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Abstract. Finite element methods and kinematically coupled schemes that decouple the fluid
velocity and structure displacement have been extensively studied for incompressible fluid-structure
interactions (F'SIs) over the past decade. While these methods are known to be stable and easy
to implement, optimal error analysis has remained challenging. Previous work has primarily relied
on the classical elliptic projection technique, which is only suitable for parabolic problems and does
not lead to optimal convergence of numerical solutions for the FSI problems in the standard L2
norm. In this article, we propose a new stable fully discrete kinematically coupled scheme for the
incompressible FSI thin-structure model and establish a new approach for the numerical analysis of
FSI problems in terms of a newly introduced coupled nonstationary Ritz projection, which allows us
to prove the optimal-order convergence of the proposed method in the L? norm. The methodology
presented in this article is also applicable to numerous other FSI models and serves as a fundamental
tool for advancing research in this field.
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1. Introduction. There has been increasing interest in studying fluid-structure
interaction due to its diverse applications in many areas [12, 18, 25, 31, 34]. Numerical
simulations are crucial in this field, and over the past two decades, numerous efforts
have been devoted to developing efficient numerical algorithms and analysis methods.

This paper focus on a commonly-used academic model problem, where an incom-
pressible fluid interacts with a thin structure described by some lower-dimensional,
linearly elastic model (such as membranes in 3 dimensions, strings in 2 dimensions).
This thin-structure interaction model is described by the following equations,

prou—dive(u,p)=0 in (0,7) x Q,
(1.1) divu=0 in (0,T) x Q
u(0,) =uo(z)  on N,
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b

by Q T,

b

Fi1c. 1.1. The computational domain in the thin-structure interaction problem.

psesatt n-—- 5577 = —a(u,p)n in (OvT) x X,

(1.2) n(0, ) =1 (x) on %,
9¢n(0,2) =ug(x) on X

with the kinematic interface condition
(1.3) om=u on (0,7) x X

and certain inflow and outflow conditions at ¥; and X,; see Figure 1.1. The un-
known solutions in (1.1)—(1.3) are fluid velocity u, fluid pressure p, and structure
displacement 1. The following notations are also used in the model:

€s: The thickness of the structure.

e The fluid viscosity.

Py The fluid density.

Ps: The structure density.

n: The outward normal vector on 9.

o(u,p) = —pl +2uD(u): The fluid stress tensor.

D(u) = 3 (Vu+ (Vu)T): The strain-rate tensor.

Ls: An elliptic differential operator on 3, such as L5 = —I + Ay,

where As is the Laplace—Beltrami operator on X.

In general, two strategies can be employed to construct numerical schemes for solv-
ing fluid-structure interaction problems. Monolithic algorithms solve a fully coupled
system, which can be expensive for complex fluid-structure problems. Various studies
have focused on the numerical simulation and analysis of monolithic algorithms, as
can be found in [24, 26, 27, 28, 29, 32, 34]. Alternatively, the fluid and structure
subproblems can be solved separately by partitioned type schemes. A strongly cou-
pled partitioned scheme often requires extra iterations for the subproblems at each
time step to obtain the solution which at convergence coincides with the monolithic
one [13, 34], while the extra iterations are not needed in loosely coupled partitioned
schemes. However, the stability is a key issue for loosely coupled partitioned schemes,
which may be hard to be ensured for highly added mass effect problems such as hemo-
dynamics (e.g. [11]). The development and study of stable loosely coupled partitioned
schemes have been an active area of research (e.g., [2, 4, 14, 20, 21]).

Among those loosely coupled partition schemes, the kinematically coupled scheme
is the most popular one due to its modularity, stability, and ease of implementa-
tion. The scheme was first studied in [21] for the fluid-structure interaction problems
and subsequently by numerous researchers [6, 8, 9, 33, 35]. However, the analysis
of kinematically coupled schemes has been challenging due to the specific coupling
of two distinct physical phenomena. In [15], Ferndndez proposed an incremental
displacement-correction scheme, which proved to be stable, and the following energy-
norm error estimate was established using piecewise polynomials of degree k for both
u} and 0} in (1.4), ie.,
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n 2
(1.4) IIU"—uZ|L2<m+<ZTHum—uZ”?) + 0™ =iz + 10" —nglls
m=1

< C(1+hk).

The above estimate is optimal only for the velocity in the weak H!-norm (more pre-
cisely, L?>(H"')-norm) and not optimal in the L?-norm. Several different schemes were
investigated, and similar error estimates, such as those given in [8, 35], were provided.
The kinematic coupling has been extended to other applications, such as composite
structures and non-Newtonian flow [7, 33], by many researchers. Additionally, a fully
discrete loosely coupled Robin-Robin scheme for thick structures was proposed in
[10], where they showed that the error estimate in the same energy norm as in (1.4)
is on the order of O(y/7 + h) for k= 1. Recently, a splitting scheme was proposed in
[1] for the fluid-structure interaction problem with immersed thin-walled structures.
The scheme was proved to be unconditionally stable, and a suboptimal L?-norm error
estimate was presented.

Optimal L?-norm error estimates play a crucial role in both theoretical analysis of
algorithms and development of novel algorithms for practical applications. However,
to the best of our knowledge, such results have not been established due to the lack of
properly defined Ritz projections for fluid-structure interaction problems. This is in
contrast to the error analysis of finite element methods for parabolic equations, where
the Ritz projections have been well defined since the early work of Wheeler [39]. For
instance, for the heat equation d;u — Au = f, the Ritz projection is a finite element
function Rju that satisfies the weak formulation

(1.5) / V(u— Rpu) - Vopdz =0 for all finite element functions vp,.
Q

With this projection Rp, the error of the finite element solution can be decomposed
into two parts:

u—up = (u— Rpu) + (Rpu — up,).

In the analysis of the second part, the pollution from the approximation of the diffu-
sion term is not involved, thus enabling the establishment of an optimal-order error
estimate for ||Rpu — up||r2(q). The optimal estimate for ||u — upl[z2(q) can be de-
rived from the fact that the projection error |[u — Rpul|r2(q) is also of optimal order.
However, formulating and determining optimal L?-norm error estimates for a suitably
defined Ritz projection in fluid-structure interaction systems remains a challenge. The
standard elliptic Ritz projection for the Stokes equations, while widely employed for
obtaining error estimates in the energy norm, no longer produces optimal L2-norm
error estimates for such fluid-structure interaction systems; see [1, 8, 15, 28, 35].

In this article, we propose a new kinematically coupled scheme which decouples
(u,p) and n for solving the thin-structure interaction problem, and demonstrate its
unconditional stability for long-time computation. More importantly, we establish an
optimal L?-norm error estimate for the proposed method, i.e.,

(16)  u" = ufllzegey + " =} o + 1" = 02y < C(r + B5HY),

by developing a new framework for the numerical analysis of fluid-structure interac-
tion problems in terms of a newly introduced coupled nonstationary Ritz projection,
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which is defined as a triple of finite element functions (Rpu, Rpp, Ryn) satisfying a
weak formulation plus a constraint condition (Rpu)|s = 0:Rpn on ¥ x [0,7]. This
is equivalent to solving an evolution equation of Rpm under some initial condition
Rpn(0). Moreover, the dual problem of the nonstationary Ritz projection, required
in the optimal L?-norm error estimates for the fluid-structure interaction problem, is
a backward initial boundary value problem

(1.7a) —L;p+dp=00(p,gn+f on X x[0,T) (the boundary condition),
(L.7b)  —V-0o(¢,q) +¢=0 in Qx[0,7),

(1.7¢) V-p=0 in Qx[0,T),

(1.7d) o(¢p,qn=0 at t=1T (the initial condition),

which turns out to be equivalent to a backward evolution equation of & = o(¢, ¢)n,
i.e.,

(1.8) —LNE+NE—0&=Fon X x[0,T) with initial condition &(7T") =0,

where N : H=2(X)? — Hz ()% is the Neumann-to-Dirichlet map associated with the
Stokes equations. By choosing a well-designed initial value R;,n(0) and utilizing the
regularity properties of the dual problem (1.7), which are shown by analyzing the
equivalent formulation in (1.8), we are able to establish optimal L? error estimates for
the nonstationary Ritz projection and, subsequently, optimal L?-norm error estimates
for the finite element solutions of the thin-structure interaction problem.

The rest of this article is organized as follows. In section 2, we introduce a
kinematically coupled scheme and present our main theoretical results on the un-
conditional stability and optimal L?-norm error estimates of the scheme. We focus
on a first-order kinematically coupled time-stepping method and the class of H!-
conforming inf-sup stable finite element spaces, including the classical Taylor-Hood
and MINT elements. In section 3, we introduce a new nonstationary coupled Ritz
projection and present the corresponding projection error estimates (with its proof
deferred to section 4). Then we establish unconditional stability and optimal L?-norm
error estimates for the fully discrete finite element solutions by utilizing the error es-
timates for the nonstationary coupled Ritz projection. Section 4 is devoted to the
proof of the error estimates of the nonstationary coupled Ritz projection. We present
a well-designed initial value of the projection and the corresponding error estimates
based on duality arguments on the thin solid structure. In section 5, we provide
three numerical examples to support the theoretical analysis presented in this article.
The first example illustrates the optimal L2-norm convergence of the proposed fully
discrete kinematically coupled scheme. The second example demonstrates the sim-
ulation of certain physical features, which are consistent with previous works. The
third example is the three-dimensional (3D) simulation of common cardiac arteries in
hemodynamics.

2. Notations, assumptions, and main results. In this section, we pro-
pose a stable fully discrete kinematically coupled finite-element method for the fluid-
structure interaction (FSI) problem (1.1)—(1.3). Then, we present the main theoretical
results in this work.

