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Abstract. A high-frequency recovered fully discrete low-regularity integrator is constructed
to approximate rough and possibly discontinuous solutions of the semilinear wave equation. The
proposed method, with high-frequency recovery techniques, can capture the discontinuities of the
solutions correctly without spurious oscillations and approximate rough and discontinuous solu-
tions with a higher convergence rate than preexisting methods. Rigorous analysis is presented
for the convergence rates of the proposed method in approximating solutions such that (u,\partial tu) \in 
C([0, T ];H\gamma \times H\gamma  - 1) for \gamma \in (0,1]. For discontinuous solutions of bounded variation in one dimen-
sion (which allow jump discontinuities), the proposed method is proved to have almost first-order
convergence under the step size condition \tau \sim N - 1, where \tau and N denote the time step size and the
number of Fourier terms in the space discretization, respectively. Numerical examples are presented
in both one and two dimensions to illustrate the advantages of the proposed method in improving the
accuracy in approximating rough and discontinuous solutions of the semilinear wave equation. The
numerical results are consistent with the theoretical results and show the efficiency of the proposed
method.

Key words. semilinear wave equation, discontinuous solution, low regularity, numerical approx-
imation, high-/low-frequency decomposition, error estimates
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1. Introduction. This article concerns the construction and analysis of numer-
ical methods for approximating rough and possibly discontinuous solutions of the
semilinear wave equation\Biggl\{ 

\partial ttu - \Delta u= g(u) in (0, T ]\times \Omega ,

u| t=0 = u0 and \partial tu| t=0 = v0 in \Omega 
(1.1)

in a domain \Omega = [0,1]d with the periodic boundary condition (i.e., \Omega is regarded as
a d-dimensional torus), where g : \BbbR \rightarrow \BbbR is a given nonlinear function. For example,
(1.1) is often referred to as the sine-Gordon equation when g(u) = sin(u), and often
referred to as the nonlinear Klein--Gordon equation when g(u) =  - mu  - \lambda u3; see
[13, 14, 23]. Since the waves described by the semilinear wave equation propagate
with finite speed, the problem in the whole space with compactly supported initial
values can also be reduced to a bounded rectangular domain (with periodic boundary
condition) which contains the support of the solution on the whole time interval [0, T ].

As the relativistic version of the Schr\"odinger equation, the semilinear wave equa-
tion has been widely used in many physical areas such as quantum field theory, non-
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NUMERICAL APPROXIMATION OF DISCONTINUOUS WAVES 215

linear optics, dislocated crystals, etc. During the last few decades, the numerical
approaches for solving the semilinear wave equation have been extensively investi-
gated, such as trigonometric/exponential integrators that are based on the variation-
of-constants formula (for example, see [7, 22, 28, 17, 52]), splitting methods (for
example, see [2, 3, 7, 21, 16, 46]), symplectic methods [11, 12, 25], and finite differ-
ence methods (such as the Crank--Nicolson, Runge--Kutta, and Newmark methods
[10, 27, 33, 37, 39, 40, 45, 49, 51]). These classical numerical methods have been
shown convergent with optimal order to the sufficiently smooth solutions of the semi-
linear wave equation. However, due to the dispersion feature of (1.1), roughness of the
solution may be brought in by randomness or discontinuity of the initial data. This
would cause significant challenges in constructing convergent numerical methods for
approximating rough solutions, possibly discontinuous and with unbounded energy,
of the semilinear wave equation.

Many recent efforts were devoted to the construction and analysis of low-regularity
integrators for nonlinear dispersive equations, such as the KdV equation [29, 54, 56, 57]
and the nonlinear Schr\"odinger equation [6, 41, 42, 48]. In these articles, several dif-
ferent approaches have been developed for constructing numerical methods that are
convergent under low-regularity conditions, with higher-order convergence than the
classical methods, including the resonance-based approach which uses variation-of-
constants formulae and twisted variables [6, 29, 41, 44, 54, 55, 56, 57], the semigroup-
based technique using the cancellation structures in the solution representations
[48, 34], and low-regularity integrators based on discrete Bourgain/Strichartz
estimates [42]. Recently, based on new schemes to approximate the nonlinear fre-
quency interaction and a new harmonic analysis technique by using the Littlewood--
Paley dyadic decomposition, first-order low-regularity schemes for the cubic nonlinear
Schr\"odinger equation were introduced in [36] and [1] to allow almost first-order con-
vergence in the L2 norm for H1 initial data with periodic and Neumann boundary
conditions, respectively. Moreover, based on a temporal averaging technique and more
careful high-order resonance analysis, a new second-order scheme was proposed in [8],
which can have second-order convergence in the L2 norm with initial data strictly
below H2. These newly developed approaches have significantly improved the con-
vergence rates of numerical solutions to these nonlinear dispersive equations under
low-regularity conditions.

Low-regularity integrators for the semilinear wave equation were addressed by
Rousset and Schratz in [48] by using transformation w = u  - i( - \Delta ) - 

1
2 \partial tu, which

converts the semilinear wave equation into a first-order formulation, i.e.,

i\partial tw= - ( - \Delta )
1
2w+ ( - \Delta ) - 

1
2 g
\Bigl( w+ \=w

2

\Bigr) 
.(1.2)

They constructed a low-regularity integrator for the first-order equation in (1.2) with
second-order convergence in the energy norm H1 \times L2 under the regularity condition
(u0, v0)\in H

7
4 \times H

3
4 in three dimensions.

A different low-regularity integrator for (1.1) was constructed in [35] directly based
on the discovery of a new cancellation structure, also with second-order convergence
in H1\times L2 under the regularity condition (u0, v0)\in H1+ d

4 \times H
d
4 for spatial dimension

d = 1,2,3. For the nonlinear term g(u) =mu+ \lambda u3 with given constants m \geq 0 and
\lambda \in \BbbR , a symmetric low-regularity integrator was constructed in [53] for the semilinear
Klein--Gordon equation on a one-dimensional torus, with second-order convergence in
H\gamma \times H\gamma  - 1 under the condition (u0, v0)\in H\gamma \times H\gamma  - 1 for \gamma > 1

2 .
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216 J. CAO, B. LI, Y. LIN, AND F. YAO

These low-regularity integrators all require the solution (u,\partial tu) to be in H\gamma \times 
H\gamma  - 1 with \gamma > d

2 , thus requiring the solution u to be continuous. However, the
semilinear wave equation can be well-posed even for discontinuous solutions below
the energy space. For example, the sine-Gordon equation is well-posed in H\gamma \times H\gamma  - 1

for all \gamma \geq 0 and the semilinear Klein--Gordon equation is well-posed in H\gamma \times H\gamma  - 1

for \gamma > 1
3 in the one-dimensional case [5], and for \gamma \geq 1 in the high-dimensional

cases [19, 20]. The construction and analysis of convergent numerical methods for
approximating such rough and discontinuous solutions of the semilinear wave equation
are still interesting and challenging.

The aim of this paper is to construct a more efficient fully discrete low-regularity
integrator for approximating possibly discontinuous solutions of the semilinear wave
equation in one and two dimensions. To improve the convergence rates of numeri-
cal solutions in approximating rough solutions, we design a numerical scheme which
could approximate the low-frequency and high-frequency parts of the solution sepa-
rately, by approximating the low-frequency part with a time-stepping scheme and the
high-frequency part with a recovery technique. The high-frequency recovery, which
has equivalent computational cost as the approximation to the low-frequency part,
could significantly improve the accuracy of the numerical solutions and therefore could
capture the discontinuities in the rough solution by significantly reducing spurious os-
cillations. The advantages of the proposed method are demonstrated numerically
in section 7 and proved rigorously in a particular setting, for approximating discon-
tinuous solutions of bounded variation (such as piecewise smooth solutions) in one
dimension.

By utilizing the cancellation structure of the semilinear wave equation discovered
in [35] and the new techniques developed in this paper, we prove the following error
bounds in the L2 \times H - 1 norm for approximating a solution (u,\partial tu) \in C([0, T ];H\gamma \times 
H\gamma  - 1):

O(N - \gamma + + \tau N1 - 2\gamma +) for \gamma \in 
\Bigl( 
0,

1

2

\Bigr] 
,

O
\bigl( 
N - \gamma + + \tau N1 - 2\gamma + +min(\tau , \tau 2N2(1 - \gamma )+)

\bigr) 
for \gamma \in 

\Bigl( 1
2
,1
\Bigr] 
,

where N denotes the number of Fourier terms used in each dimension of the space
discretization. Therefore, the error is O(\tau \gamma ) under the step size condition \tau \sim N - 1,
and the convergence rate could be further improved by choosing a different step size
condition which depends on the regularity of the solution.

More importantly, we prove that for discontinuous solutions with bounded vari-
ation in one dimension (e.g., piecewise smooth solutions with jump discontinuities)
the proposed numerical scheme has better convergence rate (i.e., almost first-order
convergence) in L2 \times H - 1 under the step size condition \tau \sim N - 1.

