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Abstract. A new approach is developed to study the convergence of parametric finite element
approximations to the mean curvature flow of closed surfaces in three-dimensional space. In this
approach, the error analysis is conducted by comparing the numerical solution to a dynamic Ritz
projection of the mean curvature flow introduced in this paper, rather than an interpolation of the
mean curvature flow, as commonly used in the literature. The errors associated with the dynamic
Ritz projection in approximating the mean curvature flow are established in the L? and WP norms.
Leveraging these results, optimal-order convergence of parametric finite element methods for mean
curvature flow of closed surfaces in the L°°(0,T; L2) norm is proved, including the convergence of
parametric finite element methods with piecewise linear finite elements.
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1. Introduction. The numerical approximation of surface evolution under geo-
metric flows, including mean curvature flow, Willmore flow and surface diffusion, have
been intensively studied in the past. The most well-known example of geometric flows
is mean curvature flow, which describe the evolution of a surface I'(t) C R3, with
certain initial condition I'(0) = I'’, moving with velocity

v=—Hn,

where H and n denote the mean curvature and the normal vector of the surface. By
using identity Hn = —Aridr, where Ar and idr denote the Laplace-Beltrami operator
and identity map on surface I', mean curvature flow can also be written as

U:Arid[‘. (11)

By utilizing the formulation_in (EI)7 Dziuk introduced the following type of finite
element method (FEM) in [22] for approximating surface evolution under mean cur-
vature flow: assuming that I'(¢,,—1) is already approximated by a piecewise triangular
surface F?_l, find a parametrization of surface I'}' through a finite element function
u : T7"~ 1 — R® which is determined by some weak formulation of (EI) Such methods
are referred to as parametric FEMs.

Since 1990s, parametric FEMs have been widely used for approximating surface
evolution under various geometric flows and interface evolution in various related prob-
lems. Many novel numerical methods were developed to address the challenges (such
as prevention of mesh distortion and preservation of energy stability) in approximating
surface evolution; see the artificial tangential motion constructed by Barrett, Garcke &
Niirnberg’s (BGN) [[#-9], Elliott & Fritz [27,28], Hu & Li [29], Duan & Li [21], and the
structure-preserving parametric FEMs [3,4,43]. These techniques have significantly im-
proved the performance of parametric FEMs in approximating surface evolution under
geometric flows. However, proving convergence of these methods remains challenging.

Convergence of parametric FEMs for geometric flows has been addressed for mean
curvature flow and Willmore flow of curves in [10,14, 17, 23,28, 85,142, and for graph
surfaces and axisymmetric surfaces in [5,[13,[16,[18,19]. However, the techniques devel-
oped in the proofs are not applicable to the analysis of geometric flow of general closed
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surfaces. We also refer to [5,6,18,19,28,38] for the proofs of convergence of parametric
FEMs for mean curvature flow of closed curves, graph surfaces, axisymmetric surfaces,
and surfaces of torus type, with Elliott & Fritz’s tangential motion [27,28] generated
by a tangential transformation on I'°.

Convergence of the parametric FEMs for mean curvature flow, Willmore flow and
surface diffusion of closed surfaces was firstly proved in [12, 26, 29,81, B2] for some
equivalent formulations of the geometric flows which couple the velocity equation of
geometric flows with the geometric evolution equations of mean curvature H and nor-
mal vector n, by formulating the algorithms into evolving FEMs as [24] and utilizing
the matrix-vector formulation of evolving FEMs introduced in [33]. For example, con-
vergence of parametric FEMs for mean curvature flow of closed surfaces is proved for
the following equivalent formulation of mean curvature flow:

WX =voX on I'Y
(t)
(t)
(1),

where X (-,t) : T® — R? is the flow map which determines I'(t) = {X(p,t) : p € I'°},
and 07 denotes material derivative along the particle trajectories of the flow map, i.e.,

v=—Hn on I
6{H - Ap(t)H = |Vp(t)n|2H on I
T

oin — Appyn = |Vp(t)n|2n on

(1.2)

d
= &U(X(p, t),t) at point x = X (p,t) on I'(¢).

The analyses in [29,B1,B2] are restricted to finite elements of degree k > 2. This
condition is required for proving convergence of numerical solutions in the W norm
in order to control the nonlinear terms and to utilize the equivalence of LP and WP
norms of functions on the numerical-solution surface and interpolated surface.

The convergence of other parametric FEMs, designed for approximating (@) in-
stead of (@), is more challenging due to the degeneracy of the nonlinear Laplacian—
Beltrami operator Aridr acting on surface I'; see the discussions in [2,B6]. In the
spatially semi-discretization setting, the convergence of parametric_ FEMs for mean
curvature flow of surfaces with formulation (ﬁ%) was proved in [[l,B6] for finite ele-
ments of degree k > 6 based on a discovery that the nonlinear Laplacian—Beltrami
operator is H' elliptic with respect to the normal component of the trajectory error
(error between the exact and numerical flow maps). The restriction to finite elements
of degree k > 6 is needed to control the nonlinearities in error analysis by using the
very weak estimates obtained based on the partial H! ellipticity in the normal direc-
tion. In the fully discrete setting, the convergence of Dziuk’s semi-implicit parametric
FEM for mean curvature flow of surfaces was proved in [2] for finite elements of de-
gree k > 3 based on a discovery that the nonlinear Laplacian-Beltrami operator is H*
elliptic with respect to the distance error (distance between the exact and numerical
surfaces) — the strong H? ellipticity in both normal and tangential directions leads to
stronger estimates of the errors for controlling the nonlinearities and therefore reduces
the requirements of finite elements degree from k > 6 to k > 3.

In summary, the convergence of some fundamental algorithms for geometric flows
of surfaces still remains open. The existing proofs of convergence of parametric FEMs
for mean curvature flow and other geometric flows of closed surfaces are all based on
optimal-order H!'-norm error estimates that require using finite elements of degree
k > 2 to control the W1° boundedness of numerical solutions of surface position X,
mean curvature H and normal vector n. The following two questions remain open:

Ofu(z,t)

e Convergence of parametric FEMs for mean curvature flow and other geometric
flows of closed surfaces with piecewise linear finite elements still remains open.

e Optimal-order convergence of parametric FEMs in the L>(0,7T; L?) norm for
2



these geometric flows remains open.