2.1. Notation and weak formulation. Some standard notations and oper-
ators are defined below. For any two function u, v € L?*({2), we denote the inner
products and norms of L?(Q) and L?(X) by
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(,0) = / W) dx,  ul? = (),
(w,€)5 = / wE)EE) dx,  [|wl? = (w,w)s.

We assume that Q C RY (d = 2,3) is a bounded domain with 9Q = ¥, U, U X,
where ¥ denotes the fluid-structure interface, 3; and ¥, are two disks (or lines in
2-dimensional (2D) case) denoting the inflow and outflow boundary. Moreover, %, =
{(z,y,z+ L) : (z,y,2) € %; for some L >0}.

For the simplicity of analysis, we consider the problem with the periodic boundary
condition on ¥; and X,.. Assume that the extended domains Q.. and X, are smooth,
where

Qoo :={(z,y,2) : Ik € Z such that (x,y,z+ Lk) e QU },
Yoo i={(7,9,2) : Ik € Z such that (x,y,z + Lk) € X}.

We say a function f defined in €2, is periodic if
flz,y,2)=flx,y,z+ kL) Y(z,y,2)eQUYE; VkeZ.

The space of periodic smooth functions on Q4 is denoted as C*° (). The periodic
Sobolev spaces H*(Q) and H*(X), with s >0, are defined as

H?(Q) := the closure of C*°(Q) under the conventional norm of H*(),
H?(X) :=the closure of C*°(X4) under the conventional norm of H*(X),

which are equivalent to the Sobolev spaces by considering ) and ¥ as tori in the z
direction. The dual spaces of H*(Q2) and H*(X) are denoted by H~*(Q2) and H*(X%),

respectively.
We define the following function spaces associated with velocity, pressure, and
thin structure, respectively:

X(Q):=H'(Q)4, QQ):=L*Q), SEX):=H' (D)%

Correspondingly, we define the following bilinear forms:

(2.1) ar(u,v):=2u(D(u),D(v)) for u,v e X(9Q),
(2.2) b(p,v):=(p, V-v) for veX(Q2) and p € Q(Q),
as(n,w):=(—Lsn,W)x for n,w e S(X).

We assume that L, is a second-order differential operator on ¥ satisfying the
following conditions:

(23) H‘CSWHH’”(E) SCHWHH]“JFQ(Z) \V’WEHk(Z)d Vk> -1, keR,
(24)  as(n,w)=a,(w,n) and ay(n,n)>0 VneH' (D),
25 Amlls+lnlls ~ [nllz ) for ||nls == V/as(n,m).

In addition, we denote |lu||; :=/(D(u), D(u)) and mention that the following norm
equivalence holds (according to Korn’s inequality):

[[all ¢ + [[ull ~ flallz )-
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For the simplicity of notations, we denote by ||v||1»x the Bochner norm (or seminorm)
defined by

1/
(f —o IIv(t Ipdt) " 1<p<oo,

[vllzex :=
SUP¢el0,T) ”V( 7')||Xa P =00,
where || - || x is any norm or seminorm in space, such as || - ||z, || - ||s or || - ||z2(x). The
following conventional notations will be used: |- [|x == |- [[x() I - | := | - 2 (),
- lls =1 ey, and ([l g = - My - s =11 -

For smooth solutions of (1.1)—(1.3), one can verify that (via integration by parts)
the following equations hold for all test functions (v,q,w) € X x Q x S with v|z =w

on=u on X,
(2.6) (0, v) +ar(u,v) —b(p,v) + b(g,u) + pses(Oum, w)s + as(n,w) =0.

2.2. Regularity assumptions. To establish the optimal error estimates for the
finite element solutions to the thin-structure interaction problem, we need to use the
following regularity results.

e We assume that the domain €2 is smooth so that the solution (u,p,n) of the
FSI problem (1.1)—(1.3) is sufficiently smooth.
e The weak solution (w,\) € H' ()4 x L?(Q) of the Stokes equations

V- o(w,\)+w=H,

V.w=0
has the following regularity estimates:
(2.7)
[wllgrarz + A grvrre < Clfl gr-1/2 + lo(w, A) -nllgr)  for k>-1/2,
k eR,
(2.8)

llwll grrrase + [|A— j\Hkal/z < C|Ifll grr—sr2 + ||w||Hk(E) for k>1/2, keR,

where \ := ‘ﬁfg)\ is the mean value of A over 2. The estimates in (2.7)
and (2.8) correspond to the Neumann and Dirichlet boundary conditions,
respectively; see [19, Theorem IV.6.1] for a proof of (2.8) in smooth domains;
with a similar approach as in [19, Chapter IV] one can prove (2.7). We also
refer to [23, Theorem 4.15] for a proof of (2.7) in the case of a polygonal
domain.

e We assume that operator £, possesses the following elliptic regularity: The
weak solution &€ € H(X)? of the equation (in the weak formulation)

as(£7w) + (£7W)E:(ng)2 vweHl(E)da
has the following regularity estimate:

(2.9) ||£||H2+k(2) SCHgHHk(E) for k> -1, keR.
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2.3. Assumptions on the finite element spaces. Let 7; denote a quasi-
uniform partition on Q with Q = [ rxet, K. Each K is a curvilinear polyhedron/
polygon with diam(K) < h. All boundary faces of Tj, on X form a partition 75 (%),
Y = UDeTh(E)D' All boundary faces of 7, on ¥; or X, form a partition for ¥,
or X, respectively, and these two partitions coincide after shifting L in z-direction.
To approximate the weak form (2.6) by the finite element method, we assume that
there are finite element spaces (X}, S}, Q} ") on 75, (where 7 > 1) with the following
properties

e (A1) X; CX,S; CS,and RCQ} ' CQ with S), = {vi|s: vy e X} }.
e (A2) For Xj, and Q) ', the following local inverse estimate holds on each
KeTptor0<I<k,1<p,g<oc:

(2.10) ||VhHWk.p(K) < Ch~(k=D+(d/p=d/q) ||VhHWl.q(K) Vv € X} or Q;;l.

For S}, the following global inverse estimate holds:

(2.11)
Wi g ) < CHF 0|l wh || sy VWi €S Vk,s€R with0<k<s<1.

e (A3) There are interpolation/projection operators I;* : X — X} and I,? :
Q — Qz_l which have the following local LP approximation properties on
each K €Ty, for all 1 <p < oo:

(2.12a)
11w = u Loy + RIT 0 = ullwio ) < CAFuflyrrna,y YO<k<m,

(212b) 2P = pllse) S O pllwisinay  VOSk<r—1,

where Ak is the macro element including all the elements which have a
common vertex with K. And there is an interpolation/projection operator
I7 : S — S} satisfying (IXu)|s = I (ulg) for all u € X with uly € S.
Moreover, we require the following optimal order error estimate,

(2.13) |[Iiw —wlls + Al I} W — W| i (x) < Chk+1||w||H};:+1(E) VO<k<r,

where [|-[| gr+1 (5 is the piecewise H**+1_norm associated with partition T ().
h
We will use I, to denote one of the operators Iff, I;Lg, and I}? when there is
no confusioon%
o (A4) Let X, :={v, € X} :vp|x =0} and QZTOI ={gn€Q} g€ L3()}.
The following inf-sup condition holds:

.
(2.14) lol<C sup  (VVR0)

V7 r—1
0#vLEX), IVall e I € Sho
Remark 2.1. Examples of finite element spaces which satisfy assumptions (Al)-
(A4) include the Taylor-Hood finite element space with IX, I?, and I being the
Scott—Zhang interpolation operators onto X} | 2_1, and S}, respectively. We refer to
[5, section 4.8] and the references therein for the details on construction and properties
of Scott—Zhang interpolation, and refer to [3, section 8.8] for a proof of (2.14) for the
Taylor—-Hood finite element spaces. The following properties are consequences of the
assumptions (Al)—(A4).
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1. From (A2) and (A3) we can derive the following estimate for v, € XJ:

1/2
IDvinls={ > IDVi)n|ip,
DeTr(%)
1/2
<C Z hd_1||vh||%,[,1,oo(K) (K €T}, contains D)
DEeTh(T)
1/2
<c| Y il | SChTRvilla.
DeTrh(%)
Therefore, we can obtain the following inverse estimate for the boundary term
o (Vh, qn)n:
(2.15) lo(vi,an)nlls < Ch™ ([ vallzs + lanll)-

2. From (A3) and (A4) we can see that when r > 2, the mixed finite element
space (X}, Q)™ ") can be realized by the (r,7 — 1) Taylor-Hood finite element
space. When r =1, (X,ll,Q%) can be realized by the MINI element space.

3. From inf-sup condition (2.14), we can deduce the following alternative version
of the inf-sup condition (involving the H'(¥)-norm in the denominator)

.
(2.16) lanl<C sup — (VY an)

Yaqn € Qr_l.
otviexy Vel + Vel h

An inf-sup condition similar to (2.16) was proved in [40, Lemma 2], though
the thick structure problem is considered there. For the reader’s convenience,
we present a proof of (2.16) in Appendix C of [30].

4. For each wy, € S}, we denote by Epwy, € X} an extension such that Epwy, :=
IXv, where v € H'(Q)? is the extension of wy, by the trace theorem, satisfying
[vlz < Cllwhl g1/2(s) and v|s = wy,. Combining (2.12) with (2.11) we see
that

(2.17) IEnwh g < Ch™V2 w|s.
5. Combining (2.12) with (2.15) we have for any uy, € X}, pj, € Q)"

lo(u—up,p—pp)nls
< |lo(u—Iyu,p— Inp)nlls + [|o(Ipu — up, Inp — pr)n||s
< C(llu—Ipullwre + |lp = Iapll=) + lo(Inu — up, Inp — pa)n|s
< CR" + Ch™Y2(|[ Iyu = wp |l + |1 1np = pal)
(218) < Ch"V2 4+ Ch7Y2(Ju—upllms + Ilp — pall),
where we have used (2.12) with p = co and (2.15) in the second to last
inequality.

