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Abstract. A new spectral method is constructed for the linear and semilinear subdiffusion
equations with possibly discontinuous rough initial data. The new method effectively combines
several computational techniques, including the contour integral representation of the solutions, the
quadrature approximation of contour integrals, the exponential integrator using the de la Vall\'ee
Poussin means of the source function, and a decomposition of the time interval geometrically refined
towards the singularity of the solution and the source function. Rigorous error analysis shows that the
proposed method has spectral convergence for the linear and semilinear subdiffusion equations with
bounded measurable initial data and possibly singular source functions under the natural regularity
of the solutions.
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1. Introduction. We consider the semilinear subdiffusion equation in a bounded
Lipschitz domain \Omega \subset \BbbR d up to a given time T > 0, under the Dirichlet boundary
condition; i.e.,\left\{   \partial \alpha 

t u(x, t) - \Delta u(x, t) = f(u(x, t), x, t) for (x, t)\in \Omega \times (0, T ],
u(x, t) = 0 for (x, t)\in \partial \Omega \times (0, T ],
u(x,0) = u0(x) for x\in \Omega ,

(1.1)

where f : \BbbR \times \BbbR d \times \BbbR + \rightarrow \BbbR and u0 are the given nonlinear function and initial
value, and \partial \alpha 

t u denotes the Caputo fractional derivative of order \alpha \in (0,1). The
subdiffusion equations which can model the sublinear growth of mean squared particle
displacement have generated much interest from physicists, engineers, and applied
mathematicians in developing new computational methods and rigorous numerical
analyses because of their excellent capability in modeling the anomalous transport
processes. The construction and analysis of high-order computational methods for
the subdiffusion equations, especially for the semilinear subdiffusion equation, have
been challenging due to the possible singularity of the solution and the source function
at t= 0.
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2306 BUYANG LI, YANPING LIN, SHU MA, AND QIQI RAO

In general, for the linear subdiffusion equation with initial value u0 \in H1
0 (\Omega ) \cap 

H2(\Omega ) and a temporally smooth source function f(x, t) (independent of u), the so-
lution generally exhibits the following type of weak singularity at t = 0 (see [15,
Theorem 1]):

\| \partial m
t (u(\cdot , t) - u0)\| L2 \leq Cmt\alpha  - m for m\geq 0.(1.2)

Under this limited regularity condition, the classical L1, L2, discontinuous Galerkin
(dG), and convolution quadrature (CQ) with a uniform stepsize generally have first-
order convergence; for example, see [12, 33, 13, 40]. The analyses in [17, 19, 35, 37]
show that the L1 and L2 methods, and a low-order dG time-stepping method, can
have the desired optimal-order convergence by using graded stepsizes locally refined
towards t= 0. The extension of these low-order convergence results to the semilinear
subdiffusion equation may be established by using the fractional version of discrete
Gronwall's inequalities in [14, 24, 25]. The sharp pointwise-in-time error bounds on
quasi-graded temporal meshes with arbitrary degree of grading are obtained in [16]
using a method of upper and lower solutions for L1 scheme. Higher-order suboptimal
convergence in time was proved for the dG time-stepping method in [34] under condi-
tion (1.2) and some additional regularity assumptions such as \partial tu\in L2(0, T ;H2(\Omega )),
which generally requires the initial value to satisfy u0 \in H5/2(\Omega ) \cap H1

0 (\Omega ) plus a
compatibility condition \Delta u0 = 0 on \partial \Omega . In the case u0 = 0, high-order convergence
of the Runge--Kutta CQ was proved in [2].

The extension of the above-mentioned results to rough initial data in Lp(\Omega ) with
1 \leq p \leq \infty (without any differentiability), using graded stepsizes to improve the
convergence orders, is still challenging due to the stronger singularity in this case (see
[15, Theorem 1]); i.e.,

\| \partial m
t u(\cdot , t)\| Lp \leq Cmt - m for m\geq 0.(1.3)

Under this regularity condition, the L1, L2, and CQ schemes with a uniform stepsize
and appropriate initial corrections can have high-order convergence at time levels far
away from t= 0; i.e.,

\| u(\cdot , tn) - un\| Lp \leq Ct - k
n \tau k,(1.4)

where un denotes the numerical solution using a uniform stepsize \tau . The results were
established in [13, 31, 40] in the L2-norm framework, i.e., with error estimates in the
L2 norm and initial data in L2(\Omega ), by comparing the numerical solution with the
solution through their Laplace transform representations, a framework developed by
Lubich for the analysis of CQ for convolution integrals; see [27, 28, 29]. Neverthe-
less, the analyses can be naturally extended to the Lp-norm framework by using the
corresponding resolvent estimate in Lp(\Omega ); i.e.,

\| (z  - \Delta ) - 1\| Lp(\Omega )\rightarrow Lp(\Omega ) \leq C| z|  - 1, 1\leq p\leq \infty ,

which holds for both the Laplacian \Delta and the finite element discrete Laplacian \Delta h;
see [20, 21]. However, these high-order convergence results only hold for the linear
subdiffusion equation with a given temporally smooth source function.

The extension of the high-order methods to the semilinear subdiffusion equa-
tion with nonsmooth initial data is still challenging. The main difficulty in the nu-
merical solution of the semilinear subdiffusion equation is that the source function

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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EXPONENTIAL SPECTRAL METHODS FOR SUBDIFFUSION 2307

f(u(x, t), x, t) also becomes singular at t= 0 due to the singularity of u(x, t). In this
case, the regularity of the solution and the source function is

\| \partial m
t (u(\cdot , t) - u0)\| L\infty + \| \partial m

t f(u(\cdot , t), \cdot , t)\| L\infty \leq Cmt\alpha  - m for m\geq 0(1.5)

and

\| \partial m
t u(\cdot , t)\| L\infty + \| \partial m

t f(u(\cdot , t), \cdot , t)\| L\infty \leq Cmt - m for m\geq 0(1.6)

for initial data in H1
0 (\Omega ) \cap C2(\Omega ) and L\infty (\Omega ), respectively; see [22, 39]. The con-

vergence of the backward Euler CQ was not affected by the singularity of the source
function, as shown in [14] and [1] for initial data in H1

0 (\Omega ) \cap H2(\Omega ) and Hs(\Omega ),
s > 0, respectively. However, the convergence of higher-order CQs can be affected
by the singularity of the source function at t = 0. In particular, the analysis and
numerical experiments in [39] show that the convergence order of high-order back-
ward differentiation formulae (BDF)-CQs, using a uniform stepsize with appropriate
initial corrections, is at most 1+ 2\alpha for general initial data in H1

0 (\Omega )\cap C2(\Omega ). More
recently, a k-step exponential CQ was proposed in [22] to achieve kth-order conver-
gence for semilinear subdiffusion equation with initial data in L\infty (\Omega ), where k is an
arbitrary prescribed positive integer which determines the numerical scheme and the
convergence order.

The above-mentioned methods all have fixed convergence orders. The develop-
ment of spectral methods, which converge faster than O(N - k) for any fixed positive
integer k (where N denotes the degrees of freedom in the time discretization), is still
challenging for the subdiffusion equation with singular solutions and source functions.
Many efficient spectral methods for the fractional ordinary and partial differential
equations have been proposed and analyzed:

\bullet A new multidomain spectral method for high-order time discretizations of
fractional ordinary differential equations (ODEs) and the subdiffusion equa-
tion was proposed in [4]. The stability of the method was studied by iden-
tifying the method as a generalized linear method. The rigorous analysis of
its spectral convergence for the subdiffusion equation with rough initial data
still remains challenging.

\bullet A class of spectral collocation methods based on the generalized Jacobi func-
tions was proposed in [42, 43] for some fractional differential equations. The
approximation errors of the generalized Jacobi polynomials in weighted Sobolev
spaces, as well as the convergence of the spectral Petrov--Galerkin method for
fractional ODEs, were presented in [7]. The current analysis requires some
fractional derivatives of the solution to be smooth, which is true for some
fractional ODEs but cannot be readily extended to the subdiffusion equation.
The rigorous analysis of this class of methods for the subdiffusion equation
with rough initial data still remains challenging.