Extensive numerical experiments, including both one- and two-dimensional ex-
amples, are given to illustrate the effectiveness (higher-order accuracy and reduction
of spurious oscillation) of the proposed method in approximating rough and discon-
tinuous solutions of the semilinear wave equation.

The rest of this article is organized as follows. In section 2, we introduce some ba-
sic notation and present the main theoretical results of this article on the convergence
rates of the proposed numerical method. In section 3, we present some preliminary
and technical results that will be used in the construction and analysis of the method.
The construction of the numerical scheme is presented in section 4. The proof of the
main theoretical results are presented in sections 5 and 6, respectively. Finally, we
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NUMERICAL APPROXIMATION OF DISCONTINUOUS WAVES 217

present extensive numerical examples in section 7 to support the theoretical results
and to illustrate the effectiveness of the proposed method in approximating rough and
discontinuous solutions of the semilinear wave equation.

2. Notation and main results. In this section we present the basic notation
and main results of this paper, including the proposed numerical scheme and the
convergence of the numerical approximations to rough solutions of the semilinear
wave equation.

2.1. Notation and numerical scheme. We rewrite the second-order semilin-
ear wave equation in (1.1) into a first-order system of equations, i.e.,\Biggl\{ 

\partial tU  - LU = F (U) in (0, T ]\times \Omega ,

U(0) =U0 in \Omega ,
(2.1)

with

U =

\biggl( 
u
\partial tu

\biggr) 
, U0 =

\biggl( 
u0

v0

\biggr) 
, F (U) =

\biggl( 
0

f(u)

\biggr) 
, L=

\biggl( 
0 1\widetilde \Delta 0

\biggr) 
,

where we have used the following notation:

f(u) = g(u) +mu and \widetilde \Delta =\Delta  - m with some fixed constant m> 0.

The fixed constant m > 0 is introduced to make sure that the linear operator L is
reversible on the d-dimensional torus \Omega = [0,1]d.

We denote by etL the solution operator of the linear wave equation (i.e., the
map from U0 to U(t) in the case F (U) \equiv 0). By defining the a-norm of a function
W = (w1,w2)

T \in Ha(\Omega )\times Ha - 1(\Omega ), i.e.,

\| W\| a = (\| w1\| 2Ha + \| w2\| 2Ha - 1)
1
2 , a\in \BbbR ,

the following properties hold:

\| etLW\| 0 \lesssim \| W\| 0, \| etLW\| 1 \lesssim \| W\| 1,(2.2)

\| F (U)\| 1 \lesssim \| f(u)\| L2 \lesssim f(0) + \| f \prime \| L\infty \| U\| 0.(2.3)

It is known that any function in the Sobolev space L2(\Omega ) can be expanded into
a Fourier series. Accordingly, we introduce the finite-dimensional subspace

SN =

\Biggl\{ 
N\sum 

n1,...,nd= - N

cn1,...,nd
exp (2n1\pi x1i) \cdot \cdot \cdot exp (2nd\pi xdi) : cn1,...,nd

\in \BbbC 

\Biggr\} 

and approximate functions in Hs(\Omega ) by using the finite-dimensional subspace SN .
We denote by \Pi N the L2 projection operator onto SN defined by

(w - \Pi Nw,v) = 0 \forall v \in SN , w \in Hs(\Omega ),

and denote \Pi >N := I  - \Pi N and \Pi (N1,N2] := \Pi N2
 - \Pi N1

for N2 > N1. We denote by
IN : Hs \rightarrow SN the trigonometric interpolation such that for any function w \in Hs,
s > d

2 , (INw) (x) =w(x) for x\in Dd, with

D=
\Bigl\{ n

2N
: n= 0, . . . ,2N  - 1

\Bigr\} 
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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218 J. CAO, B. LI, Y. LIN, AND F. YAO

We define the sequence of grid points tn = n\tau , n= 0,1, . . . ,M , in the time interval
[0, T ] with step size \tau = T/M and denote by Un = (un, vn)T the numerical solution
at time t= tn. Then the high-frequency recovering low-regularity integrator for (2.1)
constructed in this article reads (the detailed construction is presented in section 4)

Un+1
N =\Pi NUn+1

N +\Pi (N,N\alpha ]U
n+1
N ,(2.4a)

\Pi NUn+1
N = e\tau L\Pi NUn

N + \tau e\tau LINF (\Pi NUn
N )

+ (2L) - 1
\bigl[ 
\tau e\tau L  - (2L) - 1(e\tau L  - e - \tau L)H(\Pi NUn

N )
\bigr] 
,(2.4b)

\Pi (N,N\alpha ]U
n+1
N = e(n+1)\tau L\Pi (N,N\alpha ]U

0
N ,(2.4c)

with

H(U) =

\biggl( 
 - INf(u)

\Pi N (INf \prime (u) \cdot v)

\biggr) 
,(2.5)

and initial value U0
N =\Pi N\alpha U(0) for \alpha \geq 1. This scheme introduces an additional high-

frequency part to the low-regularity integrator in [35] and uses a different definition
of H(U) to obtain the desired convergence rates for approximating discontinuous so-
lutions. It is the combination of the filtered low-regularity integrator (2.4b) and high-
frequency recovery process (2.4c) that ensures the accuracy of the proposed method
for approximating rough solutions under lower regularity conditions than those in [35].

Remark 2.1. In (2.4) we see that the high- and low-frequency parts of Un+1
N

are computed separately, independent of each other, where the low-frequency part is
computed by a time-stepping scheme and the high-frequency part is recovered directly
from its initial value via (2.4c) (without time steppings). Since the nonlinear terms in
(2.4b) can be computed by using the fast Fourier transform (FFT), the computational
cost at every time level is O(Nd log(N)). Therefore, the total cost for computing the
low-frequency part at time T is O(Nd log(N)T/\tau ). In contrast, the high-frequency
part of the numerical solution need not be computed every time level. Instead, we
only need to compute (2.4c) once to recover the high-frequency part of Un+1

N for any
particular time level of interest. Therefore, the cost of computing the high-frequency
part at time T is O(N\alpha d), which is comparable to the cost of computing the low-
frequency part if we choose N (\alpha  - 1)d \sim T/\tau . Under the step size condition \tau \sim N - 1,
this suggests choosing \alpha = 1+ 1

d in the computation. The advantages of this choice is
analyzed rigorously in Theorem 2.2 in one dimension and illustrated numerically in
section 7 in both one and two dimensions.

Remark 2.2. The trigonometric interpolation operator IN is used in (2.4b) and
(2.5) to approximate nonlinear functions by Fourier series using FFT. This makes the
algorithm more efficient than using the projection operator \Pi N , but also increases the
difficulty of convergence analysis under low-regularity conditions.

2.2. Main theoretical results. For simplicity of notation, we denote by A\lesssim B
or B \gtrsim A the statement A \leq CB for some constant C > 0. The value of C may
depend on T and \| U\| \gamma , and may be different at different occurrences, but is always
independent of step size \tau , degrees of freedom N (in each dimension), and time level
n. The notation A\sim B means that A\lesssim B \lesssim A. If a statement contains s+ or s - for
some number s, it means that the statement holds with s+ \epsilon or s - \epsilon for arbitrary
\epsilon > 0; see Theorem 2.1.

The convergence of the proposed algorithm in (2.4) in the general setting is pre-
sented in the following theorem.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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NUMERICAL APPROXIMATION OF DISCONTINUOUS WAVES 219

Theorem 2.1. Let d= 1,2 and \gamma \in (0,1], and assume that the nonlinear function
f :\BbbR \rightarrow \BbbR satisfies the following condition:

| f \prime (s)| + | f \prime \prime (s)| + | f \prime \prime \prime (s)| \lesssim 1.(2.6)

Then, under the regularity condition U \in C([0, T ];H\gamma (\Omega ) \times H\gamma  - 1(\Omega )) and the step

size condition N \lesssim \tau  - 
1

1 - \gamma +\epsilon 0 (for an arbitrary \epsilon 0 \in (0,1]), the numerical solutions
given by (2.4) for each \alpha \geq 1 converge to the solution of (2.1) with the following error
estimates:

(i) For \gamma \in (0, 12 ], there exist constants \tau 0 \in (0,1) and C0 > 0 such that, for step
size \tau \in (0, \tau 0],

max
0\leq n\leq T/\tau 

\| U(tn) - Un
N\| 0 \leq C0(N

 - \gamma + + \tau N1 - 2\gamma +).(2.7)

(ii) For \gamma \in ( 12 ,1], there exist constants \tau 0 \in (0,1) and C0 > 0 such that, for step
size \tau \in (0, \tau 0],

max
0\leq n\leq T/\tau 

\| U(tn) - Un
N\| 0 \leq C0(N

 - \gamma + + \tau N1 - 2\gamma + +min(\tau , \tau 2N2(1 - \gamma )+)).