The two questions are addressed simultaneously in the current paper for approximating
formulation (ﬁ; of mean curvature flow. It turns out that the two questions are closely
related such that our answer to the second question (by introducing a dynamic Ritz
projection which reduces the remainders in the error equations) also addresses the first
question. In particular, the new framework developed in this paper, by defining and
utilizing a dynamic Ritz projection of geometric flow in error analysis, is promising
for proving convergence of parametric FEMs for geometric flows with optimal-order
convergence and lower-degree finite elements.

2. Dynamic Ritz projection and main results. Let 1"2 be a piecewise polyno-
mial surface that interpolates the smooth surface I'?, with each piece being the image
of the reference triangle under a polynomial map of degree k > 1, and assume that the
curved triangles are shape-regular and quasi-uniform with mesh size h; see [20,30] and
Lenoir’s isoparametric approximation of a surface [34].

Let x° = (p1,---,pn) € R3YN be the nodal vector that collects all the nodes
Dj € R3,j=1,...,N,in F?L. We evolve x° in time and denote its position at time ¢ by
x(t) = (x1(t), -+ ,xn(t)), which determines a piecewise (possibly curved) triangular
surface T'p[x(t)] via piecewise polynomial interpolation on a plane reference triangle,
and denote by Sy [x(¢)] the finite element space of polynomial degree k on the piecewise
triangular surface I'y, [x(t)].

There exists a unique finite element function Xp, (-, t) of piecewise polynomial degree
k defined on T'j,[x°] satisfying

Xn(pj, t) =a;() for j=1,...,N.

This is the discrete flow map which maps I';,[x°] to I';[x(#)]. The semidiscrete para-
metric FEM for ([L.2) is to find

(Xn (), vn (), H (1), mn (1)) € Sulx® x Sulx(t)]* x Sulx(t)] > Sh[x(t)]®

such that the following weak formulation holds for all (x &, X») € Si (T [x]) xSk (Tx[x])?:
0 Xp =vp0X, on IT'y[xY (2.1a)
Vp = _Ih(thh) on Fh[X] (Z.Ib)
/ Or nHuxm + Vo, He - Vi, xxe = / Ve, nnl*Hyxs  (2.1c)
T [x] T [x] Lalx]

/ : ]at.,h”h 'Xn+/ [ ]th[x]nh'vF;L[x]Xn :/ IV pgnal*nn - Xa,  (2.1d)
I'nlx I'p[x

Tn[x]
where Ij, denotes the Lagrange interpolation onto the finite element space Sp,[x(t)] and
97, denotes the material derivative on I',[x(t)] with respect to the discrete flow map
Xn(-,t). The initial value for (@) can be chosen as follows: X}, (-,0) = id on I',[x°];
Hp(-,0) and ny(+,0) are the Lagrange interpolations of H(-,0) and n(-,0), respectively.

Let x* = x*(t) be the nodal vector which collects the nodes evolving according
to the exact flow map X (-,t) : 'Y — R3, and denote by I';[x*] the piecewise curved
triangular surface that interpolates I'(¢) at the nodes in x*. The finite element space
on I';, [x*] is denoted by Sy, (T'x[x*]).

The analyses in [29,31,32] are based on estimating the error between numerical solu-
tion (Xp, vp, Hp,np) and (f;X7 f;v, R;‘LH, R;‘Ln), where f;:X and f;:v are Lagrange inter-
polations of X and v onto T',[x°] and ', [x*], respectively, and R} H, Rin € Sp,(T'n[x*])
are the linear Ritz projections of H,n onto surface I';,[x*], respectively, defined by

/ [ ](RZH on + Ve, B H - Vi, xe)0n) = /(H% +VrH - Vrg},)
'y [x* I
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YVon € Sp(Th[x"]), (2.2a)

/ : ](I%Zn . ¢h + th[x*]RZn . vrh[x*]¢h) = /(n . d)lh + an . VFQSlh)
Ty [x* T

V(bh S Sh(l“h[x*])?’, (2.2b)
In (@), ¢l and ¢! denote the lifts of functions ¢, € S, (L4 [x*]) and ¢p, € Sy (Tx[x*])3
to the exact surface I' = I'(¢), respectively; see Section B.1|. Bélthis definition of Ritz

projection, (f X, I i, é;H , ]?Zn) satisfies numerical scheme (R.1) up to some remain-

ders, i.e.,
OIpX =Ivoli X on Ty[x°] (2.3a)
Iiv=—I;(RLH Ryn) + do on ['y[x*] (2.3b)
/ GZ,hﬁfZHxH +/ Vrh[x*]RZH *Vr, x* | XH Vxu € Sh(Tr[x"])
L [x*] D [x*]
— [ e R + [ du (2.30)
Tplx*] Lp[x*]
/ O nRnn - xn +/ Ve, s Rin - Vi, )Xo VY Xn € Si(Th[x"])?
Iy [x*] Ly [x*]
= [ Bl R o+ [ (2.34)
P [x*] Ty [x*]

where d,, = I} (R, H Ryn)—1I; (I} H I}n), dg and d,, are remainders which satisfy the following
estimates (for some constant C' which is independent of mesh size h):

ldoll 2(ry (=) + Rlldoll g1 o) =) < Ch*, (2.4)

I [x*] p[x*]

We denote by Zp, On, Hy, and #, the lift of Xh, vp, Hp and ny to T'p[x*], i.e., finite
element functions on I'y,[x*] with the same nodal vectors as X, vn, Hn and np, respectively.
By using this notation, we can define the following finite element error functions on I'y[x"]:

< CR (Ixa o pepy + Il o, pep)- (2.5)

b = — id con = on — I
€x,h = Th —1dr, [x*], €u,n = Un — IR0, (2.6)
~ = % N ~ % :
€H,h = Hh — RhH, €n,h = Nh — Rhn,

where é, j, represents the error between surfaces I'y[x] and T'p[x*], and é,.n, éun and é,
represent the errors in the numerical approximations of velocity, mean curvature, and nor-
mal vector, respectively. Such definitions of error functions are used in [29,31,32] in proving
convergence of parametric FEMs for mean curvature flow and Willmore flow. However, the
presence of remainder d, in (R.3H) hinders people from proving optimal-order convergence in
the L (0, T'; L?) norm for the reason that ||, 5 || 1 (r, [x+)) frequently appears due to surface lo-
cation errors, and this needs to be controlled by using ||dy || g1 (r, (x+]) instead of ||du| L2 (1, [x*])-
Therefore, optimal-order convergence of parametric FEMs for mean curvature flow was only
proved in the L>(0,T; H') norm in the literature, and such L>(0,T; H') error analysis typ-
ically requires W'° boundedness of the numerical solutions in order to bound the nonlinear
terms in the error analysis. This requires the convergence order to be sufficiently high in order
to apply the inverse inequality of finite element functions to prove W boundedness of the
numerical solutions, and this limits the error analyses to high-order finite elements of degree
k> 2.

