.

Proof. We define an auxiliary function u∗, which is the solution of the following
linear subdiffusion problem (with the source function replaced by V r

mf): ∂α
t u

∗ −∆u∗ = V r
mf in Ω × (0, 1],

u∗ = 0 on ∂Ω × (0, 1],
u∗(0) = u0 in Ω.

(3.9)

Then the error en = u(tn)− un can be decomposed into en = ẽn + e∗n, with
ẽn = u(tn)− u∗(tn) and e∗n = u∗(tn)− un.

Since un is the quadrature approximation of the contour integral representation
of u∗(tn), i.e., the value after dropping the two remainders in (2.6), the estimates in
Lemma 2.1 and the L∞-stability of the VP means imply that ∥V r

mf∥L∞(0,1;L∞(Ω)) ≤
C∥f∥L∞(0,1;L∞(Ω)) ≤ C and therefore

∥e∗n∥L∞(Ω) ≤ Ce−
√
M/C . (3.10)

Since ẽn represents the error between the exact solution and the auxiliary function
u∗ due to the change of the source function from f to V r

mf , by using formula (2.1) we
can express ẽn as follows:

ẽn =

∫ t1

0

E(tn − s)[f(s)− V r
mf(s)] ds+

n∑
j=2

∫ tj

tj−1

E(tn − s)[f(s)− V r
mf(s)] ds

=: En,1 + En,2.
(3.11)

The first term on the right-hand side of (3.11) can be estimated by using the bound-
edness of f and V r

mf , and the estimate ∥E(t − s)∥L∞(Ω)→L∞(Ω) ≤ C(t − s)α−1 as
shown in (2.4), i.e.,

∥En,1∥L∞(Ω) ≤ C

∫ t1

0

(t1 − s)α−1∥f∥L∞(I1;L∞(Ω)) ds ≤ Ctα1 ∥f∥L∞([0,1];L∞(Ω)).

Since t1 = λ1−N and N = Nm satisfies condition (3.7), it follows that tα1 ≤ m−k as
m → ∞ for any k ≥ 1. This proves that

∥En,1∥L∞(Ω) ≤ Ckm
−k as m → ∞. (3.12)

The second term on the right-hand side of (3.11) can be estimated by using the
following approximation error estimate of the VP means, i.e.,

∥f − V r
mf∥C([tj−1,tj ];L∞(Ω)) ≤ Ck(m− r)−k

( tj − tj−1

2

)k

∥∂k
t f∥C([tj−1,tj ];L∞(Ω))

≤ Ckm
−k

( tj − tj−1

2

)k

∥∂k
t f∥C([tj−1,tj ];L∞(Ω)), (3.13)

which is an immediate consequence of Lemma 2.2 and Lemma 2.3, and a scaling
transformation from the standard interval [−1, 1] to the current interval [tj−1, tj ].
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The last inequality is due to the fact that r ≤ θm for some fixed θ ∈ (0, 1). Therefore,

∥En,2∥L∞(Ω) ≤
n∑

j=2

∫ tj

tj−1

(tn − s)α−1∥f − V r
mf∥L∞(Ij ;L∞(Ω)) ds

≤ Ck

n∑
j=2

m−k

∫ tj

tj−1

(tn − s)α−1
( tj − tj−1

2

)k

∥∂k
s f∥L∞(Ij ;L∞(Ω)) ds.

(3.14)

The condition in (3.4) implies that ∥∂k
s f∥L∞(Ij ;L∞(Ω)) ≤ Ct−γk

j−1 and therefore

∥En,2∥L∞(Ω) ≤ Ck

n∑
j=2

m−k
( tj − tj−1

2tγj−1

)k
∫ tj

tj−1

(tn − s)α−1 ds

≤ Ckm
−k

n∑
j=2

λ[(1−γ)+α](j−N),

where have substituted tj = λj−N into the last inequality. Since λ > 1 and n ≤ N ,
the summation of λ[(1−γ)+α](j−N) for j = 2, . . . , n is finite and independent of m.
This proves that

∥En,2∥L∞(Ω) ≤ Ckm
−k. (3.15)

Then, substituting the estimates of ∥En,1∥L∞(Ω) and ∥En,2∥L∞(Ω) into (3.11), we
obtain

∥ẽn∥L∞(Ω) ≤ Ckm
−k for 1 ≤ n ≤ N. (3.16)

The error bound in Theorem 3.2 follows from the two estimates in (3.10) and
(3.16).