\bullet The generalied Jacobi polynomials were also used for calculating the eigen-
values of the space-fractional differential equations in [5] and for determining
the superconvergence points of fractional spectral interpolations in [44].

\bullet A class of M\"untz spectral Galerkin methods were proposed and analyzed in
[11, 10] based on the M\"untz polynomials and weighted Sobolev spaces. The
methods have spectral convergence for solutions with the following regularity:

t - 1+m\partial m
t [u(x, t1/\lambda )]\in L2(0, T ;H1

0 (\Omega )) \forall m\geq 0.(1.7)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2308 BUYANG LI, YANPING LIN, SHU MA, AND QIQI RAO

This covers a wide class of solutions, including solutions in the form of

u(x, t) =

\infty \sum 
j=1

tj\alpha \phi j(x),

which can be approximated with spectral convergence by choosing \lambda = 1/\alpha .
For more general solutions of the subdiffusion equation with initial data in
H1

0 (\Omega )\cap H2(\Omega ), when the solutions have the regularity in (1.2) but may not
satisfy condition (1.7), the M\"untz spectral Galerkin methods can still have a
fixed high order of convergence by choosing a sufficiently small parameter \lambda .

\bullet A class of log-orthogonal spectral methods for the subdiffusion equation was
proposed and analyzed in [8] by using the log-orthogonal polynomials intro-
duced in [6]. It is shown that the method can have spectral convergence
if the initial value satisfies u0 \in \.H3(\Omega ), which is equivalent to requiring
u0 \in H1

0 (\Omega )\cap H3(\Omega ) plus one compatibility condition \Delta u0 = 0 on \partial \Omega .
As far as we know, the following questions are still unsolved in the development of
spectral methods for the subdiffusion equations.

\bullet The current error analysis of spectral methods for the subdiffusion equation
requires the initial data to be smoother than H1

0 (\Omega )\cap H2(\Omega ) and satisfying
some compatibility conditions, or satisfying a regularity condition in the form
of (1.5). The construction of spectral methods for the semilinear subdiffusion
equation with rough initial data in L\infty (\Omega ) with strong singularity in the form
of (1.6) is still challenging.

\bullet The existing error estimates for the spectral methods are all for the linear
subdiffusion equation based on the Hilbert space framework. The extension
of the error analysis for the spectral methods to the semilinear subdiffusion
equation, with nonlinear source functions which may not be globally Lip-
schitz continuous, requires error estimates in the L\infty -norm--based Banach
space framework and therefore still remains open. There are few analyses
of spectral methods in the L\infty -norm framework. We are only aware of the
L\infty -norm analysis of spectral methods in [23] by the effective maximum prin-
ciple of spatial discretizations. The techniques cannot be applied to the time
discretization of the subdiffusion equation in the presence of singularity.

These questions are addressed in this article.
We propose a new spectral method for the semilinear subdiffusion equation with

rough initial data in L\infty (\Omega ) under the natural regularity condition (1.6), based on
quadrature approximations to the contour integral representation of the solution, the
exponential integrator using the de la Vall\'ee Poussin means (i.e., VP means; see
[38]), and error estimates via a fixed-point argument in an L\infty -norm framework.
The contour integral approximation techniques were used in [26] and [9] for evaluat-
ing exponential-type operators and for solving linear convection-diffusion equations,
respectively. The techniques were also used in the construction of a high-order back-
ward extrapolated multistep exponential CQ for the semilinear subdiffusion equation
in [22]. However, the method in [22] only has a fixed order of convergence and cannot
be extended to a spectral method directly due to the following three challenges: (1)
The temporal Lagrange interpolation used in [22] is not stable in the L\infty norm as the
degrees of freedom tend to infinity; (2) The integrals of the exponential function times
the Lagrange basis are difficult to evaluate analytically when the degree of the polyno-
mial is large; (3) The source function is singular at t= 0, and therefore the Lagrange
interpolation on the whole time interval does not have uniform high-order convergence.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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EXPONENTIAL SPECTRAL METHODS FOR SUBDIFFUSION 2309

We overcome these difficulties by utilizing an exponential type of spectral method
in terms of the interpolation polynomial VP means on subintervals that are geometri-
cally refined towards t= 0 according to the singularity of the solution and the source
function. We derive analytical formulas for the exponential integrals arising from the
proposed method by utilizing the differentiation properties of the Jacobi polynomi-
als and prove the spectral convergence of the proposed method based on the natural
regularity condition in (1.6) using the L\infty stability of the polynomial VP means and
their approximation properties on the geometrically refined subintervals. The spectral
convergence in the L\infty norm is established, which allows us to handle nonlinear source
functions which are only locally Lipschitz continuous (rather than globally Lipschitz
continuous). These results make the proposed method practically computable and
spectrally convergent for rough solutions of the semilinear subdiffusion equation in
the most general setting.

In view of the equivalence between CQs and their Laplace transform representa-
tions, e.g., the Runge--Kutta (or BDF) CQ for a parabolic or subdiffusion equation is
equivalent to applying the Runge--Kutta method (or BDF) method to the ODE aris-
ing from the Laplace transform representation of the solution (as shown in [30]), the
exponential spectral method proposed in this article can also be viewed as a contour
integral approximation to a spectrally convergent CQ constructed by utilizing an ex-
ponential integrator for the ODE arising from the Laplace transform representation
of the solution and by utilizing VP means of the source function on geometrically
refined subintervals adapted to the singularity at t= 0.

The rest of this article is organized as follows. The quadrature approximation
of the mild solution and the uniform polynomial approximation of functions by VP
means are presented in section 2. The new spectral method and its error analysis for
the linear subdiffusion equation with a possibly singular source function are presented
in section 3. The new spectral method and its error analysis for the semilinear sub-
diffusion equation are presented in section 4. Numerical experiments are presented
in section 5 to illustrate the spectral convergence of the proposed method for linear
and semilinear subdiffusion problems with rough initial data in L\infty (\Omega ). Concluding
remarks are presented in section 6.

2. Construction of the spectral method. In this section, we introduce the
several ingredients we use to construct the spectral method, including the contour
integral representation of the solution, quadrature approximation to the contour in-
tegrals, polynomial approximation by the VP means, and the exponential integrator
using VP means. The construction of the spectral method is discussed at the end of
this section, while the complete algorithms are presented in the next two sections for
the linear and semilinear subdiffusion equations, respectively.

2.1. Bounded mild solutions to the subdiffusion equation. For the sim-
plicity of notations, we denote u(t) = u(\cdot , t) for any function u defined on \Omega \times (0, T ].
A function u \in L\infty (0, T ;L\infty (\Omega )) \cap C([0, T ];L2(\Omega )) is called a bounded mild solution
of (1.1) if it satisfies

u(t) = F (t)u0 +

\int t

0

E(t - s)f(u(s), \cdot , t)ds \forall t\in (0, T ],(2.1)

where F (t) and E(t) are the solution operators associated to the subdiffusion equation,
defined as the inverse Laplace transform of the operators z\alpha  - 1(z\alpha  - \Delta ) - 1 and (z\alpha  - 
\Delta ) - 1, respectively; i.e.,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2310 BUYANG LI, YANPING LIN, SHU MA, AND QIQI RAO

F (t) =
1

2\pi i

\int 
Re(z)=\sigma 

z\alpha  - 1(z\alpha  - \Delta ) - 1ezt dz,

E(t) =
1

2\pi i

\int 
Re(z)=\sigma 

(z\alpha  - \Delta ) - 1ezt dz,

with an arbitrary parameter \sigma > 0. The paths of integration in the expressions of F (t)
and E(t) can be respectively deformed to the following two contours on the complex
plane:

\Gamma \lambda = \{ \lambda (1 - sin(\beta + is)) : s\in \BbbR \} and \Gamma \~\lambda = \{ \~\lambda (1 - sin(\beta + is)) : s\in \BbbR \} ,(2.2)

where \beta \in (0,\varphi  - \pi 
2 ), \varphi \in (\pi 2 , \pi ), and \lambda , \~\lambda > 0 can be arbitrary fixed parameters. These

contours are contained in the region between the two sectors \Sigma \varphi = \{ z \in \BbbC : | arg(z)| \leq 
\varphi \} and \lambda +\Sigma \beta +\pi 

2
; see [22, Figure 2.1]. Therefore,

Re(z)\sim  - | z| and | Im(z)| \sim | Re(z)| for z \in \Gamma \lambda \cup \Gamma \~\lambda .