Our solution to the above-mentioned two questions, i.e., optimal-order convergence in
the L>°(0,T; L?) norm and convergence of parametric FEM for mean curvature flow with
piecewise linear finite elements, is based on the following two observations:

1. The evolution equations of H and n in (@) have similar nonlinear structures as the
harmonic map heat flow studied in [41], where the proof of optimal-order convergence
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of FEMs in the L°°(0,T; L?) norm only requires utilizing W'* boundedness of eg
and e, to bound the nonlinear terms appearing in the error analysis. This motivates
us to consider L°°(0,T; L?) error estimates of parametric FEMs for (@s) based on
boundedness of e, and e, ; in a norm weaker than the W'° norm, instead of the
L>°(0,T; H') error estimates considered in [29,31,32]. The latter approach requires
W boundedness of e, and e, (this cannot be proved for piecewise linear finite
elements so far) to bound the nonlinear terms in error analysis.

2. However, convergence of parametric FEMs for mean curvature flow of closed surfaces
requires W1 boundedness of éz,1 to guarantee that the norm equivalence of finite
element functions on I'y[x] and I'y[x*] associated to a common nodal vector. Such
norm equivalence is frequently used and can hardly be relaxed in analyzing the
error of parametric FEMs for surface evolution under geometric flows. However, an
optimal-order error estimate such as

léz,nllLoo (0,1522 0y x*1)) < ChM ! (2.7)

is not enough to guarantee the W boundedness of é,,5, in the case k = 1 (i.e., for
piecewise linear finite elements) — we actually need k > 1 (quadratic or higher-order
finite elements) to have some extra convergence rate_in order to prove the W1
boundedness of é, 5 from (ﬁ), see the arguments in [29,31,32].

This difficulty can be overcome if we can prove the following super-convergence rate
in L2(0,T; H') norm:

levnllLz(o, im0, )y < Ch™H, (2.8)

which would imply the following result (position is the time integral of velocity):

5 k+1
€z,hllLo (0,731 (0) 1x#1)) < CRTT. (2.9)

This would further imply (via inverse inequality in two dimensions)
5 k
lléx.nll oo (0,7w 1000 (0, )y < CR. (2.10)

This can be used to prove the uniform W** boundedness of é, » for k > 1. However,
the main difficulty of this approach is that (R.§) cannot be shown with the presence
of remainder d, in () To overcome this difficulty, we redefine the error functions

using a modified Ritz projection of the mean curvature flow that could exclude the
remainder term d, in (ﬁ

Our idea is to define a dynamic Ritz projection of (X,v,H,n) as the finj lement
solution (Y}, v}, Hy,ny) of a nonlinearly coupled surface evolution problem in (ﬁ), with
Y (-, 1) : T9 — R3 being a finite element flow map with nodal vector y* = y*(t), and v}, H;
and nj, being functions on I'y[y*] determined by the equations:

8Yy =vjoYy on I') (2.11)
v, = — I (Hpny) on I'n[y”]

/ [ ](HZSOZ + Ve, iy Hi - Ve, [y 9h) = /(Hsoﬁz +VrH - Vrel) Yo € Su(Talx7])
Pply* T

/ (nh@h + Vi, 17 - Vi, [y $h) = / (ndh, + Vrn - Vrgy)  Voén € Sh(Tn[x"])?,
Tply*] r

where I} denotes the Lagrange interpolation operator onto Sy, (I'4[y*]), and ¢}, denotes the lift
of a function @p € Sy (T'n[x*]) to surface I' = ['(t), i.e., @4 (z") = pn(x) for x € Th[x*], with
z! denoting the lift of point x from I'y[x*] to T, and ¢}, denotes the finite element function on
I'ny™] with the same nodal vector as ¢n € Sp(I's[x"]). The initial value for the system ()
is given by Y;*(-,0) = id on T'}. In this definition, H}; and n}, are Ritz projections of H and n
onto an unknown surface I', [y*] which evolves with velocity vy, = —I; (Hjnj) determined by
this Ritz projection.



Note that the idea of using Ritz projection to achieve H' superconvergence and subse-
quently obtain optimal L? error estimates was first introduced in [40] for a class of nonlinear
parabolic equations. Nonlinear types of Ritz projections were employed to ensure uniform
control over the gradient of the height function for the mean curvature flow, Willmore flow
and surface diffusion of graphs; see [15,116,19]. The dynamic Ritz projection introduced in this
paper distinguishes itself from the classical Ritz projection primarily through modifications
to the first two equations in () These alterations enable the surface I';,[y*] to evolve ac-
cording to an evolution equation (thus earning the name “dynamic”), thereby differentiating
it from the interpolated surface I'p [x*].

The first main result of this paper is the following theorem about optimal-order approx-
imation properties for this dynamic Ritz projection of mean curvature flow.

Theorem 2.1. Assume that the exact solution (X,v, H,n) of the mean curvature flow is
sufficiently smooth and the flow map X (-,t) : T° = T'(t) is a diffeomorphism fort € [0,T]. Let
(g5, 0%, Hy ,RL) be the lift of the dynamic Ritz projection (Yy, v}, Hi,n}) defined in (@),
with finite elements of degree k > 1. Then there exists a constant ho > 0 such that the
following error bound holds for mesh size h < ho:

195 — idry, =1l oe 0,752 (0 (x#7)) F 108 = TR0l Loo (0,702 (0 %))
+ 1 Hp = i H | oo o mi220p o)) + 15 = Tanll oo (0,522 1))

+ 108 (Hy = T H) | oo 0,722 0 (x1)) + 1050 (A5 — Tim) || Lo 0,22 (0 o) < OB,
(2.12)

where I; X and I}v denote the Lagrange interpolations of X and v onto T'n[x°] and T'x[x*],
respectively. The constant C' is independent of h and t € [0,T] (though it may depend on T ).

