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ARTIFICIAL TANGENTIAL MOTION FOR SURFACE EVOLUTION

UNDER A PRESCRIBED VELOCITY FIELD\ast 

GENMING BAI\dagger , JIASHUN HU\ddagger , AND BUYANG LI\dagger 

Abstract. A novel evolving surface finite element method, based on a novel equivalent formu-
lation of the continuous problem, is proposed for computing the evolution of a closed hypersurface
moving under a prescribed velocity field in two- and three-dimensional spaces. The method improves
the mesh quality of the approximate surface by minimizing the rate of deformation using an artificial
tangential motion. The transport evolution equations of the normal vector and the extrinsic Wein-
garten matrix are derived and coupled with the surface evolution equations to ensure stability and
convergence of the numerical approximations. Optimal-order convergence of the semidiscrete evolv-
ing surface finite element method is proved for finite elements of degree k \geq 2. Numerical examples
are provided to illustrate the convergence of the proposed method and its effectiveness in improving
mesh quality on the approximate evolving surface.

Key words. evolving surface finite element method, artificial tangential velocity, mesh property,
transport equations, optimal error estimate, stability
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1. Introduction. We consider the evolution of a closed hypersurface \Gamma (t) in \BbbR d,
where d = 2 or 3, under a given velocity field u in \BbbR d \times [0, T ]. The evolving surface
\Gamma (t) can be represented by the image of the flow map Xu(\cdot , t) : \Gamma (0) \rightarrow \Gamma (t), which
satisfies the equation

\partial tX
u(\cdot , t) = u(Xu(\cdot , t), t) on \Gamma (0)(1.1)

for t \in [0, T ], subject to the initial condition Xu(x,0) = x for x \in \Gamma (0). Stable and
accurate numerical approximations to the surface evolution in (1.1) play fundamental
roles in solving partial differential equations (PDEs) on a moving surface [18, 22, 39],
as well as solving PDEs in a bulk domain with a moving boundary/interface by
the arbitrary Lagrangian--Eulerian (ALE) methods [20, 23, 26, 40, 41] and Eulerian
(unfitted) approaches [16, 45, 47]. Problem (1.1) is also relevant to the PDE-
constrained shape optimization [29], the motion of interfaces in two-phase flows [27, 32],
and fluid-structure interactions [46], where the velocity field u is unknown and needs
to be solved in the bulk domain.

This paper concerns the evolving surface finite element methods (FEMs) for dis-
cretizing (1.1). As a Lagrangian method, the accuracy of an evolving surface FEM in
approximating the evolution of a surface, or the solutions of PDEs on an evolving sur-
face, can be greatly influenced by the mesh quality of the triangulation which forms the
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A CONVERGENT ESFEM WITH TANGENTIAL MOTION 2173

approximate surface. One of the main difficulties is that the mesh often becomes dis-
torted as time grows unless some techniques are used to redistribute the mesh points;
see [1]. In order to overcome this difficulty, Barrett, Garcke, and N\"urnberg introduced
a fully discrete type of artificial tangential velocity which drives the mesh points to
move tangentially on the surface to improve the mesh quality; see [4, 5]. The method
proposed by Barrett, Garcke, N\"urnberg (which we refer to as the BGN method) was
designed and became successful for approximating geometric flows, including mean
curvature flow, Willmore flow, surface diffusion, and Helfrich flow [2, 5, 6, 7] with
good mesh quality. The BGN method has also been successfully applied to improve
mesh quality of a stationary surface [5, Remark 4.3], and to other applications in-
cluding two-phase flow [11, 27], image segmentation [14], and growth of structures
[8, 9, 10, 24].

An alternative approach to constructing artificial tangential velocities which could
improve the mesh quality of the approximate surfaces was proposed by Elliott and
Fritz in [21], where the tangential velocity is regarded as a kind of built-in
reparametrization by the DeTurck flow techniques. By this approach, a family of
tangential velocity for geometric flows which depends on an adjustable parameter was
proposed in [21], and error estimates were established for curve shortening flow on
a two-dimensional plane. The techniques were used in [3] for developing numerical
methods, with rigorous error estimates, for approximating forced curve shortening
flow coupled to a reaction-diffusion equation on the curve and in [44] for the finite
difference discretization of the mean curvature flow with convergence proof. It is also
important to mention that the improved nodal distribution can also be achieved by
prescribing tangential velocity [24, 25], equilibrium of a spring model [35], and the
reparametrization of arc length [13, 15, 33, 42, 43].

Albeit its success in improving the mesh quality, rigorous proof of convergence
of the BGN method for the various problems remains open due to the lack of ex-
plicit formulation of the tangential velocity. The available error estimates using the
DeTurck flow also require the flow map to satisfy some parabolic evolution equa-
tions on the evolving curves. The development of stable numerical approximations
(with rigorous stability and error estimates) for the numerical approximations to the
surface evolution in (1.1) using the BGN method and the DeTurck flow techniques is
still challenging.

It is known that the spatially semidiscretized BGN method ensures the equidis-
tribution of vertices for evolving curves [5]. Recently, it was shown in [30] that the
tangential velocity generated by the temporally semidiscretized version of the BGN
method formally tends to (as the time stepsize tends to zero) the velocity, which
minimizes the following energy functional which represents the instantaneous rate of
deformation: \int 

\Gamma (t)

| \nabla \Gamma (t)v(t)| 2(1.2)

under the constraint v(t) \cdot n(t) = V (t), where n(t) is the normal vector on \Gamma (t) and
V (t) is the normal velocity of the surface in the corresponding geometric flow. Moti-
vated by the above interpretation, we consider the following modified flow map, with
a modified velocity v, for describing the surface evolution governed by (1.1):

d

dt
Xv(\cdot , t) = v(Xv(\cdot , t), t) on \Gamma (0),(1.3a)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2174 GENMING BAI, JIASHUN HU, AND BUYANG LI

v \cdot n= u \cdot n on \Gamma (t),(1.3b)

 - \Delta \Gamma v= \kappa n on \Gamma (t).(1.3c)

The modified velocity v determined by (1.3b)--(1.3c) is exactly the minimizer of the
energy functional

\int 
\Gamma 
| \nabla \Gamma v| 2 under the constraint v \cdot n= u \cdot n, with \kappa being a Lagrange

multiplier in the constrained optimization problem. Therefore, the surface evolving
under the modified velocity v has the same shape as the surface evolving under velocity
u, but with minimal instantaneous rate of deformation at every time t \in [0, T ]. The
novel formulation in (1.3b)--(1.3c) is regarded as a continuous limiting formulation of
the BGN method with an explicit description of the tangential velocity. Thus, the
approximation to (1.3) by the evolving surface FEM should reduce mesh distortion
compared with the numerical approximations which directly discretize (1.1).

However, the direct application of the evolving surface FEM for (1.3) does not
lead to good stability estimates. The reason is that, based on the stability and error
estimates of evolving surface FEM for (1.3b)--(1.3c) in [30], the H1-norm error in
approximating v needs to be bounded by the H1-norm error in approximating n
which, however, depends on the piecewise H2-norm error in approximating X. This
dependence on the error of X (in terms of its second-order partial derivatives) is too
strong to be controlled in the stability and error estimates. This difficulty is overcome
in [30] by recovering n through the parabolic evolution equations of n discovered by
Huisken for mean curvature flow [31] and by Kov\'acs, Li, and Lubich for Willmore flow
[37]. These evolution equations of the normal vector were used to design convergent
evolving surface FEMs for mean curvature flow and Willmore flow in [30, 36, 37].
However, these evolution equations highly depend on the specific geometric flows. To
the best of our knowledge, no counterpart for the general surface evolution problem
in (1.1) has been derived in the literature.

The objective of this article is to design a numerically stable evolving surface
FEM for solving (1.3) by establishing and properly utilizing the evolution equations
of the normal vector n and the extrinsic Weingarten matrix \nabla \Gamma n, and to prove the
optimal convergence of the numerical approximations. In section 2.2 we shall prove
that the normal vector n on the evolving surface \Gamma (t) determined by (1.3a)--(1.3c) can
be recovered by solving the following two transport equations of p : \Gamma (t) \rightarrow \BbbR d and
q : \Gamma (t)\rightarrow \BbbR d\times d and one elliptic equation of n : \Gamma (t)\rightarrow \BbbR d:

\partial \bullet 
t p - ((v - u) \cdot \nabla \Gamma )p= - (I  - ppT )(\nabla u)p,(1.3d)

\partial \bullet 
t q - ((v - u) \cdot \nabla \Gamma )q= p(v - u)T q2  - 

d\sum 
j=1

(I  - ppT )\nabla 2uj(I  - ppT )pj

+ q\nabla uppT + pT\nabla upq - q(\nabla u)T (I  - ppT )

 - (I  - ppT )(\nabla u)q+ ppT (\nabla \Gamma v)
T q,(1.3e)

n - \Delta \Gamma n= p - \nabla \Gamma \cdot q,(1.3f)

where p= n and q =\nabla \Gamma n are different notations of the normal vector and the Wein-
garten matrix, respectively. The key idea is that we delicately select (1.3d)--(1.3f) from
their various equivalent formulations in order to have the following two advantages for
the numerical approximations. On the one hand, the evolution equations (1.3d)--(1.3e)
can provide full-order approximation to the geometrical quantities such as the normal
vector and the Weingarten matrix. On the other hand, the normal vector n obtained
from (1.3f) can satisfy the following requirement: By estimating n in terms of p and
q, and then estimating p and q in terms of X and v, the L\infty (0, t;H1)-norm error in
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A CONVERGENT ESFEM WITH TANGENTIAL MOTION 2175

approximating n from solving (1.3d)--(1.3f) can be bounded by the L\infty (0, t;H1)-norm
error of X and the L2(0, t;H1)-norm error of v. In this way, the main difficulty in
the stability analysis for (1.3a)--(1.3c) (i.e., the dependence on the piecewise H2-norm
error in approximating X, as mentioned in the previous paragraph) can be circum-
vented, and the energy estimate for transport equation can be applied after paying
special attention to the integration-by-parts argument in the framework of evolving
surface FEM for piecewise smooth surfaces. Accordingly, the L\infty (0, t;H1)-norm error
of X and the L2(0, t;H1)-norm error of v can be controlled in the stability estimates
by using Gronwall's inequality.