(2.8)

The constants C0 and \tau 0 may depend on \epsilon 0 in the condition N \lesssim \tau  - 
1

1 - \gamma +\epsilon 0 (when \epsilon 0
is smaller, \tau 0 is smaller, and C0 is bigger).

Remark 2.3. Under the condition (2.6), by constructing a contraction map, stan-
dard techniques can be used to prove that problem (2.1) admits a unique solution
U = (u,\partial tu)\in L\infty (0, T ;H\gamma \times H\gamma  - 1). This solution is automatically in C([0, T ];H\gamma \times 
H\gamma  - 1).

Remark 2.4. The theoretical error estimates in Theorem 2.1 implies that, by
choosing \tau \sim N - 1 (independent of the regularity of the initial data) and \alpha = 1 (without
high-frequency recovery), the errors of the numerical solutions are bounded by O(\tau \gamma  - )
for approximating solutions in H\gamma (\Omega )\times H\gamma  - 1(\Omega ) with \gamma \in (0,1]. However, in practical
computation, the errors of the numerical solutions can often be significantly reduced
by using high-frequency recovery with \alpha = 1 + 1

d under the step size condition \tau \sim 
N - 1 with equivalent computational cost; see Remark 2.1. Such advantages of the
high-frequency recovery technique proposed in (2.4) is demonstrated numerically in
section 7 and proved rigorously in the following theorem in a particular setting, for
approximating discontinuous solutions of bounded variation (such as piecewise smooth
solutions) in one dimension.

Let BV (\Omega ) denote the set of functions with bounded variations on \Omega with norm
\| u\| BV := \| u\| L1 + \| \nabla u\| M , where M denotes the norm of M(\Omega ), the space of Borel
measures on \Omega (the norm of M(\Omega ) is equivalent to the L1 norm for integrable func-
tions).

Theorem 2.2. Let d= 1 (i.e., consider the one-dimensional problem) and assume
that the solution has the following regularity:

(u,\partial tu)\in C([0, T ];H
1
2 - (\Omega )\times H - 1

2 - (\Omega )) and u\in L\infty (0, T ;BV (\Omega )\cap L\infty (\Omega )).

Then, under the step size condition \tau \sim N - 1, the numerical solutions given by (2.4)
with \alpha = 2 converge to the solution of the continuous problem in (2.1) with the follow-
ing rate:

max
0\leq n\leq T/\tau 

\| U(tn) - Un
N\| 0 \lesssim \tau 1 - .(2.9)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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220 J. CAO, B. LI, Y. LIN, AND F. YAO

Remark 2.5. For an initial value in (u0, v0) \in BV (\Omega ) \times M(\Omega ), the additional
regularity condition u\in L\infty (0, T ;BV (\Omega )\cap L\infty (\Omega )) in Theorem 2.2 naturally holds for
the one-dimensional sine-Gordon equation\Biggl\{ 

\partial ttu - \partial xxu= sin(u) in (0, T ]\times \Omega ,

u| t=0 = u0, \partial tu| t=0 = v0 on \Omega .
(2.10)

For example, we consider (2.10) with initial value u0 \in BV (\Omega ) on the interval \Omega = [0,1]
with the periodic boundary condition. Let \~u, \~u0, and \~v0 be the periodic extensions of
u, u0, and v0 to \BbbR , respectively. Then d'Alambert's formula and Duhamel's formula
imply that

\~u(t, x) =
1

2

\int t

0

\int x+t - s

x - t+s

sin(\~u)(s, y)dyds+
1

2
(\~u0(x+ t) + \~u0(x - t)) +

1

2

\int x+t

x - t

\~v0(y)dy.

(2.11)

By taking the BV and L\infty norms on both sides of (2.11) and then summing up the
two results, we can see that u(t)\in BV (\Omega ) for all t\in [0, T ] and

\| u(t)\| BV + \| u(t)\| L\infty \lesssim T 2 + \| u0\| BV + \| u0\| L\infty + \| v0\| M .

This shows that the regularity condition in Theorem 2.2 naturally characterizes the
regularity of the solutions with discontinuous initial data in BV (\Omega ).

Remark 2.6. Without the high-frequency recovery, the convergence rate of the
proposed method would reduce to half order from first order. This can be seen from
the proof of Theorem 2.2 and can also be observed in the numerical tests.

Remark 2.7. From the numerical examples in section 7.2 we can see that the
high-frequency recovery in (2.4), with \alpha = 3

2 under the step size condition \tau \sim N - 1,
also improves the convergence rates in approximating discontinuous solutions from
half to 3

4 in two dimensions.

3. Preliminary results. In this section we present some preliminary results to
be used in the proofs of Theorems 2.1 and 2.2. These include Bernstein's inequalities in
the Lp norm (Lemma 3.1), approximation properties of the trigonometric interpolation
(Lemma 3.2), Lp error of trigonometric interpolation (Lemma 3.3), and negative-
norm estimates for the product of two functions (Lemmas 3.4 and 3.5). The proofs of
Lemma 3.3 and 3.4 can be found in the arXiv version of this paper [9], which contains
the complete proofs of some technical lemmas.

Lemma 3.1 (Bernstein's inequality; cf. [24, Theorem 2.2 and p. 22]). Let f be a
function such that J\gamma f := (1 - \Delta )

\gamma 
2 f \in Lp(\Omega ) for some \gamma \geq 0 and 1 < p <\infty . Then

the following results hold:

\| \Pi \leq NJ\gamma f\| Lp \lesssim N\gamma \| f\| Lp , \| \Pi >Nf\| Lp \lesssim N - \gamma \| J\gamma f\| Lp .

Lemma 3.2 (standard error of trigonometric interpolation; cf. [32, Theorem
11.8]). Let f be a function such that f \in H\gamma (\Omega ). For 0\leq s\leq \gamma and \gamma > d

2 , we have

\| f  - INf\| Hs \lesssim N - (\gamma  - s)\| f\| H\gamma .

Lemma 3.3 (error of trigonometric interpolation in the Lp norm; see [9]). Let
d= 1 and f \in W 1,p(\Omega ) for 1< p<\infty ; then

\| f  - INf\| Lp \lesssim N - 1\| f\| W 1,p .
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NUMERICAL APPROXIMATION OF DISCONTINUOUS WAVES 221

Lemma 3.4 (negative-norm estimates for the product of two functions; see [9]).
For d= 1,2, the following estimates hold:

\| fg\| H - 1 \lesssim \| g\| H - 1 (\| f\| L\infty + \| f\| H1+) ,(3.1)

\| fg\| H - 1 \lesssim \| f\| \gamma L2+\| f\| 1 - \gamma 
H1+\| g\| H\gamma  - 1 ,(3.2)

\| fg\| H - 1 \lesssim \| f\| L2\| g\| L2+ .(3.3)

In addition, for any \gamma \in (0,1] and function h\in L\infty , the following estimate holds:

\| fgh\| H\gamma  - 1 \lesssim \| f\| L2\| g\| H\gamma +\| h\| L\infty .(3.4)

Lemma 3.5. Let (u, v)T \in H\gamma (\Omega ) \times H\gamma  - 1(\Omega ) and assume that f satisfies the
conditions in (2.6). Then the following estimates hold:

\| f \prime (\Pi Nu)\Pi Nv\| H - 1 \lesssim N1 - 2\gamma + for \gamma \in (0, 12 ],(3.5)

\| f \prime (\Pi Nu)\Pi Nv\| H - 1 \lesssim 1 for \gamma \in ( 12 ,1].(3.6)

Proof. Without loss of generality, we assume that log2N is an integer (otherwise
we replace log2N with the smallest integer larger than it). Then, by using the triangle
inequality, we have

\| f \prime (\Pi Nu) \cdot \Pi Nv\| H - 1 \leq 
log2 N - 1\sum 

k=1

\| (f \prime (\Pi 2k+1u) - f \prime (\Pi 2ku))\Pi Nv\| H - 1 .(3.7)

The right-hand side of (3.7) can be estimated by using (3.2), i.e.,

\| (f \prime (\Pi 2k+1u) - f \prime (\Pi 2ku))\Pi Nv\| H - 1

\lesssim \| f \prime (\Pi 2k+1u) - f \prime (\Pi 2ku)\| 
\gamma 
L2+\| f \prime (\Pi 2k+1u) - f \prime (\Pi 2ku)\| 

1 - \gamma 
H1+\| \Pi Nv\| H\gamma  - 1

\lesssim \| f \prime \prime \| \gamma L\infty \| \Pi 2k+1u - \Pi 2ku\| 
\gamma 
L2+ \cdot (\| f \prime (\Pi 2k+1u)\| H1+ +\| f \prime (\Pi 2ku)\| H1+)

1 - \gamma \| \Pi Nv\| H\gamma  - 1

\lesssim [(2k) - \gamma +]\gamma [(2k)1 - \gamma +]1 - \gamma \lesssim (2k)1 - 2\gamma +,

where in the third inequality we have used the boundedness of \| f \prime \prime \| L\infty and \| \Pi Nv\| H\gamma  - 1 ,
and the following estimates:

\| \Pi 2k+1u - \Pi 2ku\| L2+ \lesssim \| \Pi 2k+1u - \Pi 2ku\| 1 - L2 \| \Pi 2k+1u - \Pi 2ku\| 0+H1

\lesssim 
\Bigl( \bigl( 

2k
\bigr)  - \gamma \| u\| H\gamma 

\Bigr) 1 - \Bigl( \bigl( 
2k
\bigr) 1 - \gamma \| u\| H\gamma 

\Bigr) 0+
\lesssim (2k) - \gamma +

and

\| f \prime (\Pi 2ku)\| H1+ \lesssim \| f \prime (\Pi 2ku)\| 1 - H1\| f \prime (\Pi 2ku)\| 0+H2

\lesssim (\| f \prime \| L\infty + \| f \prime \prime \| L\infty \| \Pi 2ku\| H1)
1 - 

\cdot 
\Bigl( 
\| f \prime \| L\infty + \| f \prime \prime \| L\infty \| \Pi 2ku\| H2 + \| f \prime \prime \prime \| L\infty 

\bigm\| \bigm\| \bigm\| (\Pi 2k\nabla u)
2
\bigm\| \bigm\| \bigm\| 
L2

\Bigr) 0+
\lesssim 
\Bigl( 
1 +

\bigl( 
2k
\bigr) 1 - \gamma \| u\| H\gamma 

\Bigr) 1 - \Biggl[ 
1 +

\bigl( 
2k
\bigr) 2 - \gamma \| u\| H\gamma +

\biggl( \bigl( 
2k
\bigr) 1+ d

4 - \gamma \| u\| H\gamma 

\biggr) 2
\Biggr] 0+

\lesssim 
\bigl( 
2k
\bigr) 1 - \gamma +

.
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222 J. CAO, B. LI, Y. LIN, AND F. YAO

For \gamma \in (0, 12 ], we sum up the above estimate for k = 1, . . . , log2N  - 1. This leads to
the following result:

\| \Pi N (f \prime (\Pi N \~u) \cdot \Pi N \~v)\| H - 1 \lesssim 
log2 N - 1\sum 

k=1

(2k)1 - 2\gamma + \lesssim N1 - 2\gamma + \cdot log2N.

This proves the first result of Lemma 3.5, where the term log2N can be absorbed into
the N1 - 2\gamma + with the presence of the ``+"" in the exponent.

For \gamma \in ( 12 ,1], we have 1 - 2\gamma +< 0 and therefore \| \Pi N (f \prime (\Pi N \~u) \cdot \Pi N \~v)\| H - 1 \lesssim 1.
This proves the second result of Lemma 3.5.

Next, we present some useful properties/structures of the vector-valued function
F (U) that play important roles in the convergence of the proposed low-regularity
integrator for approximating rough solutions below the energy space. Since F (U) =
(0, f(u))T , it is straightforward to verify that, for W = (w1,w2)

T and W \ast = (w\ast 
1 ,w

\ast 
2)

T ,

F \prime (U) =

\biggl( 
0 0

f \prime (u) 0

\biggr) 
, F \prime (U)W =

\biggl( 
0

f \prime (u)w1

\biggr) 
, F \prime \prime (U)W \cdot W \ast =

\biggl( 
0

f \prime \prime (u)w1w
\ast 
1

\biggr) 
.

(3.8)

The next lemma is a fundamental ingredient in the construction of the second-
order low-regularity integrator proposed in [35].

Lemma 3.6. Let U = (u, v)T and \~U(s) := esLU = (\~u(s), \~v(s))T . Then the follow-
ing identities hold:

d

ds
e - sLF ( \~U(s)) = e - sL

\biggl( 
 - f(\~u(s))

f \prime (\~u(s)) \cdot \~v(s)

\biggr) 
(3.9)

and

d

ds

\biggl[ 
e2sL

d

ds

\bigl( 
e - sLF ( \~U(s))

\bigr) \biggr] 
(3.10)

= esL
\biggl( 

0
f \prime \prime (\~u(s))(| \~v(s)| 2  - | \nabla \~u(s)| 2) +m (\~u(s) - f(\~u(s)))

\biggr) 
.

Moreover,\int \tau 

0

e(\tau  - s)LF ( \~U(s))ds= \tau e\tau LF (U) + (2L) - 1[\tau e\tau L  - (2L) - 1(e\tau L  - e - \tau L)]

\biggl( 
 - f(u)
f \prime (u)v

\biggr) 
+

\int \tau 

0

e(\tau  - 2s)L(\tau  - s)

\int s

0

d

d\sigma 

\Bigl[ 
e2\sigma L

d

d\sigma 

\bigl( 
e - \sigma LF ( \~U(\sigma ))

\bigr) \Bigr] 
d\sigma ds.(3.11)

Equation (3.10) is the cancellation structure in the semilinear wave equation dis-
covered by [35]. This cancellation structure ensures that all spatial second-order
derivatives on the right-hand side of (3.10) are canceled out, allowing us to construct
suitable numerical approximations for the nonlinear term using (3.11), while avoiding
higher-order derivative terms in the error analysis. The proof of the above lemma
involves the application of the chain rule, the Fubini theorem, and integration by
parts. For detailed proofs and further information, refer to [35, (2.23) and (2.26)].
Furthermore, the following result, which can be found in [35, (2.44)], will be useful
later: \bigm\| \bigm\| \bigm\| d

d\sigma 
e - \sigma L

\Bigl[ 
F \prime ( \~U(\sigma ))e\sigma LW

\Bigr] \bigm\| \bigm\| \bigm\| 
1
\lesssim \| W\| 3

2+\epsilon \| \~U(\sigma )\| 1 + \| W\| 1.(3.12)
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NUMERICAL APPROXIMATION OF DISCONTINUOUS WAVES 223

4. Construction of the numerical scheme. In this section, we demonstrate
the construction of the high-frequency recovered low-regularity integrator in (2.4).
We start with the variation-of-constants formula, i.e.,

U(tn+1) = e\tau LU (tn) +

\int \tau 

0

e(\tau  - s)LF (U (tn + s))ds,(4.1)

and employ the following high- and low-frequency decomposition:

U (tn+1) = e\tau LU (tn) +

\int \tau 

0

e(\tau  - s)L\Pi NF (\Pi NU (tn + s))ds+R1(tn),(4.2)

where the remainder R1(tn) is given by

R1(tn) =

\int \tau 

0

e(\tau  - s)L [F (U (tn + s)) - \Pi NF (\Pi NU (tn + s))]ds.(4.3)

Then we approximate the low-frequency term.
Since \Pi N commutes with L, by using the Taylor expansion of F (U) at

U = esL\Pi NU(tn), we have

F (\Pi NU(tn + s))

= F (esL\Pi NU(tn)) + F \prime (esL\Pi NU(tn))

\int s

0

e(s - \sigma )L\Pi NF (\Pi NU(tn + \sigma ))d\sigma 

+ \~R2(s) + \~R3(s),

where

\~R2(s) = F \prime (esL\Pi NU(tn))

\int s

0

e(s - \sigma )L\Pi N

\Bigl[ 
F (U(tn + \sigma ) - F (\Pi NU(tn + \sigma ))

\Bigr] 
d\sigma ,(4.4)

\~R3(s) =RF (s)

\int s

0

e(s - \sigma )L\Pi NF (U(tn + \sigma ))d\sigma \cdot 
\int s

0

e(s - \sigma )L\Pi NF (U(tn + \sigma ))d\sigma ,(4.5)

RF (s) =

\int 1

0

\int 1

0

\theta F \prime \prime \bigl[ (1 - \sigma )esL\Pi NU(tn) + \sigma (1 - \theta )esL\Pi NU(tn)

+ \theta \sigma \Pi NU(tn + s)
\bigr] 
d\sigma d\theta .

Inserting the above results into (4.2), we obtain

U(tn+1) = e\tau LU(tn) + I1(tn) + I2(tn) +R1(tn) +R2(tn) +R3(tn),

where

I1(tn) =

\int \tau 

0

e(\tau  - s)L\Pi NF (\Pi N
\~U(tn + s))ds, \~U(tn + s) = esLU(tn),

(4.6)

I2(tn) =

\int \tau 

0

e(\tau  - s)L\Pi N

\biggl[ 
F \prime (\Pi N

\~U(tn + s))

\int s

0

e(s - \sigma )L\Pi NF (\Pi NU(tn + \sigma ))d\sigma 

\biggr] 
ds,

R2(tn) =

\int \tau 

0

e(\tau  - s)L\Pi N
\~R2(s)ds, R3(tn) =

\int \tau 

0

e(\tau  - s)L\Pi N
\~R3(s)ds.