In view of the results in Theorem P.1|, we compare the numerical solution (X, v, Hn, nn)
with the dynamic Ritz projection (Y}, vy, Hp,ny, ), which satisfies (ﬁ) up to some remainders
dj; € Su[y*] and d}, € Si[y™], i.e.,

oYy =vp oYy on T (2.13a)
vy, = —I;,(Hpnp) on Thly*]  (2.13Db)
/ OrnHrxn +/ Ve, Hi - Ve, iy xa Vxr € Sh(Taly™))
Tply* Tply*
= / IV, ty=1mn | Hiy x +/ dixn (2.13c)
Trly*] Thly*
/ 8;’1"2 “Xn +/ VFh,[y*]”Z “Vr, Iy Xn Vxn € Sﬁ(Fh[y*])
Tply*] Tply*]
= / IV ety * 1 - Xn +/ dy - Xn.- (2.13d)
Tply*] Tply*]

By introducing uj, := (nj,, Hf,), the weak formulation in () can be rewritten as follows:

0Y) =vp oYy on I') (2.14a)
vy, = =I5, (Hpn}) on Th[y"] (2.14Db)
/ OFnUh * Xu +/ Vo, ly*1Uh * VT[] Xu Vxu € Sh(Trly™])
Tply*] Trly*]
= [ Wnpemiluioe [ div (2.140)
Tply*] Tply*]

where d}, is remainder which satisfies the following estimate (this can be shown by using the
result of Theorem EI; see Lemma B.0):

Tply*]

k
< ORI Ixullm ooy



In particular, compared with (), no remainder appears in equation () This makes
it possible to prove the estimates in (R.§)—(R.9) by redefining the error functions as follows:

~ A Ak PN ~ A~k N 'y s N A Ak
€xh :=&n — U, Ev,n:=0Vn—7Tp, €mn:=Hp—H;, and épp:=mnr—np, (2.15)

where (&, o5, Hp, ) and (95, 95, Hi, af) are the lifts of (X5, vn, Hp,np) and (Y5, v, Hy n),
respectively, i.e., the numerical solution of mean curvature flow defined in (ﬁ‘) and the dy-
namic Ritz projection of mean curvature flow defined in (), respectively. This leads to
second main result of this paper, which is presented in the following theorem.

Theorem 2.2. Under the assumptions of Theorem R.1, the following error bound holds:

€zl oo 0,711 vy, 1x#1)) + 1€m Rl oo 0,15 02(0) 1x=)) F+ N€nnllLoe (0,7502 (1) o))

F v, nll 20,7502 @ 1xo1) + €rnllL2c0,mim (0 ) + I€nnll 20,7501 (0 171
< ChF, (2.16)

where C' is a constant independent of h and t € [0,T], but may depend on T.

The error estimates in Theorem and Theorem @7 and the estimates of the Lagrange
interpolation error, lead to the third main result of this paper, i.e., optimal-order convergence
of FEMs for mean curvature flow in the L°°(0,T;L?) norm with finite elements of degree
k > 1. Before stating this result, we list some basic notations for finite element functions on
Ip[x], Tx[x*] and T

For any given finite element function wy € Si(I'4[x]) on the approximate surface I'[x],
we denote its nodal vector by w, which collects all the values of wy, at the nodes of I'y [x]. The
finite element function on the interpolated surface I'p[x*] with the same nodal vector w is
denoted by . The function @y, can be further lifted to T'[X] as (i)', see details in Section

. The lift from Sy, (T's[x]) to T[X] is denoted by wi = (i)

Theorem 2.3. Under_the assumptions of Theorem R.1, the numerical solution of mean
curvature flow defined in (@), with finite elements of degree k > 1, satisfies the following
error bound:

[&n = idr, 1l oo 0,722 (0 ey + 108 = TpvllLos 0, 7522 (0, 1))

+ HHh - j;:H”LOO(O,T;L?(Fh[x*])) + ||ﬁh - f2n||L°°(o,T;L2(F,L[x*])) < Chk-Ha (2-17)

L . L
[ X% = id|l Lo 0,722 (rix)y) + 1Hi = Hll Lo (0,7522(0(x)))

+ ||nﬁ - nHLOQ(O,T;Lz(F[X])) + Hl’ﬁ - U||L2(0,T;L2<F[X])) < Cth» (2.18)

where C' is a constant independent of h and t € [0,T] (but may depend on T ).
The rest of this paper is devoted to the proofs of Theorem and Theorem @ The
roof of Theorem is standard and therefore omitted (in fact, ( ) follows from Theorem
@ and Theorem with the application of the triangle inequality, and () follows from
an additional estimate for the interpolation errors). The appendices in the supplementary
material provide essential results and detailed proofs of Lemmas , which are used for
roving Theorems and R.2. These proofs, following similar techniques as those in Lemmas

, have been omitted from the main paper.

3. Proof of Theorem @

3.1. Lifts. Throughout this article, we denote by C and ho two generic positive con-
stants which are different at different occurrences, possibly depending on the norms of the
exact solution and T, but are independent of mesh size h.

Given a smooth surface I' C R3, the surface tangential gradient of a scalar function
u : I' = R is a column vector denoted by Vru. For a vector-valued function u = (u1, ua, ’U,3)T
I' - R3, we define

Vru := (Vrui, Vrue, Vrus).

We denote by id the identity function on R?) i.e., id(x) = « for 2 € R*. Its domain of definition
can be restricted to any surface in R3.



The finite element basis functions on I'y[x] are denoted by ¢;[x], j = 1,..., N, which are
polynomials of degree k after being pulled back to the reference plane triangle, and satisfy the
following identities:

(;Sj[x](x,-):éij, i,j:L...,N.