2.4. A new kinematically coupled scheme and main theoretical results.
Let {tn}gzo be a uniform partition of the time interval [0,T] with step size 7=T/N.
For a sequence of functions {u"}_, we denote

-1
u” —u”
Du"=——— forn=1,2,..., N.
-
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With the above notations, we present a fully discrete kinematically coupled algorithm.
Step 1: For given uZ_l,pZ_l,nZ_l, find 0} and s} € S}, such that

n __ n—1
uy,

S
2.19 g€ | —Th
219 pee. (2

n n—1 n
M ="y, ~+TSp-

,wh> Fau(n i) =—(@ m wa)s Y €S,
)

Step 2: Then find (u},p}) € X}, x Q" satisfying
(2.20) pf(Druy, vi) +ap(up, vi) = b(pp, vi) +b(gn, up) — (o -0, vi)s

uy — sy T
+ ps€s ( h"h vy, + o(Vh,qn) 'n)
T Ps€

Ss+-s

7(1+ )
Ps€s

P

a(vh,qh)~n) =0

- <(UZ—U7§1)'07 Vi +
>

for all (vi,qn) € X}, X Qz_l, where ol = o (u},p}) and S > 0 denotes a stabilization
parameter.

Initial values: Since o'Z_l depends on both uZ_l and p’g_l, the numerical scheme
in (2.19)-(2.20) requires the initial value (u),p),n%) to be given. We simply as-
sume that the initial value (uf,p?,n%) is given sufficiently accurately, satisfying the
following conditions:

luh, = Rou®|| + [[u} — Rpu®lls + [lnh — Ban®|l ) < OB,

(2.21)
Hp(})L - R}LPOHE S 07

where (Rpu®, R;p°, Ryn°) satisfies a coupled nonstationary Ritz projection defined
in section 3.2.

Remark 2.2. Kinematically coupled schemes were first proposed in [6, 8, 21] with
the following time discretization: Find (s™,n™) such that

n _ 4n—1
(2.22) psesi —L,(n")=—-0"""'n on X,
T
N =n"""' 75" on X,

and then find (u”,p") satisfying

(2.23) prDu"+V.0"=0 and V-u"=0 in €,
psesu+(an—a’"—1)~n:0 on X.
T

The extension to full discretization was considered by several authors [8, 35], while
the analysis for full discretization is incomplete and the energy stability is proved only
for time-discrete schemes.

Remark 2.3. Our scheme in (2.19)—(2.20) is designed with two new ingredients.
First, we have added two stabilization terms

up —sy 7

h h

Ps€s ( - , Da€ U("h;‘]h) ~Il>
S+Ss

T(1+5)

Ps€s

and ((ﬁ—aﬁ*)-n, a(vh,qw-n) ,

z P

which guarantee unconditional energy stability of the scheme in (2.19)—(2.20). Oth-
erwise the unconditional energy stability cannot be proved in the fully discrete finite
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element setting. Second, we have introduced an additional parameter 8 > 0 to the
scheme, and this additional parameter allows us to prove optimal-order convergence
in the L? norm (especially optimal order in space). More specifically, this parameter
B> 0 leads to the following term in the E; of (2.26):

s€s n n .
BB lsy —upE with Bo=1—(VA+5 - 8)/2,

which is used to absorb other undesired terms on the right-hand side of the inequalities
in our error estimation. Therefore, the optimal-order L? error estimate does benefit
from our scheme (with the parameter 5> 0).

Remark 2.4. For the Taylor-Hood finite element spaces, the conditions in (2.21)
on the initial values can be satisfied if one chooses uy and p) to be the Lagrange
interpolations of u® and p, respectively, and chooses 19 = R4,1(0), where Rs,m(0)
is defined in section 4; see Definition 4.5 and estimate (4.15).

The main theoretical results of this article are the following two theorems.

THEOREM 2.1. Under the assumptions in section 2.3 (on the finite element spa-
ces), the finite element system in (2.19)—(2.20) is uniquely solvable, and the following
inequality holds:

(2'24) EO(“%?ZW?)* ZTEl(uZlstl’nzl)SEO(U(})wp?nn?L)v n=12,...,N,

m=1
where
(2.25)
p 1 m*(1+5) ps€
Eo(uy,pjomp) = EL g2 + S Inpll2 + ———= oy n[3 + 25 up 3,
2 2 2p5€s 2
P - Ps€ -
2y (ut, s m) = 2pl 3+ £ g — g 22 s —
Ps€sBo 780 - T
(2:26) L s~ w4 5 (o o) w4 D

with Bo=1—(y/44+ 42— B)/2 and 8> 0.

THEOREM 2.2. For finite elements of degree r > 2, under the assumptions in
sections 2.2-2.3 (on the regularity of solutions and finite element spaces), there exist
positive constants 7o and hg such that, for sufficiently small step size and mesh size
T < 19 and h < hy, the finite element solutions given by (2.19)—(2.20) with initial
values satisfying (2.21) and >0 has the following error bound

(227) max ([[u(tn,) —wjll+ [0t ) = nills + [ultn, ) —uills) <C(r+ R,

where C is some positive constant independent of n, h, and T.

The proofs of Theorems 2.1 and 2.2 are presented in the next section.
3. Analysis of the proposed algorithm. This section is devoted to the proof
of Theorems 2.1 and 2.2. For the simplicity of notation, we denote by C' a generic

positive constant, which is independent of n, h, and 7 but may depend on the physical
parameters ps, €, it, py, and the exact solution (u,p,n).
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3.1. Proof of Theorem 2.1. We rewrite (2.20) into

u® — s?
(31) pf(DTuZ7 Vh) + a’f(u27 Vh) - b(p’Zv VZ) + b(Qh’ uZ) + Ps€s ( h . h7 Vh)
b

=(op ' n, vi)s — (u — s}, o(Va,qn) - n)s
T(1+ 8 n e
- T (- op ) o) s

Taking vy, = u},q, = pj in (3.1), and wy, = s} = D,n} in (2.19), respectively, gives
the following relations:

Pf 2 12 12 2 uy —sp
n— n—
2 (= P+ ot =) + 20l + e (5 )
h

2
_ T(1+ _
— (o} n w0 s o = T (o - o) o s
s+s
and
1 1 1 2 Sh —UZ*I
27 (03(7727772) - as(nZ_ 77’2— ) +7 ClS(SZ,SZ)) +Ps€s <7 SZ>
T T 5
= _(07}:71 ‘m, Sh)s .
By summing up the last two equations, we have
p _ _
5f (e P = i =M 12+ flagy — wp = H[%) + 207 ug |7
Ps€ _
P (s — g s 2)
1 _ _ Ps€ _
5 aslmpom) — ol i) a0 + L (g3 — g 12)
2
1
(o o) meg — s - (o - o) n o
sts
2
T (1+6_ﬁ0) -1 2 Ps€s 2
S o_n _ O_'I’L ‘n + un _ Sn
g ek~ o) ml g sl
2
*(1+8) - : -
Tt e ml oy ol (e - o) - mR)
S*+s
ps€s(1=050) 1 72(1+ ) _
< = g = spll% = ——— (o nlf% — o7 - n|%)
2 2ps€s
2
7o _
- gl i) ml
S*ts
which leads to the following energy inequality:
(3.2) Eo(ujy, ph,y) — Eo(uy ™ ph = my ™) + Ea(uj, p,mi) 7 <0.

This implies (2.24) and completes the proof of Theorem 2.1.

3.2. A coupled nonstationary Ritz projection. To establish the L?-norm
optimal error estimate as given in Theorem 2.2, we need to introduce a new coupled
Ritz projection. Since the FSI model is governed by the Stokes-type equation for a
fluid coupled with the hyperbolic-type equation for a solid, the coupled projection,
which is nonstationary and much more complicated than the standard Ritz projec-
tions, plays a key role in proving the optimal-order convergence of finite element
solutions to the FSI model.
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DEFINITION 3.1 (coupled nonstationary Ritz projection). Let (u,p,m) € Xx QxS
be a triple of functions smoothly depending on t € [0,T] and satisfying the condi-
tion u|y = 0yn. For a given initial value Ryn(0), the coupled Stokes—Ritz projection
Rp(u,p,m) is defined as a triple of functions (Rpu,Ryp,Rpm) € X} X Q;‘l x S}
satisfying (Rpu)|s = 0t Rpm and the following weak formulation for every t € [0,T]:
af(u— Rpu,vy) —b(p — Rup,v) +b(qn, u — Rpu) + (u — Rpu, vy)

(33) +as(n—Rpm,va) + (M —Rym,via)s =0 V(v qn) €X) x Q)"

Remark 3.1. Given an initial value Rpm(0), there exists a unique solution (Rpu,
Ryp,Rpm;,) for the finite element semidiscrete problem (3.3). To see this, we first
introduce a linear operator Sy, : (X})* x (Q}')* — X} x Q™ ', where (X})* and
(Q;~1)* denote the dual space of X} and Q) ', respectively. For a given (¢,) €
(X7)* x (Q;~1)*, denote by (un,p) € X x Q" the solution of the following
Neumann-type discrete Stokes equation

ag(un, Vi) = b(pn, Vi) + (an, va) = ¢(vp)  Vvia € XG,

b(qn,un) =£(gn) Van € Q; 7,
and define Sy, (¢, 4) = (S7(¢,€),S; (¢,£)) := (up,pr). The well-posedness of the above
equation follows the inf-sup condition (2.16).

Next, we denote
Plup) (Vi) == ar(u,vi) = b(p, vi) + (0, vi) +as(n,vi) + (1, va)s,
DRy (Va) = as(Rum, va) + (Rum, vi)s,
Cu(qn) = b(an. u).