(4.7)

The approximation of I1(tn) combines the filtering technique and Lemma 3.6. Using
(3.11) with U =\Pi NU(tn) and interchanging \Pi N and L in order, we obtain
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224 J. CAO, B. LI, Y. LIN, AND F. YAO

I1(tn)

= \tau e\tau L\Pi NF (\Pi NU(tn))

+ (2L) - 1
\bigl[ 
\tau e\tau L  - (2L) - 1(e\tau L  - e - \tau L)

\bigr] \biggl(  - \Pi Nf(\Pi Nu(tn))
\Pi N (f \prime (\Pi Nu(tn))\Pi Nv(tn))

\biggr) 
+R4(tn),

where

R4(tn) =

\int \tau 

0

e(\tau  - 2s)L(\tau  - s)

\int s

0

d

d\sigma 

\biggl[ 
e2\sigma L

d

d\sigma 
e - \sigma L\Pi NF (\Pi N

\~U(tn + \sigma ))

\biggr] 
d\sigma ds.(4.8)

For I2(tn), by approximating \Pi NU(tn + \sigma ) with \Pi Ne\sigma LU(tn), we obtain

I2(tn) =

\int \tau 

0

e(\tau  - s)L\Pi N

\biggl[ 
F \prime (\Pi N

\~U(tn + s))

\int s

0

e(s - \sigma )L\Pi NF (\Pi NU(tn + \sigma ))d\sigma 

\biggr] 
ds

(4.9)

=

\int \tau 

0

se\tau L\Pi N [F \prime (\Pi NU(tn))\Pi NF (\Pi NU(tn))]ds+R5(tn) +R6(tn) +R7(tn),(4.10)

where the first term is equal to 0 due to (3.8) and the remaining terms are as follows:

R5(tn) =

\int \tau 

0

e(\tau  - s)L\Pi N

\Bigl[ 
F \prime (\Pi N

\~U(tn + s))

\cdot 
\int s

0

e(s - \sigma )L\Pi N

\bigl[ 
F (\Pi NU(tn + \sigma )) - F (\Pi N

\~U(tn + \sigma ))
\bigr] 
d\sigma 
\Bigr] 
ds,

R6(tn) =

\int \tau 

0

e(\tau  - s)L\Pi N

\Bigl[ 
F \prime (\Pi N

\~U(tn + s))

\cdot 
\int s

0

\Bigl( 
e(s - \sigma )L\Pi NF (\Pi N

\~U(tn + \sigma )) - esL\Pi NF (\Pi NU(tn))
\Bigr) 
d\sigma 
\Bigr] 
ds,

R7(tn) =

\int \tau 

0

se\tau L\Pi N

\Bigl( 
e - sL[F \prime (\Pi N

\~U(tn + s)) \cdot esL\Pi NF (\Pi NU(tn))]

 - F \prime (\Pi NU(tn))\Pi NF (\Pi NU(tn))
\Bigr) 
ds.

Finally, replacing \Pi NF by INF , we obtain

U(tn+1) = e\tau LU(tn) + \tau e\tau LINF (\Pi NU(tn))

+ (2L) - 1
\bigl[ 
\tau e\tau L  - (2L) - 1(e\tau L  - e - \tau L)

\bigr] 
H(\Pi NU(tn)) +\scrL n,(4.11)

where \scrL n is the consistency error and is given by

\scrL n =

9\sum 
i=1

Ri(tn),

(4.12)

R8(tn) = \tau e\tau L(\Pi N  - IN )F (\Pi NU(tn)),

(4.13)

R9(tn) = (2L) - 1
\Bigl[ 
\tau e\tau L  - (2L) - 1(e\tau L  - e - \tau L)

\Bigr] \biggl(  - (\Pi N  - IN )f(\Pi Nu(tn))
\Pi N ((I  - IN )f \prime (\Pi Nu(tn))\Pi Nv(tn))

\biggr) 
.

(4.14)
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NUMERICAL APPROXIMATION OF DISCONTINUOUS WAVES 225

By dropping the remainder \scrL n and taking initial value U0
N =\Pi N\alpha U(0), we obtain the

following numerical scheme:

Un+1
N = e\tau LUn

N + \tau e\tau LINF (\Pi NUn
N )(4.15)

+ (2L) - 1
\bigl[ 
\tau e\tau L  - (2L) - 1(e\tau L  - e - \tau L)H(\Pi NUn

N )
\bigr] 
.

We recall the expression of H(\Pi NUn
N ) in (2.5) and apply the equality \Pi NIN = IN .

This yields the following algorithm for the low- and high-frequency parts of the nu-
merical solution, respectively:

\Pi NUn+1
N = e\tau L\Pi NUn

N + \tau e\tau LINF (\Pi NUn
N )

+ (2L) - 1
\bigl[ 
\tau e\tau L  - (2L) - 1(e\tau L  - e - \tau L)H(\Pi NUn

N )
\bigr] 
,(4.16)

\Pi (N,N\alpha ]U
n+1
N = e\tau L\Pi (N,N\alpha ]U

n
N .(4.17)

This is algorithm (2.4), where (2.4c) is obtained by iterating (4.17) with respect to n.
The expressions of the remainders Rj(tn), j = 1, . . . ,9, in this section are used in

the error analysis in the next section.

5. Proof of Theorem 2.1. Let En
N = U (tn)  - Un

N denote the error of the
numerical solution and consider the difference between (4.11) and (4.15). This yields
the following error equation:

En+1
N = e\tau LEn

N + \tau e\tau LIN (F (\Pi NU (tn)) - F (\Pi NUn
N ))

+ (2L) - 1
\bigl[ 
\tau e\tau L  - (2L) - 1

\bigl( 
e\tau L  - e - \tau L

\bigr) \bigr] 
(H(\Pi NU(tn)) - H(\Pi NUn

N )) +\scrL n,(5.1)

with E0
N = (I  - \Pi N\alpha )U0. The remainder \scrL n in the expression above is estimated

below.

Proposition 5.1. Under the conditions of Theorem 2.1, the remainder \scrL n in
(5.1) satisfies the following estimates:\bigm\| \bigm\| \scrL n

\bigm\| \bigm\| 
0
\lesssim 

\biggl\{ 
\tau N - \gamma + + \tau 2N1 - 2\gamma + for \gamma \in (0, 12 ],
\tau N - \gamma + + \tau 2N1 - 2\gamma + +min(\tau 2, \tau 3N2(1 - \gamma )+) for \gamma \in ( 12 ,1]

(5.2)

and \bigm\| \bigm\| \scrL n
\bigm\| \bigm\| 
\gamma 
\lesssim \tau N - \gamma + + \tau 2N1 - \gamma +,(5.3)

where the constant is independent of \tau .

Proof. In view of the definition \scrL n =
\sum 9

i=1Ri(tn), we present estimates for
Rj(tn), j = 1, . . . ,9, respectively.

Estimate of R1(tn). We decompose R1(tn) into the following parts:

R1(tn) =

\int \tau 

0

e(\tau  - s)L\Pi >NF (\Pi NU (tn + s))ds(5.4)

+

\int \tau 

0

e(\tau  - s)L [F (U (tn + s)) - F (\Pi NU (tn + s))]ds.(5.5)

Lemma 3.1 (Bernstein's inequality) can be used to show that

\| (5.4)\| 1 \lesssim \tau N - \gamma max
s\in [0,\tau ]

\| F (\Pi NU(tn + s))\| 1+\gamma \lesssim \tau N - \gamma max
s\in [0,\tau ]

\| U(tn + s)\| \gamma .
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226 J. CAO, B. LI, Y. LIN, AND F. YAO

By the mean-value theorem, we can rewrite (5.5) into the following expression:

(5.5) =

\int \tau 

0

e(\tau  - s)L

\int 1

0

\Bigl[ 
F \prime 
\Bigl( 
\theta U(tn + s) + (1 - \theta )\Pi NU(tn + s)

\Bigr) 
\cdot \Pi >NU(tn + s)

\Bigr] 
d\theta ds.

Then, according to (3.8) and Lemma 3.1, we obtain

\| (5.5)\| 1 \lesssim \tau max
s\in [0,\tau ],\theta \in [0,1]

\| F \prime (\theta U(tn + s) + (1 - \theta )\Pi NU(tn + s)) \cdot \Pi >NU(tn + s)\| 1

= \tau max
s\in [0,\tau ],\theta \in [0,1]

\| f \prime (\theta u(tn + s) + (1 - \theta )\Pi Nu(tn + s)) \cdot \Pi >Nu(tn + s)\| L2

\lesssim \tau max
s\in [0,\tau ]

\| \Pi >Nu(tn + s)\| L2 \lesssim \tau N - \gamma max
s\in [0,\tau ]

\| U(tn + s)\| \gamma .