This definition of basis functions implies the following transport property (see [20]):
O ndi[x(®)] =0 on Iy[x(t)], j=1,...,N. (3.1)

The finite element space on I';[x] is defined as Sy (I'n[x]) := { Z;V:l cj¢;[x] i ¢; € R}.
From [33, Lemma 7.1] or [20, (2.15)-(2.16)] we know that, there exists hg > 0 such that
for h < ho and t € [0, 7], any point = € T'4[x*(t)] can be lifted to a unique point z' € T'()
satisfying relation
' — = +|z" — z|n(h).

Then, any function ¢ on I';[x*(¢)] can be lifted to a function ¢’ on I'(t), defined as
¢'(z') = p(z) Yz eTulx"(1).
The lifted functions satisfy the following estimates uniformly for h and t:

- !
C Ml 2, e < N6 N2y < Clldllzzr, )

(3.2)
_ l
CHIVr,se@llzz ey < IVrx1@' lz2rixgy < CHVr, pe1llze (o, o)

which hold for all ¢ € L*(I'y[x*]) and ¢ € H'(I's[x"]), respectively.

3.2. Matrix-vector formulation. The matrix-vector notations of [29,31,32] will be
used in this paper. In particular, we define K(x) = M(x) 4+ A(x), with M(x) € RY*Y and
A(x) € RV*Y denoting the mass matrix and stiffness matrix associated to finite element
space Sp(I'n[x]) on surface I'y[x], respectively, and define

MY (x) =1, @M(x) and A (x)=1,%A(x),
where I is the d x d identity matrix. We denote by v, n and H the nodal vectors of vy, np
and Hp, respectively, and denote by f1(x,n € R*M and fa(x,n,v,H) € RV the nonlinear
terms associated to the right-hand side of ( ) and ( ), respectively, defined by

TS
T

" IV, sl (nh)m@;
nlx

BGon ), = [ [, Ha

Iy lx]

with j =1,...,N and m = 1, 2,3, where (ns)m denotes the mth component of n;, € R®.
By introducing u := (n, H) ", the spatially semidiscrete parametric surface FEM in (@)
can be rewritten into the matrix-vector form:

X=v (3.4a)
v=—-Iy(Hen) (3.4b)
MU (x)a + A (x)u = £(x, ), (3.4¢)
where
= () €

and I, (H e n) denotes the nodal vector of the finite element function I, (Hpnp).

We denote by y*, v* and u* = ((H*)", (n*)")" the nodal vectors of Y;*, v; and u} =
(H;, (n;)™)7T, respectively. The latter are defined in (@), which can be written into the
following matrix-vector form:

y'=-I,(H en") (3.6a)



K® (y)u" - = /(u - o + Vru- Vﬂplh) Yon € Sh(Thlx*])?, (3.6b)
r

where ¢ is the nodal vector of finite element function_¢,. The existence of y* as a sufficiently
good approximation to x* will be proved. Then (ﬁ) can be written into the following
matrix-vector form:

yvi=v" (3.7)
= —I,(H" en")
MU (y )" + Ay )u" = £(y", u”) + MU (y")dy, (3.9)

where d}, denotes the nodal vector of the finjte element function dj, = (dj, (d;)"T)", with
dy and d;, being the remainders defined in ( ). In the rest of this paper, we omit the
superscripts in M (x), A (x) and K (x) for the simplicity of notations.

3.3. Perturbation of mass matrix and stiffness matrix. For e, = y* — x*,

which is the nodal vector of the finite element function é, = g;, — id on I';,[x*], we consider
the following intermediate surfaces

Duly?] with y® =(1—60)x" +60y" =x"+06e, for 6c]0,1].

The finite element functions on Ph[yo] with nodal vectors ey, z and w are denoted by éz,
29 and Y, respectively (thus ég = é,). The following result was proved in [33, Lemma 4.3]
and [31, Lemma 7.2].

Lemma 3.1. If |Vr, x*1€yllLoer, x*) < 1/2, then the following inequalities hold for
0 €0,1] and 1 < p < oc:

07| Lo, o)) < Collhll o (e, o) (3.10)
Ve, oy @hllLe e, o) < oll Vey e 1@hllo @, e s (3.11)

where ¢, s a constant independent of 0 and h, and coo = 2.
The following lemma was proved in [31, Lemma 7.1].
Lemma 3.2. If ||V, x*1€yll Lo () x*]) < 1/2, then the following relations hold:

(M(y*) = M(x"))z - w = //F[ WV, yo)  €9)5h, (3.12)
nly?

(A(y*)fA(x*))z-w:/ /F o Vi1 @h - (Dr, yo165) Vi 1yo1 20 (3.13)
hlY

where D, ey = tr (B°) I3 —(E° 4+ (E°)") and E® = Vp, (0,65 € R,
Lemma @ and Lemma imply the following result: If ||V, (x*)€y|Loo(r, x*) < 1/2
then [|Vp, 146185 || oo (1, yop) < 1 for 6 € [0,1] and therefore

the norms | - ||M(x* +6e,) are h-uniformly equivalent for ¢ € [0, 1], (3.14)
the norms || - [|a(x*t6ey) are h-uniformly equivalent for 6 € [0, 1],

(M(y") = M(x"))z - w < CldhlLow, i) I Vo185l 1o (o, peep 120 e 0y, (3:15)
(AG") = A2 w < Ol eyl e, e It s (3:16)
(A ( ) A(X*))Z W < CHégJHWLOO(Fh[x*])HEQHWI’P(F;L[X*])”wguwlml(r‘h[x*])? (3.17)

given that p and p’ satisfy the relation X st =1

In addition to Lemma @ and Lemma @ the following relation will be used: If K C T’
or K C I'p[x"] is a smooth piece of surface which evolves under the velocity field w, and 9f
denotes the material derivative with respect to w, then

OVikf=Vkosf— (VwanKn;T((VKw)T)VKf, (3.18)

where nx denotes the unit normal vector of K.
9



3.4. WLP error estimates for the dynamic Ritz projection. Let §;, H; and
7y, be the finite element functions in S, (I's[x*]) with the nodal vectors y*, H* and n* defined
in (@), respectively. In this subsection we prove the following lemma.