The representation of the solutions to the subdiffusion equation in (2.1) has been
used in analyzing the regularity of solutions and the error of numerical approximations
in [14, 22, 31, 39, 40]. The integration contours in the form of (2.2) have been used
in approximating exponential-type functions of elliptic operators in [9, 26].

It is known that the resolvent operators (z\alpha  - \Delta ) - 1 of the Dirichlet Laplacian
satisfy the following estimate for some constant C > 0 (for example, see [22, Appendix
A]):

\| (z\alpha  - \Delta ) - 1\| L\infty \rightarrow L\infty \leq C(1 + | z| ) - \alpha for z \in \Gamma \lambda .(2.3)

As a result of the resolvent estimate in (2.3), the solution operators F (t) and E(t)
were proved to satisfy the following estimates (cf. [22, Lemma 3.1]):

\| F (t)\| L\infty \rightarrow L\infty \leq C and \| E(t)\| L\infty \rightarrow L\infty \leq Ct\alpha  - 1.(2.4)

By using these properties of the solution operators, it can be shown that (1.1) indeed
has a bounded mild solution if the one of the following two conditions is satisfied:

(1) The nonlinear function f(u) is Lipschitz continuous with respect to u. In this
case, the proof of well-posedness in [14] is still valid if the underlying space
L2(\Omega ) is replaced by L\infty (\Omega ), as the proof only requires using the resolvent
estimate in (2.3).

(2) The nonlinear function f(u) =  - F \prime (u) is the derivative of a double-well po-
tential F (u) with two wells at \pm \alpha , and the initial value satisfies that | u0| \leq \alpha .
For example, f(u) = (u - u3)/\varepsilon 2 = - F \prime (u) with F (u) = (1 - u2)2/(4\varepsilon 2) being
the Ginzburg--Landau potential. In this case, the maximum principle of the
subdiffusion equation (cf. [41, Theorems 3.1--3.2], [32, Theorem 2.1], and [18])
guarantees the boundedness of the solution; i.e., | u(x, t)| \leq \alpha .

In view of these results, we simply assume that the semilinear subdiffusion equa-
tion has a bounded mild solution and propose a class of spectral methods for the
linear and semilinear problems, respectively, with rigorous analysis for the existence,
uniqueness, and spectral convergence of the numerical approximations.

Throughout this article, we denote by C a generic positive constant that may
be different at different occurrences but is independent of the number Nm, N1(m) of
subintervals, the time level tn, and the number M of quadrature points for approxi-
mating the contour integrals.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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EXPONENTIAL SPECTRAL METHODS FOR SUBDIFFUSION 2311

2.2. Quadrature approximation of the mild solution. By substituting the
contour integral expressions of F (t) and E(t) into (2.1), and making a change of
variable in the first integral of (2.1), we can express the mild solution as

u(t) =
1

2\pi i

\int 
\Gamma \lambda 

ezz\alpha  - 1(z\alpha  - t\alpha \Delta ) - 1u0 dz

+
1

2\pi i

\int 
\Gamma \~\lambda 

(z\alpha  - \Delta ) - 1

\int t

0

ez(t - s)f(u(s), \cdot , s)dsdz.(2.5)

It is also known that the two contour integrals on the right-hand side of (2.5) can
be approximated by a quadrature which has spectral convergence with respect to the
number of quadrature points; i.e.,

u(t) =

M\sum 
j= - M

\omega je
zjz\alpha  - 1

j (z\alpha j  - t\alpha \Delta ) - 1u0 + \scrE 1,q(t)

+

M\sum 
j= - M

\~\omega j(\~z
\alpha 
j  - \Delta ) - 1y(\~zj , t) + \scrE 2,q(t),

(2.6)

where 2M +1 quadrature points are used, (\omega j , zj) and (\~\omega j , \~zj) are two pairs of quad-
rature weights and nodes, with \scrE 1,q(t) and \scrE 2,q(t) denoting the remainders of the

quadrature approximations, and y(z, t) =
\int t

0
ez(t - s)f(u(s), \cdot , s)ds is the solution of

the following ODE:

d

dt
y(z, t) = zy(z, t) + f(u(t), \cdot , t).(2.7)

The explicit expressions of the quadrature weights and nodes can be found in [22].
Moreover, the remainders satisfy the estimates in the following lemma.

Lemma 2.1 (cf. [22, Lemma 3.3]). If \| f(u, \cdot , \cdot )\| L\infty (0,t;L\infty (\Omega )) \leq C, then

\| \scrE 1,q(t)\| L\infty (\Omega ) + \| \scrE 2,q(t)\| L\infty (\Omega ) \leq Ce - 
\surd 
M/C .(2.8)

The representation of the mild solution by the discrete contour integrals in (2.6)--
(2.7) was proposed in [22] for solving the semilinear subdiffusion equation by an
exponential CQ with k-step extrapolation, which can only have kth-order conver-
gence with a fixed k \geq 1. In the next subsection, we propose a spectrally convergent
method based on the expression in (2.6)--(2.7) and a uniform polynomial interpolation
technique using the VP means.

2.3. Uniform polynomial approximation by VP means. We denote the
space of polynomials of degree \leq m on the interval [ - 1,1] by Pm([ - 1,1]) and define
the L\infty -norm polynomial approximation error as

Em(g)(x) := inf
p\in Pm

\| g(x, \cdot ) - p(\cdot )\| L\infty ( - 1,1) for g \in C(\Omega \times [ - 1,1]).(2.9)

In the approximation theory, the following results are known (see [3, equation (5.4.16)]).

Lemma 2.2. For 0 \leq k \leq m and g \in Ck([ - 1,1];L\infty (\Omega )), the following estimates
hold:

| Em(g)(x)| \leq Ckm
 - k\| g(x, \cdot )\| Ck([ - 1,1]),

\| Em(g)\| L\infty (\Omega ) \leq Ckm
 - k\| \partial k

t g\| C([ - 1,1];L\infty (\Omega )).
(2.10)
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It is known that the Lagrange interpolation operator Im :C([ - 1,1])\rightarrow Pm([ - 1,1])
is not stable with respect to m; i.e.,

\| Img\| C([ - 1,1]) \leq C log(m)\| g\| C([ - 1,1]),(2.11)

where the logarithmic factor in m cannot be removed. This significantly affects the
stability of the spectral methods based on the Lagrange interpolation for nonlinear
problem, for which the error estimates require using Gronwall's inequality. We shall
use a different interpolation technique in our spectral method, called the polynomial
VP means, which turns out to be not only stable in C([ - 1,1];L\infty (\Omega )) but also con-
venient for the practical computations in combination with exponential integrators.