In practice, (1.3d)--(1.3f) require solving additional d2+2d scalar functions on the
evolving surface \Gamma (t), with the computational cost comparable to solving (1.3a)--(1.3c).
Therefore, the computational cost of solving (1.3a)--(1.3f) is equivalent to solving
(1.3a)--(1.3c) without significant increase. In addition, the increase in computational
cost will be more acceptable for typical applications such as solving PDEs in a bulk
domains \Omega (t) with an evolving boundary \Gamma (t) = \partial \Omega (t), as the computational cost
of solving the surface PDEs in (1.3a)--(1.3f) is often negligible compared with the
computational cost of solving PDEs in the bulk domain. This is demonstrated in the
last numerical example in Example 4.4.

The rest of this article is organized as follows. In section 2, we introduce the basic
notation and formulas to be used in the construction and analysis of the numerical
method, and we present the derivation of the evolution equations in (1.3d)--(1.3f).
Then we present the weak formulation and the evolving surface FEM for (1.3), as
well as the corresponding matrix-vector formulation for practical computation. At
the end of section 2, we present the main theorem on the convergence of the evolving
surface FEM for (1.3). In section 3, we prove the stability and convergence of the
evolving surface FEM. In section 4, we present several numerical examples to support
the theoretical analysis in this article and to illustrate the effectiveness of the pro-
posed method in improving the mesh quality of the approximate evolving surfaces. In
addition, we present an example to show the capability of the proposed artificial tan-
gential velocity in improving the effectiveness of the arbitrary Lagrangian--Eulerian
method for solving PDEs on a domain with moving boundary.

2. The numerical scheme and main result. In this section, we introduce
the basic notation and formulas to be used in the construction and analysis of the
numerical method. By using these formulas, we derive the PDEs in (1.3d)--(1.3f)
which are used to recover the normal vector n on the evolving surface, which is needed
in determining the modified velocity v through (1.3a)--(1.3c). Then we present the
weak formulation and evolving surface FEM for the system (1.3), as well as the main
theorem on the convergence of numerical solutions.

2.1. Basic notation and formulas. It is known that for a smooth surface \Gamma 
with principle curvatures \kappa i bounded by \delta  - 1, the distance projection onto \Gamma is well
defined in a neighborhood of \Gamma , i.e.,

\Omega \delta (\Gamma ) := \{ x\in \BbbR d : dist(x,\Gamma )\leq \delta \} ,

where dist(x,\Gamma ) denotes the distance from x to \Gamma ; see [28, Lemma 14.17]. Namely,
for any point \^x\in \Omega \delta (\Gamma ), its distance projection a(\^x)\in \Gamma is determined by

a(\^x) = \^x - dist(\^x,\Gamma )n(a(\^x),\Gamma ),(2.1)

with n(a(\^x),\Gamma ) denoting the normal vector of \Gamma at a(\^x). With the help of the distance
projection in (2.1), one can define the normal extension of u from \Gamma to \Omega \delta (\Gamma ) by
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2176 GENMING BAI, JIASHUN HU, AND BUYANG LI

u\ell = u \circ a.(2.2)

The surface gradient of a scalar-valued function \eta \in H1(\Gamma ,\BbbR ) is defined as a col-
umn vector \nabla \Gamma \eta := (I  - nnT )(\nabla \eta \ell )| \Gamma . The jth component of \nabla \Gamma \eta is denoted by
Dj\eta . The surface gradient of a vector-valued function \bfiteta \in H1(\Gamma ,\BbbR d) is denoted by
\nabla \Gamma \bfiteta =

\bigl( 
\nabla \Gamma \bfiteta 1, . . . ,\nabla \Gamma \bfiteta d

\bigr) 
, with the columns being the surface gradients of the com-

ponents of \bfiteta . The surface Hessian of \eta is defined as \nabla 2
\Gamma \eta =\nabla \Gamma (\nabla \Gamma \eta ). Following [12,

Lemma 15], the surface Hessian is not symmetric. Moreover, the commutator satisfies

[Di,Dj ]\eta := (DiDj  - DjDi)\eta = ni\nabla \Gamma nj \cdot \nabla \Gamma \eta  - nj\nabla \Gamma ni \cdot \nabla \Gamma \eta .(2.3)

Let A=\nabla \Gamma n\in \BbbR d\times d denote the extrinsic Weingarten matrix.
For a function w defined on an evolving surface

\bigcup 
t\in [0,T ] \Gamma (t)\times \{ t\} , the material

derivative of w with respect to the velocity of the evolving surface (1.3a) is defined as

\partial \bullet 
t w(X

v(x, t), t) =
d

dt
w(Xv(x, t), t), x\in \Gamma (0).

An important relation between the surface gradient and the material derivative is the
following formula (see [19, Lemma 2.6]):

\partial \bullet 
t \nabla \Gamma (t)w=\nabla \Gamma (t)(\partial 

\bullet 
t w) - (\nabla \Gamma (t)v - n\Gamma (t)n

T
\Gamma (t)(\nabla \Gamma (t)v)

T )\nabla \Gamma (t)w.(2.4)

Next, we introduce the Stokes theorem on a closed, globally continuous piecewise
smooth surface \Gamma h =

\bigcup 
i \Gamma h,i composed of smooth elements \Gamma h,i. We denote by \scrE the

collection of common edges of adjacent smooth pieces, and denote by P\tau and H the
piecewise-defined tangential projection and mean curvature of \Gamma h, respectively.

Let E \in \scrE be a common edge of two adjacent elements K+ and K - as illustrated
in Figure 2.1. Induced by the outward normal vectors n\pm , the orientations of E as
boundary of K\pm are indicated by unit vectors e\pm . The outward conormal vectors \mu \pm 
are defined by \mu \pm = e\pm \times n\pm on E. The jump of \mu at E is defined as [\mu ]E = \mu ++\mu  - .
Since e+ + e - = 0, we deduce

[\mu ]E = e+ \times (n+  - n - ).(2.5)

Suppose n\pm are close enough so that n+ + n - is nonzero; we denote the unit angle
bisector direction of n\pm as \^n := (n+ + n - )/| n+ + n - | . It is easy to verify that [\mu ]E is
parallel to \^n, i.e.,

[\mu ]E =\pm | [\mu ]E | \^n.(2.6)

K−

E

K+

e−

e+

(TxE)⊥

(TxE)⊥

x µ−
µ+

n+ n−

x

n−n+

µ−µ+

E

Fig. 2.1. Illustration of n\pm and \mu \pm , which lie in the same plane (TxE)\bot .
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A CONVERGENT ESFEM WITH TANGENTIAL MOTION 2177

For \bfiteta \in H1(\Gamma h,\BbbR d), by applying the Stokes theorem on each smooth \Gamma h,i (see [18, eq.
(2.2)]) and summing over all smooth pieces, we derive\int 

\Gamma h

\nabla \Gamma h
\cdot \bfiteta =

\sum 
E\in \scrE 

\int 
E

\bfiteta \cdot [\mu ]E +

\int 
\Gamma h

H(\bfiteta \cdot n).(2.7)

The following formula is derived directly:\int 
\Gamma h

((v \cdot \nabla \Gamma h
)\bfiteta ) \cdot \bfiteta =

1

2

\Biggl[ \sum 
E\in \scrE 

\int 
E

| \bfiteta | 2v \cdot [\mu ]E +

\int 
\Gamma h

| \bfiteta | 2
\bigl[ 
H(v \cdot n) - (\nabla \Gamma h

\cdot v)
\bigr] \Biggr] 

.(2.8)

2.2. Derivation of (1.3d)--(1.3f). For the evolving hypersurface \Gamma (t) with ve-
locity field v, following [12, Lemma 37], the evolution of n is described by

\partial \bullet 
t n= - (\nabla \Gamma v)n,(2.9)

which can be reformulated into a nonlinear perturbation of a transport equation by
using (1.3b) and the Leibniz rule,

\partial \bullet 
t n= - (\nabla \Gamma (v - u))n - (\nabla \Gamma u)n= ((v - u) \cdot \nabla \Gamma )n - (I  - nnT )(\nabla u)n,(2.10)

where the last equality uses the relation (v  - u) \cdot n = 0 and the symmetry of \nabla \Gamma n.
Equation (2.10) is exactly the evolution equation in (1.3d) with the notation p= n.

By the Leibniz rule, we have

Di((v - u)jDjn) =Di(v - u)jDjn+ (v - u)jDjDin+ (v - u)j [Di,Dj ]n.

Combining this with (2.3), (u - v) \cdot n= 0, and A=\nabla \Gamma n, we obtain

\nabla \Gamma (((v - u) \cdot \nabla \Gamma )n) =\nabla \Gamma (v - u)A+ ((v - u) \cdot \nabla \Gamma )A+ n(v - u)TA2.(2.11)

Similarly, we can obtain

\nabla 2
\Gamma uk = (I  - nnT )\nabla 2uk(I  - nnT ) - A\nabla \Gamma ukn

T  - nT\nabla \Gamma ukA.(2.12)

By taking the surface gradient of (2.10) and using the identities in (2.11)--(2.12), we
obtain

\nabla \Gamma \partial 
\bullet 
t n=\nabla \Gamma (v - u)A+ ((v - u) \cdot \nabla \Gamma )A+ n(v - u)TA2  - A(\nabla \Gamma u)

T

 - ni

\bigl( 
(I  - nnT )\nabla 2ui(I  - nnT ) - A\nabla uin

T  - nT\nabla uiA
\bigr) 
.(2.13)

Then, combining (2.4) and (2.13), we obtain the following evolution equation for A:

\partial \bullet 
t A= ((v - u) \cdot \nabla \Gamma )A+ n(v - u)TA2  - 

d\sum 
j=1

(I  - nnT )\nabla 2uj(I  - nnT )nj

+A\nabla unnT + nT\nabla unA - A(\nabla u)T (I  - nnT )

 - (I  - nnT )(\nabla u)A+ nnT (\nabla \Gamma v)
TA.(2.14)

Equation (1.3e) is obtained by replacing n and A by p and q in (2.14), respectively.
Since p= n and q=\nabla \Gamma n, it follows that n - \Delta \Gamma n= p - \nabla \Gamma \cdot q. This proves (1.3f).
For later convenience, let us denote U = (ul, \partial xiul, \partial xixjul)i,j,l=1,...,d \in \BbbR d+d2+d3

and introduce smooth functions,
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2178 GENMING BAI, JIASHUN HU, AND BUYANG LI

g(U,p, q, v,\nabla \Gamma v) = p(v - u)T q2  - q(\nabla u)T (I  - ppT ) - (I  - ppT )(\nabla u)q+ q\nabla uppT

+ pT\nabla upq+ ppT (\nabla \Gamma v)
T q - 

d\sum 
j=1

(I  - ppT )\nabla 2uj(I  - ppT )pj ,(2.15)

f(U,p) = - (I  - ppT )(\nabla u)p.(2.16)

2.3. The evolving surface finite element discretization. Given a closed
smooth initial surface \Gamma (0)\subset \BbbR d and its admissible family of shape-regular and quasi-
uniform (see [18]) triangulations \scrT h with mesh size h, an isoparametric finite element
space Sh[x(0)] of degree k can be defined on the piecewise polynomial approximate
surface \Gamma h[x(0)] as in [17], where x(0) = (x1, . . . , xN )\in \BbbR 3N collects all nodes xj \in \Gamma (0)
that correspond to the degrees of freedom of Sh[x(0)]. With respect to the discretized
velocity vh(t) \in Sh[x(0)], the evolution of x(0) determines x(t) = (x1(t), . . . , xN (t))
and consequently the evolving approximate surface \Gamma h[x(t)], which is represented by
a unique finite element function Xh(\cdot , t)\in Sh[x(0)] (the discrete flow map) satisfying

Xh (xj , t) = xj(t) \forall j = 1, . . . ,N.