Lemma 3.3. Under the assumptions of Theorem EI, there_ezists ho > 0 such that for
mesh size h < ho there exists a unique solution (y*,H"*,n") of (@r) satisfying the following
estimates for all 2 < p < oo:

95 — idr, e lwie e, o) + 108 = Invllwie e, o))

+ 15y = i Hllwo oy, ey + 105 = Tinllwio @, ey < Cph® (3.19)

Proof. Problem (@) is essentially a system of ordinary differential equationg (ODEs).
We assume that ¢, € (0,7] is the maximal time such that the solution of problem (B.f) exists
and satisfies the following estimates hold for ¢ € [0, ¢.]:

195 — idr, x*] lwt.oo (0, ey < 1/2, (3.20a)
| Hr: — i H |l w.oo 0, ey < 1/2, (3.20b)
||TALZ - f;nHWLoo(rh[x*]) < 1/2 (320C)

Under this condition, we shall prove that () holds for ¢ € [0,¢.] and all 2 < p < oo (with
some constants ho and Cjp that are independent of ¢.). In particular, for p = 4, the local-in-
time existence and uniqueness of solutions to ODE system () (and the continuity in time
of solutions to the ODE system) guarantee that its solution extends to ¢t € [0, t. + 0] for some
8n > 0 and satisfies (B.19) for ¢ € [0, t. + 6] with Cy replaced by 2C4. For sufficiently small h
(smaller than some constant independent of ¢.) such that 2C4h*~2/* < 1/2, this implies that
(@) holds for ¢ t« + 0x]. This will prove that t, = T (otherwise ¢, € (0,7] is not the
maximal time for f@) to hold).

Since wj, is defined on the surface I'y[y*] via (B.6H), we must bridge the gap between
t@iserete surfaces FAH and T'y[x"] to estimate ||4; — fﬁu||w1,p(ph[x*]>. Under condition
(B.20), we can rewrite (B.6H) as

K(x ' ¢ = (K(x) - Ky )u' o+ [

(u ©Oh + Vru- Vpgolh). (3.21)
r

To characterize the gap term (K(x*) — K(y*))u* - ¢, we define w € H'(T')* as the solution of
the following weak formulation:

/F(w~¢l+va-vwl) = (K(x") - K(y))u" - (Pup) Ve¢'e H(D), (3.22)

where ¢ denotes the inverse lift of ' onto I'y[x*] and Py is the nodal vector of Py, i.e.,
the L? projection of ¢ € H*(T'[x*])* onto Sx(T'x[x*])*. Since the L? projection operator P,
is bounded in the LP norm for 1 < p < oo (see Appendix [B in the supplementary material)
and the L? norms of ¢ and (pl are equivalent for 1 < p < oo, it follows that

[1Pallze @, x) < Clellr@,x < Cle' ey V1<p< oo

Since Prpn = ¢ for all ¢, € S, (I'y[x"]), it follows from ()7() that
KX )u" ¢ = /((w +u) - oh + Vr(w4u) - Vreh) You € Shp(Thx"]). (3.23)
r

This means that 4 is the linear Ritz projection of w 4+ u onto Sip(I'n[x*]). If we further
define wj, as the linear Ritz projection of w onto Sy, (I's[x*]), then 4j, — wj, is the linear Ritz
projection of w onto Sj, (I'y[x"]).

10



Esti for [|w|lw1.pry. To derive an estimate for ||w||y1.»(r), we consider the PDE
problem (| ) on the continuous surface, which can be reformulated as

/F (wi' + Vrw - Vrg') = £(¢), (3.24)

where £(¢') = (K(x*) — K(y*))u* - Py is a linear functional on ¢'. Under condition (),

= A

the following estimate follows from inequalities ()f( d):
1 % . Ak
()] < Clltinllw oo vy, pep lidry, ] = Gnllwre @, e 1ellwre (0, e
. ok 1
< Cllidry, ) = Gnllwre @, mep 19 Twe -
This means that
1w =10y = 1l wr.or oy < Cllidry, ey = Gillw e (0, ey -

Then the standard WP estimates for the elliptic PDE problem in () implies that (cf. [@,
Theorem 1], which extends to PDEs on surfaces via estimates on local coordinate charts)

lwllwiery < Clellw-1.0@) < Cllidr, x+) = Jrllwie@,x for 2 <p < oo. (3.25)
Estimates for L* and WYP norms of (})! — (})" — u. The following W' and H"

estimates for the linear Ritz projection onto the interpolated surface I'p[x*] were established
in [20, Corollaries 4.2 and 4.5]:

||(“71§)l — w2y + h”(w;;)l —w|[giry < Ohk+1|lw”H’C+1(F)7 (3.26)
||(“7;L)l = w|lwieor) < Cllw — (fiiw)lllwl,oom + Chk+l| In hfllwllwi.co ry
< CR*lwllywr+1,00 0y - (3.27)

Since the complex interpolation spaces between H**1(I') and W*+1°°(T") are W*TP(T") for
2 < p < oo (cf. 11, Theorem 6.4.5]), the complex interpolation (cf. [11, Theorem 4.1.2]) of
the above two estimates yields, for 2 < p < oo,

lwh)! = wllwiy < CR* ol . (3.28)

Moreover, the linear Ritz projection onto the interpolated surface is naturally stable in H*!
norm, i.e.,

1(@r) |1 vy < Cllwllzry- (3.29)

By utilizing () and the W stability of Lagrange interpolation, we derive the following
result:

(@5) [l oy < N@00) = wllwroe oy + e oy (3.30)
<

CH’U} - (f;w)lﬂwl,oo(l—‘) + C’HwHWLw(F) < C’||w||W1,oo(F)

The complex interpolation between () and () yields the following result (cf. [EI, The-
orem 4.1.2]) for 2 < p < oo:

(@) wrr @y < Cllwllwrs - (3.31)

Since 4y, — wyj, is the linear Ritz projection of u onto Si(I'n[x*]), replacing w by u in (B.26)
and (@) yields that

(@n)" = (@3)" = ullz2ry + Pl (@3)" = (@4)" = wll )y < Cllull e oy B (3.32)

l(@i)" = (@5)" = ullwrrry < Cllullwrsromh® for 2 < p < oo. (3.33)

11



Estimates for L? and WP norms of ()" — u. As a result of (B.26) and (B.39), by
using the triangle inequality we have

< ||(12;;;)l\|L2(F) + C'||u||Hk+1(r)hkﬂ
< Nwllpzery + 1(@@5)" = wll L2y + Cllull grss oy
< lwllpz @y + Ch2|leH2(F) + CHU”HkH(r)thy (3.34)