Let tm,1 < tm,2 < . . . < tm,m be the m zeros of the normalized Jacobi polynomial
J\alpha ,\beta 
m (t) of degree m on the interval [ - 1,1], with the Jacobi weight \omega \alpha ,\beta = (1 - t)\alpha (1+

t)\beta . The following polynomial VP means of a function g \in C([ - 1,1]) will be used:

V r
mg(t) =

m\sum 
i=1

g(tm,i)\Phi 
r
m,i(t) for g \in C([ - 1,1]),(2.12)

where

\Phi r
m,i(t) =

\sum m+r - 1
j=0 \mu r

m,jJ
\alpha ,\beta 
j (tm,i)J

\alpha ,\beta 
j (t)\sum m - 1

j=0 [J\alpha ,\beta 
j (tm,i)]2

, j = 1, . . .m,(2.13)

with

\mu r
m,j :=

\left\{   
1 if 0\leq j \leq m - r,
m+r - j

2r if m - r < j <m+ r,
0 if j \geq m+ r.

(2.14)

For | \alpha | = | \beta | = 1
2 , the VP means enjoy the interpolation properties; i.e., V r

mg(tm,i) =
g(tm,i) for i= 1, . . . ,m.

In this article, we simply choose r\leq \theta m for some fixed \theta \in (0,1). Then the approx-
imation errors of the polynomial VP means are given in the following lemma, which
shows that the L\infty -stability constant of the polynomial VP means is independent of
the polynomial degree.

Lemma 2.3 (see [38, Theorem 3.2]). For sufficiently large positive integers m and
r satisfying r\leq \theta m, the following estimates hold:

\| V r
mg\| C([ - 1,1];L\infty (\Omega )) \leq C sup

1\leq i\leq m
\| g(tm,i)\| L\infty (\Omega ) for g \in C([ - 1,1];L\infty (\Omega )),(2.15)

\| g - V r
mg\| C([ - 1,1];L\infty (\Omega )) \leq C\| Em - r(g)\| L\infty (\Omega ) for g \in C([ - 1,1];L\infty (\Omega )),(2.16)

for some constant C which does not depend on m.

2.4. The exponential integrator using VP means. The only unknown on
the right-hand side of (2.6) is y(\~zj , t), which we shall approximate by the exponential
integrator

y(\~zj , tni) = e\~zj(tni - tn - 1)y(\~zj , tn - 1) +

\int tni

tn - 1

e\~zj(tni - s)V r
mf(u(s), \cdot , s)ds(2.17)

at the finitely many internal nodes tni \in (tn - 1, tn], i= 1, . . . ,m, where the polynomial
VP mean V r

mf(u(s), \cdot , s) only depends on the finitely many values f(u(tni), \cdot , tni),
i= 1, . . . ,m.
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EXPONENTIAL SPECTRAL METHODS FOR SUBDIFFUSION 2313

Since the VP means can be expressed as linear combinations of the Jacobi poly-
nomials, the integral in (2.17) can be evaluated analytically by using the following
formula:

\int t

 - 1

ez(t - s)J\alpha ,\beta 
m (s)ds=

m\sum 
k=0

d\alpha ,\beta m,k

zk+1

\sqrt{} 
\gamma \alpha +k,\beta +k
m - k

\gamma \alpha ,\beta 
m

\Bigl( 
 - J\alpha +k,\beta +k

m - k (t) + ez(t+1)J\alpha +k,\beta +k
m - k ( - 1)

\Bigr) 
.

(2.18)

This formula can be derived by using integration by parts and the following differen-
tiation property of the Jacobi polynomials [36, equation (3.101)]:

\partial k
t J

\alpha ,\beta 
m (t) = d\alpha ,\beta m,k

\sqrt{} 
\gamma \alpha +k,\beta +k
m - k

\gamma \alpha ,\beta 
m

J\alpha +k,\beta +k
m - k (t),

where

d\alpha ,\beta m,k =
\Gamma (m+ k+ \alpha + \beta + 1)

2k\Gamma (m+ \alpha + \beta + 1)
,

\gamma \alpha ,\beta 
m =

2\alpha +\beta +1\Gamma (m+ \alpha + 1)\Gamma (m+ \beta + 1)

(2m+ \alpha + \beta + 1)m!\Gamma (m+ \alpha + \beta + 1)
.

By a simple scaling transformation, we can use formula (2.18) to compute the
integral in (2.17) in terms of the values f(u(tni), \cdot , tni), i = 1, . . . ,m. Then, by sub-
stituting the computed values y(\~zj , tni) into (2.6), we can obtain the desired spectral
method. The complete algorithms are presented in the next two sections for the linear
and semilinear subdiffusion equations, respectively.

3. The linear problem with a singular source. In this section, we present
the spectral algorithm for the linear subdiffusion equation with a given source function
f(x, t) which may be singular at t= 0 (but is independent of u).

Since the solution representation in (2.6)--(2.7) does not depend on the history
values of the solution, i.e., it only depends on the value of y(z, t) which satisfies the
ODE problem in (2.7), which does not contain history integrals, the case T > 1 can be
reduced to the case T = 1 by dividing the time interval [0, T ] into several parts. The
case T < 1 can be converted to the case T = 1 via a temporal scaling transformation.
Therefore, without loss of generality, we focus on the case T = 1 and consider the
subdiffusion equation on the unit time interval [0,1].

If the source function is smooth, i.e., f \in C\infty ([0,1];L\infty (\Omega )), then we can ap-
proximate the source function f by its VP mean V r

mf on the whole interval [0,1]. In
particular, let tm,1 < tm,2 < . . . < tm,m be the zeros of the Jacobi polynomial J\alpha ,\beta 

m (t)
of degree m on the time interval [0,1]. For any fixed t \in [0,1], we can approximate
y(z, t) by

ym(z, t) =

\int t

0

ez(t - s)V r
mf(s)ds,(3.1)

which can be evaluated exactly by using formula (2.18). By substituting (3.1) into
(2.6) and dropping the two remainders \scrE 1,q(t) and \scrE 2,q(t), we obtain the following
algorithm for any t\in [0,1]:

um(t) =

M\sum 
j= - M

\omega je
zjz\alpha  - 1

j (z\alpha j  - t\alpha \Delta ) - 1u0 +

M\sum 
j= - M

\~\omega j(\~z
\alpha 
j  - \Delta ) - 1ym(\~zj , t).(3.2)
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2314 BUYANG LI, YANPING LIN, SHU MA, AND QIQI RAO

The error bound of this method is an immediate consequence of Lemmas 2.1, 2.2
and 2.3 (with r \leq \theta m for some fixed parameter 0 < \theta < 1). We present the result in
the following theorem and omit the proof.

Theorem 3.1. Let u0 \in L\infty (\Omega ) and f \in C\infty ([0,1];L\infty (\Omega )). Then the numerical
solution defined in (3.1)--(3.2) has the following error bound for the linear subdiffusion
equation:

max
t\in [0,1]

\| u(t) - um(t)\| L\infty (\Omega ) \leq Ckm
 - k +Ce - 

\surd 
M/C ,(3.3)

which holds for all fixed integer k\geq 1, all M, and all sufficiently large m.

We are more interested in the development of high-order methods for the subdif-
fusion equation with a source function singular at t= 0. This is often the case when
the source function is related to the solution of a subdiffusion equation. The strength
of such a singularity at t = 0 can be characterized by the following condition with a
parameter \gamma \in (0,1]:

\| (t\gamma \partial t)kf(\cdot , t)\| L\infty (\Omega ) \leq Ck for k\geq 0 and t\in (0,1].(3.4)

The larger value of \gamma , the stronger of the singularity.
For a source function which exhibits a singularity at t= 0 in the form of (3.4), we

choose a fixed parameter \lambda > 1 and divide the time interval [0,1] into N subintervals;
i.e.,

I1 = [t0, t1] := [0, \lambda 1 - N ] and In = (tn - 1, tn] := (\lambda n - 1 - N , \lambda n - N ], 2\leq n\leq N,

where N = Nm can be any integer satisfying limm\rightarrow \infty Nm/ logm = \infty (this require-
ment will become clear in the error analysis). On each subinterval In, we approximate
the source function f(\cdot , t) by its VP means V r

mf(\cdot , t) and substitute the value

yn(z) = ez(tn - tn - 1)yn - 1(z) +

\int tn

tn - 1

ez(tn - s)V r
mf(s)ds(3.5)

into (2.6). Then, by dropping the two remainders \scrE 1,q(t) and \scrE 2,q(t) in (2.6), we
obtain the following algorithm:

un =

M\sum 
j= - M

\omega je
zjz\alpha  - 1

j (z\alpha j  - t\alpha n\Delta ) - 1u0 +

M\sum 
j= - M

\~\omega j(\~z
\alpha 
j  - \Delta ) - 1yn(\~zj).(3.6)

The algorithm in (3.5)--(3.6) only requires polynomial interpolation based on the
VP means, the evaluation of the exponential integrals in (3.5), and the solution of
the linear systems associated to the operators z\alpha j  - \Delta and \~z\alpha j  - \Delta . This is different
from the spectral method for the semilinear problem to be presented in the next
section, which requires solving certain nonlinear systems by fixed-point iterations or
the Newton iterations.