Therefore, by collecting the estimates (5.4) and (5.5), we have the following estimate
of \| R1(tn)\| 1:

\| R1(tn)\| 1 \lesssim \tau N - \gamma max
s\in [0,\tau ]

\| U(tn + s)\| \gamma .(5.6)

Estimate of Rj(tn) for j = 2, . . . ,7. Following the same discussions as in [35]
(details can be found in [9]), one gets

\| R2(tn)\| 1 + \| R3(tn)\| 1 \lesssim \tau 2N - \gamma + \tau 3,(5.7)

\| R4(tn)\| 1 \lesssim \tau 2N1 - \gamma ,(5.8)

\| R4(tn)\| 0 \lesssim \tau 3N2(1 - \gamma )+,(5.9)

\| R5(tn) +R6(tn) +R7(tn)\| 1 = \| I2(tn)\| 1 \lesssim min(\tau 2, \tau 3N2(1 - \gamma )).(5.10)

On the other hand, we can also estimate R4(tn) by using its reformulated expres-
sion:

R4(tn) =

\int \tau 

0

e(\tau  - 2s)L(\tau  - s)
\bigl[ 
e2sLG\prime (tn + s) - G\prime (tn)

\bigr] 
ds,(5.11)

with

G\prime (tn + s) =
d

ds

\Bigl( 
e - sL\Pi NF (\Pi N

\~U(tn + s))
\Bigr) 

= e - sL

\biggl( 
 - \Pi Nf(\Pi N \~u(tn + s))

\Pi N (f \prime (\Pi N \~u(tn + s))\Pi N \~v(tn + s))

\biggr) 
,(5.12)

by using (3.9) in Lemma 3.6, where \~U(tn + s) = esLU(tn) is defined as in (4.6). In
this way, using the definition of G\prime in (5.12), we have

\| R4(tn)\| 0
\lesssim \tau 2 sup

s\in [0,\tau ]

\| G\prime (tn + s)\| 0

\lesssim \tau 2 sup
s\in [0,\tau ]

\bigl( 
\| \Pi Nf(\Pi N \~u(tn + s))\| L2 + \| \Pi N (f \prime (\Pi N \~u(tn + s))\Pi N \~v(tn + s))\| H - 1

\bigr) 
.

According to (2.2), \~u is bounded in L2, and therefore the first term on the right-hand
side above is O(\tau 2). By employing Lemma 3.5, we can estimate the second term on
the right-hand side above as follows:
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NUMERICAL APPROXIMATION OF DISCONTINUOUS WAVES 227

\tau 2\| \Pi N (f \prime (\Pi N \~u(tn + s))\Pi N \~v(tn + s))\| H - 1

\lesssim 

\Biggl\{ 
\tau 2N1 - 2\gamma +\| U(tn)\| 2\gamma for \gamma \in (0, 12 ],

\tau 2\| U(tn)\| 2\gamma for \gamma \in ( 12 ,1].

This, together with (5.9), yields the following estimate of R4(tn) in the 0 norm:

\| R4(tn)\| 0 \lesssim 

\Biggl\{ 
\tau 2N1 - 2\gamma +\| U(tn)\| 2\gamma for \gamma \in (0, 12 ],

min(\tau 2, \tau 3N2(1 - \gamma )+)\cdot \| U(tn)\| 2\gamma for \gamma \in ( 12 ,1].
(5.13)

Estimate of R8 and R9. By using Lemmas 3.1 and 3.2, we obtain

\| R8\| 1 \lesssim \tau \| (\Pi N  - IN )f(\Pi Nu(tn))\| L2 \lesssim \tau N - 1 - \| f(\Pi Nu(tn))\| H1+ \lesssim \tau N - \gamma +.(5.14)

For \| R9\| 0, by using (3.3) and Lemmas 3.1 and 3.2, we obtain

\| R9\| 0 \lesssim \tau 2 (\| (\Pi N  - IN )f(\Pi Nu(tn))\| L2 + \| (I  - IN )f \prime (\Pi Nu(tn)) \cdot \Pi Nv(tn)\| H - 1)

\lesssim \tau 2
\bigl( 
N - 1 - \| f(\Pi Nu(tn))\| H1+ + \| (I  - IN )f \prime (\Pi Nu(tn))\| L2\| \Pi Nv(tn)\| L2+

\bigr) 
\lesssim \tau 2N - \gamma + + \tau 2N1 - 2\gamma +.(5.15)

For \| R9\| \gamma , according to (3.4), we derive

\| R9\| \gamma \lesssim \tau 2 (\| (\Pi N  - IN )f(\Pi Nu(tn))\| H\gamma + \| (I  - IN )f \prime (\Pi Nu(tn))\Pi nv(tn)\| H\gamma  - 1)

\lesssim \tau 2N - 1+\gamma  - \| f(\Pi Nu(tn))\| H1+ + \tau 2\| (I  - IN )f \prime (\Pi Nu(tn))\| L2\| \Pi Nv(tn)\| H\gamma +

\lesssim \tau 2N0+ + \tau 2N1 - \gamma +\| v(tn)\| H\gamma  - 1 .(5.16)

By summing up (5.6), (5.7), (5.13), (5.10), (5.14), and (5.15), we get the estimate
(5.2) in Proposition 5.1. And combining (5.6), (5.7), (5.8), (5.10), (5.14), and (5.16)
we finish the proof of (5.3) in Proposition 5.1.

By using the estimates of the remainder in Proposition 5.1, Theorem 2.1 can be
proved similarly as the error analysis in [35]. The details can be found in [9]. The
proof of Theorem 2.2 (higher-order convergence rate in approximating discontinuous
solutions with bounded variation) is more different from the analysis in [35] and
therefore presented below.

6. Proof of Theorem 2.2. From the estimates of the remainders in section 5
we can see that \| R1(tn)\| 0 and \| R8(tn)\| 0 are O(\tau N - \gamma +) while the other remainders
are O(\tau N - 2\gamma +) under the step size condition \tau \sim N - 1. In the case \gamma = 1

2 - , all
the remainders except \| R1(tn)\| 0 and \| R8(tn)\| 0 are O(\tau 2 - ), which leads to almost
first-order convergence. Therefore, we only need to show the following improved error
estimates for remainders R1(tn) and R8(tn) (see Lemmas 6.1 and 6.2).

Lemma 6.1. Under the regularity condition U \in C([0, T ];H\gamma (\Omega )\times H\gamma  - 1(\Omega )) with
\gamma \in (0,1], the remainder R1(tn) defined in (4.3) satisfies the following improved esti-
mate:

max
0\leq n\leq M

\| R1(tn)\| 0 \lesssim \tau N - 2\gamma +.(6.1)
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228 J. CAO, B. LI, Y. LIN, AND F. YAO

Proof. We decompose R1(tn) into the following two parts:

R1(tn) =

\int \tau 

0

e(\tau  - s)L\Pi >NF (\Pi NU (tn + s))ds(6.2)

+

\int \tau 

0

e(\tau  - s)L [F (U (tn + s)) - F (\Pi NU (tn + s))]ds,(6.3)

where (6.3) can be further decomposed dyadically as follows (with m = \lceil log2N\rceil 
below):

(6.3) =

\int \tau 

0

e(\tau  - s)L [F (U(tn + s)) - F (\Pi 2mNU(tn + s))]ds

+

m - 1\sum 
j=0

\int \tau 

0

e(\tau  - s)L [F (\Pi 2j+1NU(tn + s)) - F (\Pi 2jNU(tn + s))]ds

=:G0 +

m - 1\sum 
j=0

Gj .

By applying the mean-value theorem, we obtain

\| Gj\| 0 \lesssim \tau sup
s\in [0,\tau ]

\| F (\Pi 2j+1NU(tn + s)) - F (\Pi 2jNU(tn + s))\| 0

\lesssim \tau max
s,\theta 

\| f \prime (\xi ) \cdot (\Pi 2j+1N  - \Pi 2jN )u(tn + s)\| H - 1 ,

where \xi = \theta \Pi 2j+1Nu(tn+s)+(1 - \theta )\Pi 2jNu(tn+s). By estimating the last term above
using (3.1), we have

\| Gj\| 0 \lesssim \tau \| (\Pi 2j+1N  - \Pi 2jN )u(tn + s)\| H - 1(\| f \prime (\xi )\| H1+ + \| f \prime \| L\infty )

\lesssim \tau (2jN) - 1 - \gamma \| u\| L\infty H\gamma 

\bigl( 
(2jN)1 - \gamma +\| u\| L\infty H\gamma + 1

\bigr) 
\leq \tau (2jN) - 2\gamma +\| u\| 2L\infty H\gamma .

For G0, we have

\| G0\| 1 \lesssim \tau max
s\in (0,\tau ),\theta \in (0,1]

\| f \prime (\theta u(tn + s) + (1 - \theta )\Pi 2mNu(tn + s)) \cdot \Pi >2mNu(tn + s)\| L2

\lesssim \tau max
s\in (0,\tau )

\| \Pi >N2u(tn + s)\| L2 \lesssim \tau N - 2\gamma \| u\| L\infty H\gamma .