4. The semilinear problem with rough initial data. In this section, we
present the spectral method for the semilinear subdiffusion equation with a rough ini-
tial value u0 ∈ L∞(Ω). Similarly to the linear problem (as explained at the beginning
of Section 3), we can focus on the case T = 1 and consider the semilinear subdiffusion
equation on the unit time interval [0, 1]. For the simplicity of presentation, we focus
on the case f(u, x, t) = f(u) without loss of generality.

4.1. The spectral collocation method. Differently from the linear problem,
we first divide the whole interval [0, 1] uniformly into N smaller subintervals In =
((n − 1)/N, n/N ] = (tn−1, tn], 1 ≤ n ≤ N , and then refine the first subinterval
I1 = [0, t1] into N1 smaller subintervals. In particular, for a constant λ > 1 we define

I1,1 = [t0, t1,1] := [0, λ1−N1/N ],

I1,j = (t1,j−1, t1,j ] := (λj−1−N1/N, λj−N1/N ] for j = 2, . . . , N1.

The division of the whole interval [0, 1] uniformly into N smaller subintervals In =
((n−1)/N, n/N ], n = 1, . . . , N , is to guarantee the stability of the spectral method on
each subinterval with respect to the polynomial interpolation of the nonlinear source
function. This will become clear in the error analysis, i.e., the L∞-norm stability
with respect to the polynomial interpolation requires the length of the interval to be
sufficiently small. The division of the first subinterval I1 into N1 smaller subintervals
I1,j , j = 1, . . . , N1, with graded stepsizes locally refined towards t = 0 is to resolve the
singularity of the nonlinear source function at t = 0 (similarly to the linear problem).
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On each subinterval I1,n, we approximate f(u) by its VP means V r
mf(um), where

um denotes the numerical solution obtained by using polynomial VP means of degree
m on each subinterval. In particular, we denote by tm,1

1,n < tm,2
1,n < · · · < tm,m

1,n the m

zeros of the Jacobi polynomial Jα,β
m (t) of degree m on the interval I1,n = (t1,n−1, t1,n],

1 ≤ n ≤ N1, and denote by
U1,n = (um,1

1,n , um,2
1,n , . . . , um,m

1,n )⊤

the vector which contains the numerical solutions at the discrete time levels tm,i
1,n ,

i = 1, . . . ,m, determined by the following nonlinear system of equations:
U1,n = G1,n(U1,n), (4.1)

where G1,n : L∞(Ω)m → L∞(Ω)m is a nonlinear mapping defined by
G1,n(U1,n) := (vm,1

1,n , vm,2
1,n , . . . , vm,m

1,n )⊤,

with

vm,i
1,n =

M∑
j=−M

ωje
zjzα−1

j (zαj − (tm,i
1,n )

α∆)−1u0

+

M∑
j=−M

ω̃j(z̃
α
j −∆)−1ym,i

1,n (z̃j) for i = 1, . . . ,m,

(4.2)

and

ym,i
1,n (z̃j) = ez̃j(t

m,i
1,n −t1,n−1)y1,n−1(z̃j) +

∫ tm,i
1,n

t1,n−1

ez̃j(t
m,i
1,n −s)[V r

mf(um)](s) ds. (4.3)

If y1,n−1(z̃j) is known then we can compute um,i
1,n , i = 1, . . . ,m by solving the colloca-

tion system (4.1) and then compute y1,n(z) by

y1,n(z̃j) = ez̃j(t1,n−t1,n−1)y1,n−1(z̃j) +

∫ t1,n

t1,n−1

ez̃j(t1,n−s)[V r
mf(um)](s) ds. (4.4)