For the linear problem with singular source function, the accuracy of the numerical
approximation by (3.6) is guaranteed by the following theorem.

Theorem 3.2. Let u0 \in L\infty (\Omega ), and assume that the source function f(x, t)
satisfies the regularity condition in (3.4). Let un, n = 1, . . . ,N be the numerical
solutions given by (3.5)--(3.6), with N =Nm satisfying

lim
m\rightarrow \infty 

Nm

log(m)
=\infty .(3.7)
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EXPONENTIAL SPECTRAL METHODS FOR SUBDIFFUSION 2315

Then the following error bound holds (for all integer k\geq 1, all M, and all sufficiently
large m):

max
1\leq n\leq N

\| u(tn) - un\| L\infty (\Omega ) \leq Ckm
 - k +Ce - 

\surd 
M/C .(3.8)

Remark 3.1. The total number of degrees of freedom in the time discretization is
mN, with N =Nm satisfying condition (3.7). By choosing a moderate growing Nm,
such as Nm =m/2, the total number of degrees of freedom is O(m2) while the error of
the numerical approximation is O(m - k) for arbitrarily large k. This means that the
proposed method has spectral convergence (i.e., arbitrarily large convergence orders)
with respect to the total number of degrees of freedom.

Remark 3.2. Theorems 3.1 and 3.2 are still valid if the L\infty norms are changed
to L2 norms. Namely, if u0 \in L2(\Omega ) and \| (t\gamma \partial t)kf(\cdot , t)\| L2(\Omega ) \leq Ck for k \geq 0 and
t \in (0,1], then the numerical solution defined in (3.5)--(3.6) has the following error
bound for the linear subdiffusion equation:

max
1\leq n\leq N

\| u(tn) - un\| L2(\Omega ) \leq Ckm
 - k +Ce - 

\surd 
M/C ,

which holds for all fixed integer k \geq 1 and sufficiently large m and M . The proof
of this result is the same as the proof of Theorem 3.2 below by changing all the L\infty 

norms to L2 norms.

Proof. We define an auxiliary function u\ast , which is the solution of the following
linear subdiffusion problem (with the source function replaced by V r

mf):\left\{   \partial \alpha 
t u

\ast  - \Delta u\ast = V r
mf in \Omega \times (0,1],

u\ast = 0 on \partial \Omega \times (0,1],
u\ast (0) = u0 in \Omega .

(3.9)

Then the error en = u(tn) - un can be decomposed into en = \~en + e\ast n, with

\~en = u(tn) - u\ast (tn) and e\ast n = u\ast (tn) - un.

Since un is the quadrature approximation of the contour integral representation
of u\ast (tn), i.e., the value after dropping the two remainders in (2.6), the estimates in
Lemma 2.1 and the L\infty -stability of the VP means imply that \| V r

mf\| L\infty (0,1;L\infty (\Omega )) \leq 
C\| f\| L\infty (0,1;L\infty (\Omega )) \leq C, and therefore

\| e\ast n\| L\infty (\Omega ) \leq Ce - 
\surd 
M/C .(3.10)

Since \~en represents the error between the exact solution and the auxiliary function
u\ast due to the change of the source function from f to V r

mf , by using formula (2.1) we
can express \~en as follows:

\~en =

\int t1

0

E(tn  - s)[f(s) - V r
mf(s)] ds+

n\sum 
j=2

\int tj

tj - 1

E(tn  - s)[f(s) - V r
mf(s)] ds

=: \scrE n,1 + \scrE n,2.
(3.11)

The first term on the right-hand side of (3.11) can be estimated by using the bound-
edness of f and V r

mf and the estimate \| E(t - s)\| L\infty (\Omega )\rightarrow L\infty (\Omega ) \leq C(t - s)\alpha  - 1 as shown
in (2.4); i.e.,

\| \scrE n,1\| L\infty (\Omega ) \leq C

\int t1

0

(t1  - s)\alpha  - 1\| f\| L\infty (I1;L\infty (\Omega )) ds\leq Ct\alpha 1 \| f\| L\infty ([0,1];L\infty (\Omega )).
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2316 BUYANG LI, YANPING LIN, SHU MA, AND QIQI RAO

Since t1 = \lambda 1 - N and N = Nm satisfies condition (3.7), it follows that t\alpha 1 \leq m - k as
m\rightarrow \infty for any k\geq 1. This proves that

\| \scrE n,1\| L\infty (\Omega ) \leq Ckm
 - k as m\rightarrow \infty .(3.12)

The second term on the right-hand side of (3.11) can be estimated by using the
following approximation error estimate of the VP means; i.e.,

\| f  - V r
mf\| C([tj - 1,tj ];L\infty (\Omega )) \leq Ck(m - r) - k

\Bigl( tj  - tj - 1

2

\Bigr) k

\| \partial k
t f\| C([tj - 1,tj ];L\infty (\Omega ))

\leq Ckm
 - k

\Bigl( tj  - tj - 1

2

\Bigr) k

\| \partial k
t f\| C([tj - 1,tj ];L\infty (\Omega )),(3.13)

which is an immediate consequence of Lemma 2.2 and Lemma 2.3 and a scaling
transformation from the standard interval [ - 1,1] to the current interval [tj - 1, tj ].
The last inequality is due to the fact that r\leq \theta m for some fixed \theta \in (0,1). Therefore,

\| \scrE n,2\| L\infty (\Omega ) \leq 
n\sum 

j=2

\int tj

tj - 1

(tn  - s)\alpha  - 1\| f  - V r
mf\| L\infty (Ij ;L\infty (\Omega )) ds

\leq Ck

n\sum 
j=2

m - k

\int tj

tj - 1

(tn  - s)\alpha  - 1
\Bigl( tj  - tj - 1

2

\Bigr) k

\| \partial k
s f\| L\infty (Ij ;L\infty (\Omega )) ds.(3.14)

The condition in (3.4) implies that \| \partial k
s f\| L\infty (Ij ;L\infty (\Omega )) \leq Ct - \gamma k

j - 1 , and therefore

\| \scrE n,2\| L\infty (\Omega ) \leq Ck

n\sum 
j=2

m - k
\Bigl( tj  - tj - 1

2t\gamma j - 1

\Bigr) k
\int tj

tj - 1

(tn  - s)\alpha  - 1 ds

\leq Ckm
 - k

n\sum 
j=2

\lambda [(1 - \gamma )+\alpha ](j - N),

where we have substituted tj = \lambda j - N into the last inequality. Since \lambda > 1 and n\leq N ,
the summation of \lambda [(1 - \gamma )+\alpha ](j - N) for j = 2, . . . , n is finite and independent of m. This
proves that

\| \scrE n,2\| L\infty (\Omega ) \leq Ckm
 - k.(3.15)

Then, substituting the estimates of \| \scrE n,1\| L\infty (\Omega ) and \| \scrE n,2\| L\infty (\Omega ) into (3.11), we
obtain

\| \~en\| L\infty (\Omega ) \leq Ckm
 - k for 1\leq n\leq N.(3.16)

The error bound in Theorem 3.2 follows from the two estimates in (3.10) and
(3.16).