In summary, we have

\| (6.3)\| 0 \lesssim \tau N - 2\gamma +

m\sum 
j=0

\tau (2jN) - 2\gamma + \lesssim \tau N - 2\gamma +.(6.4)

On the other hand, Bernstein's inequality in Lemma 3.1 implies that

\| (6.2)\| 0 \lesssim \tau N - 1 - \gamma max
s\in [0,\tau ]

\| F (\Pi NU(tn + s))\| 1+\gamma \lesssim \tau N - 1 - \gamma \| U\| \gamma .(6.5)

Therefore, by collecting (6.4) with (6.5), we obtain (6.1) for \gamma \in (0,1].

Lemma 6.2. Under the regularity condition U \in C([0, T ];H
1
2 - (\Omega ) \times H - 1

2 - (\Omega ))
and u \in L\infty ([0, T ];L\infty (\Omega ) \cap BV (\Omega )), the remainder term R8(tn) defined in (4.13)
satisfies the following estimate:

\| R8(tn)\| 0 \lesssim \tau N - 1+, for each 0\leq n\leq M.(6.6)

Note that R8(tn) is generated by the use of trigonometric interpolation IN on the
nonlinear function for the implementation of FFT. In order to prove Lemma 6.2, we
need to use the following results for BV functions (see, for example, [58, section 5.3]).
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NUMERICAL APPROXIMATION OF DISCONTINUOUS WAVES 229

Lemma 6.3. For u\in BV (\Omega ) and \varepsilon > 0, we define u\varepsilon =Eu\ast \varphi \varepsilon as the regularization
of u based on an extension operator E : L1(\Omega ) \rightarrow L1(\BbbR d) which is bounded from
W k,p(\Omega ) to W k,p(\BbbR d) for all k \geq 0 and 1\leq p\leq \infty , and a mollifier \varphi \varepsilon defined on \BbbR d.
Then, for all sufficiently small \varepsilon > 0,

lim
\varepsilon \rightarrow 0

\int 
\Omega 

| u\varepsilon  - u| dx= 0,(6.7)

\| u\varepsilon \| BV (\Omega ) \lesssim \| u\| BV (\Omega ).(6.8)

Meanwhile, u\varepsilon \in C\infty (\Omega ) and \| u\varepsilon \| BV (\Omega ) = \| u\varepsilon \| W 1,1(\Omega ), and \| u\varepsilon \| L\infty (\Omega ) \leq \| u\| L\infty (\Omega ).

Proof of Lemma 6.2. By recalling the definition of R8(tn) in (4.13) and applying
the 0 norm, we obtain

\| R8(tn)\| 0 \lesssim \tau \| (\Pi N  - IN )f(\Pi Nu(tn))\| H - 1 \lesssim \tau \| (\Pi N  - IN )f(\Pi Nu(tn))\| L1+ .(6.9)

In one dimension, we obtain the following estimate by using Lemmas 3.1 and 3.3:

\| R8(tn)\| 0
\lesssim \tau \| (\Pi N  - IN )f(\Pi Nu\varepsilon (tn))\| L1+ + \tau \| (\Pi N  - IN ) [f(\Pi Nu(tn)) - f(\Pi Nu\varepsilon (tn))]\| L1+

\lesssim \tau N - 1\| f(\Pi Nu\varepsilon (tn))\| W 1,1+ + \tau N - 1\| f(\Pi Nu(tn)) - f(\Pi Nu\varepsilon (tn))\| W 1,1+ .

(6.10)

The first term on the right-hand side of (6.10) can be estimated by using the Lipschitz
continuity of f and the Sobolev embedding, i.e.,

\tau N - 1\| f(\Pi Nu\varepsilon (tn))\| W 1,1+ \lesssim \tau N - 1\| \Pi Nu\varepsilon (tn)\| W 1,1+ \lesssim \tau N - 1+\| u\varepsilon (tn)\| W 1 - ,1+

\lesssim \tau N - 1+\| u\varepsilon (tn)\| W 1,1

= \tau N - 1+\| u\varepsilon (tn)\| BV .

The second term on the right-hand side of (6.10) can be estimated as follows:

\tau N - 1\| f(\Pi Nu(tn)) - f(\Pi Nu\varepsilon (tn))\| W 1,1+ \leq \tau N - 1\| f(\Pi Nu(tn)) - f(\Pi Nu\varepsilon (tn))\| L1+

+ \tau N - 1\| \nabla \Pi Nu(tn) (f
\prime (\Pi Nu(tn)) - f \prime (\Pi Nu\varepsilon (tn)))\| L1+

+ \tau N - 1\| f \prime (\Pi Nu\varepsilon (tn)) (\nabla \Pi Nu(tn)) - \nabla \Pi Nun
\varepsilon )\| L1+

\lesssim \tau N
1
2+\| u(tn) - u\varepsilon (tn)\| L1+ ,

where the last inequality uses the Lipschitz condition of f and the following result:

\tau N - 1\| \nabla \Pi Nu(tn) (f
\prime (\Pi Nu(tn)) - f \prime (\Pi Nu\varepsilon (tn)))\| L1+

\lesssim \tau N - 1\| \nabla \Pi Nu(tn)\| L\infty \| f \prime (\Pi Nu(tn)) - f \prime (\Pi Nu\varepsilon (tn))\| L1+

\lesssim \tau N
1
2+\| u(tn)\| 

H
1
2
 - \| u(tn) - u\varepsilon (tn)\| L1+ .

Combining these estimates, we have

\| R8(tn)\| 0 \lesssim \tau N - 1+\| u\varepsilon (tn)\| BV + \tau N
1
2+\| u(tn) - u\varepsilon (tn)\| L1+ .(6.11)

Under the assumption, u\in L\infty ([0, T ];L\infty (\Omega )), since \| u\varepsilon \| L\infty is uniformly bounded by
\| u\| L\infty and, according to (6.7),

\| u(tn) - u\varepsilon (tn)\| L1+ \leq \| u(tn) - u\varepsilon (tn)\| 0+L\infty \| u(tn) - u\varepsilon (tn)\| 1 - L1 \rightarrow 0 as \varepsilon \rightarrow 0.
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230 J. CAO, B. LI, Y. LIN, AND F. YAO

Thus, for any fixed N , we can choose \varepsilon \ll 1 such that \tau N
1
2+\| u(tn) - u\varepsilon (tn)\| L1+ \lesssim 

\tau N - 1+. This, together with (6.8) and (6.11), yields (6.6). This proves Lemma 6.2.

Under the conditions of Theorem 2.2 (with \gamma = 1
2 - ), Lemmas 6.1 and 6.2 imply

that \| R1(tn)\| 0 and \| R8(tn)\| 0 are both O(\tau 2 - ) under the step size condition \tau \sim N - 1,
and the other remainders in the \| \cdot \| 0 norm have been shown to be O(\tau 2 - ) in section 5.
Therefore, the following result holds:

\| \scrL n\| 0 \lesssim \tau 2 - .(6.12)

By using the estimate of the remainder in (6.12), the following error estimate can be
proved for the low-frequency and high-frequency parts, respectively (details can be
found in [9]):

\| \Pi N (U(tn+1) - Un+1
N )\| 0 \leq C

\Bigl[ 
\| \Pi N (U(0) - U0

N )\| 0

+

n\sum 
j=0

\Bigl( 
\tau \| \Pi N (U(tj) - U j

N )\| 0 + \| \Pi N\scrL j\| 0 + \tau 2 - 
\Bigr) \Bigr] 

,(6.13)

\| \Pi (N,N2](U(tn+1) - Un+1
N )\| 0 \leq C

\left(  \| \Pi (N,N2](U(0) - U0
N )\| 0 +

n\sum 
j=0

\| \Pi (N,N2]\scrL j\| 0

\right)  .

(6.14)

Since our choice of initial value U0
N =\Pi N2U(0) implies that

\| \Pi N (U(0) - U0
N )\| 0 = \| \Pi (N,N2](U(0) - U0

N )\| 0 = 0,

by using the improved estimate on \| \scrL j\| 0 in (6.12) and Gronwall's inequality, we
obtain the following result from (6.13)--(6.14):

\| \Pi N2U(tn+1) - Un+1
N \| 0 \leq C\tau 1 - .(6.15)

This, together with an estimate of the projection error \| U(tn+1) - \Pi N2U(tn+1)\| 0 for
U0 \in H

1
2 - (\Omega )\times H - 1

2 - (\Omega ), leads to the error estimate in Theorem 2.2.
From the proof of Theorem 2.2 we see that, without introducing the high-frequency

recovery, the numerical solution still satisfies \| \Pi NU(tn+1) - Un+1
N \| 0 \leq C\tau 1 - but only

satisfies \| U(tn+1) - Un+1
N \| 0 \leq C\tau 

1
2 - . This reduction of convergence rate (when there

is no high-frequency recovery) can be observed in the numerical tests.

7. Numerical examples. In this section, we present extensive numerical ex-
amples to support the theoretical analysis and to illustrate the effectiveness of the
low-regularity integrator in this paper in capturing the interface of discontinuity in
the solutions, as well as the accuracy (without spurious oscillations) in approximating
rough and discontinuous solutions of the semilinear wave equation.