Similarly, for each subinterval In, 2 ≤ n ≤ N , we denote by tm,1
n < · · · < tm,m

n

the m zeros of Jacobi polynomial Jα,β
m (x) on In, and denote by

Un = (um,1
n , um,2

n , . . . , um,m
n )⊤,

the vector which contains the numerical solutions at time levels tm,i
n , i = 1, . . . ,m,

determined by the following nonlinear system of equations:
Un = Gn(Un), (4.5)

where Gn(Un) := (vm,1
n , vm,2

n , . . . , vm,m
n )⊤, with

vm,i
n =

M∑
j=−M

ωje
zjzα−1

j (zαj − (tm,i
n )α∆)−1u0

+

M∑
j=−M

ω̃j(z̃
α
j −∆)−1ym,i

n (z̃j) for i = 1, . . . ,m,

(4.6)

and

ym,i
n (z̃j) = ez̃j(t

m,i
n −tn−1)yn−1(z̃j) +

∫ tm,i
n

tn−1

ez̃j(t
m,i
n −s)[V r

mf(um)](s) ds. (4.7)
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If yn−1(z̃j) is known then we can compute um,i
n , i = 1, . . . ,m by solving collocation

system (4.5) and then compute yn(z) by

yn(z̃j) = ez̃j(tn−tn−1)y1,n−1(z̃j) +

∫ tn

tn−1

ez̃j(tn−s)[V r
mf(um)](s) ds. (4.8)

The existence, uniqueness and spectral convergence of the numerical solutions
defined by (4.1) and (4.5) are guaranteed by the following theorem.

Theorem 4.1. Let u ∈ C([0, 1];L2(Ω)) ∩ L∞(0, 1;L∞(Ω)) be a bounded mild
solution of (1.1) with initial value u0 ∈ L∞(Ω) and nonlinear source function f ∈
C∞(R). Let um,i

1,n and um,i
n be the numerical solutions given by (4.2) and (4.6),

respectively. Then there exists a positive constant N∗ such that for N ≥ N∗ and
N1 = N1(m) satisfying

lim
m→∞

N1(m)

log(m)
= ∞, (4.9)

the nonlinear systems (4.1) and (4.5) have unique solutions in an L∞-neighborhood
of the mild solution, with the following error bounds:

max
1≤n≤N1

max
1≤i≤m

∥u(tm,i
1,n )− um,i

1,n∥L∞(Ω) ≤ Ck(m
−k + e−

√
M/C), (4.10)

max
2≤n≤N

max
1≤i≤m

∥u(tm,i
n )− um,i

n ∥L∞(Ω) ≤ Ck(m
−k + e−

√
M/C), (4.11)

which hold for all integer k ≥ 1 and sufficiently large m and M (larger than some
constants which are independent of m).

Remark 4.1. Since all the results are based on the properties of the resolvent op-
erator (z−∆)−1, which has similar properties under the Dirichlet and periodic bound-
ary conditions, the results in this article can be extended to the periodic bounadry
condition.

Remark 4.2. It is mentioned at the beginning of Section 3 that the case T > 1
can be solved by dividing the time interval into a number of subintervals. Using the
same method together with discrete Gronwall’s inequality, the error bound will be
multiplied by eCT for long-term computation. The factor eCT usually appears in the
error estimates for semilinear parabolic equations and subdiffusion equations. The
factor eCT may be removed for the linear subdiffusion equation but requires a closer
look at the error analysis by taking account of the regularity behaviour of the mild
solution as t → 0. This is not studied in the current paper.

Remark 4.3. For the convenience of illustration, we have focused on the semi-
linear subdiffusion equation with a Laplacian operator in space. However, the results
can be extended to more general elliptic partial differential operators which satisfy the
resolved estimate in (2.3), such as second-order elliptic partial differential operators
with variable coefficients.

Proof. The roughness of the initial value will generate singularity in the solution
and the nonlinear source function at t = 0. For a bounded mild solution of the
semilinear subdiffusion equation with initial value u0 ∈ L∞(Ω), it is shown in [22,
inequality (3.8)] that both the solution and the source function exhibit singularities
in the form of (1.6). In the next two subsections, we present the proof of Theorem 4.1
based on the regularity estimates in (1.6). For the simplicity of notations, we omit
the dependence of the constants C on k in the proof.
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4.2. Existence, uniqueness and boundedness of the numerical solution.
We denote L = ∥u∥L∞(0,1;L∞(Ω)) and modify the definition of the nonlinear function
f : R → R in the region |σ| ≥ L+1 so that f(σ) = 0 for |σ| ≥ L+2. For the simplicity
of the notation, we still use f to denote the modified function. This modification make
the source function f : R → R globally bounded and Lipschitz continuous, but would
not have influence on the numerical solution if it satisfies the following condition:

∥um,i
1,n∥L∞(Ω) ≤ L+ 1 and ∥um,i

n ∥L∞(Ω) ≤ L+ 1. (4.12)
We shall prove the existence and uniqueness of a numerical solution satisfying this
condition (for sufficiently large N and N1).