4. The semilinear problem with rough initial data. In this section, we
present the spectral method for the semilinear subdiffusion equation with a rough ini-
tial value u0 \in L\infty (\Omega ). Similarly to the linear problem (as explained at the beginning
of section 3), we can focus on the case T = 1 and consider the semilinear subdiffusion
equation on the unit time interval [0,1]. For the simplicity of presentation, we focus
on the case f(u,x, t) = f(u) without loss of generality.
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EXPONENTIAL SPECTRAL METHODS FOR SUBDIFFUSION 2317

4.1. The spectral collocation method. Differently from the linear problem,
we first divide the whole interval [0,1] uniformly into N smaller subintervals In =
((n - 1)/N,n/N ] = (tn - 1, tn], 1\leq n\leq N , and then refine the first subinterval I1 = [0, t1]
into N1 smaller subintervals. In particular, for a constant \lambda > 1 we define

I1,1 = [t0, t1,1] := [0, \lambda 1 - N1/N ],

I1,j = (t1,j - 1, t1,j ] := (\lambda j - 1 - N1/N,\lambda j - N1/N ] for j = 2, . . . ,N1.

The division of the whole interval [0,1] uniformly into N smaller subintervals In =
((n - 1)/N,n/N ], n= 1, . . . ,N , is to guarantee the stability of the spectral method on
each subinterval with respect to the polynomial interpolation of the nonlinear source
function. This will become clear in the error analysis; i.e., the L\infty -norm stability
with respect to the polynomial interpolation requires the length of the interval to be
sufficiently small. The division of the first subinterval I1 into N1 smaller subintervals
I1,j , j = 1, . . . ,N1, with graded stepsizes locally refined towards t= 0 is to resolve the
singularity of the nonlinear source function at t= 0 (similarly to the linear problem).

On each subinterval I1,n, we approximate f(u) by its VP means V r
mf(um), where

um denotes the numerical solution obtained by using polynomial VP means of degree
m on each subinterval. In particular, we denote by tm,1

1,n < tm,2
1,n < . . . < tm,m

1,n the m

zeros of the Jacobi polynomial J\alpha ,\beta 
m (t) of degree m on the interval I1,n = (t1,n - 1, t1,n],

1\leq n\leq N1, and we denote by

U1,n =
\Bigl( 
um,1
1,n , um,2

1,n , . . . , um,m
1,n

\Bigr) \top 

the vector which contains the numerical solutions at the discrete time levels tm,i
1,n ,

i= 1, . . . ,m, determined by the following nonlinear system of equations:

U1,n =G1,n(U1,n),(4.1)

where G1,n :L\infty (\Omega )m \rightarrow L\infty (\Omega )m is a nonlinear mapping defined by

G1,n(U1,n) :=
\Bigl( 
vm,1
1,n , vm,2

1,n , . . . , vm,m
1,n

\Bigr) \top 
,

with

vm,i
1,n =

M\sum 
j= - M

\omega je
zjz\alpha  - 1

j

\Bigl( 
z\alpha j  - (tm,i

1,n )
\alpha \Delta 

\Bigr)  - 1

u0

+

M\sum 
j= - M

\~\omega j(\~z
\alpha 
j  - \Delta ) - 1ym,i

1,n (\~zj) for i= 1, . . . ,m,

(4.2)

and

ym,i
1,n (\~zj) = e\~zj(t

m,i
1,n  - t1,n - 1)y1,n - 1(\~zj) +

\int tm,i
1,n

t1,n - 1

e\~zj(t
m,i
1,n  - s)[V r

mf(um)](s)ds.(4.3)

If y1,n - 1(\~zj) is known, then we can compute um,i
1,n , i= 1, . . . ,m by solving the colloca-

tion system (4.1) and then compute y1,n(z) by

y1,n(\~zj) = e\~zj(t1,n - t1,n - 1)y1,n - 1(\~zj) +

\int t1,n

t1,n - 1

e\~zj(t1,n - s)[V r
mf(um)](s)ds.(4.4)
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Similarly, for each subinterval In, 2\leq n\leq N , we denote by tm,1
n < . . . < tm,m

n the
m zeros of Jacobi polynomial J\alpha ,\beta 

m (x) on In and denote by

Un =
\bigl( 
um,1
n , um,2

n , . . . , um,m
n

\bigr) \top 
the vector which contains the numerical solutions at time levels tm,i

n , i = 1, . . . ,m,
determined by the following nonlinear system of equations:

Un =Gn(Un),(4.5)

where Gn(Un) := (vm,1
n , vm,2

n , . . . , vm,m
n )\top , with

vm,i
n =

M\sum 
j= - M

\omega je
zjz\alpha  - 1

j (z\alpha j  - (tm,i
n )\alpha \Delta ) - 1u0

+

M\sum 
j= - M

\~\omega j(\~z
\alpha 
j  - \Delta ) - 1ym,i

n (\~zj) for i= 1, . . . ,m,

(4.6)

and

ym,i
n (\~zj) = e\~zj(t

m,i
n  - tn - 1)yn - 1(\~zj) +

\int tm,i
n

tn - 1

e\~zj(t
m,i
n  - s)[V r

mf(um)](s)ds.(4.7)

If yn - 1(\~zj) is known, then we can compute um,i
n , i = 1, . . . ,m by solving collocation

system (4.5) and then compute yn(z) by

yn(\~zj) = e\~zj(tn - tn - 1)y1,n - 1(\~zj) +

\int tn

tn - 1

e\~zj(tn - s)[V r
mf(um)](s)ds.(4.8)

The existence, uniqueness, and spectral convergence of the numerical solutions
defined by (4.1) and (4.5) are guaranteed by the following theorem.

Theorem 4.1. Let u\in C([0,1];L2(\Omega ))\cap L\infty (0,1;L\infty (\Omega )) be a bounded mild solu-
tion of (1.1) with initial value u0 \in L\infty (\Omega ) and nonlinear source function f \in C\infty (\BbbR ).
Let um,i

1,n and um,i
n be the numerical solutions given by (4.2) and (4.6), respectively.

Then there exists a positive constant N\ast such that, for N \geq N\ast and N1 = N1(m)
satisfying

lim
m\rightarrow \infty 

N1(m)

log(m)
=\infty ,(4.9)

the nonlinear systems (4.1) and (4.5) have unique solutions in an L\infty -neighborhood
of the mild solution, with the following error bounds:

max
1\leq n\leq N1

max
1\leq i\leq m

\| u(tm,i
1,n ) - um,i

1,n\| L\infty (\Omega ) \leq Ck

\Bigl( 
m - k + e - 

\surd 
M/C

\Bigr) 
,(4.10)

max
2\leq n\leq N

max
1\leq i\leq m

\| u(tm,i
n ) - um,i

n \| L\infty (\Omega ) \leq Ck

\Bigl( 
m - k + e - 

\surd 
M/C

\Bigr) 
,(4.11)

which hold for all integer k \geq 1 and sufficiently large m and M (larger than some
constants which are independent of m).

Remark 4.1. Since all the results are based on the properties of the resolvent oper-
ator (z - \Delta ) - 1, which has similar properties under the Dirichlet and periodic boundary
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EXPONENTIAL SPECTRAL METHODS FOR SUBDIFFUSION 2319

conditions, the results in this article can be extended to the periodic boundary con-
dition.

Remark 4.2. It is mentioned at the beginning of section 3 that the case T > 1
can be solved by dividing the time interval into a number of subintervals. Using the
same method together with discrete Gronwall's inequality, the error bound will be
multiplied by eCT for long-term computation. The factor eCT usually appears in the
error estimates for semilinear parabolic equations and subdiffusion equations. The
factor eCT may be removed for the linear subdiffusion equation but requires a closer
look at the error analysis by taking account of the regularity behavior of the mild
solution as t\rightarrow 0. This is not studied in the current paper.