Then (Rpu, Ryp, Rpm) is a solution to (3.3) if and only if the following equations are
satisfied:

(34&) 3tRh77 = S;L)((b(u,p,n) - ¢R;ﬂ7’ éu)|2’
(34b) Rpu= S;L)(¢(u,p,n) - ¢Rh’l’]’ gu)v th = S}ZZ((b(u,p,n) - ¢Rhn»€u)'

Therefore, the uniqueness and existence of the solution to (3.3) follows the uniqueness
and existence of the solution to (3.4a). Since S}’ is a linear operator on (X} )*x (Q}')*
and ¢g,, is linear with respect to Rym, (3.4a) is an in-homogeneous linear ordinary
differential equation for Rpm and thus admits a unique solution for a given initial
value Rpm(0). Next, we can obtain Rpu and Rpp from (3.4b).

In order to guarantee that the coupled nonstationary Ritz projection R possesses
optimal-order approximation properties, we need to define R;n(0) in a rather techni-
cal way. Therefore, we present error estimates for this projection in Theorem 3.2 and
postpone the definition of R;n(0) and the proof of Theorem 3.2 to section 4.

THEOREM 3.2 (error estimates for the coupled nonstationary Ritz projection).
For sufficiently smooth functions (u,p,n) satisfying u|s, = Oym, there exists wy, € S,
such that when Rpm(0) =wy, the following estimates hold uniformly for t € [0,T]:

(3.5) e (Ilm — Rumlls + [lu — Rpu|| + lu— Ryulls + hllp — Rupl|) < CR™,
(3.6) s (10:(u = Rpw)|| g1 + [|0s(w = Ryw) || 1 sy + 110¢(p — Rip)l) < CR,

(37) ||8t(u — Rhu)||L2L2(Z) + ||8t(u — Rhu)|\L2L2 < Chtt.
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3.3. Proof of Theorem 2.2. For the solution (u,p,n) of the problem (1.1)—
(1.3), we define the notations

(38) un:u(tny')a U":ﬂ(tm')v pn:p(tna')~

For the analysis of the kinematically coupled scheme, we introduce s” € H(X) and
Rps™ € SZ by

s" =0m(tn,) =u(ty,") and Rps":=(Rpu)(t,)=0Ryn(t,) on X,
which satisfy the estimate:
(3.9) |s™ — Rps"||s < CR"

according to the estimates in Theorem 3.2.
By Taylor’s expansion, we have ™ = n"~! + 7" + 70" with a truncation error
Ty which has the following bound:

(3.10) 175 sy < CT% Vn>1.

By (1.1)-(1.3), we can see that the sequence (u™,p™,n", s") satisfies the following
weak formulations

(3.11)

s — unfl
Ps€s <T , wh> +as(m™, wp) + (" ! n, wp)s =& (wp) Ywy, € S),
o

and
n n n n u” —s"
DA 1)+ g ) = 60" vi) bl ) + e ()
)
(3.12) = (‘7"71 ‘0, vp)e — (" —s", a(vp,qn) -n)s
1
_7(+5) (0" — o™ 1) -0, o (vh,qn) - 15,
Ps€s
+ g}l(vthh) V(Vhaqh) € X; X Q;,_la

where 0" = o(u”,p") and the truncation error functions satisfy the following esti-

mates:

El(wy, <CO7llwp|s,
(3.13) |;1( )| [wall 2
1EF (Vi ap)| S CT([[Vells + [[vall) + CT3lo(Vh,qp) 15

For given (u",p™,n™,s"), we denote by (Rpu™, Rpp", Rpn™, Rys™) the corre-
sponding coupled nonstationary Ritz projection and define R 7" satisfying

Ryn"=Ruyn" ' +7Rys" + R, TS Yn>1.

Then we introduce the following error decomposition:

er:=u"—uy=u"— Ryu" + Rpu” —up =0, + 6, in Q.
ey =p" —pp =p" — Rpp" + Rpp"™ — p :==0, + 6, in Q.
eg =o(u",p") —o(uy,py) =0(0y,0,) +0(d,,0,) =0, +d; in Q.
ey :=s" —sy =s" — Rps" + Rps" —sp :=07 4 0 on X.
e =n"—mnpy=n"—Ryn" + Ryn" —mnp =0, + o, on X.
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Since u"|y =s", it follows that 01'|s; = 0. Moreover, the following relations hold:

(" =) — (5] — )

n

or + 67 — gt — gt
On 467 — g — 6" =6" — 6" on X.

(u" —u") = (uj, —sp)

By using (2.19)—(2.20) and (3.11)—(3.12), we can write down the following error
equations,

5?_ 371 n n—
Ps€s (7” Wh>2 + CLS((S", wh) + (60 L. n, Wh)E

(3.14)
= gSn(Wh) — FSn(Wh) VWh S SZ,

(3.15)
oy =0p "t + 700 + RyTg" on X,

I —Hn §n o gn
Py ( “ . > ,Vh> +az(dy, vi) = b(0,, Vi) + blqn, 0;,) + pses ( E - S Vh>

>

n— n n T 1+ n n—
= e m i) = 07— otva s — T0 (6 - ) m, o) s
(3.16) + &7 (Vh,qn) — Ff (Vh,qn) V(Vh,qn) € X, x Q1

where

(3.17)  FlM(wn) = pses(D:0, wi)s + as(0), wi) + (07" - n, wy)s,
FF(Vioqn) = ps (D20, vi) + ag (0, vi) = b(0), Vi)

(318) — (92_1 ‘n, Vh)g) + T(;tﬂ)((@g — 92_1) . n,a(v;” Qh) . Il)g;.

Moreover, we have the following result,

Oy =0~ + 707 + (7" — RuTo"),
where the last term can be estimated by using (3.6), i.e.,
(3.19) 175" = RuTg | ) < CT2 |0 (Rpu — ) || oo i1 sy < CT2R.
Therefore, by the triangle inequality with estimates (3.10) and (3.19), we have
(3.20) IBL TS 12y S TG mn sy + 176" = B TS (s < C7% ¥ > 1.

We take (vi,qn) = (67,67) € X}, x Q" in (3.16) and wy, = 67 € S}, in (3.14),
respectively, and then sum up the two results. Using the stability analysis in (3.2)

and the relation

5 =D6p — 7 'RLTY,

we obtain
DTEO((SZ,CSZ,CS:;) +E1(5Z,5§,52)
(3.21) SENOL) = FL(00) + 7 (07, 6,) — FF(0y,00) + 7 as(8y, RiTg") -
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To establish the error estimate, we need to estimate each term on the right-hand side
of (3.21). From (3.13) and (3.20) we can see that

E8(6) < C7l16¢ I,
(3.22) €70, o)l < Cr(llonlls + 03 1) + 72105 - s,

urvp

[T as (07, RaT")| < C7l|67 |-

It remains to estimate F'(d;) + F}'(u,0p) from the right-hand side of (3.21).
1. The second term in (3.17) plus the second and third terms in (3.18) can be
estimated as follows. Let & := 07} — Ep (0] — 67), where Ey (0] — 07) is an
extension of 0! — 0% to (2 satisfying estimate (2.17) and &} |5, = 0. By choosing
vp, =& and ¢, = 0 in (3.3) (definition of the coupled Ritz projection), we
obtain the following relation,
|ap (0, 00) = b(0,,0,) + as(6r,65)]
— g (6 B (5T — 67)) — b7 En (87 — 7)) — (61 €1) — (6767
< ON| B8 — 6+ OH (g + 197 1)

(3.23) < CN V2|67 = 67 |s + CRFH(ISull + 1167 15),

where we have used estimate (3.5)—(3.6).
2. The third term in (3.17) plus the fourth term in (3.18) can be estimated as

follows,
(657" 0,00)s — (057" 1,675
<[65~" - nlls [0} —o5lls
<C( 2+ = 2107 e + 165 ID)6E — 071
(3.24) <O 25— 62,

where we used (2.18) in the second inequality and (3.5) in the last inequality.
3. For the first term in (3.17) and (3.18), respectively, we have

, C tn
(329 paca (D20, 820l < T8 [ 106,(0) s
tn—1
C tn
(3.26) (D2 < Sl [ o0

4. The last term in (3.18) can be estimated by using (3.6) and (2.18), i.e.,

T

ps€

tn
<cr ( | o 00,0)- H||2dt> LCRARE

(07 —057") -, 03, 0) - m)s

us Up

tn—1

(3.27) <O V2o (07, 67) 1|5

urrp

Now we can substitute estimates (3.22)—(3.27) into the energy inequality in (3.21).
This yields the following result:
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(3.28)
D, Eo(57,67,6™) + Ey (67,67, 6™)

u’rYprvn urYs Y
< C7((167 I + N8 15 + 16311+ 167 11s) + Ch™ =218 = 6 ||s: + CR™ (|67 ]| + (162 |)
C tn C tn
+ S5t [ 10du@lsar+ S16z1 [ 1000 de+ 0215 -l
tn—1 tn—1

Since [|67]|x < |67 — 67| + |07, by using Young’s inequality, we can rearrange the
right-hand side of (3.28) to obtain

(3.29)

D, Eo(57,67,6™) + By (67, 5", 6™)

urepren s7n

- T T— n n n CE n n
<CeTH(r? + O o) Ce(llog 1 + 103117 + 167113) + — 1107 — 621

Ce! tn 2 tn 2 2 ¢n 2
T [[0:0.,(t)[I5:dt + 10:0.,()[17dt | + C7=||65 - ns,
¢ ¢

n—1 n—1

where 0 < e < 1 is an arbitrary constant.
We can choose a sufficiently small € so that the term % |67 —67||% can be absorbed
by E1 (67,6 (5}7‘) on the left-hand side. Then, using the discrete Gronwall’s inequality

u’r’s?

and the estimates of 6, in (3.7), as well as the definition of Ey and E; in (2.25)—(2.26),
we obtain

(3.30)

ur'prEn uYs rvn urUpr

Eo(87,07,0m)+ Y TEW(8)", 07, 67") < CEy(89,69,80) + C(r* + CR*UHY 4 7p?r ),
m=1

Since the initial values satisfy the estimates in (2.21), the term Ey(89,07,69) can be

estimated to optimal order. Thus inequality (3.30) reduces to

(3.31) 18211+ 1180 s + 18 11s + 163 — 62 | < C(A" /2712 o7 - BT,

It follows from the relation d; = (5,’;_1 + 767 + RpTy", n > 1, that

(3:32) o7lls <lgplls + D 7I6T s+ Y IR TS ls < CO 2042 g 4 b,

m=1 m=1

where we have used (3.31) and (3.20). Then, combining the two estimates above with
the following estimate for the projection error,

10211+ 11021ls: + 1671l < CR™ Yn >0,
we obtain the following error bound,
ezl +lletlls + leplls < (202 4 r 4 i) < C(7 + A7)

where the last inequality uses hr=1/271/2 < 7 4 p2r=1 and r > 2. This completes the
proof of Theorem 2.2.