Ax\]
(ar)" — uHL2(F)

Il (@7, — ullwiery < ||(UA’;§)lHW1,P(F) + CHUHWHLP(F)hk- (3.35)
Then, substituting inequality () into (), we obtain
nl k
I(a7)" — ullwrr @y < Clwllwiem + Cllullwrtromb” (3.36)
From (B.36) and () we obtain the following result for 2 < p < oo:
PN . A% k
(%) = ullwrp@y < Clidr, x<) = rllwre@, x + Cllullwrtro @b (3.37)

In order to establish an estimate for |[idr, (x*] — ¥ |lw1.»(r, [x+]) On the right-hand side of
(), we consider the flow maps X : ['s[x°] — ['y[x*] and Y} = ¢, o X}, which satisfy the
following relation:

d * * Tk ¢ T T Frk Ak *
a(Xh =Yy) = I, (InHIyn — Hyfp) o Xp,.
which can be written into the integral form:
Xi(s) = Vi (s) = — / I (frHItn — Fng) o X dt. (3.38)
0

Then, applying gradient to () and using the chain rule of partial differentiation, we have
Ve (Xi(s) = Y3 (s)) = = [ Ve Xi [V e FilTi Hlin = Hioi )] o X, dt.

Then, by considering the LP norm of both sides of this relation, we obtain the following result
for s € (0, t.]:

HVFQL (Xn(s) = Y;(S))HLP(F%)
B
< C/ Ve, e In (In HIzn — Hyfig,)] o X;HLp(Fg)dt (since HXZHWLDo(F%) is bounded)
0
< C/ (MnH = Hyllwro @, ep Hrnllwoe @, pepy + 1 Hallwroo @y pep 1 rm = fnllwre @, ey )
0
WP stability of It is used; see Appendix |A in the supplementary material
h

< o/ (2 H — B s, ey -+ 1im— 2 ooy ooy )8, (3.39)
(0]

where the last inequality uses the boundedness of || Hj: ||yy1.00 (T [x+])» Which follows from ()
Similarly, by considering the L norm of () directly, we can obtain the following result:

X5 (s) = Y ()l Lo o) < C/ (5 H — Hy |l ooy ey + Hin = 2l Lo e, ep))dt. (3.40)
0

Since idr, (x+] — 95 = (X7 —Y7)o(X;) ! and therefore [idr,, s = Fhllwre (o o)) ~ 1 X7 (5) =
Yy (s)||W1.p(F9 )» the last two estimates and Lagrange interpolation error estimates imply that

[idr, (x* (s)] = Tnllw i (e (s)]) < C/ (MR H = Hp lwie @, xo) + Han — g llwie e, o)) dt
0

< C/ (IH = (H) lwrowy + lIn = (07) lwier))dt + Ch*
0
12



< c/‘ lu = (@) lwipydt + CR* for s € (0,t.]. (3.41)
0

Substituting this into () and using Gronwall’s inequality, we obtain
lidr, xc) = G llwiem, e + Il (@) — ullwipry < Ch* for 2 <p < oo.

Since [|(Fru)! = (@) lwioqy < 105w)! = ullwo +1(@3)" = ullwroe < Ch* and ||(Fu)! -

(a;)lel,p(F) ~ Hf;tu — 122||W1,p<ph[x*]), it follows that
llidr, e = G5 llwto oy, ey + 1A% — @ llw e, ey < CR* for 2 < p < oo. (3.42)
Moreover, we can express I;v — 0} as
Ihv — oy, = =Ly (I HIyn) — I (Hy i)
= —I (I H — Hy)Iin] = i [Hy (Iin — #27)). (3.43)

and apply the WP stability of Lagrange interpolation (as shown in Appendix @ in the
supplementary material). This leads to the following result for ¢ € [0, t.]:

[Z5v = dpllwre ey pepy < CIRH = Hyllwo o, pep Hnmllw.co o, o)
+ CllHp w00 0y i) [ Tam = Ak llwie o, )

< C|Iju - U llwie (@, )y < Ch*, (3.44)

where ih boundedness of || Hj ||y (1, [x*]) follows from (), and the last inequality follows
3.42 E :(;I

from (B.49). This proves Lemma according to the discussions in the text below (B.20). O

3.5. L2 error estimates for the dynamic Ritz projection.

Lemma 3.4. Under the assumptions of Theorem , there exists ho > 0 such that,
for mesh size h < ho, (B.6) has a unique solution (y*,H",n*), which satisfies the following
estimate:

Ak . F* Tx Ak F k
Hyh — ldr‘h[x*]HLQ(Fh[x*]) =+ ”Hh — IhH||L2(I‘h[x*]) + ||TLh — IhnHLz(Fh[x*]) < Ch +1. (345)
Proof. From (B.34) we see that, in order to estimate ||(a})" — ul| , it suffices to
estimate ||w|p2ry and ||w| g2r). By estimating the right-hand side of @) using (@)7

(), along with the results in Lemma and the inverse inequality for finite element
functions, we immediately get the following esetimate:

‘ /(WPl + Vrw- VFWZ)‘ <Cllidr, e = Gl (@0 o 18k Twtoo o i) 1 PRl 1 (0 (x4
I

—2: A~k A~k
SCh™7idr, (=) = Inll L2 @, e 18R lwtsoo (o, ey 101 L2 (0 150

—2. s l
<Ch Hlth,[x*] - thL2(rh[x*])H<P HLQ(F)a

which implies that (via duality) |}, (we! 4+ Vrw-Vry') = Ir f¢ for some function f satisfying
the following inequality:

Ifll2ery < Ch&Hith[x*] — UnllL2 @, )
The standard H? regularity estimate of elliptic equations says that
lwll g2y < Cllfllzzay < Ch™2|idr, o) — Gill L2y o)) -
Substituting this into () yields
1(@7)" = wll 2y < llwllz2qry + Cllidr, o) = Ghllz2 (0 o)) + CH (3.46)
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It remains to estimate ||w||r2(ry and |[idr, x*] = ¥4l 22 (1), x*))- This can be done as follows,
by using () with a duality argument. We define ¢! € H?(I') to be the solution of

o' — Argt =w on T, (3.47)

and let ¢ be the inverse lift of ¢’ onto I'y[x*]. Then

l
e lrr2ry < Cllwllpzery- (3.48)
For y? := (1 — 8)x* 4 0y™, let 112‘97 @9 and ég be the finite element functions on I'y[y?] with
nodal vectors u*, Py and ey := y* — x*, respectively. In particular, ﬁ;;’o = 4. Then surface