Then, the material derivative \partial \bullet 
t,h of uh defined on \cup t\in [0,T ]\Gamma h(t)\times \{ t\} is defined as

\partial \bullet 
t,huh(y, t) =

d

dt
uh(Xh(x, t), t) \forall y=Xh(x, t)\in \Gamma h[x(t)].

The finite element basis functions of Sh[x(t)] are denoted by \phi j [x(t)], j = 1, . . . ,N ,
which are pull backs of \phi j [x(0)] by the discrete flow map and satisfy the following
identities:

\phi j [x(t)] (xi(t)) = \delta ij , \partial \bullet 
t,h\phi j [x(t)] = 0, i, j = 1, . . . ,N.(2.17)

With \langle \cdot , \cdot \rangle \Gamma h
denoting the L2 inner product on \Gamma h, the evolving surface FEM for

solving (1.3) is to seek Xh \in Sh[x(0)]
d and

(vh, \kappa h, nh, ph, qh)\in Sh[x(t)]
d \times Sh[x(t)]\times Sh[x(t)]

d \times Sh[x(t)]
d \times Sh[x(t)]

d\times d

such that

\partial tXh(x, t) = vh \circ Xh(x, t),(2.18a)

\langle vh \cdot nh, \chi \kappa \rangle \Gamma h
= \langle u \cdot nh, \chi \kappa \rangle \Gamma h

,(2.18b)

\langle \nabla \Gamma h
vh,\nabla \Gamma h

\chi v\rangle \Gamma h
= - \langle \kappa hnh, \chi v\rangle \Gamma h

,(2.18c)

\langle \partial \bullet 
t,hph, \chi p\rangle \Gamma h

 - \langle ((vh  - u) \cdot \nabla \Gamma h
)ph, \chi p\rangle \Gamma h

= \langle f(U,ph), \chi p\rangle \Gamma h
,(2.18d)

\langle \partial \bullet 
t,hqh, \chi q\rangle \Gamma h

 - \langle ((vh  - u) \cdot \nabla \Gamma h
)qh, \chi q\rangle \Gamma h

= \langle g(U,ph, qh, vh,\nabla \Gamma h
vh), \chi q\rangle \Gamma h

,(2.18e)

\langle nh, \chi n\rangle \Gamma h
+ \langle \nabla \Gamma h

nh,\nabla \Gamma h
\chi n\rangle \Gamma h

= \langle ph, \chi n\rangle \Gamma h
+ \langle qh,\nabla \Gamma h

\chi n\rangle \Gamma h
(2.18f)

hold for all test functions

(\chi v, \chi \kappa , \chi n, \chi p, \chi q)\in Sh[x(t)]
d \times Sh[x(t)]\times Sh[x(t)]

d \times Sh[x(t)]
d \times Sh[x(t)]

d\times d.

Remark 2.1. (2.18a)--(2.18c) can be used independently after choosing nh as the
geometrical normal vector field of \Gamma h, i.e, solving velocity by

\langle vh \cdot nh, \chi \kappa \rangle h\Gamma h
= \langle u \cdot nh, \chi \kappa \rangle \Gamma h

,(2.19a)

\langle \nabla \Gamma h
vh,\nabla \Gamma h

\chi v\rangle \Gamma h
= - \langle \kappa hnh, \chi v\rangle h\Gamma h

,(2.19b)
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A CONVERGENT ESFEM WITH TANGENTIAL MOTION 2179

where \langle \cdot , \cdot \rangle h\Gamma h
denotes the mass lumping inner product. In the numerical experiments

of section 4 (i.e., Example 4.2), we can see that scheme (2.19) may improve the mesh
distribution on a surface but has lower accuracy than (2.18) for high-order finite
elements. Theoretically, it is also difficult to prove the stability and convergence of
(2.19) to the solution of (1.3b)--(1.3c).

The initial values for (2.18) are chosen as follows. Given the initial isoparametric
interpolated surface \Gamma h[x(0)], we choose Xh(\cdot ,0) = id| \Gamma h[x(0)]. The initial values for
ph and qh are set as the Lagrange interpolations of the exact functions. The error
estimates for the Lagrange interpolation guarantee the following result (see [17]):

\| p\ell h(0) - p(0)\| L2(\Gamma (0)) + \| q\ell h(0) - q(0)\| L2(\Gamma (0)) \lesssim hk+1,(2.20)

where we have used the notation a \lesssim b to stand for the statement ``a \leq Cb for some
constant C which is independent of h.""

2.4. Matrix-vector formulation. In this section, we follow [36, 38] to rewrite
(2.18a)--(2.18f) into a matrix-vector formulation. We denote by n, v, p, and q the
vectors that collect the nodal values of nh, vh, ph, and qh, respectively. Since ph and
qh are defined on \Gamma h[x(t)] and take values in \BbbR d and \BbbR d\times d separately, we explicitly
write down the entries of p and q. For i\leq N , k, \ell \leq d,

p(i - 1)d+\ell = (ph(Xh(xi, t)))\ell , q(i - 1)d2+(k - 1)d+\ell = (qh(Xh(xi, t)))k,\ell .

The mass and stiff matrices corresponding to the finite element space Sh[x(t)] are
defined with the following entries for i, j \leq N :

Mij(x) =

\int 
\Gamma h[x]

\phi i[x]\phi j [x], Aij(x) =

\int 
\Gamma h[x]

\nabla \Gamma h[x]\phi i[x] \cdot \nabla \Gamma h[x]\phi j [x].(2.21)

Let K(x) =M(x) +A(x). Define B(x,n)\in \BbbR N\times dN and E(x,v)\in \BbbR N\times N by

Bi,(j - 1)d+m(x,n) =

\int 
\Gamma h[x]

\phi i\phi j(nh)m, 1\leq m\leq d,(2.22)

Eij(x,v) =

\int 
\Gamma h[x]

((vh  - u) \cdot \nabla \Gamma h[x])\phi j \cdot \phi i.(2.23)

Let Id be the d \times d identity matrix, and let \otimes denote the Kronecker product; we
introduce

M[d](x) =M(x)\otimes Id, A[d](x) =A(x)\otimes Id, E[d](x,v) =E(x,v)\otimes Id.

We define the nodal vectors g(x,p,v,q) \in \BbbR N\times d2

, f(x,p) \in \BbbR N\times d, F(x,q) \in \BbbR N\times d

and the normal velocity V(x,n) \in \BbbR N by requiring for \bfitchi q \in \BbbR N\times d2

, \bfitchi p,\bfitchi n \in \BbbR N\times d,
and \bfitchi \in \BbbR N ,

\bfitchi T
qg(x,p,v,q) = \langle g(U,ph, qh, vh,\nabla \Gamma h

vh), \chi q\rangle \Gamma h[x],(2.24)

\bfitchi T
p f(x,p) = \langle f(U,ph), \chi p\rangle \Gamma h[x],(2.25)

\bfitchi T
nF(x,q) = \langle qh,\nabla \Gamma h

\chi n\rangle \Gamma h[x],(2.26)

\bfitchi TV(x,n) = \langle u \cdot nh, \chi \rangle \Gamma h[x].(2.27)

The matrix-vector form of (2.18) can be formulated as follows:
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2180 GENMING BAI, JIASHUN HU, AND BUYANG LI

\.x= v,(2.28a)

B(x,n)v=M(x)V(x,n),(2.28b)

B(x,n)T\bfitkappa +A[d](x)v= 0,(2.28c)

M[d](x) \.p - E[d](x,v)p= f(x,p),(2.28d)

M[d2](x) \.q - E[d2](x,v)q= g(x,p,v,q),(2.28e)

M[d](x)n+A[d](x)n=M[d](x)p+F(x,q).(2.28f)

The superscripts of d will be omitted in later discussion for the sake of brevity.

2.5. Convergence of the numerical approximations. LetX\ast 
h(\cdot , t)\in Sh[x(0)]

be the interpolation of the smooth flow map X(\cdot , t) : \Gamma (0) \rightarrow \BbbR d. We introduce the
interpolated surface \Gamma \ast 

h(t), which is the finite element surface determined by the in-
terpolated flow map Xv

h(\cdot , t)\in Sh[x(0)].
For a smooth evolving surface (thus the curvature is bounded uniformly with

respect to t \in [0, T ]), there exists a sufficiently small constant h0 > 0 such that for
h\leq h0 the interpolated surface satisfies \Gamma \ast 

h(t)\subset \Omega \delta (t) for all t \in [0, T ]. For any finite
element function fh \in Sh[x(t)], we first identify fh as an element in Sh[x

\ast (t)] through
nodal vectors, and then lift it as in (2.2) into a function fL

h defined on \Gamma (t).
The main theoretical result of this article is the following theorem.