Remark 4.3. For the convenience of illustration, we have focused on the semilinear
subdiffusion equation with a Laplacian operator in space. However, the results can
be extended to more general elliptic partial differential operators which satisfy the
resolved estimate in (2.3), such as second-order elliptic partial differential operators
with variable coefficients.

Proof. The roughness of the initial value will generate singularity in the solution
and the nonlinear source function at t = 0. For a bounded mild solution of the
semilinear subdiffusion equation with initial value u0 \in L\infty (\Omega ), it is shown in [22,
inequality (3.8)] that both the solution and the source function exhibit singularities
in the form of (1.6). In the next two subsections, we present the proof of Theorem 4.1
based on the regularity estimates in (1.6). For the simplicity of notations, we omit
the dependence of the constants C on k in the proof.

4.2. Existence, uniqueness, and boundedness of the numerical solution.
We denote L= \| u\| L\infty (0,1;L\infty (\Omega )) and modify the definition of the nonlinear function
f :\BbbR \rightarrow \BbbR in the region | \sigma | \geq L+1 so that f(\sigma ) = 0 for | \sigma | \geq L+2. For the simplicity of
the notation, we still use f to denote the modified function. This modification make
the source function f : \BbbR \rightarrow \BbbR globally bounded and Lipschitz continuous but would
not have influence on the numerical solution if it satisfies the following condition:

\| um,i
1,n\| L\infty (\Omega ) \leq L+ 1 and \| um,i

n \| L\infty (\Omega ) \leq L+ 1.(4.12)

We shall prove the existence and uniqueness of a numerical solution satisfying this
condition (for sufficiently large N and N1).

The existence and uniqueness of numerical solutions would follow from the con-
tractivity of the map G1,n : L\infty (\Omega )m \rightarrow L\infty (\Omega )m. For V = (v1, . . . , vm) \in L\infty (\Omega )m,
we denote f(V ) = (f(v1), . . . , f(vm)) and V r

mf(V ) the polynomial on the interval I1,n
based on the VP mean of the nodal values f(v1), . . . , f(vm). Then

\| G1,n(U) - G1,n(V )\| L\infty (\Omega )m

\leq 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
M\sum 

j= - M

\~\omega j(\~z
\alpha 
j  - \Delta ) - 1

\int t

t1,n - 1

e\~zj(t - s)V r
m[f(U) - f(V )] ds

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L\infty (I1,n;L\infty (\Omega ))

\leq 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
M\sum 

j= - M

\~\omega j(\~z
\alpha 
j  - \Delta ) - 1

\int t

t1,n - 1

e\~zj(t - s)V r
m[f(U) - f(V )] ds

 - 
\int 
\Gamma \~\lambda 

(z\alpha  - \Delta ) - 1

\int t

t1,n - 1

ez(t - s)V r
m[f(U) - f(V )] dsdz

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L\infty (I1,n;L\infty (\Omega ))

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/2

4/
24

 to
 8

1.
10

.1
92

.1
86

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



2320 BUYANG LI, YANPING LIN, SHU MA, AND QIQI RAO

+

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\int 
\Gamma \~\lambda 

(z\alpha  - \Delta ) - 1

\int t

t1,n - 1

ez(t - s)V r
m[f(U) - f(V )] dsdz

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L\infty (I1,n;L\infty (\Omega ))

=:\scrF 1 +\scrF 2.

\scrF 1 can be estimated by using the L\infty -stability of the VP means and the Lipschitz
continuity of the modified function f , i.e., \| V r

m[f(U) - f(V )]\| L\infty (I1,n;L\infty (\Omega )) \leq C\| U  - 
V \| L\infty (\Omega )m , and Lemma 2.1, which together imply that

\scrF 1 \leq Ce - 
\surd 
M/C\| U  - V \| L\infty (\Omega )m .(4.13)

\scrF 2 can be converted into the following form:

\scrF 2 =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\int t

tn - 1

E(t - s)V r
m[f(U) - f(V )] ds

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L\infty (I1,n;L\infty (\Omega ))

\leq C\| U  - V \| L\infty (\Omega )m

\int tn

tn - 1

(tn  - s)\alpha  - 1 ds

=C| I1,n| \alpha \| U  - V \| L\infty (\Omega )m .

(4.14)

Since | I1,n| \leq 1/N , it follows that

\| G1,n(U) - G1,n(V )\| L\infty (\Omega )m \leq C
\Bigl( 
e - 

\surd 
M/C +N - \alpha 

\Bigr) 
\| U  - V \| L\infty (\Omega )m .(4.15)

For sufficiently large M and N (bigger than some constants), (4.15) implies that
G1,n : L\infty (\Omega )m \rightarrow L\infty (\Omega )m is a contraction and therefore has a unique fixed point,
i.e., a numerical solution of (4.1). The existence and uniqueness of a fixed point for
the map Gn : L\infty (\Omega )m \rightarrow L\infty (\Omega )m, i.e., the existence and uniqueness of a numerical
solution of (4.5), can be proved in the same way and therefore omitted.

In the next subsection, we prove that, for sufficiently large m, M, and N , the
numerical solutions U1,n and Un with the modified source function actually satisfy
condition (4.12) and therefore are also the numerical solutions with the original source
function. This would prove the existence and uniqueness of numerical solutions with
the original source function.

4.3. Error estimation. We define an auxiliary function u\ast , which is the solution
of the following subdiffusion problem (with the modified source function):\left\{   \partial \alpha 

t u
\ast  - \Delta u\ast = V r

mf(um) in \Omega \times (0,1],
u\ast = 0 on \partial \Omega \times (0,1],
u\ast (0) = u0 in \Omega .

(4.16)

We also know that the exact solution u satisfies the following equation:\left\{   \partial \alpha 
t u - \Delta u= V r

mf(u) + \scrE f in \Omega \times (0,1],
u= 0 on \partial \Omega \times (0,1],
u(0) = u0 in \Omega ,

(4.17)

where the remainder \scrE f = f(u)  - V r
mf(u) satisfies the following estimate for any

subinterval [a, b]\subset (0,1]:

\| \scrE f\| C([a,b];L\infty (\Omega )) \leq Cm - k
\Bigl( b - a

2

\Bigr) k

\| \partial k
t f(u)\| C([a,b];L\infty (\Omega )).(4.18)
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This is similar to the approximation error bound of VP means for the linear problem;
see (3.13). By using expression (2.1) of the solution, the function \~e = u - u\ast can be
written as

\~e(t) =

\int t

0

E(t - s)(V r
mf(u) - V r

mf(um))ds+

\int t

0

E(t - s)\scrE f (s)ds.(4.19)

Since the modified source function f : \BbbR \rightarrow \BbbR is globally bounded and Lipschitz
continuous, and the VP means are uniform bounded, it follows that

\| V r
mf(um)\| L\infty (I1,n;L\infty (\Omega )) \leq C\| f(um)\| L\infty (I1,n;L\infty (\Omega )) \leq C.