4. The proof of Theorem 3.2. We present the proof of Theorem 3.2 step-by-
step in the next three subsections.
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4.1. The definition of Ry,7(0) in the coupled Ritz projection. In this sub-
section, we focus on designing the initial value Ryn1(0) for our coupled nonstationary
Ritz projection.

We first present two auxiliary Ritz projections R,f and R,? associated with the
structure model and the fluid model in Definitions 4.1-4.2, respectively. Next, in
terms of these two auxiliary Ritz projections, we define the initial value Rpn(0) in
Definition 4.4 which is only for our theoretical purpose. Finally, an alternative defi-
nition of Ryn(0) for practical computation is given in Definition 4.5.

DEFINITION 4.1 (structure-Ritz projection Rf) We define an auziliary Ritz
projection Ry :S — ST for the elastic structure problem by

(4.1) as(Rys —s,wp) + (Rjs —s,wp,)xs =0 Vwy, €SJ.

This is the standard Ritz projection on X, which satisfies the estimate ||R's — s||s <
Ch™1 when s is sufficiently smooth. Moreover when r > 2, there holds the negative
norm estimate

(42) HRSS—S”H—l(Z) SChr+2.

Let X7 := {v}, € X} : vi|x =0} and 2,7)1 ={qn € Q' 1 qn € L3(Q)}. We denote
Sh :=={vn €8S}, : (vr,n)s =0} and by P the L?(¥)-orthogonal projection from Sj to
Sh-

DEFINITION 4.2 (Dirichlet Stokes—Ritz projection RY). Let X ={ueX:ulgpe
S}. We define an auxiliary Dirichlet Stokes—Ritz projection RY : X x Q — X7, x fol
by

(4.3a) ap(u— RPu,vy) —b(p— REp,vi) + (u— RPu,vy) =0 Vv, € )
(4.3b) b(gn,u— RPu)=0 Vg, € 2})1 with RPu= PR} (uls) on .

In addition, we choose R,?p to satisfy pr —p€ L3(Q). This uniquely determines a
solution (RPu, RPp) € X1 x Q;fl, as explained in the following remark.

Remark 4.1. In order to see the existence and uniqueness of solution (RhD u, RhD D)
defined by (4.3), we let @, € X, be an extension of PR u to the bulk domain € and
let p5, be the L?(£2)-orthogonal projection of p onto Qz_l. Then ), — RPue X:l and
pn—RPpe ng)l. Replacing (u,p) and (RPu, RPp) by (u—tp,p—pp) and (RPu —
Uy, RPp—pp) in (4.3a)-(4.3b), respectively, we obtain a standard Stokes finite element
system with a homogeneous Dirichlet boundary condition for (RE u-—up, Rf D—Dh)-
The well-posedness directly follows the inf-sup condition (2.14).

Remark 4.2. The projection P in (4.3b) is introduced to guarantees that the
b(gn,u — RPu) =0 holds not only for g, € Q;_Ol but also for gy € Qz_l. That is,

(4.4) b(gn,u—RPu)=0 Vg, Q)"

Since Q) ' = {1}@@;1)1, this follows from the first relation in (4.3b) and the following
relation,

b(1,u— RPu) = (RPu,n)s = (PRju,n)s =0,
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where b(1,u) =0 for the exact solution u which satisfies V - u = 0. Especially, when
u is replaced with d;u(0), we have

(4.5) b(qn, (Oyu — RP0,u)(0)) =0 Vg, € Qz_l.

The relation (4.5) is needed in error estimates between (0;Rpu(0),0;Rnp(0)) and
(0:u(0),0:p(0)) in Lemma 4.8 below. Furthermore, in Definition 4.4, we defined
(Rpu(0), Ryp(0)) via a Dirichlet-type Stokes-Ritz projection with the boundary con-
dition Rhu(0)|g = PRshu(O). "

To facilitate further use of P in the following analysis, here we derive an explicit
formula for P. We denote by nj, € S}, the L?(X)-orthogonal projection of unit normal
vector field n of ¥ to S}, i.e.,

(46) (n,wh)g = (l’lh,Wh)g Ywy, € SZ
Then for any wy, € S}, we have

(Wn,n)5

(4.7) Pw), =wj, — AMwp)ny, € SZ with A(wy) := 5
a5,

From ||n —ny||s < ||n — Iyn||s < Ch™! (since n is smooth on X), especially we have
|Ing||s ~ C and

|(Rpu—u,n)s|

- <Ch™*" and ||PRju— Rjul| < Ch'*.
[EvAlEs

(4.8) IA(Ryw)| =

Therefore we obtain the estimate ||RPu —ulls < Ch™1.

The following lemma on the error estimates of the Dirichlet Stokes—Ritz projection
is standard. We refer to [22, Propositions 8 and 9] for the proof of (4.9). The negative
norm estimate of pressure in (4.10) requires a further duality argument, which is
presented in the proof of Lemma B.3 of Appendix B in [30]. We omit the details here.

LEMMA 4.3. Under the reqularity assumptions in section 2.2, the Dirichlet Stokes—
Ritz projection RP defined in (4.3) satisfies the following estimates:

(49)  Ju— RPulls + Ju— RPul +h (Ju— RPullm + |p— RPpl) < Ch7+,
(4.10) IRy P —plu-—r <Ch™.

We define an initial value R;,n(0) as follows in terms of the Dirichlet Ritz projec-
tion R,? .

DEFINITION 4.4 (initial value R;n(0)). First, assuming that the functions RP 0,
u(0) and RP9;p(0) are known with operator RY defined by (4.3), we define Rspu(0) €
S} to be the solution of the following weak formulation,

as((u— Rgu)(0), wy) + (0 — Repu)(0), wp)s + ay((9u — RE 9,u)(0), Exwy,)
(4.11)
—b((9p — RY 9:p)(0), Epwn) + ((Oyu — R 9yu)(0), Epwp,) =0 VYwy, €S,

where Eypwy, denotes an extension of wy, to the bulk domain Q. From the definition
of RP in (4.3) we can conclude that this definition is independent of the specific
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extension. Therefore, (4.11) still holds when replacing both wp, and Ewy, with vy, €
Second, we denote by (Ryu(0), Ryp(0)) € X x Q7" a Dirichlet-type Stokes-Ritz
projection satisfying
(4.12a)
af(u(0)—Rpu(0),vn) —b(p(0) — Rup(0),vh) + (u(0) — Rpu(0),vy) =0 Vv, € X},

(4.12b)  b(gn,u(0) — Rpu(0)) =0 VYgn € Qo' Ryu(0)=PRyu(0)  on X,

where we require p(0) — Rpp(0) € L3(R).
Finally, with the Rpu(0) and Ryp(0) defined above, we define R,n(0) € S} to be
the solution of the following weak formulation on X:

ar(u(0) — Rpu(0), Exwy) — b(p(0) — Rap(0), Exwy) + (u(0) — Rpu(0), Epwy,)
(4.13)
+as(n(0) — Rpn(0), wr) + (n(0) — Rpn(0), wi)s =0 Vwy, €Sy,

Again (4.13) also holds when replacing wy, and Epwy, with v, € XJ.

For the computation with the numerical scheme (2.19)—(2.20), we can define the
initial value ) = Rs,m(0) € S}, in an alternative way below.

DEFINITION 4.5 (Ritz projection Rs,1(0)). We define 0% = Ry,m(0) € S}, as the
solution of the following weak formulation,

(4.14)
as((Rsnn —m)(0),wn) + ((Rspm —n)(0), wy)s  Vw, €S),
=—ay((RYu—u)(0), Eywy) + b((RYp — p)(0), Exwy) — (R u—)(0), Eywy) ,

which does not require knowledge of 9yu(0) or 9;p(0). Again, Epwy, denotes an ex-
tension of wy, to the bulk domain S, and this definition is independent of the specific
extension. Therefore, (4.14) holds for all vj, € X} with wy, and Epwy, replaced by vy,
in the equation. For r>2, the following result can be proved in Appendix B of [30]:

(4.15) ||R3h77(0) — Rh?’](O)”Hl(E) < Ch"™ 1.

In addition, by differentiating (3.3) with respect to time, we have the following
evolution equations:

as(u— Rpu,vp) + (u— Rpu,vi)s + af(0(u — Rpu), vy)
(416&) —b(@t (p — th), Vh) =+ (6t (11 — R;Lu), Vh) =0 Vvh S X;,

(4.16b) b(gn, p(u— Rpu)) =0 Vgn €Q; 7,

which are used not only to design the above Rj;n(0), but also to estimate errors in
the following subsections.