Theorem 2.1. We assume that the vector field u and the solution (X,v,\kappa , p, q,n)
of (1.3) are sufficiently smooth for t \in [0, T ]. In particular, the flow map X : \Gamma 0 \times 
[0, T ] \rightarrow \BbbR 3 and its inverse map X(\cdot , t) - 1 : \Gamma (t) \rightarrow \Gamma 0 are both sufficiently smooth,
uniformly with respect to t \in [0, T ]. Then there exists a constant h0 > 0 such that,
for initial triangulations which are shape-regular and quasi-uniform with mesh size
h \leq h0, the solutions to the evolving surface FEM in (2.18) with finite elements of
degree k\geq 2 satisfy the following error bounds:

\| IdL\Gamma h(t)
 - Id\Gamma (t)\| H1(\Gamma (t))d \lesssim hk, \| X\ell 

h(\cdot , t) - X(\cdot , t)\| H1(\Gamma 0)d \lesssim hk,

\| vLh (\cdot , t) - v(\cdot , t)\| H1(\Gamma (t))d \lesssim hk, \| nL
h (\cdot , t) - n(\cdot , t)\| H1(\Gamma (t))d \lesssim hk,

\| pLh (\cdot , t) - n(\cdot , t)\| L2(\Gamma (t))d \lesssim hk, \| qLh (\cdot , t) - \nabla \Gamma n(\cdot , t)\| L2(\Gamma (t))d2 \lesssim hk.

3. Proof of Theorem 2.1.

3.1. Error and defect. Let x\ast (t) be the nodal vector that collects the position
of \Gamma \ast 

h(t). We denote the position error by ex(t) = x(t) - x\ast (t). Let v\ast (t) denote the
nodal vector of v\ast h(t), which is the Ritz projection of v(t) defined by requiring

\langle v\ast h(t), \chi v\rangle \Gamma \ast 
h(t)

+ \langle \nabla \Gamma \ast 
h
v\ast h(t),\nabla \Gamma \ast 

h
\chi v\rangle \Gamma \ast 

h(t)
= \langle v(t), \chi \ell 

v\rangle \Gamma (t) + \langle \nabla \Gamma v(t),\nabla \Gamma \chi 
\ell 
v\rangle \Gamma (t)(3.1)

for all \chi v \in Sh[x(t)]
d. The error bounds for Ritz projection follow from [34, Theorem

6.3]

\| v\ast ,\ell h  - v\| L2(\Gamma ) + h(\| v\ast ,\ell h  - v\| H1(\Gamma ) + \| v\ast ,\ell h  - v\| L\infty (\Gamma ))\lesssim hk+1\| v\| Hk+1(\Gamma ).(3.2)

Let \kappa \ast 
h, p

\ast 
h, q

\ast 
h, and n\ast 

h be the Lagrange interpolations of the exact \kappa , p, q, and n, and
let \bfitkappa \ast , p\ast , q\ast , n\ast collect the corresponding nodal values. The nodal errors are denoted
as ev = v  - v\ast ,e\bfitkappa =\bfitkappa  - \bfitkappa \ast ,ep = p - p\ast ,eq = q  - q\ast , en = n  - n\ast ,eV =V(x,n)  - 
V(x\ast ,n\ast ). The consistency errors dv \in \BbbR N , d\bfitkappa ,dp,dn \in \BbbR dN , and dq \in \BbbR d2N are

defined by requiring for \bfitchi \bfitkappa \in \BbbR N , \bfitchi v,\bfitchi p,\bfitchi n \in \BbbR dN , and \bfitchi q \in \BbbR d2N ,
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A CONVERGENT ESFEM WITH TANGENTIAL MOTION 2181

\bfitchi T
\bfitkappa M

\ast dv = \langle v\ast h \cdot n\ast 
h, \chi \kappa \rangle \Gamma \ast 

h
 - \langle u \cdot n\ast 

h, \chi \kappa \rangle \Gamma \ast 
h
,(3.3)

\bfitchi T
vM

\ast d\bfitkappa = \langle \kappa \ast 
hn

\ast 
h, \chi v\rangle \Gamma \ast 

h
+ \langle \nabla \Gamma \ast 

h
v\ast h,\nabla \Gamma \ast 

h
\chi v\rangle \Gamma \ast 

h
,(3.4)

\bfitchi T
pM

\ast dp = \langle \partial \bullet 
t,hp

\ast 
h  - ((v\ast h  - u) \cdot \nabla \Gamma \ast 

h
)p\ast h  - f(U,p\ast h), \chi p\rangle \Gamma \ast 

h
,(3.5)

\bfitchi T
qM

\ast dq = \langle \partial \bullet 
t,hq

\ast 
h  - ((v\ast h  - u) \cdot \nabla \Gamma \ast 

h
)q\ast h  - g(U,p\ast h, q

\ast 
h, v

\ast 
h,\nabla \Gamma \ast 

h
v\ast h), \chi q\rangle \Gamma \ast 

h
,(3.6)

\bfitchi T
nM

\ast dn = \langle n\ast 
h  - p\ast h, \chi n\rangle \Gamma \ast 

h
+ \langle \nabla \Gamma \ast 

h
n\ast 
h  - q\ast h,\nabla \Gamma \ast 

h
\chi n\rangle \Gamma \ast 

h
.(3.7)

Error equations are obtained as follows:

B\ast ev = (B\ast  - B)v+M\ast eV  - (M\ast  - M)V - M\ast dv,(3.8a)

(B\ast )Te\bfitkappa +A\ast ev = ((B\ast )T  - BT )\bfitkappa + (A\ast  - A)v - M\ast d\bfitkappa ,(3.8b)

M \.ep +E\ast p\ast  - Ep= (M\ast  - M) \.p\ast + f(x,p) - f(x\ast ,p\ast ) - M\ast dp,(3.8c)

M \.eq+E\ast q\ast  - Eq= (M\ast  - M) \.q\ast +g(x,p,v,q) - g(x\ast ,p\ast ,v\ast ,q\ast ) - M\ast dq,(3.8d)

Ken  - Mep = (K\ast  - K)n\ast  - (M\ast  - M)p\ast +F(x,q) - F(x\ast ,q\ast ) - M\ast dn.(3.8e)

3.2. Geometric estimates on the intermediate surface. In this section, we
recall some bilinear estimates in [36, 38] concerning M\ast  - M and A\ast  - A in (3.8).
Their proofs are based on the intermediate surface between \Gamma h and \Gamma \ast 

h. Let \Gamma \theta 
h be a

finite element surface with nodal vector x\theta = x\ast + \theta ex. As \theta varies, the velocity field
e\theta x \in Sh[x

\theta ] generates a map b\theta : \Gamma 
0
h =\Gamma \ast 

h \rightarrow \Gamma \theta 
h. The material derivative is defined by

\partial \bullet 
\theta f(b\theta (p)) =

d

ds
| s=\theta f(bs(p)) \forall p\in \Gamma \ast 

h.

Given a nodal vector w, we can define finite element functions w\theta 
h \in Sh[x

\theta ] such that
\partial \bullet 
\theta w

\theta 
h = 0. It is known that

\| w\| 2M(x) =wTM(x)w= \| wh\| 2L2(\Gamma h[x])
,

\| w\| 2A(x) =wTA(x)w=
\bigm\| \bigm\| \nabla \Gamma h[x]wh

\bigm\| \bigm\| 2
L2(\Gamma h[x])

,

\| w\| 2K(x) =wTK(x)w= \| wh\| 2H1(\Gamma h[x])
,

\| w\| 2\ast ,x =wTM(x)K(x) - 1M(x)w= \| wh\| H - 1
h (\Gamma h[x])

.

According to [36, Lemma 7.2 and (7.7)], when the condition

\| \nabla \Gamma \ast 
h
e0x\| L\infty (\Gamma \ast 

h)
\leq 1/4(3.9)

is satisfied, then

\| w\| M(x\theta ) is h-uniformly equivalent for \theta \in [0,1],

and so are the norms \| w\| A(x\theta ) and \| \nabla \Gamma \theta 
h
w\theta 

h\| L\infty (\Gamma \theta 
h)
.

(3.10)

The following results can be directly obtained from [38, Lemma 4.1].

Lemma 3.1. Suppose that condition (3.9) is satisfied. Then,

zT (M - M\ast )w\lesssim \| z\| M\ast \| ex\| A\ast \| w0
h\| L\infty (\Gamma \ast 

h)
,(3.11)

zT (A - A\ast )w\lesssim \| z\| A\ast \| ex\| A\ast \| \nabla \Gamma \ast 
h
w0

h\| L\infty (\Gamma \ast 
h)
.(3.12)

The following lemma estimates some important geometric quantities on \Gamma \theta 
h in-

cluding the normal, the piecewisely defined mean curvature H\Gamma \theta 
h
, and the jump of

conormal.
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2182 GENMING BAI, JIASHUN HU, AND BUYANG LI

Lemma 3.2. Suppose that condition (3.9) is satisfied. Then,

\| \partial \bullet 
\theta n\Gamma \theta 

h
\| L\infty (\Gamma \theta 

h)
\lesssim \| \nabla \Gamma \ast 

h
e0x\| L\infty (\Gamma \ast 

h)
.(3.13)

Furthermore, there exists h0 > 0 such that for h\leq h0, we have

\| H\Gamma \theta 
h
\| L\infty (\Gamma \theta 

h)
\lesssim 1 + h - 1\| \nabla \Gamma \ast 

h
e0x\| L\infty (\Gamma \ast 

h)
,(3.14)

\| \partial \bullet 
\theta | [\mu ]| \| L\infty (E\theta ) \lesssim \| \nabla \Gamma \ast 

h
e0x\| L\infty (\Gamma \ast 

h)
, \| [\mu ]\| L\infty (E\theta ) \lesssim hk + \| \nabla \Gamma \ast 

h
e0x\| L\infty (\Gamma \ast 

h)
.(3.15)

Proof. The first inequality (3.13) has been proved in [38, Lemma 4.5], and it can
be directly obtained from the following analogy of (2.9):

\partial \bullet 
\theta n\Gamma \theta 

h
= - (\nabla \Gamma \theta 

h
e\theta x)n\Gamma \theta 

h
.(3.16)

Taking the surface gradient to (3.16) and using (2.4) yield

\partial \bullet 
\theta A

\theta = - 
d\sum 

i=1

\nabla 2
\Gamma \theta 
h
e\theta xin\Gamma \theta 

h i
 - A\theta (\nabla \Gamma \theta 

h
e\theta x)

T  - (\nabla \Gamma \theta 
h
e\theta x  - (n\Gamma \theta 

h
nT
\Gamma \theta 
h
)(\nabla \Gamma \theta 

h
e\theta x)

T )A\theta ,(3.17)

where A\theta = \nabla \Gamma \theta 
h
n\Gamma \theta 

h
denotes the piecewisely defined Weingarten matrix. By taking

trace, applying | tr(AB)| \leq \| A\| F \| B\| F and inverse inequality, we obtain

| \partial \bullet 
\theta H\Gamma \theta 

h
| \lesssim h - 1\| \nabla \Gamma \theta 

h
e\theta x\| L\infty (\Gamma \theta 

h)
+ \| A\theta \| F ,(3.18)

where \| \cdot \| F denotes the Frobenius norm. Furthermore, we have

d

d\theta 
\| A\theta \| F \leq \| \partial \bullet 

\theta A
\theta \| F \leq 

d\sum 
i=1

\| \nabla 2
\Gamma \theta 
h
e\theta xi\| F + 3\| A\theta \| F \| \nabla \Gamma \theta 

h
e\theta x\| F

\lesssim h - 1\| \nabla \Gamma \theta 
h
e\theta x\| L\infty (\Gamma \theta 

h)
+ \| A\theta \| F .