The existence and uniqueness of numerical solutions would follow from the con-
tractivity of the map G1,n : L∞(Ω)m → L∞(Ω)m. For V = (v1, . . . , vm) ∈ L∞(Ω)m,
we denote f(V ) = (f(v1), . . . , f(vm)) and V r

mf(V ) the polynomial on the interval I1,n
based on the VP mean of the nodal values f(v1), . . . , f(vm). Then

∥G1,n(U)−G1,n(V )∥L∞(Ω)m

≤
∥∥∥ M∑

j=−M

ω̃j(z̃
α
j −∆)−1

∫ t

t1,n−1

ez̃j(t−s)V r
m[f(U)− f(V )] ds

∥∥∥
L∞(I1,n;L∞(Ω))

≤
∥∥∥ M∑

j=−M

ω̃j(z̃
α
j −∆)−1

∫ t

t1,n−1

ez̃j(t−s)V r
m[f(U)− f(V )] ds

−
∫
Γλ̃

(zα −∆)−1

∫ t

t1,n−1

ez(t−s)V r
m[f(U)− f(V )] ds dz

∥∥∥
L∞(I1,n;L∞(Ω))

+
∥∥∥ ∫

Γλ̃

(zα −∆)−1

∫ t

t1,n−1

ez(t−s)V r
m[f(U)− f(V )] ds dz

∥∥∥
L∞(I1,n;L∞(Ω))

=: F1 + F2.

F1 can be estimated by using the L∞-stability of the VP means and the Lipschitz
continuity of the modified function f , i.e., ∥V r

m[f(U)−f(V )]∥L∞(I1,n;L∞(Ω)) ≤ C∥U−
V ∥L∞(Ω)m , and Lemma 2.1, which together imply that

F1 ≤ Ce−
√
M/C∥U − V ∥L∞(Ω)m . (4.13)

F2 can be converted into the following form:

F2 =
∥∥∥ ∫ t

tn−1

E(t− s)V r
m[f(U)− f(V )] ds

∥∥∥
L∞(I1,n;L∞(Ω))

≤ C∥U − V ∥L∞(Ω)m

∫ tn

tn−1

(tn − s)α−1 ds

= C|I1,n|α∥U − V ∥L∞(Ω)m .

(4.14)

Since |I1,n| ≤ 1/N , it follows that

∥G1,n(U)−G1,n(V )∥L∞(Ω)m ≤ C(e−
√
M/C +N−α)∥U − V ∥L∞(Ω)m . (4.15)

For sufficiently large M and N (bigger than some constants), (4.15) implies that
G1,n : L∞(Ω)m → L∞(Ω)m is a contraction and therefore has a unique fixed point,
i.e., a numerical solution of (4.1). The existence and uniqueness of a fixed point for
the map Gn : L∞(Ω)m → L∞(Ω)m, i.e., the existence and uniqueness of a numerical
solution of (4.5), can be proved in the same way and therefore omitted.

In the next subsection, we prove that for sufficiently large m, M and N , the
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numerical solutions U1,n and Un with the modified source function actually satisfies
condition (4.12) and therefore are also the numerical solutions with the original source
function. This would prove the existence and uniqueness of numerical solutions with
the original source function.

4.3. Error estimation. We define an auxiliary function u∗, which is the solution
of the following subdiffusion problem (with the modified source function): ∂α

t u
∗ −∆u∗ = V r

mf(um) in Ω × (0, 1],
u∗ = 0 on ∂Ω × (0, 1],
u∗(0) = u0 in Ω.

(4.16)

We also know that the exact solution u satisfies the following equation: ∂α
t u−∆u = V r

mf(u) + Ef in Ω × (0, 1],
u = 0 on ∂Ω × (0, 1],
u(0) = u0 in Ω,

(4.17)

where the remainder Ef = f(u) − V r
mf(u) satisfies the following estimate for any

subinterval [a, b] ⊂ (0, 1]:

∥Ef∥C([a,b];L∞(Ω)) ≤ Cm−k
(b− a

2

)k

∥∂k
t f(u)∥C([a,b];L∞(Ω)). (4.18)

This is similar to the approximation error bound of VP means for the linear problem;
see (3.13). By using expression (2.1) of the solution, the function ẽ = u − u∗ can be
written as

ẽ(t) =

∫ t

0

E(t− s)(V r
mf(u)− V r

mf(um)) ds+

∫ t

0

E(t− s)Ef (s) ds. (4.19)

Since the modified source function f : R → R is globally bounded and Lipschitz
continuous, and the VP means are uniform bounded, it follows that

∥V r
mf(um)∥L∞(I1,n;L∞(Ω)) ≤ C∥f(um)∥L∞(I1,n;L∞(Ω)) ≤ C.