4.2. Error estimates for the coupled Ritz projection at t = 0. First, we
consider the estimation of Rs,u(0) which occurs as an auxiliary function in the def-
inition of Rpm(0) in Lemma 4.6. Second, we present estimates for u(0) — Rpu(0),
1(0) — Rpm(0), and p(0) — Rpp(0) in Lemma 4.7. Finally, we present estimates for the
time derivatives 0;(u — Rpu)(0) and 0;(p — Rpp)(0) in Lemma 4.8.
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LEMMA 4.6. Under the assumptions in sections 2.2 and 2.3, the following error
estimate holds for the Rspu(0) defined in (4.11):

(4.17) | Rsnu(0) — u(0)||s + 2| Repu(0) — u(0)||s < Ch™ T

Proof. Since we can choose an extension Ep&, of €, € S to satisfy that |Er&,,
||H1(Q) < C”thHl(z), (4.11) implies that

as(u(0) — Repu(0),€5) + (u(0) — Rapu(0),&,)s < Ch"[|€ a1 (x)

This leads to the following standard H!-norm estimate:
[u(0) = Rspu(0)[|s + [[u(0) = Rapu(0)[| < CA".

In order to obtain an optimal-order L2-norm estimate for u(0) — Rs,u(0), we
introduce the following dual problem:

(4.18) =L+ 1= Rspu(0) —u(0), 1 has periodic boundary condition on .
The regularity assumption in (2.9) implies that
as(¥,€) + (¢, )z = (u(0) — Rspu(0),€)s VEES and
[¥[l2(s) < Clla(0) — Repu(0)]s -

We can extend @ to be a function on €2, still denoted by 1, satisfying the periodic
boundary condition and [[¢||g2q) < CllY||g2(s). Therefore, choosing §& = u(0) —
R;s,u(0) in the equation above leads to

[u(0) = Renu(0)% = as(u(0) — Repu(0), %) + (u(0) — Repu(0),%)s
=as(u(0) = Repu(0),9 — In) + (u(0) — Rspu(0), ¢ — Inih)s
— ay(0,u(0) — R 9yu(0), In) + b(9ep(0) — Ry 0:p(0), In))
— (0u(0) — RP9,u(0),I,7)) (relation (4.11) is used)
SCR ™MWl 2s) + lap(0u(0) — R 9u(0), )|
+16(9:p(0) — Ry 0p(0),¥)| + (9 (0) — Ry 8yu(0), )]
Since
|(D(8:u(0) — R} 9;u(0)), D)
=] = (8;u(0) — Ry 0;u(0),V - D) + (0,u(0) — R} 9u(0), Dy - n)s|
< CR™H|Y || 2y,
where the last inequality uses the estimate [|¢||g2(q) < Cll¢||m2(xn) as well as the

estimates of [|9;u(0) — RP9u(0)|| and [9;u(0) — RP9,u(0)||s in (4.9) (with u(0)
replaced by d;u(0) therein). Furthermore, using the H ! estimate in (4.10), we have

[6(3:p(0) — R 9¢p(0),%)| < C|9:p(0) = RE 0ep(0) | s [¥l] 2 < CHH[4h ).

Then, summing up the estimates above, we obtain
[u(0) = Repu(0)||x < Ch" .

The proof of Lemma 4.6 is complete. ]
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LEMMA 4.7. Under the assumptions in sections 2.2 and 2.3, the following error
estimates hold (for the coupled Ritz projection in Definition 4.4):

(4.19)  [[n(0) = Rpm(0)[|s: + [0 (0) = Rpn(0)[|s + [[u(0) — Rpu(0)[|s; < CA"H,
(4.20) [u(0) = Rpu(0)]| + Allp(0) — Ryp(0)]| < Ch™.
Proof. From (4.7) we know that Ryu(0) = PRs,u(0) = Repu(0) — A(Repu(0))ny,

on X, with

|(Rsnu(0), n)s| _ |(Rspu(0) —u(0),n)s|
[ (TS
< ChTJrl.

< Ol Rspu(0) — u(0)||s

[A(Rspu(0))] =

Therefore, using the triangle inequality, we have
[u(0) = Rpu(0)]|£ < [u(0) = Repu(0)]|s + [A(Rspu(0))|[[nn]ls < A",

where the estimate (4.17) is used.

Since (Rpu(0), Ryp(0)) is essentially a Dirichlet Ritz projection with a different
boundary value, i.e., PRs,u(0), the error estimates for ||u(0) — Rpu(0)|| and ||p(0) —
Ryp(0)|| are the same as those in Lemma 4.3. With the optimal-order estimates of
|lu(0) — Rpu(0)||s, [[u(0) — Rru(0)|| and ||p(0) — Ryp(0)]|, the estimations of ||n(0) —
R;m(0)||x and ||n(0) — Rxrn(0)||s would be the same as in the proof of Lemma 4.6. O

Next, we present estimates for the time derivatives 9;(u — R,u)(0) and 9;(p —
Ryp)(0). To this end, we use the following relation:

(4.21) (u— Rpu)(0) = (u— Repu)(0) + A(Rspu(0))n;, on 3.
Replacing (u — Rspu)(0) by (u— Rpu)(0) — A(Rspu(0))ny, in (4.11), we have

as((u— Rpu)(0),v) + ((u— Rpu)(0),vh)s + ap((9yu — R 0u)(0),vy)
= b((3p — Ry 8:p)(0), v) + (9w — Ry 9,u)(0),v)
(4.22) = /\(Rshu(O))(as(nh,vh) + (l’lh,Vh)E) Vv € X]Tl

Let (u™,p”) € X x Q be the weak solution of

(4.23a) ay(u#,v) —b(p*,v) + (u¥,v) = as(n,v) + (n,v)s Vv e X,
(4.23b) b(g,u?)=0 VgeQ.

Denote by (uh#,p#) € (X},,Q;~1) the corresponding finite element solution satisfying

(4.24a) af(u#,vh) - b(pf,vh) + (u#,vh) =as(np,vy) + (np,ve)s Vv € X5,
(4.24b) blan, uff) =0 Yan € Q)

where ny, is defined in (4.6). Note that (4.23) is equivalent to the weak solution of

—V-ou# p*)+u?*=0in Q with o(u” p*)n=—L,n+n on %,
V-u#=0in Q.
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Therefore, from the regularity estimate in (2.7) (with k = r — 1/2 therein) and as-
sumption (2.3) on L, we obtain the following regularity estimate for the solutions of
(4.23):

|| zrsr + lp* - < Cllnafl grrvarz(s) < C.

By considering the difference between (4.23) and (4.24), the following estimates of

eh# = Iu? — u# and mﬁ = Ipp? fp# can be derived for all v;, € X} and ¢ € Q};_l:

ag(ef ,vi) —b(mi,vi) + (ef ,vi) <O ||Villiz) + CR||[val z < CR™ 2| v a1,
blan, e} ) < Ch”lall,
where we have used the inverse estimate in (2.11) and the following trace inequality:

[Vallmr sy < CHY2 VAl graemy < ChTY2 v

From Korn’s inequality and inf-sup condition (2.16), choosing v, = eh# yields the
following result,

e 1zs + [[mjf || < ChT= 12,

which also implies the following boundedness through the application of the triangle
inequality:

haff s+ lIpf 1l < C.

By using the boundedness of the H'(Q)-norm of u# and L%(Q)-norm of pﬁ we can
estimate 0;(u — Rpu)(0) and 0:(p — Ryp)(0) as follows.

LEMMA 4.8. Under the assumptions in sections 2.2 and 2.3, the following error
estimates hold (for the time derivative of the coupled Ritz projection in Definition 4.4):

(4.25)  [|0:(u— Rpu)(0)]| + [[0¢(u — Rpw)(0) || + hl|0:(p — Rpp)(0)[| < CH™.
Proof. By comparing (4.22) to (4.24a), and comparing (4.5) to (4.24b), we obtain
(4.26) as((u—Rpu)(0),va) + ((u— Rpu)(0), va)s
+ag((9pa — RP 9u)(0) — AM(Rspu(0))uf, vy)

— b((9ep — RY 0:p) (0) = M(Ronua(0))p}f , va)
+ ((8yu — RP9,u)(0) — A(Rgpu(0))ul,vy) =0 Vv, € X,

h
(4.27) b (an, (9 — RPO)(0) — A(Ryu(0))uff ) =0 Vg € Q)"
Then, by comparing (4.26)—(4.27) to (4.16a)—(4.16b), we find the following relations:

3y (u— Ryu)(0) = (9yu — RP9u) (0) — A(Rypu(0)uj,
y(p — Rup)(0) = (0ip — R 91p)(0) — M(Repu(0))p] -

Since [A(Rspu(0))] < Ch™1 and ||u#\| + Hu IIs + ||p || < C, the result of this lemma
follows from the estimates of the Dirichlet Stokes—Ritz projection in Lemma 4.3 (with
u and p replaced by d;u and 9;p therein). O
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4.3. Error estimates of the coupled Ritz projection for ¢t > 0. In this
subsection, using the results in subsection 4.2, we present the proof of the H!-error
estimates and L2-error estimates results in Theorem 3.2.