Using Gronwall's inequality and boundedness of \| A\ast \| F from [17, Prop. 2.3] yields

\| A\theta \| F \lesssim \| A\ast \| F + h - 1 sup
s\in [0,\theta ]

\| \nabla \Gamma s
h
esx\| L\infty (\Gamma s

h)

\lesssim \| A\ast \| F + h - 1\| \nabla \Gamma \ast 
h
e0x\| L\infty (\Gamma \ast 

h)
\lesssim 1 + h - 1\| \nabla \Gamma \ast 

h
e0x\| L\infty (\Gamma \ast 

h)
.(3.19)

Then (3.14) is proved by combining (3.18)--(3.19) and integration over [0, \theta ].
Let E\theta be the edge that joins two adjacent elements K\theta 

\pm on \Gamma \theta 
h. According to

(2.9), we obtain \partial \bullet 
\theta n

\theta 
\pm = - (\nabla \Gamma \theta 

h
e\theta x| K\theta 

\pm 
)n\theta 

\pm . Then

\partial \bullet 
\theta | n\theta 

+  - n\theta 
 - | 2 = 2(n\theta 

+  - n\theta 
 - , \partial 

\bullet 
\theta (n

\theta 
+  - n\theta 

 - ))\lesssim | n\theta 
+  - n\theta 

 - | \| \nabla \Gamma \theta 
h
e\theta x\| L\infty (\Gamma \theta 

h)
.

By using relation (2.5), we obtain the pointwise estimation

\partial \bullet 
\theta | [\mu ]E\theta | = \partial \bullet 

\theta | n\theta 
+  - n\theta 

 - | \lesssim \| \nabla \Gamma \ast 
h
e0x\| L\infty (\Gamma \ast 

h)
.(3.20)

By [17, Prop. 2.3], \| [\mu ]\| L\infty (E\ast ) \leq \| n+  - n\ell 
\Gamma \| L\infty (K\ast 

+) + \| n -  - n\ell 
\Gamma \| L\infty (K\ast 

 - ) \lesssim hk. Inte-
grating (3.20) over [0, \theta ] yields

\| [\mu ]\| L\infty (E\theta ) \lesssim \| [\mu ]\| L\infty (E\ast ) + \| \nabla \Gamma \ast 
h
e0x\| L\infty (\Gamma \ast 

h)
\lesssim hk + \| \nabla \Gamma \ast 

h
e0x\| L\infty (\Gamma \ast 

h)
.(3.21)
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A CONVERGENT ESFEM WITH TANGENTIAL MOTION 2183

3.3. Stability estimates. In this section, we present a stability analysis for
(3.8) under the following assumption.

Assumption 3.1. There exists t\ast \geq 0 such that for t\in [0, t\ast ],

\| e0x\| W 1,\infty (\Gamma \ast 
h)

\leq h(k - 1)/2, \| e0v\| W 1,\infty (\Gamma \ast 
h)

\leq h(k - 1)/2,(3.22a)

\| e0n\| W 1,\infty (\Gamma \ast 
h)

\leq h(k - 1)/2, \| e0n\| L\infty (\Gamma \ast 
h)

\leq h(k+1)/2,(3.22b)

\| e0p\| L\infty (\Gamma \ast 
h)

\leq h(k - 1)/2, \| e0q\| L\infty (\Gamma \ast 
h)

\leq h(k - 1)/2.(3.22c)

At the end of this section we shall prove that Assumption 3.1 holds for t\ast = T
(when h is smaller than some constant).

The estimates for the transport term in (3.8c)--(3.8d) are presented in the follow-
ing proposition, where the jump terms of conormals are estimated using Lemma 3.2.

Proposition 3.3 (perturbation of the transport equation). Let k \geq 2 and z\ast ,0h ,
v\ast ,0h be uniformly bounded in W 1,\infty (\Gamma h[x

\ast ]). Suppose that condition (3.9) and As-
sumption 3.1 hold true. Then we obtain

eTz (E(x,v)z - E(x\ast ,v\ast )z\ast )\lesssim \| ex\| 2K\ast + \| ev\| 2M\ast + \| ez\| 2M\ast .(3.23)

The proof of Proposition 3.3 relies on several lemmas established in the literature.
For detailed proofs, refer to Proposition 2.7 in [17] and equation (A.4) in [30]. The
only difference is the numerical surface \Gamma h, and it can be easily addressed using the
norm equivalence (3.10) under Assumption 3.1. Therefore, we omit their proof here.

Lemma 3.4. Let I\Gamma h
denote the interpolation into Sh[x]. Under Assumption 3.1,

the interpolated function I\Gamma h
u has the following error bound:

\| u - I\Gamma h
u\| L\infty (\Gamma h) + h\| u - I\Gamma h

u\| H1(\Gamma h) \lesssim h2.(3.24)

Lemma 3.5. Under Assumption 3.1, for w1, w2 \in Sh[x],

\| w1w2  - I\Gamma h
(w1w2)\| L2(\Gamma h) \lesssim h2\| w1\| H1(\Gamma h)\| w2\| W 1,\infty (\Gamma h).(3.25)

Proof of Proposition 3.3. We introduce the following finite element functions on
\Gamma \theta 
h: v

\theta 
h = v\ast ,\theta h + \theta e\theta v and z\theta h = z\ast ,\theta h + \theta e\theta z. By definition in (2.23), we derive

eTz (E(x,v)z - E(x\ast ,v\ast )z\ast ) =

\int 1

0

d

d\theta 

\int 
\Gamma \theta 
h

((v\theta h  - u) \cdot \nabla \Gamma \theta 
h
)(z\ast ,\theta h + \theta e\theta z) \cdot e\theta zd\theta = I1 + I2.

For I1, by the Leibniz rule, \partial \bullet 
\theta u= (e\theta x \cdot \nabla )u, and (2.4), we have

I1 =

\int 1

0

d

d\theta 

\int 
\Gamma \theta 
h

((v\theta h  - u) \cdot \nabla \Gamma \theta 
h
)z\ast ,\theta h \cdot e\theta zd\theta 

=

\int 1

0

\int 
\Gamma \theta 
h

((v\theta h  - u) \cdot \nabla \Gamma \theta 
h
)z\ast ,\theta h \cdot e\theta z\nabla \Gamma \theta 

h
\cdot e\theta xd\theta +

\int 1

0

\int 
\Gamma \theta 
h

((e\theta v  - \partial \bullet 
\theta u) \cdot \nabla \Gamma \theta 

h
)z\ast ,\theta h \cdot e\theta zd\theta 

+

\int 1

0

\int 
\Gamma \theta 
h

\Bigl( \bigl( 
 - (\nabla \Gamma \theta 

h
e\theta x)

T +\nabla \Gamma \theta 
h
e\theta xn\Gamma \theta 

h
nT
\Gamma \theta 
h

\bigr) 
(v\theta h  - u) \cdot \nabla \Gamma \theta 

h

\Bigr) 
z\ast ,\theta h \cdot e\theta zd\theta 

\lesssim (\| ex\| K\ast + \| ev\| M\ast )\| ez\| M\ast .
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2184 GENMING BAI, JIASHUN HU, AND BUYANG LI

For I2, we apply (2.8) to transfer the surface gradient from ez to vh  - u and obtain\int 1

0

d

d\theta 
\theta 

\int 
\Gamma \theta 
h

((v\theta h  - u) \cdot \nabla \Gamma \theta 
h
)e\theta z \cdot e\theta zd\theta =

\int 
\Gamma h

((vh  - u) \cdot \nabla \Gamma h
)ez \cdot ez

=
1

2

\Biggl[ \sum 
Eh\in \scrE h

\int 
Eh

| ez| 2(vh - u) \cdot [\mu ]Eh
+

\int 
\Gamma h

| ez| 2
\bigl[ 
H\Gamma h

(vh - u) \cdot n\Gamma h
 - \nabla \Gamma h

\cdot (vh - u)
\bigr] \Biggr] 

=
1

2

2\sum 
i=1

Ji.

Next, we prove the smallness of \| (vh  - u) \cdot n\Gamma h
\| L\infty (\Gamma h) which is implied by (2.18b).

We first apply the inverse inequality to the globally continuous piecewise polynomial
function (vh  - I\Gamma h

u) \cdot nh after employing the triangle inequality. Then we get

\| (vh  - u) \cdot nh\| L\infty (\Gamma h) \lesssim h - 1\| (vh  - I\Gamma h
u) \cdot nh\| L2 + \| (u - I\Gamma h

u) \cdot nh\| L\infty 

\lesssim h - 1\| (vh  - u) \cdot nh\| L2 + h - 1\| (u - I\Gamma h
u) \cdot nh\| L2 + \| (u - I\Gamma h

u) \cdot nh\| L\infty 

\lesssim h - 1\| (vh  - u) \cdot nh\| L2 + h\| nh\| L\infty (\Gamma h),(3.26)

where the second line results from the triangle inequality and the last line results from
Lemma 3.4. For the first term in (3.26), we test \chi \kappa = I\Gamma h

((vh  - I\Gamma h
u) \cdot nh) in (2.18b)

and obtain

\| (vh  - u) \cdot nh\| L2(\Gamma h) \leq \| (vh  - u) \cdot nh  - I\Gamma h
((vh  - I\Gamma h

u) \cdot nh)\| L2(\Gamma h).(3.27)

By using the superconvergence result in Lemma 3.5 after applying the triangle in-
equality to (3.27), we obtain

\| (vh  - u) \cdot nh\| L2(\Gamma h) \lesssim \| (u - I\Gamma h
u) \cdot nh\| L2(\Gamma h) + h2\| vh  - I\Gamma h

u\| H1(\Gamma h)\| nh\| W 1,\infty (\Gamma h).