Since the numerical solution um is the quadrature approximation of the contour in-
tegral representation of u\ast , it follows from Lemma 2.1 that

\| u\ast  - um\| L\infty (I1,n;L\infty (\Omega )) \leq Ce - 
\surd 
M/C for 1\leq n\leq N1.(4.20)

For \~em,i
1,n = u(tm,i

1,n ) - u\ast (tm,i
1,n ), with 1\leq i\leq m, 1\leq n\leq N1, setting t= tm,i

1,n in (4.19)
yields the following estimate:

\| \~em,i
1,n\| L\infty (\Omega ) \leq C

\int t1,1

0

\Bigl( 
tm,i
1,n  - s

\Bigr) \alpha  - 1

\| f(u(s)) - f(um)\| L\infty (I1,1;L\infty (\Omega )) ds

+C

n - 1\sum 
j=2

\int t1,j

t1,j - 1

\Bigl( 
tm,i
1,n  - s

\Bigr) \alpha  - 1

max
1\leq i\leq m

\| em,i
1,j \| L\infty (\Omega ) ds

+C

\int tm,i
1,n

t1,n - 1

\Bigl( 
tm,i
1,n  - s

\Bigr) \alpha  - 1

max
1\leq i\leq m

\| em,i
1,n\| L\infty (\Omega ) ds+Cm - k,

where we have used the result \| 
\int tm,i

1,n

0 E(tm,i
1,n - s)\scrE f (s)ds\| L\infty (\Omega ) \leq Cm - k, which follows

from the same argument as the proof in (3.14)--(3.16) (with \gamma = 1 therein). Since
\| f(u(s)) - f(u0)\| L\infty (I1,1;L\infty (\Omega )) \leq C, from the inequality above we obtain

max
1\leq n\leq N1

max
1\leq i\leq m

\| \~em,i
1,n\| L\infty (\Omega )

\leq Ct\alpha 1,1 +Ct\alpha 1,N max
1\leq n\leq N1

max
1\leq i\leq m

\| em,i
1,n\| L\infty (\Omega ) +Cm - k

=C\lambda (1 - N1)\alpha N - \alpha +CN - \alpha max
1\leq n\leq N1

max
1\leq i\leq m

\| em,i
1,n\| L\infty (\Omega ) +Cm - k.

Similarly to the proof of (3.12), for sufficiently large N1 satisfying condition (4.9),
we have

max
1\leq n\leq N1

max
1\leq i\leq m

\| \~em,i
1,n\| L\infty (\Omega ) \leq CN - \alpha max

1\leq n\leq N1

max
1\leq i\leq m

\| em,i
1,n\| L\infty (\Omega ) +Cm - k.

Then, substituting (4.20) into the inequality above, we can convert \~em,i
1,j to em,i

1,j on
the left-hand side; i.e.,

max
1\leq n\leq N1

max
1\leq i\leq m

\| em,i
1,n\| L\infty (\Omega )

\leq CN - \alpha max
1\leq n\leq N1

max
1\leq i\leq m

\| em,i
1,n\| L\infty (\Omega ) +Cm - k +Ce - 

\surd 
M/C .
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For sufficiently large N (larger than some constant which is independent of m), the
first term on the right-hand side above can be absorbed by the left-hand side. This
yields the following error estimate:

max
1\leq n\leq N1

max
1\leq i\leq m

\| em,i
1,n\| L\infty (\Omega ) \leq Cm - k +Ce - 

\surd 
M/C .(4.21)

By choosing m and M large enough, we have

max
1\leq n\leq N1

max
1\leq i\leq m

\| em,i
1,n\| L\infty (\Omega ) \leq 1,

and therefore

max
1\leq n\leq N1

\| U1,n\| L\infty (\Omega )m \leq L+ 1.(4.22)

The same argument can be used to prove that (for sufficiently large m and M)

max
2\leq n\leq N

max
1\leq i\leq m

\| em,i
n \| L\infty (\Omega ) \leq Cm - k +Ce - 

\surd 
M/C ,(4.23)

max
2\leq n\leq N

\| Un\| L\infty (\Omega )m \leq L+ 1.(4.24)

This proves that the numerical solution satisfies the constraint in (4.12). There-
fore, as we have discussed at the end of section 4.2, U1,n and Un are the numerical
solutions with the original source function f (which is possibly not globally Lipschitz
continuous), satisfying the error bounds in (4.21) and (4.23). This completes the proof
of Theorem 4.1.

5. Numerical tests. In this section, we present numerical tests to illustrate
spectral convergence of the proposed time discretizations for both linear and semi-
linear subdiffusion equations with rough initial data. The piecewise linear Galerkin
finite element method in space is used with a sufficiently small mesh size that does
not affect the observation of the time discretization errors. All the computations are
performed by MATLAB R2020b on a personal laptop.

We consider the subdiffusion equation in (1.1) in the domain \Omega = (0,1) up to time
T = 1, with a discontinuous initial value u0 = \chi [1/2,1) \in L\infty (\Omega ), where \chi [1/2,1) denotes
the characteristic function of the subinterval [ 12 ,1). The parameter \lambda in the algorithm
is chosen to be 2. The number of quadrature points is 2M+1 with M =O(m log3m),
which satisfies the conditions in Theorems 3.1, 3.2, and 4.1. Since the closed form of
the exact solution is not known, we compute a reference solution um\mathrm{r}\mathrm{e}\mathrm{f}

with mref = 24
and compute the errors for m\leq 16.

The principle of choosing M is to make e - C
\surd 
M smaller than m - k for all k as m\rightarrow 

\infty . Therefore, M =O(m log2m) and M =O(m log3m) both satisfy the requirement
theoretically. In the numerical tests we observe that the choice of M = O(m log2m)
performs well when m is large, while the choice of M =O(m log3m) performs well for
both large m and small m. Therefore, we choose M =O(m log3m) in our numerical
experiments below.

5.1. The linear subdiffusion equation. We solve the linear subdiffusion equa-
tion with a given source function f(x, t) by the proposed algorithm in section 3 with

N = m
2 subintervals. Then the total number of degrees of freedom is m2

2 . The errors
of the numerical solutions for the smooth source function

f(x, t) = (sin t) cos\pi x
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and the singular source functions

f(x, t) = t\sigma cos\pi x with \sigma = 0.75, 0.5, and 0.25

are presented in Figure 5.1. In particular, the smooth and singular functions satisfy
the conditions of Theorems 3.1 and 3.2, respectively.

The numerical results in Figure 5.1 indicate that the proposed method has spec-
tral convergence for the linear subdiffusion equation with both smooth and singular
source functions. This is consistent with the theoretical results proved in Theorems 3.1
and 3.2.

5.2. The semilinear subdiffusion equation. We consider the semilinear sub-
diffusion equation in (1.1) with thenonlinear source function

f(u) = sinu,

which satisfies the condition of Theorem 4.1 and guarantees that the semilinear subd-
iffusion equation has a unique bounded mild solution. We divide the interval [0,1] into
several subintervals with parameters N = 1, N1 =

m
2 , and total number of degrees of

freedom m2

2 and present the errors of the numerical solutions in Figure 5.2 for several
different values of \alpha \in (0,1). The numerical results in Figure 5.2 indicate that the
proposed method has spectral convergence for the semilinear subdiffusion equation
with the discontinuous initial value u0 = \chi [1/2,1) \in L\infty (\Omega ). This is consistent with the
theoretical results proved in Theorem 4.1.

4 6 8 10 12 14 16
10

-10

10
-8

10
-6

10
-4

10
-2

(a) f(x, t) = sin t cosπx

4 6 8 10 12 14 16
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-10

10
-8

10
-6

10
-4

10
-2

(b) f(x, t) = t0.75 cosπx
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(c) f(x, t) = t0.5 cosπx
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10
-6

10
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10
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(d) f(x, t) = t0.25 cosπx

Fig. 5.1. Errors of the numerical solutions for the linear subdiffusion equation.
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4 6 8 10 12 14 16
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10
-6

10
-5

10
-4

Fig. 5.2. Errors of the numerical solutions for the semilinear subdiffusion equation.

6. Conclusions. We have proposed a new spectral method for the linear and
semilinear subdiffusion equations in a bounded domain \Omega \subset \BbbR d under the Dirich-
let boundary condition with rough initial data in L\infty (\Omega ) and possibly singular source
function by effectively combining several computational techniques, including the con-
tour integral representation of the mild solutions, the quadrature approximation of the
contour integrals, the exponential integrator using VP means, and a decomposition
of the time interval geometrically refined towards t = 0 according to the singularity
of the solution and the source function. We have proved the spectral convergence of
the proposed method for both linear and semilinear subdiffusion equations with an
arbitrary rough initial value u0 \in L\infty (\Omega ) under the natural regularity of the solutions
with strong singularities at t= 0 in the form of (1.6).
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