We first present H'-norm error estimates for the coupled Ritz projection by em-
ploying the auxiliary Ritz projections Ry and RP defined in (4.1) and (4.3), respec-
tively. From (4.3b) we see that

RPu—Rju=PR}u— Rju=—\(Ryu)n;, with \(Ryu)€R,

where the last equality follows from relation (4.7). Therefore, with the relation above
we have

as(u - Rgua Vh) + (ll - REU, Vh)E

= as(u—Riu,vy) + (u—Ryu,vy)s + MRy ) (as(np, vi) 4+ (0, vi)s)
(428) S ChrJrlHVhHHl(g) S ChrJrl/z”VhHHuz(Z) S Ch’”+1/2||vh||H1 Vvh € X;,
where we have used the inverse inequality in (2.11) and the trace inequality in the
derivation of the last two inequalities. Moreover, since the auxiliary Ritz projec-
tion RP defined in (4.3) is time independent, it follows that (9,RPu,0;RPp) =
(RPOu, RP9,p). Therefore, in view of estimate (4.9) for the Dirichlet Stokes-Ritz
projection, the following estimate can be found:

as(u— RPw,vy) + (u— RPu,vy)s +ap (0 (u— RPu),vy)
(4.29) —b(0:(p — RPp),vi) + (0:(u — RPu),vy,) <CR"||v||gr Vvi € X},
By considering the difference between (4.16a) and (4.29), we can derive the following
inequality:
aS(Rhu — REU, Vh) + (Rhu — Rfu, Vh)g +ay (3t(Rhu — Rfu), Vh)
(4.30)
— b(0:(Rnp — Ry'p),vi) + (8:(Ryu— Ria),vi) <CR||vy| g Vvi € X,

Then, choosing vy, = 8;(Ru— RPu) in (4.30) and using relation b(d,(Ryp — RPp), 0,
(Rpu — RPu)) =0 (which follows from (4.5) and (4.16b)), using Young’s inequality

Ch"||0¢(Rpu — R,?u)||H1 <Ce B4+ e||0¢(Rpu — RhDu)Hip

with a small constant ¢ so that ¢||0;(R,u— RPu)||%,, can be absorbed by the left-hand
side of (4.30), we obtain

|Rpu— RYa|| poe iz + |10 (Rpu — RY0) || 25
(4.31) < Ch" + C||(Rpu— RPu)(0)||s + C||(Rpu — RP)(0)||s < Ch",

where the last inequality uses the estimates in Lemmas 4.7 and 4.3. Then, by applying
the inf-sup condition in (2.16) (which involves ||v;||z1(x) in the denominator), we can
obtain the following estimate from (4.30),

(432)  [|0:(Rup — Ryp)| < Cl|Ryu — Ryl 2 () + Cll0p(Rpu — R w) || + ChT,
which combined with the estimate in (4.31), leads to the following estimate:

(4.33) 0:(Rnp — RPp)|| 2> < ChH".
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Therefore, using an additional triangle inequality, the estimates in (4.31)—(4.33) can
be written as follows:

(434) ||8t(Rhll — Ll)HLzHl + ||Rhll - u”LOOHl(E) + ||8t(th —p)HL2L2 < Ch'".

With the initial estimates in Lemma 4.7, the estimate of ||0;(Rpu — u)|| 251 above
further implies that

(4.35) IRru —u||poo g < ||(Rpu—w)(0)|| 72 + C||0y(Rpa— )| g2 < Ch”.

Since 0¢(Rrn—n) = Rpu—u on the boundary ¥, by using the Newton—Leibniz formula
with respect to ¢ € [0,T], the estimate in (4.34), and initial estimates in Lemma 4.7,
we have

[Rem — oz (zy < |(Bam — 1) (0) |1 sy + CllO(Rrm — M) || 2 m (s
(436) S H(Rh’l’] — T[) (O)HHl(E) + C||Rhu — u||L2H1(E) S Ch'".

In the same way, from (4.34) and initial estimates in Lemma 4.7 we have
(4.37) | Brp = pllee 2 < C|[(Rnp — p)(0)|| + Cl|[Rpp — | 222 < CR™.
Thus we can summarize what we have proved as follows:

[1Zpu = o o + | Rpa = ul| oo g1 () + [ Bap = pll Lo 2
(438) + ||Rh’f] - "I”LOOHI(E) + ||8t(Rhll - u)||L2H1 + ||8t(th _p)||L2L2 < Ch".

Moreover, by differentiating (4.16) with respect to time, we have

(4.39a)
as(0s(Rpu—u),vp) + (0 (Rpu—u), vy)s + af(af(Rhu —u),vp)
—b(02(Rnp —p),vi) + (02 (Rpu —u),v,) =0 Vv, € X7,
(4.39D)
b(qn,0?(Rpu—1)) =0 Van € Q1

Similarly, by choosing vj, = 8?(Rpu— RPu) in (4.39a) and using the same approach as
above with the initial value estimates in (4.25), we can obtain the following estimate
(the details are omitted):

0c(Rpu—u)||poc g1 + (|0 (Rpu — )| oo i () + [|0c(Rup — p)l Lo 2
(4.40) +107 (Rva — )|l L2 + |07 (Rp — p)l| 22 < Ch”.

(4.38) and (4.40) establish the H!-norm error estimates for the coupled nonstationary
Ritz projection defined in (3.3).

We then present L2-norm error estimates for the coupled nonstationary Ritz pro-
jection. To this end, we introduce the following dual problem,

(4.41a) —Lsp+d=00(p,q)n+f in X,
(4.41b) -V -0o(¢,q) +¢=0 in Q,
(4.41c) V. $=0 in Q
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with the initial condition o (¢,¢)n =0 at t =7T. Problem (4.41) can be equivalently
written as a backward evolution equation of € = o (¢, ¢)n, i.e.,

(4.42) —LNE+NE—E=TF on X x[0,T) with initial condition &(T) =0,

where N : H=2(X)? — Hz ()% is the Neumann-to-Dirichlet map associated with the
Stokes equations. The existence, uniqueness, and regularity of solutions to (4.41) are
presented in the following lemma, for which the proof is given in Appendix A of [30]
by utilizing and analyzing (4.42).

LEMMA 4.9. Problem (4.41) has a unique solution which satisfies the following
estimate:

(4.43) lollom + @l L2m2 sy + llall 2 + lo(@,q)(O)nl|s < C|[f[|L2L2(x)-

By choosing f = Ryn — n and, testing (4.41a) and (4.41b) with Rpm — n and
Rpu — u, respectively, and using relation 0;(Rpm —n) = Rpu—u on %, we have

as(¢7Rh77 - 77) + (¢) Rhn - ,’7)2 + af(¢7Rhu - u) - b(qa Rhu - u) + (¢a Rhu - u)
d
= @(U(QQ) ‘0, Rpn —n)s + ||Ran — 13

In view of the definition of the nonstationary Ritz projection in (3.3), we can subtract
I;,¢ from ¢ in the inequality above by generating an additional remainder b(Ryp —
p,® — I ¢). This leads to the following result in view of the estimate in (4.34):

d
—(o(¢,q)n, Rpyn —n)s + ||Ryn — 0|3 = as(¢ — Ind, Run — m)

dt
+ (¢ — I, Rpm —m)s +ay(¢p — Iy, Ryu —u) — b(q — Ing, Ryu — u)
+ (¢ — Ing, Rpu—u) — b(Rpp —p, @ — [1,9)
< CR (Dl 2 + 1@l m2csy + llal ).

Since ||(Rnn —1)(0)||s < Ch™*! (see Lemma 4.7), the inequality above leads to the
following result:

IRhm =172 25y
< CH Y Rym —mllp2r2(s) + [1Ram(0) = n(0) || L2y | (o (d, 9)m) (0) | L2 (s
<Ch | Ryn =l r2r2s) + CR Y| Rum — mll 2 r2 (s

and, therefore,
(444) ||Rh’l’] - "7”L2L2(E) < ChT+1.

By using the same approach, choosing f= R,u —u and f= 0;(Rpu — u) in (4.41a),
respectively, the following result can be shown (the details are omitted):

(4.45) |Rpu — u||L2L2(E) + [|0:(Rpu — u) ||L2L2(E) <Ch™+L.
This also implies, via the Newton—Leibniz formula in time,

(446) ||Rh'l7 — 77||L°°L2(Z) + ||Rhu — uHLooL2(Z) S Chr+1 .
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Furthermore, we consider a dual problem defined by
—V-o(¢,q) +p=Rpu—u inQ,

(4.47) V-$p=0 in Q,
d)‘E:O’ qGLg(Q),

which satisfies the following standard H? regularity estimate

@l + gl +llo(é, g)nll2(s) < Cf|Rau — ull,

where the term || (¢, ¢)n||12(x) is included on the left-hand side because it is actually
bounded by ||¢| gz + ||g]|g:. Then, testing (4.47) with Rpu — u, we have

| Rpu — ulf?
=ag(¢, Rpu—u) —b(g, Rpu —u) + (¢, Ryu —u) — (o(¢,¢)n, Rpu — )y
=as(¢—Ing, Rpu—u) —b(qg — Ing, Ryu —u) — (o(¢,¢)n, Ryu —u)x,
+ (¢ — In, Rpu —u)
—b(Rpp —p, ¢ — I¢) (as a result of (3.3) with vy, =Ip¢,qn = I1q)
< Ch(I bl + lall ) (| Rt — w2 + | Rip — )
+lo($,9) - nlls| Ry — ulls
< Ch™ Y| Rpu —u| + C||Rpu — ul||| Rpu — ul|x.

The last inequality implies, in combination with (4.46), the following result:
(4.48) |Rpu—ul <Ch™T!,

By using the same approach, replacing R,u—u by d;(Rpu—u) in (4.47), the following
estimate can be shown (the details are omitted):

(4.49) 10:(Rpu — )| p2p2 < Chtt.

The proof of Theorem 3.2 is complete.

5. Numerical examples. In this section, we present numerical tests to sup-
port the theoretical analysis in this article and to show the efficiency of the proposed
algorithm. For 2D numerical examples, the operator L,n = Cyd,,n7 — C1n on the in-
terface X is considered. All computations are performed by the finite element package
NGSolve; see [37].

Ezxample 5.1. To test the convergence rate of the algorithm, we consider an
artificial example of 2D thin structure models given in (1.1)—(1.3) with extra source
terms such that the exact solution is given by

uy = 4sin(27x) sin(27y) sin(t),
ug = 4(cos(2mx) cos(2my)) sin(t),

p = 8(cos(4dmx) — cos(4my)) sin(t),
m =0, n=—4cos(2rx)cos(t).