Combining the above results leads to

\| (vh  - u) \cdot nh\| L\infty (\Gamma h) \lesssim h
\bigl( 
1 + \| ev\| H1(\Gamma h) + \| ex\| L\infty (\Gamma h)

\bigr) 
(1 + \| en\| W 1,\infty (\Gamma h)).

The difference of nh and n\Gamma h
is estimated by inserting the normal vector of \Gamma \ast 

h,

\| nh  - n\Gamma h
\| L\infty (\Gamma h) \leq \| n1

h  - n\ast ,1
h \| L\infty (\Gamma h) + \| n\ast ,1

h  - n\Gamma \ast 
h
\circ b - 1

1 \| L\infty (\Gamma h)

+ \| n\Gamma \ast 
h
\circ b - 1

1  - n\Gamma h
\| L\infty (\Gamma h)

\lesssim \| en\| L\infty (\Gamma h) + hk + \| ex\| W 1,\infty (\Gamma h).

For k\geq 2, Assumption 3.1 yields the boundedness of en, ex, and ev in W 1,\infty (\Gamma h). By
combining the above two estimates, we derive that

\| (vh  - u) \cdot n\Gamma h
\| L\infty (\Gamma h) \lesssim h+ \| en\| L\infty (\Gamma h) + \| ex\| W 1,\infty (\Gamma h).(3.28)

Let Eh be the common edge of the two adjacent elements K\pm . By (2.6), we get

\| (vh  - u) \cdot [\mu ]Eh
\| L\infty (Eh) \lesssim \| (vh  - u) \cdot (nK+

+ nK - )\| L\infty (Eh)\| [\mu ]\| L\infty (Eh)

\lesssim (h+ \| en\| L\infty (\Gamma h) + \| ex\| W 1,\infty (\Gamma h))\| [\mu ]\| L\infty (Eh),

where the last inequality is from (3.28). By using the trace inequality, we obtain
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A CONVERGENT ESFEM WITH TANGENTIAL MOTION 2185

J1 =
\sum 

Eh\in \scrE h

\int 
Eh

(ez)
2(vh  - u) \cdot [\mu ]Eh

\leq (hk + \| \nabla \Gamma \ast 
h
e0x\| L\infty (\Gamma \ast 

h)
)(h+ \| en\| L\infty (\Gamma h) + \| ex\| W 1,\infty (\Gamma h))

\sum 
Eh\in \scrE h

\| ez\| 2L2(Eh)

\lesssim h - 1(hk + \| \nabla \Gamma \ast 
h
e0x\| L\infty (\Gamma \ast 

h)
)(h+ \| e0n\| L\infty (\Gamma \ast 

h)
+ \| e0x\| W 1,\infty (\Gamma \ast 

h)
)\| ez\| 2M\ast .

The term J2 can be estimated by using Lemma 3.2 and (3.28), i.e.,

J2 \lesssim 
\Bigl( 
\| H\Gamma h

\| L\infty (\Gamma h)\| (vh  - u) \cdot n\Gamma h
\| L\infty (\Gamma h) + \| \nabla \Gamma h

\cdot (vh  - u)\| L\infty (\Gamma h)

\Bigr) 
\| ez\| 2M\ast 

\lesssim (1 + h - 1\| \nabla \Gamma \ast 
h
e0x\| L\infty (\Gamma \ast 

h)
)(h+ \| e0n\| L\infty (\Gamma \ast 

h)
+ \| e0x\| W 1,\infty (\Gamma \ast 

h)
)\| ez\| 2M\ast 

+ (1+ \| e0v\| W 1,\infty (\Gamma \ast 
h)
)\| ez\| 2M\ast .

For k\geq 2, the estimates of I1, J1, and J2 lead to I1+I2 \lesssim \| ex\| 2K\ast +\| ev\| 2M\ast +\| ez\| 2M\ast .
This proves the result of Proposition 3.3.

Lemma 3.6. Under Assumption 3.1, the following result holds for k\geq 2:

eTV(KV(x,n) - K\ast V(x\ast ,n\ast ))\lesssim (\| en\| K\ast + \| ex\| K\ast )\| eV\| K\ast .(3.29)

Proof. Since K = M + A, we only need to prove the following result which
corresponds to A (the part corresponding to M is simpler and omitted):

eTV(AV(x,n) - A\ast V(x\ast ,n\ast ))\lesssim (\| en\| K\ast + \| ex\| K\ast )\| eV\| A\ast .(3.30)

Let us abbreviate V(x\ast ,n\ast ) (see (2.27)) as V\ast . Note that V\ast collects the nodal values
of P\Gamma \ast 

h
(u \cdot n\ast 

h) \in Sh[x
\ast ], where P\Gamma \ast 

h
denotes the L2 projection onto Sh[x

\ast ]. Thus, we
derive

eTV(AV - A\ast V\ast ) =

\int 1

0

d

d\theta 

\int 
\Gamma \theta 
h

\nabla \Gamma \theta 
h
P\Gamma \theta 

h
(u \cdot n\theta 

h) \cdot \nabla \Gamma \theta 
h
e\theta V

=

\int 1

0

\int 
\Gamma \theta 
h

D\Gamma \theta 
h
e\theta x\nabla \Gamma \theta 

h
P\Gamma \theta 

h
(u \cdot n\theta 

h) \cdot \nabla \Gamma \theta 
h
e\theta V +\nabla \Gamma \theta 

h
\partial \bullet 
\theta P\Gamma \theta 

h
(u \cdot n\theta 

h) \cdot \nabla \Gamma \theta 
h
e\theta V ,

where D\Gamma \theta 
h
e\theta x = tr(E\theta )Id  - (E\theta + (E\theta )T ) and E\theta = \nabla \Gamma \theta 

h
e\theta x. According to [30, eq.

(3.21)], the material derivative of L2 projection has the explicit formula

\partial \bullet 
\theta P\Gamma \theta 

h
(u \cdot n\theta 

h) = P\Gamma \theta 
h
((e\theta x \cdot \nabla )u \cdot n\theta 

h + u \cdot e\theta n) + P\Gamma \theta 
h

\Bigl[ 
(I  - P\Gamma \theta 

h
)(u \cdot n\theta 

h)\nabla \Gamma \theta 
h
\cdot e\theta x

\Bigr] 
.

For simplicity of notation, we denote

K0 =\nabla \Gamma \theta 
h
P\Gamma \theta 

h
(u \cdot n\theta 

h), K1 = P\Gamma \theta 
h
(u \cdot e\theta n),

K2 = P\Gamma \theta 
h
(e\theta x \cdot \nabla )u \cdot n\theta 

h, K3 = P\Gamma \theta 
h

\bigl[ 
(I  - P\Gamma \theta 

h
)(u \cdot n\theta 

h)\nabla \Gamma \theta 
h
\cdot e\theta x

\bigr] 
,

so that the expression of eTV(AV - A\ast V\ast ) derived above can be written as

eTV(AV - A\ast V\ast ) =

\int 
\Gamma \theta 
h

(D\Gamma \theta 
h
e\theta x)K0 \cdot \nabla \Gamma \theta 

h
e\theta V +\nabla \Gamma \theta 

h
(K1 +K2 +K3) \cdot \nabla \Gamma \theta 

h
e\theta V .

By the inverse inequality and Lemma 3.5, we obtain

\| \nabla \Gamma \theta 
h
K1\| L2 \leq \| \nabla \Gamma \theta 

h
P\Gamma \theta 

h
((I  - I\Gamma \theta 

h
)u \cdot e\theta n)\| L2 + \| \nabla \Gamma \theta 

h
(I  - P\Gamma \theta 

h
)(I\Gamma \theta 

h
u \cdot e\theta n)\| L2

+ \| \nabla \Gamma \theta 
h
(I\Gamma \theta 

h
u \cdot e\theta n)\| L2

\lesssim h - 1\| (I  - I\Gamma \theta 
h
)u \cdot e\theta n\| L2 + h\| I\Gamma \theta 

h
u\| W 1,\infty \| e\theta n\| H1 + \| e\theta n\| H1 .
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2186 GENMING BAI, JIASHUN HU, AND BUYANG LI

Likewise, we have

\| \nabla \Gamma \theta 
h
K3\| L2 \lesssim h - 1\| (I  - P\Gamma \theta 

h
)(u \cdot n\theta 

h)\nabla \Gamma \theta 
h
\cdot e\theta x\| L2

\lesssim h - 1
\Bigl( 
\| (I  - P\Gamma \theta 

h
)(u \cdot n\ast ,\theta 

h )\| L\infty \| \nabla \Gamma \theta 
h
\cdot e\theta x\| L2 + \| (I  - I\theta h)(u \cdot e\theta n)\| L2

\Bigr) 
\lesssim \| en\| K\ast + \| ex\| K\ast .

The other terms have no essential differences. Therefore, (3.30) is proved.

Proposition 3.7 (stability estimates). Suppose that k \geq 2 and Assumption 3.1
holds. There exists h0 > 0 such that for h\leq h0, the errors in (3.8a)--(3.8e) satisfy the
following stability results:

\| ex(t)\| 2K\ast \lesssim 
\int t

0

\| ev\| 2K\ast + \| ex\| 2K\ast ds,

(3.31)

\| ev(t)\| K\ast \lesssim \| ex(t)\| K\ast + \| en(t)\| K\ast + \| dv(t)\| M\ast + \| d\bfitkappa (t)\| M\ast ,
(3.32)

\| ep(t)\| 2M\ast \lesssim \| ep(0)\| 2M\ast +

\int t

0

\| ex\| 2K\ast + \| ev\| 2M\ast + \| ep\| 2M\ast + \| eq\| 2M\ast + \| dp\| 2M\ast ds,

(3.33)

\| eq(t)\| 2M\ast \lesssim \| eq(0)\| 2M\ast +

\int t

0

\| ex\| 2K\ast + \| ev\| 2K\ast + \| ep\| 2M\ast + \| eq\| 2M\ast + \| dq\| 2M\ast ds,

(3.34)

\| en\| 2K\ast \lesssim \| ex\| 2A\ast + \| ep\| 2M\ast + \| eq\| 2M\ast + \| dn\| 2\ast .
(3.35)

Proof. The proof consists of three parts that correspond to the velocity equa-
tion (3.8a)--(3.8b), the evolving normal and Weingarten matrix (3.8c)--(3.8d), and the
recovered normal part (3.8e), respectively.