Since the numerical solution um is the quadrature approximation of the contour in-
tegral representation of u∗, it follows from Lemma 2.1 that

∥u∗ − um∥L∞(I1,n;L∞(Ω)) ≤ Ce−
√
M/C for 1 ≤ n ≤ N1. (4.20)

For ẽm,i
1,n = u(tm,i

1,n ) − u∗(tm,i
1,n ), with 1 ≤ i ≤ m, 1 ≤ n ≤ N1, setting t = tm,i

1,n in
(4.19) yields the following estimate:

∥ẽm,i
1,n∥L∞(Ω) ≤C

∫ t1,1

0

(tm,i
1,n − s)α−1∥f(u(s))− f(um)∥L∞(I1,1;L∞(Ω)) ds

+ C

n−1∑
j=2

∫ t1,j

t1,j−1

(tm,i
1,n − s)α−1 max

1≤i≤m
∥em,i

1,j ∥L∞(Ω) ds

+ C

∫ tm,i
1,n

t1,n−1

(tm,i
1,n − s)α−1 max

1≤i≤m
∥em,i

1,n∥L∞(Ω) ds+ Cm−k,

where we have used the result ∥
∫ tm,i

1,n

0 E(tm,i
1,n − s)Ef (s) ds∥L∞(Ω) ≤ Cm−k, which

follows from the same argument as the proof in (3.14)–(3.16) (with γ = 1 therein).
Since ∥f(u(s))− f(u0)∥L∞(I1,1;L∞(Ω)) ≤ C, from the inequality above we obtain

max
1≤n≤N1

max
1≤i≤m

∥ẽm,i
1,n∥L∞(Ω) ≤Ctα1,1 + Ctα1,N max

1≤n≤N1

max
1≤i≤m

∥em,i
1,n∥L∞(Ω) + Cm−k
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=Cλ(1−N1)αN−α + CN−α max
1≤n≤N1

max
1≤i≤m

∥em,i
1,n∥L∞(Ω) + Cm−k.

Similarly to the proof of (3.12), for sufficiently large N1 satisfying condition (4.9),
we have

max
1≤n≤N1

max
1≤i≤m

∥ẽm,i
1,n∥L∞(Ω) ≤ CN−α max

1≤n≤N1

max
1≤i≤m

∥em,i
1,n∥L∞(Ω) + Cm−k.

Then, substituting (4.20) into the inequality above, we can convert ẽm,i
1,j to em,i

1,j on
the left-hand side, i.e.,

max
1≤n≤N1

max
1≤i≤m

∥em,i
1,n∥L∞(Ω)

≤ CN−α max
1≤n≤N1

max
1≤i≤m

∥em,i
1,n∥L∞(Ω) + Cm−k + Ce−

√
M/C .

For sufficiently large N (larger than some constant which is independent of m), the
first term on the right-hand side above can be absorbed by the left-hand side. This
yields the following error esetimate:

max
1≤n≤N1

max
1≤i≤m

∥em,i
1,n∥L∞(Ω) ≤ Cm−k + Ce−

√
M/C . (4.21)

By choosing m and M large enough, we have
max

1≤n≤N1

max
1≤i≤m

∥em,i
1,n∥L∞(Ω) ≤ 1

and therefore
max

1≤n≤N1

∥U1,n∥L∞(Ω)m ≤ L+ 1. (4.22)

The same argument can be used to prove that (for sufficiently large m and M)

max
2≤n≤N

max
1≤i≤m

∥em,i
n ∥L∞(Ω) ≤ Cm−k + Ce−

√
M/C , (4.23)

max
2≤n≤N

∥Un∥L∞(Ω)m ≤ L+ 1. (4.24)

This proves that the numerical solution satisfies the constraint in (4.12). There-
fore, as we have discussed at the end of Section 4.2, U1,n and Un are the numerical
solutions with the original source function f (which is possibly not globally Lipschitz
continuous), satisfying the error bounds in (4.21) and (4.23). This completes the
proof of Theorem 4.1.