First, we examine this problem involving left /right-side periodic boundary condi-
tions and top/bottom interfaces in the domain 2 =[0,2] x [0,1]. A uniform triangular
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partition is employed, featuring M + 1 vertices in the y-direction and 2M 4+ 1 vertices
in the z-direction, where h = 1/M. The classical lowest-order Taylor-Hood element
is utilized for spatial discretization. For simplicity, we set all involved parameters to
1. Our algorithm is applied to solve the system with M = 8,16,32, 7 = h?, and the
terminal time 7'=0.1. The numerical results are presented in Table 5.1, which shows
that the algorithm has the third-order accuracy for the velocity and the displacement
in the L2-norm, as well as the second-order accuracy for the pressure in the L2-norm
and the displacement in the energy norm. These numerical results align with our
theoretical analysis.

Next, we test our algorithm for the case of the left/right-side Dirichlet boundary
conditions, using the same configuration as previously described. Both the lowest-
order Taylor-Hood element and the MINI element are employed for spatial discretiza-
tion. We set 7 = h3 and 7 = h? for the Taylor-Hood element and the MINI element,
respectively. The numerical results are displayed in Table 5.2. As observed in Ta-
ble 5.2, the algorithm, when paired with both the Taylor-Hood element and the MINI
element, yields numerical results exhibiting optimal convergence orders for u and 7.

Ezample 5.2. We consider a benchmark model which was studied by many re-
searchers [8, 9, 15, 17, 21, 32, 35]. All the quantities will be given in the CGS system
of units [15]. The model is described by (1.1)—(1.3) in Q = [0,5] x [0,0.5] with the
physical parameters, fluid density p; = 1, fluid viscosity p = 0.035, solid density
ps = 1.1, the thickness of wall e, = 0.1, Young’s modulus E = 0.75 x 10°, Poisson’s
ratio 0 = 0.5, and

Fe, Fe,

00:2(1+0)7 Cl:R2(1*O’2)7

where R = 0.5 is the width of the domain Q. The boundary conditions on the in/out-
flow sides (x = 0,2 =5) are defined by o(u,p)n= —pi,/ouen, where

TABLE 5.1
The convergence order of the algorithm under periodic boundary conditions.

Taylor-Hood elements (7 = h?) [u? —ulf| N = ™ — ) lls ™ — 0y lls

h=1/8 6.852e-3 1.403e-1 1.324e-2 8.075e-1

h=1/16 6.848e-4 2.691e-2 1.644e-3 2.029e-1

h=1/32 7.937e-5 6.297e-3 2.052e-4 5.079e-2

order 3.10 2.10 3.00 2.00
TABLE 5.2

The convergence order of the algorithm under Dirichlet boundary conditions.

Taylor-Hood elements (7 = h%) [lu —up | ™ — il ™ —np lIs ™ —np lls
h=1/8 4.553e-3 1.354e-1 1.313e-2 8.069e-1
h=1/16 6.009e-4 2.775e-2 1.645e-3 2.029e-1
h=1/32 7.693e-5 6.470e-3 2.055e-4 5.079e-2
order 2.97 2.10 3.00 2.00
MINI elements (1 = h?) [[u™ —up |l oY — oy | 0™ =) lIs ™ —np)[ls
h=1/16 1.324e-2 3.186e-1 7.971e-2 4.001e0
h=1/32 3.349e-3 1.192e-1 1.999e-2 2.003e0
h=1/64 8.327e-4 4.641e-2 5.001e-3 1.002e0
order 2.00 1.36 2.00 1.00
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Fi1c. 5.1. The contour of the pressure when t =0.003,0.009,0.016,0.026 (from top to bottom,).

Prmax [1—005( m )] ift<t
Pin () = 2 tmax - Pout (1) =0 Vt € (0,T]
0 if t > tax,

With pmax = 1.3333 x 10* and tyay = 0.003. The top and bottom sides of § are thin
structures, and the fluid is initially at rest. We take a uniform triangular partition with
M + 1 vertices in the y-direction and 10M + 1 vertices in the z-direction (h=1/M),
and solve the system by our algorithm, where the lowest-order Taylor—-Hood finite
element approximation is used with the spatial mesh size h = 1/64 (M = 64), the
temporal step size 7 = h?, and the parameter 8 = 0.5. We present the contour of
pressure p in Figure 5.1 at ¢t =0.003,0.009,0.016,0.026 (from top to bottom). We can
see a forward moving pressure wave(red), which reaches the right-end of the domain
and gets reflected. The reflected wave is characterized by the different color (blue),
which was also observed in [15, 17, 21].

FEzample 5.3. We consider an example of 3D blood flow simulation in common
carotid arteries studied in [35]. The blood flow is modeled by the Navier—Stokes equa-
tion, while our analysis was presented only for the model with the Stokes equation.
The weak form of the arterial wall model is

ps€s(My, W)z + Di(n, w)s + Da(n;, W)z + €:(ILs(n), Vsw)s = (o (u, p)n, w)s
for any w € S, where V; denote the surface gradient on the interface ¥ and

_E Va+Vin Eo
T 1402 2 1—02

Hs (77) Vs : "II

for a linearly elastic isotropic structure. The geometrical domain is a straight cylinder
of length 4 cm and radius 0.3 cm; see Figure 5.2. The hemodynamical parameters used
in this model are given in Table 5.3. For the inlet and outlet boundary conditions,
we set

R? — 2

u= (uD(t)T,O,O) on X, and o(u,p)n=—pou:(t)n on Xy:.

The given data for up(t) and peu:(t), as shown in Figure 5.2, are taken from [35].
Several different boundary conditions were considered in [16, 36, 38].
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1 o
e5 165
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@ — -+ up(t) S
=40 1479
E 30 pout(t) : g
$20 12T
[ =
510 1.0
0 3
0.0 0.2 0.4 0.6 0.8 1.0 ©

One cardiac cycle(s)

F1G. 5.2. The geometrical domain (left) and the given data for up(t) and pout(t)(right).

’§0.05

£0.04

C

© 0.03

30.02 —— monolithic:dt=1e-4
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E_o.Ol —— partition:dt=5e-5

© 0'0%.0 0.5 1.0 1.5 2.0 2.5 3.0

Three cardiac cycles(s)

Fic. 5.3. Comparison of the radial displacement.

TABLE 5.3
The hemodynamical parameters in the PDE model.

Parameter Value Parameter Value
Wall thickness e, (cm) 0.06 Poisson’s ratio o 0.5

Fluid viscosity p(g/cms)  0.04  Young’s modulo E(dyne/cm?)  2.6-10°
Fluid density pf(g/cm?) 1 Coefficient D1 (dyne/cm?) 6-10°
Wall density ps(g/cm?) 1.1 Coefficient Da(dynes/cm?) 2.10°

The fluid mesh used in this example consists of 11745 tetrahedra, and the struc-
ture mesh consists of 3786 triangles. We utilize the P2 — P1 finite element approxi-
mation for the velocity and pressure of the fluid, the P2 finite element approximation
for the displacement of the structure. For comparison, both the classical monolithic
scheme and the proposed partitioned scheme are implemented to solve this example,
where the parameter 8 = 0.5. The initial velocity/pressure is the smooth constant
extension of the inlet/outlet boundary data at ¢ = 0 for both schemes. The termi-
nal time T = 3 s which corresponds to 3 cardiac cycles. We have observed that the
periodic pattern was established after 1 cardiac cycle. Some comparison between
monolithic and partitioned schemes is done. In Figure 5.3, the magnitude of the ra-
dial displacement for the artery wall is shown at the interface point (2,0.3,0) in the
whole 3 cardiac cycles. In Figures 5.4 and 5.5, the axial velocity and the pressure
are presented at the center point (2,0,0) in the third cardiac cycle, respectively. The
waveforms of velocity and pressure are generally not the same. The difference of
waveforms between velocity and pressure can be observed from the numerical results
in Figures 5.4 and 5.5.

6. Conclusion. We have proposed a new stable fully discrete kinematically cou-
pled scheme which decouples fluid velocity from the structure displacement for solv-
ing a thin-structure interaction problem described by (1.1)—(1.3). To the best of our
knowledge, the optimal-order convergence in the L? norm of spatially finite element
methods for such problems has not been established in the previous works. Our
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The third cardiac cycle(s)
Fic. 5.4. Comparison of the axial velocity.

NE le5
S 16 —— monolithic: dt =1e-4
$14 —— partition:dt=5e-5
©
V1.2
3
ﬁ 1.0
s 2.0 2.2 2.4 2.6 2.8 3.0

The third cardiac cycle(s)

Fic. 5.5. Comparison of the pressure.

scheme in (2.19)—(2.20) contains two stabilization terms

uy —sy T

h h

Ps€s ( - ) ps€ U(Vhth) '1’1)
S+Ss

and ((JZ — o} ') n, WU(V}“%) : n)

z z

which guarantee the unconditional stability of the method, and an additional parame-
ter B> 0 which is helpful for us to prove optimal-order convergence in the L? norm for
the fully discrete finite element scheme. Moreover, we have developed a new approach
for the numerical analysis of such thin-structure interaction problems in terms of a
newly introduced coupled nonstationary Ritz projection, with rigorous analysis for its
approximation properties through analyzing its dual problem, which turns out to be
equivalent to a backward evolution equation on the boundary 3, i.e.,

—LNE+NE—0&=Fon X x[0,T) with initial condition &(7T") =0,

in terms of the Neumann-to-Dirichlet map A : H~2 ()% — Hz (2)¢ associated with
the Stokes equations. Although we have focused on the analysis for the specific
kinematically coupled scheme proposed in this article for a thin-structure interaction
problem, the new approach developed in this article, including the nonstationary
Ritz projection and its approximation properties, may be extended to many other
fully discrete monolithic and partitioned coupled algorithms and to more general FSI
models.
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