Compared with [30, eqs. (3.10b)--(3.10c)], the velocity part has the same form
after changing the normal velocity from the mean curvature H in [30] to V. Then we
deduce that for k\geq 2 and t\in [0, t\ast ],

\| ev(t)\| K\ast \lesssim \| ex(t)\| K\ast + \| en(t)\| K\ast + \| eV(t)\| K\ast + \| dv(t)\| M\ast + \| d\bfitkappa (t)\| M\ast .(3.36)

According to (3.29) in the preceding lemma,

\| eV\| 2K\ast \lesssim \| eV\| 2K = eTV(KV - K\ast V\ast ) + eTV(K\ast  - K)V\ast 

\lesssim (\| en\| K\ast + \| ex\| K\ast )\| eV\| K\ast .(3.37)

Substituting the estimation of \| eV\| K\ast into (3.36) yields (3.32).
Inequalities (3.33)--(3.34) are proved by employing the energy estimation to (3.8c)

and (3.8d) with test functions ep and eq, respectively, and using the bilinear error esti-
mate (3.23). Here we only present a detailed proof of (3.34). A similar proof can be ap-
plied to (3.8c) by treating a simpler nonlinear term. Testing (3.8d) with eq, we derive

eTqM \.eq = eTq (Eq - E\ast q\ast ) + eTq (M
\ast  - M) \.q\ast + eTq (g - g\ast ) - eTqM

\ast dq.(3.38)

By using the Leibniz rule, [36, eq. (7.11)], and norm equivalence (3.10), the first term
can be estimated as follows:

eTqM \.eq = - 1

2
eTq

d

dt
Meq +

1

2

d

dt

\bigl( 
eTqMeq

\bigr) 
\geq  - c\| eq\| 2M\ast +

1

2

d

dt
\| eq\| 2M.
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A CONVERGENT ESFEM WITH TANGENTIAL MOTION 2187

Applying (3.23) and (3.11), we derive

eTq (Eq - E\ast q\ast ) + eTq (M
\ast  - M) \.q\ast \lesssim \| ex\| 2K\ast + \| ev\| 2M\ast + \| eq\| 2M\ast .(3.39)

By the Newton--Leibniz formula, the third term can be rewritten as an integral,

eTq (g - g\ast ) =

\int 1

0

d

d\theta 

\int 
\Gamma \theta 
h

g(U,p\Gamma \theta 
h
, q\Gamma \theta 

h
, v\Gamma \theta 

h
,\nabla \Gamma \theta 

h
v\Gamma \theta 

h
) : e\theta qd\theta 

=

\int 1

0

\int 
\Gamma \theta 
h

(\partial \bullet 
\theta g(U,p\Gamma \theta 

h
, q\Gamma \theta 

h
, v\Gamma \theta 

h
,\nabla \Gamma \theta 

h
v\Gamma \theta 

h
) + g\nabla \Gamma \theta 

h
\cdot e\theta x) : e\theta qd\theta ,

where p\Gamma \theta 
h
, q\Gamma \theta 

h
, and v\Gamma \theta 

h
are finite element functions in Sh[x

\theta ] corresponding to p\ast +
\theta ep, q

\ast + \theta eq, and v\ast + \theta ev, respectively. Recalling Assumption 3.1 and the smooth-
ness of u, we deduce that p\Gamma \theta 

h
, q\Gamma \theta 

h
, U | \Gamma \theta 

h
, and \nabla U | \Gamma \theta 

h
are bounded in L\infty (\Gamma \theta 

h), and v\Gamma \theta 
h

is bounded inW 1,\infty (\Gamma \theta 
h). Then the smoothness (local Lipschitz) of g (see (2.15)) yields

\| g(U,p\Gamma \theta 
h
, q\Gamma \theta 

h
, v\Gamma \theta 

h
,\nabla \Gamma \theta 

h
v\Gamma \theta 

h
)\| L\infty (\Gamma \theta 

h)
\leq C,

\| \partial ig(U,p\Gamma \theta 
h
, q\Gamma \theta 

h
, v\Gamma \theta 

h
,\nabla \Gamma \theta 

h
v\Gamma \theta 

h
)\| L\infty (\Gamma \theta 

h)
\leq C

for i= 1, . . . ,5. This, together with

\partial \bullet 
\theta U = (e\theta x \cdot \nabla )U, \partial \bullet 

\theta p\Gamma \theta 
h
= e\theta p, \partial \bullet 

\theta q\Gamma \theta 
h
= e\theta q , \partial \bullet 

\theta v\Gamma \theta 
h
= e\theta v,

\partial \bullet 
\theta \nabla \Gamma \theta 

h
v\Gamma \theta 

h
=\nabla \Gamma \theta 

h
e\theta v  - (\nabla \Gamma \theta 

h
e\theta x  - n\Gamma \theta 

h
nT
\Gamma \theta 
h
(\nabla \Gamma \theta 

h
e\theta x)

T )\nabla \Gamma \theta 
h
v\Gamma \theta 

h
,

implies that

eTq (g - g\ast )\lesssim \| eq\| M\ast (\| ex\| K\ast + \| ep\| M\ast + \| eq\| M\ast + \| ev\| K\ast ) .

Thus, (3.34) is obtained by integrating the following inequality from 0 to t:

d

dt
\| eq\| 2M\ast \lesssim \| eq\| 2M\ast + \| dq\| 2M\ast + \| ex\| 2K\ast + \| ev\| 2K\ast + \| ep\| 2M\ast .

To prove (3.35), we test (3.8e) with en and obtain

eTnKen = eTnMep + eTn (K
\ast  - K)n\ast  - eTn (M

\ast  - M)p\ast + eTn (F - F\ast ) - eTnM
\ast dn,

(3.40)

where F and F\ast are abbreviations for F(x,q) and F(x\ast ,q\ast ). Since \| n\ast 
h\| W 1,\infty (\Gamma \ast 

h)
and

\| p\ast h\| L\infty (\Gamma \ast 
h)

are bounded, using the bilinear estimations (3.11)--(3.12), we derive

eTn (K
\ast  - K)n\ast  - eTn (M

\ast  - M)p\ast \lesssim \| en\| K\ast \| ex\| A\ast .

According to (2.25), we obtain

eTn (F - F\ast ) =

\int 1

0

d

d\theta 

\int 
\Gamma \theta 
h

q\Gamma \theta 
h
:\nabla \Gamma \theta 

h
e\theta nd\theta 

=

\int 1

0

\int 
\Gamma \theta 
h

e\theta q :\nabla \Gamma \theta 
h
e\theta nd\theta +

\int 1

0

\int 
\Gamma \theta 
h

q\Gamma \theta 
h
:\nabla \Gamma \theta 

h
e\theta n\nabla \Gamma \theta 

h
\cdot e\theta xd\theta 

+

\int 1

0

\int 
\Gamma \theta 
h

q\Gamma \theta 
h
: ( - (\nabla \Gamma \theta 

h
e\theta x  - n\Gamma \theta 

h
nT
\Gamma \theta 
h
(\nabla \Gamma \theta 

h
e\theta x)

T ))\nabla \Gamma \theta 
h
e\theta nd\theta 

\lesssim \| en\| K\ast (\| eq\| M\ast + \| ex\| A\ast ).

By applying the norm equivalence (3.10) and Young's inequality, we obtain

\| en\| 2K\ast \leq CeTnKen \leq C\| en\| K\ast (\| ex\| A\ast + \| ep\| M\ast + \| eq\| M\ast + \| dn\| \ast )

\leq 1

2
\| en\| 2K\ast + c(\| ex\| 2A\ast + \| ep\| 2M\ast + \| eq\| 2M\ast + \| dn\| 2\ast ).

By absorption, we finish the proof of (3.35).
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2188 GENMING BAI, JIASHUN HU, AND BUYANG LI

3.4. Error estimates. The following lemma of consistency estimates can be
shown by using the geometric perturbation errors between bilinear forms on the con-
tinuous surface and the interpolated surface. In particular, the estimation of \| dv\| M\ast 

and \| d\bfitkappa \| M\ast can be found in [30, Lemma 3.9], and the estimation of \| dn\| \ast , \| dp\| M\ast ,
and \| dq\| M\ast is standard and therefore omitted.

Lemma 3.8 (consistency estimates). Under the conditions of Theorem 2.1, the
consistency errors defined in (3.3)--(3.7) satisfy the following estimates:

\| dv\| M\ast + \| d\bfitkappa \| M\ast + \| dn\| \ast + \| dp\| M\ast + \| dq\| M\ast \lesssim hk.(3.41)

Since x(0), p(0), q(0) are chosen as Lagrange interpolations in the same way as
x\ast , p\ast , and q\ast , we obtain ep = 0, eq = 0, and ex = 0. After solving n(0) and v(0) from
(2.28f) and (2.28b)--(2.28c), according to (3.32), (3.35), and Lemma 3.8, the following
bound can be satisfied for sufficiently small h:

\| ep(0)\| M\ast + \| eq(0)\| M\ast + \| ex(0)\| K\ast + \| en(0)\| K\ast + \| ev(0)\| K\ast \lesssim hk.(3.42)

By inverse inequalities and continuity, there exists t\ast > 0 such that the Assumption 3.1
holds for t \in [0, t\ast ]. Then for k \geq 2, there exists h0 > 0 such that for h \leq h0, (3.31)--
(3.32) and Lemma 3.7 hold for t \in [0, t\ast ]. Without loss of generality, we can take
t\ast \in [0, T ] to be the supreme value such that Assumption 3.1 holds. By substituting
estimations of ev and en into (3.31)--(3.32), we derive the following Gronwall type
inequality:

\| ex(t)\| 2K\ast + \| ep(t)\| 2M\ast + \| eq(t)\| 2M\ast 

\lesssim 
\int t

0

\| ex(s)\| 2K\ast + \| ep(s)\| 2M\ast + \| eq(s)\| 2M\ast ds

+

\int t

0

\| dv(s)\| 2M\ast + \| d\bfitkappa (s)\| 2M\ast + \| dn(s)\| 2\ast + \| dp(s)\| 2M\ast + \| dq(s)\| 2M\ast ds.