7.1. The sine-Gordon equation in one dimension. We consider the semilin-
ear wave equation in (1.1) with a nonlinear function g(u) = 160 sin(u) for the following
piecewise smooth discontinuous initial state:

\bigl( 
u0(x), v0(x)

\bigr) 
=

\left\{   
(5, - 5) for x\in 

\bigl[ 
0.3,0.425

\bigr] 
,

(2.5, - 2.5) for x\in 
\bigl[ 
0.575,0.7

\bigr] 
,

(0,0) otherwise,

(7.1)
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(a) Propagation of u(t, x)
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Fig. 7.1. Numerical solution of the 1D problem with discontinuous initial value in (7.1).
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(a) L2(\Omega )\times H - 1(\Omega ) error versus \tau 
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(b) L2(\Omega )\times H - 1(\Omega ) error versus CPU time

Fig. 7.2. Comparison of numerical solutions given by several different methods.

which satisfies the conditions of Theorem 2.2. As a result, the low-regularity integrator
HR-LRI in (2.4) with \alpha = 2 should have almost first-order convergence by choosing
N = O(\tau  - 1). We solve the problem with N = 210 and 4\tau = N - 1, and present the
evolution of the numerical solution for t\in [0, T ] in Figure 7.1(a), which clearly shows
the propagation of discontinuities of the solution.

In Figure 7.1(b), we plot the numerical solutions at time T computed by several
different numerical methods, including the second-order low-regularity correction of
Lie splitting method from [38] (which is referred to as lsz23), the second-order low-
regularity exponential-type scheme from [48] (which is referred to as rs21), the second-
order IMEX method from [27] (referred to as hl21), the second-order trigonometric
integrators constructed by Deuflhard [15] (referred to as d79), and classical splitting
methods such as the Lie splitting scheme and Strang splitting scheme. The time step
sizes and number of Fourier modes in all these methods are chosen to be \tau =N - 1/4
and N = 27, respectively. From the numerical results in Figure 7.1(b) we can see
that the discontinuities in the exact solution may lead to significant oscillations in
the solutions of the preexisting methods, while the proposed method in HR-LRI can
substantially reduce the numerical oscillations with equivalent computational cost.

In Theorem 2.2 and Remark 2.5 we have shown that since the initial value of
the solution is in BV (\Omega ) \cap L\infty (\Omega ), the error of the numerical solution is O(\tau 1 - ).
In Figure 7.2 we compare the L2(\Omega ) \times H - 1(\Omega ) errors of the numerical solutions at
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Fig. 7.3. Numerical results of the 1D problem with the initial value in (7.1).

T = 0.25 computed by the several different methods with step size \tau =N - 1/4, and the
reference solutions are given by the proposed method with a sufficiently large N = 214.
The numerical results shown in Figure 7.2 are consistent with the theoretical results
proved in Theorem 2.2 and demonstrate that the proposed method has a higher
convergence rate (with respect to both step size and CPU time) than preexisting
methods in approximating discontinuous solutions of the semilinear wave equations.

To further demonstrate the effectiveness of the proposed high-frequency recovery
process, we compare the numerical solutions before and after high-frequency recov-
ery at time T = 0.25 in Figure 7.3(a). Here, HR-LRI represents the high-frequency
recovery algorithm proposed in this paper, with N = 27, \tau = N - 1/4, and \alpha = 2.
The ``without recovery"" corresponds to the algorithm (2.4) without undergoing
the high-frequency recovery process, with N = 27 and \tau = N - 1/4. The reference
solution in Figure 7.3(a) is obtained by using the proposed algorithm with sufficiently
large N = 214. And, in Figure 7.3(b), we compare the errors of numerical solutions
before and after high-frequency recovery under the condition \tau = N - 1/4. As rigor-
ously proved by Theorem 2.2, the numerical experiments show that the high-frequency
recovery process significantly reduces the oscillations of the solution, resulting in a
higher order of convergence accuracy, whereas in the absence of the high-frequency re-
covery process, the numerical algorithm's order of convergence decreases significantly.

7.2. The sine-Gordon equation in two dimensions. In this section, we
consider the semilinear wave equation with g(u) = 16 sin(u) for the initial states.

(i) Propagation of one discontinuous wave:

\bigl( 
u0(x), v0(x)

\bigr) 
=

\biggl\{ 
(0.5,0) for x\in 

\bigl[ 
0.375,0.625

\bigr] 2
,

(0,0) otherwise.

(ii) Propagation of two discontinuous waves:

\bigl( 
u0(x), v0(x)

\bigr) 
=

\left\{     
(0.5,0) for x\in 

\bigl[ 
0.3,0.425

\bigr] 2
,

(0.25,0) for x\in 
\bigl[ 
0.575,0.7

\bigr] 2
,

(0,0) otherwise.
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Fig. 7.4. Comparison of the numerical solutions at t= 0.25 computed by two different methods.
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Fig. 7.5. Comparison of the numerical solutions at t= 0.25 computed by two different methods.

(iii) A rough initial value in H
1
2 \times H - 1

2 :

(u0(x), v0(x))

=

\Biggl( 
1

Cu

\sum 
k,l\in \BbbZ 

au(k)bu(l)e
i(kx1+lx2),

1

Cv

\sum 
k,l\in \BbbZ 

av(k)bv(l)e
i(kx1+lx2)

\Biggr) 
,(7.2)

where \biggl\{ 
au(k) = rand(0,1)| k|  - 1.01, bu(l) = rand(0,1)| l|  - 1.01,
av(k) = rand(0,1)| k|  - 0.01, bv(l) = rand(0,1)| l|  - 0.01,

and Cu and Cv are constants such that \| u0\| 
H

1
2
= \| v0\| 

H - 1
2
= 1.

We solve the semilinear wave equation by the Strang splitting method and the pro-
posed low-regularity integrator HR-LRI in (2.4) with \alpha = 3

2 for the initial values in
(i) and (ii), and plot the numerical solutions in Figures 7.4--7.5 by choosing \tau =
N - 1/4 = 2 - 8. The results show that the proposed method can effectively eliminate
the high oscillation of numerical solutions in approximating discontinuous solutions
of the semilinear wave equation.

The errors of the numerical solutions computed by several different numerical
methods are presented in Figure 7.6 with 4\tau = N - 1, where the reference solution
is given by the proposed method with sufficiently large N and sufficiently small \tau .
The numerical results in Figure 7.6 are again consistent with the theoretical results
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(d) Error vs CPU time for initial state (iii)

Fig. 7.6. Comparison of numerical solutions given by several different methods in two-
dimensional cases.

proved in Theorem 2.1, i.e., the proposed method has convergence order 3
4 , while

the other methods have convergence order 1
2 or smaller. The convergence rate of the

proposed method with respect to CPU time is also faster than preexisting methods
in approximating the discontinuous solution of the two-dimensional semilinear wave
equation.

7.3. The Klein--Gordon equation in one dimension. In the last example,
we consider the one-dimensional Klein--Gordon equation with a locally Lipschitz con-
tinuous (not globally Lipschitz continuous) nonlinear function g(u) = 4u3, with the
following piecewise smooth discontinuous initial state:

\bigl( 
u0(x), v0(x)

\bigr) 
=

\left\{   
(4,0) for x\in 

\bigl[ 
0.3,0.425

\bigr] 
,

(2,0) for x\in 
\bigl[ 
0.575,0.7

\bigr] 
,

(0,0) otherwise,

(7.3)

which leads to a bounded piecewise smooth discontinuous solution. Since the Lipschitz
continuity condition (2.6) can be satisfied when u(t, x) is uniformly bounded for (t, x)\in 
[0, T ]\times \Omega , the theoretical results in Theorems 2.1 and 2.2 are also applicable to this
problem.

We solve the Klein--Gordon equation with \tau = N - 1/4 = 2 - 12 and present the
evolution of the numerical solution in Figure 7.7(a), which shows the propagation of
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Fig. 7.7. Numerical solution with the initial value in (7.3).
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Fig. 7.8. Errors of the numerical solutions with the initial value in (7.3).

discontinuities of the solution. In Figure 7.7(b) we compare the numerical solutions at
T = 0.25 computed by several different methods. Here the symmetric low-regularity
integrator for the semilinear Klein--Gordon equation in [53] is also taken into compar-
ison and referred to as wz22. The numerical results in Figure 7.7(b) indicate that the
proposed method indeed improves the accuracy and reduces spurious oscillations.

In addition, we present the errors of the numerical solutions computed by the
several different methods in Figure 7.8, which shows that the proposed method has
first-order convergence with respect to the step size \tau in approximating such discontin-
uous solutions, and the usual methods have half-order convergence in this case. This
is consistent with the convergence rate proved in Theorem 2.2 and demonstrates the
efficiency of the proposed method in approximating rough and discontinuous solutions.
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