5. Numerical tests. In this section, we present numerical tests to illustrate
spectral convergence of the proposed time discretizations for both linear and semi-
linear subdiffusion equations with rough initial data. The piecewise linear Galerkin
finite element method in space is used with a sufficiently small mesh size that does
not affect the observation of the time discretization errors. All the computations are
performed by MATLAB R2020b on a personal laptop.

We consider the subdiffusion equation in (1.1) in the domain Ω = (0, 1) up to
time T = 1, with a discontinuous initial value u0 = χ[1/2,1) ∈ L∞(Ω), where χ[1/2,1)

denotes the characteristic function of the subinterval [ 12 , 1). The parameter λ in the
algorithm is chosen to be 2. The number of quadrature points are 2M + 1 with
M = O(m log3 m), which satisfies the conditions in Theorems 3.1, 3.2 and 4.1. Since
the closed form of the exact solution is not known, we compute a reference solution
umref

with mref = 24, and compute the errors for m ≤ 16.
The principle of choosing M is to make e−C

√
M smaller than m−k for all k as m →

∞. Therefore, M = O(m log2 m) and M = O(m log3 m) both satisfy the requirement
17



theoretically. In the numerical tests we observe that the choice of M = O(m log2 m)
performs well when m is large, while the choice of M = O(m log3 m) performs well for
both large m and small m. Therefore, we choose M = O(m log3 m) in our numerical
experiments below.

5.1. The linear subdiffusion equation. We solve the linear subdiffusion equa-
tion with a given source function f(x, t) by the proposed algorithm in Section 3 with
N = m

2 subintervals. Then the total number of degrees of freedom is m2

2 . The errors
of the numerical solutions for the smooth source function

f(x, t) = (sin t) cosπx

and the singular source functions
f(x, t) = tσ cosπx with σ = 0.75, 0.5 and 0.25,

are presented in Figure 5.1. In particular, the smooth and singular functions satisfy
the conditions of Theorems 3.1 and 3.2, respectively.

The numerical results in Figure 5.1 indicate that the proposed method has spectral
convergence for the linear subdiffusion equation with both smooth and singular source
functions. This is consistent with the theoretical results proved in Theorems 3.1 and
3.2.
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(a) f(x, t) = sin t cosπx
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(b) f(x, t) = t0.75 cosπx
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(c) f(x, t) = t0.5 cosπx
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(d) f(x, t) = t0.25 cosπx

Fig. 5.1. Errors of the numerical solutions for the linear subdiffusion equation
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Fig. 5.2. Errors of the numerical solutions for the semilinear subdiffusion equation

5.2. The semilinear subdiffusion equation. We consider the semilinear sub-
diffusion equation in (1.1) with the following nonlinear source function:

f(u) = sinu,

which satisfies the condition of Theorem 4.1 and guarantees that the semilinear subd-
iffusion equation has a unique bounded mild solution. We divide the interval [0, 1] into
several subintervals with parameters N = 1, N1 = m

2 , and total number of degrees of
freedom m2

2 , and present the errors of the numerical solutions in Figure 5.2 for several
different values of α ∈ (0, 1). The numerical results in Figure 5.2 indicate that the
proposed method has spectral convergence for the seimlinear subdiffusion equation
with the discontinuous initial value u0 = χ[1/2,1) ∈ L∞(Ω). This is consistent with
the theoretical results proved in Theorem 4.1.

6. Conclusions. We have proposed a new spectral method for the linear and
semilinear subdiffusion equations in a bounded domain Ω ⊂ Rd under the Dirich-
let boundary condition with rough initial data in L∞(Ω) and possibly singular source
function by effectively combining several computational techniques, including the con-
tour integral representation of the mild solutions, the quadrature approximation of the
contour integrals, the exponential integrator using VP means, and a decomposition
of the time interval geometrically refined towards t = 0 according to the singularity
of the solution and the source function. We have proved the spectral convergence of
the proposed method for both linear and semilinear subdiffusion equations with an
arbitrary rough initial value u0 ∈ L∞(Ω) under the natural regularity of the solutions
with strong singularities at t = 0 in the form of (1.6).
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