Using the consistency error bound in Lemma 3.8, we obtain by Gronwall's inequality
that

\| ex(t)\| 2K\ast + \| ep(t)\| 2M\ast + \| eq(t)\| 2M\ast \lesssim hk.

Consequently, by (3.32) and (3.35), we obtain

\| ev(t)\| K\ast + \| en(t)\| K\ast \lesssim hk.

By the continuity of semidiscrete finite element solutions in time, the above estimate
still holds for [0, t\ast + \delta ]. By the inverse inequality, there exists h0 > 0 such that for
h \leq h0, Assumption 3.1 holds for [0, t\ast + \delta ]. Hence we have t\ast = T and (3.42) holds
for all t \in [0, T ]. Thus, the proof of Theorem 2.1 can be completed by combining
the error estimates of the Ritz projection and Lagrange interpolation of the projected
solutions introduced in section 3.1.

4. Numerical examples. In this section, we present numerical examples to
support the theoretical results obtained in Theorem 2.1 by demonstrating the con-
vergence of numerical approximations and the improvement of mesh quality by the
proposed method. In addition, we present an example to show the capability of the
proposed artificial tangential velocity in improving the effectiveness of the arbitrary
Lagrangian--Eulerian method for solving PDEs on a domain with moving boundary.
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A CONVERGENT ESFEM WITH TANGENTIAL MOTION 2189

The evolving surface FEMs in the bulk and the surface are both implemented by the
open sourced high performance Python package NGSolve; see https://ngsolve.org.

Example 4.1 (convergence of numerical approximations). We test the errors and
convergence rates of the proposed method by considering the evolution of a hypersur-
face S(t)\subset \BbbR d with d= 2,3 under the velocity field

u(x, t) = x(1 - | x| ),(4.1)

with S(0) = \{ x\in \BbbR d : | x| = 1/2\} being the circle/sphere of radius 1/2. In this case, the
sphere S(t) is a circle/sphere centered at the origin with radius r= r(t) which satisfies
the differential equation dr/dt= r(1 - r), and the modified velocity v determined by
(1.3b)--(1.3c) coincides with the original velocity u on S(t). The solution with initial
condition r(0) = 1/2 is given by r(t) = 1/(1 + exp( - t)).

We approximate the surface evolution by the proposed method with a semi-
implicit k-step backward differentiation formula (with k being the same as the de-
gree of the finite elements in space), with a sufficiently small time stepsize so that
the errors from time discretization are negligibly small in observing the convergence
rates of the spatial discretizations. The H1 errors of position, velocity, and nor-
mal vector, i.e., \| ex\| K\ast , \| ev\| K\ast , and \| en\| K\ast , and the L2-norm of errors in Q, i.e.,
\| eQ\| 2M\ast = \| ep\| 2M\ast + \| eq\| 2M\ast , are presented in Figure 4.1. For both curves in 2D
and surfaces in 3D, we observe kth-order convergence with respect to the mesh size
h. This is consistent with the theoretical result proved in Theorem 2.1.

(a) Expansion of circles in 2D, k=2 (b) Expansion of spheres in 3D, k=2

(c) Expansion of circles in 2D, k=3 (d) Expansion of spheres in 3D, k=3

Fig. 4.1. Errors of numerical solutions at T = 1/8 (Example 4.1).
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Example 4.2 (improvement of mesh quality). We consider the evolution of a curve
\Gamma (t)\subset \BbbR 2 under velocity field (4.1), with initial condition

\Gamma (0) =
\Bigl\{ 
(x, y)\in \BbbR 2 :

\Bigl( 
x - 1

4

\Bigr) 2

+
\Bigl( 
y - 1

4

\Bigr) 2

=
1

4

\Bigr\} 
.(4.2)

The evolving curve is approximated by using the proposed method in (2.18) with finite
elements of degree k = 3 and the semi-implicit Euler method in time discretization.
The trajectories of the mesh points given by velocity field u and the proposed method
are demonstrated in Figures 4.2(b) and (c), respectively. Clearly, the proposed method
effectively improves the mesh quality on the evolving curve.

Next, we consider an evolving surface \Gamma (t) = \{ (x, y, z) \in \BbbR 3 : \varphi (x, y, z, t) = 1\} 
described by a level set function

\varphi (x, y, z, t) =
x2

a2(t)
+

y2

a2(t)
+G

\Bigl( z2

L2(t)

\Bigr) 
.

with G(s) = 200s(s - 199/200), a(t) = 0.1 + 0.05 sin(2\pi t), and L(t) = 1+ 0.2 sin(4\pi t).
The surface evolves under the following velocity field:

u(x, y, z, t) = - \varphi t\nabla \varphi 

| \nabla \varphi | 2
.(4.3)

This example is considered in [24] for illustrating the importance of using tangential
motion to improve the mesh quality of a discrete surface.

Using the same initial mesh, we compare the performance of the proposed method
with k = 1 and k = 4, the direct method, and scheme (2.19) with finite elements of
degree k = 1 and k = 4 in approximating the evolving surface at T = 0.6. Figure 4.3
shows the initial mesh and the approximate meshes at T = 0.6.

Compared to the clustered mesh obtained using the exact velocity field (i.e.,
Figure 4.3(d)), the numerical results show that the proposed scheme (2.18) with k= 4
improves the mesh quality while remaining accurate in approximating the shape of the
surface, while the proposed scheme (2.18) with k = 1 is inaccurate in approximating
the shape of the surface. Scheme (2.19) with k = 1 also improves the mesh quality
but with less accuracy, while scheme (2.19) with k = 4 leads to worse results instead
of higher accuracy.

The numerical results indicate that the proposed scheme (2.18) with high-order
finite elements can improve both mesh quality and accuracy in approximating the

(a) The velocity field u (b) Trajectories under velocityu (c) Trajectories in our method

Fig. 4.2. Evolution of a curve \Gamma (t) under velocity field u (Example 4.2).
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A CONVERGENT ESFEM WITH TANGENTIAL MOTION 2191

(a) Initial mesh (b) Scheme (2.18), k = 1 (c) Scheme (2.18), k = 4

(d) Exact velocity (e) Scheme (2.19), k = 1 (f) Scheme (2.19), k = 4

Fig. 4.3. Evolving surface at T = 0.6 computed by the proposed method (k= 1 in (b) and k= 4
in (c)), the direct method (d), and scheme (2.19) in Remark 2.1 (k = 1 in (e) and k = 4 in (f))
(Example 4.2).

(a) The velocity field u (b) Evolution under velocity u (c) Evolution in our method

Fig. 4.4. Evolution of a curve \Gamma (t) under velocity field u (Example 4.3).

shape of the surface. It is also the only scheme among these that is proved convergent
to the exact surface evolution.

Example 4.3 (improvement of mesh quality). We consider the following velocity
field:

u(x, t) = x(1 - | x| 2) +
\Bigl( 
1.2 - x2

| x| 

\Bigr) 
( - x2, x1).(4.4)

As visualized in Figure 4.4, the velocity field rotates counterclockwise. The evolutions
of the curve \Gamma (t) under the velocity field in (4.4) with initial condition

\Gamma (0) = \{ (x1, x2) : | x1| 2 + 9| x2| 2 = 1\} 

by the direct method (i.e., mesh points move with velocity u) and the proposed method
are presented in Figure 4.4. The proposed method significantly improves the mesh
quality for this example again.

Example 4.4 (PDEs in a domain with moving boundary). In the last example,
we demonstrate the effectiveness of the proposed method in combination with the
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2192 GENMING BAI, JIASHUN HU, AND BUYANG LI

arbitrary Lagrangian--Eulerian method for solving PDEs in a domain with a moving
boundary, i.e., the parabolic equation

\partial t\varphi  - \Delta \varphi = f(4.5)

in domain \Omega (t) with its boundary \Gamma (t) = \partial \Omega (t) evolving under the velocity field
u in (4.4). By the arbitrary Lagrangian--Eulerian method, we solve the following
reformulated equation:

\partial \bullet 
t \varphi  - (w \cdot \nabla )\varphi +\Delta \varphi = f,(4.6)

where w is the mesh velocity and \partial \bullet 
t denotes the material derivative with respect to

w. The mesh velocity in the bulk domain \Omega (t) is obtained by a harmonic extension of
the boundary velocity. Thus the direct method solves the bulk PDEs with boundary
mesh points moving under velocity u, while the proposed method solves the bulk
PDEs with boundary mesh points moving under a modified velocity with tangential
motion determined by solving some boundary PDEs.

The influence of the proposed method on the mesh quality in the bulk domain
can be clearly observed in Figure 4.5. Compared with solving PDEs in a bulk domain,
the computational cost of solving boundary PDEs is relatively small, as presented in
Figure 4.6.

The errors eE\varphi and eT\varphi of the numerical solutions up to time T = 4 given by the
direct method and the proposed method, respectively, in approximating the exact

(a) The mesh at t = 0 (b) Mesh by the direct method (c) Mesh by proposed method

Fig. 4.5. ALE moving mesh at t= 4 with finite elements of degree k= 3.

(a) CPU time per time step (b) Time for bulk and boundary PDEs

Fig. 4.6. CPU time per time step for solving the bulk and boundary PDEs.
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A CONVERGENT ESFEM WITH TANGENTIAL MOTION 2193

(a) Finite elements of degree k = 2 (b) Finite elements of degree k = 3

Fig. 4.7. L\infty (0, T ;L2) errors of the numerical solutions to (4.5).

solution \varphi (x, t) = log(2 + t) + exp(x2 + y2) (with f and Dirichlet boundary condition
determined by this exact solution) are presented in Figure 4.7. From Figures 4.6
and 4.7 we see that the proposed method is about 100 times more accurate than the
direct method with roughly the same CPU time.

5. Conclusions. In this paper we have presented a novel evolving surface finite
element method, by constructing an artificial tangential velocity based on a novel
equivalent formulation of the continuous problem, for computing the evolution of
a hypersurface under a smooth prescribed velocity field in \BbbR d, d = 2,3. We have
proved the stability and optimal-order convergence of the proposed method for finite
elements of degree k \geq 2, and have illustrated the effectiveness of the constructed
artificial tangential velocity in maintaining good mesh quality of the evolving surfaces
through the numerical examples. Moreover, the application of the proposed method
in solving PDEs in an evolving bulk domain has revealed the great benefit from the
proposed method in decreasing the error of numerical solutions without essentially
increasing the computational cost.
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