' [y?] moves with velocity &/ as parameter 6 € [0, 1] changes, and the following relation holds:
agu’ =95 = 0.
Testing () by w and using (), we have
lulltaqry = [ (we' + Trw- Vre')
r
= (K(x") —K(y")u" - (Prp)

1
d 0 A0 %0 N
:‘/0 @/F o 0 P Ve Vo)
h

1
~%,0 A0 A0 ~ %, 0 ~6 ~0
:‘/0 /F oy (O PV - by Ve 'Drh[ye]@yvrh[yﬂ%)d(”
h

(see Lemma @)

= |Bo + B1 + Bz + Bs|, (3.49)
where
Bo ::/(a;*;’ Sy - €)'+ Vru - Dréd!' Ve (3.50)
r
B ::/(vpa;’l - DréY' Vet — Vru - Dréy'Vrg') (3.51)
r

b= /rh[x*](ﬁz CBLV e €y F Vi - Dy ey V) £1)
- /(ﬁ;‘l ~pp'vr eyt + Vrayt - Dréy' Vgt (3.52)
T
bo= ‘/01 /Fh[ye](ﬁZﬁ . szgvrh[y(ﬂ ' éz + vrh[ye]ﬁzﬂ ’ DFh[y"]ézVFh[yB]@z) do
_ /01/F [ *](ﬁ’ﬁ . @JLVF,L[X*] .ég + Vr, =)0 - DFh[x*]égvr,L[x*]cﬁg)dG (3.53)
nlx

In the expression of By, we can remove the gradient acting on ég‘l by utilizing integration by
parts. This will yield the following result:

1Bo| < O}

ey e a2y < CllEY Iz, porp 16l oy (3.54)

Since @?L’l = (Pnyp)', it follows that ||Vr(¢" — @?L’Z)HLZ(F) < C’thleHz(F). This implies

Y ~0,1 l
|Bi| <C|[(@n)" = wllwrrm ey larmlle IIWI,%(F)

Ak D ~0,1 1
+ [I(an) HWLw(rh[x*])H@g ||H1(r)ChH<P HH2(F) (for some p > 2)
<SChYEy o192y (3.55)
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where the last inequality follows from the W”* error estimate in Lemma @ Similarly, by
estimating B, with the error between the interpolated surface I',[x*] and the exact surface
I'X] (cf. %@, Proposition 2.3]), we can derive the following result:

| B2l <ChIES a1 oyl L2y (3.56)
We consider the intermediate surfaces between I',[y?] and ', [x*] defined by
Culy®®], with y® =(1—a)x" +ay’ =x" +afey,, ac]0,1],
for fixed 8 € [0,1]. As « varies, the intermediate surface I',[y?®] mov@rith ﬁlocity 0éf.

By employing these intermediate surfaces along with the estimates in ( )—( ) and the
bound ||&) ||y 1. (1, ) < Ch from () in Lemma @, we can obtain (details are omitted)

| Bs| <Chlleg* |1 oy 12" | 2 ry- (3.57)

Therefore, by substituting the estimates of By, Bi, B2 and Bs into () and using the
estimate of [|¢'|| zr2(r) in (), we obtain

lwlZ2 ) < Cllégllz e, pep llwll L2y + CRIEY 1o, ey 1wl 22 (r)
<

1
el

C||é2HL2(Fh[x*])Hw||L2(F) +C [lwl| 2y,

where the last inequality follows from the W' estimate of ég = idp, [x*] — 95 in Lemma @
with p = 2. This implies that

[wllz2(ry < Cllidr, e = Gll2 (e, e + CR* (3.58)
Then, substituting this result into (), we obtain
H(’I:L}*L)l - uHLQ(F) < C”ldph[x*] - gz||L2(Fh[x*]) + Chk+l. (359)

The first term on the right-hand side of (B.59) can be estimated similarly as (), by choosing
p=2in () and rewriting it equivalently as follows:

llidry, e (s)) = Fnll L2 @ (5))) < C/ (@) (t) — w(t)l| 2rydt + CH*E, - for s € [0, T].
0
(3.60)

Then, substituting () into () and using Gronwall’s inequality, we obtain an optimal-
order estimate of |lidr, ic*] — UrllL2(r, [x*])» 1-€-5

llidr, =) = Gl L2 (0, pepy < CRT, for s € [0, T]. (3.61)
Substituting this estimate back into () yields the following result:
[(@h)" —ull L2y < CR*FY, for s € [0,T). (3.62)
Since ||(I;u)' — ullp2ry < Ch* !, by using () and the triangle inequality
(@) = (Frw)' 2y < 1@R)" = ull 2y + 1 (Fiu)' = ull 2y,

as well as the norm equivalence ||(})" — (f;u)l||L2(F) ~ |4y — j;UHL?(r,, [x*]); We obtain the
L? error estimate of the dynamic Ritz projection in Lemma B.4. a

Substituting Lemma @ into (B.29) with p = 2, and substituting Lemma @ into (),
we obtain

lwllz2ry + Bllwl gy < CHFE (3.63)

This result will be used in the next subsection.
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In addition to the W'*_and L? error estimates of the dynamic Ritz projection, we can
also differentiate equation () in time and, by using the resulting derivative equation, prove
the following L? error estimates for the material derivative of the dynamic Ritz projection.

Lemma 3.5. Under the assumptions of Theorem EI, there exists ho > 0 such that, for
mesh size h < ho, the solution (y*,H",n") of (@?) satisfies the following estimates:

18 HR)™ = 1h0F H| L2 (0 ey + B0 HR)™ = 150 H| i (r, ey < CR™TY, 0 (3.64)
H(at.,hn;)/\ - f;a;””L?(rh[x*]) + h“(at.,hn;;)/\ - f;at.n”Hl(Fh[x*]) < Chkﬂ, (3.65)

where 87, Hy; and (07, Hy)" are finite element functions on T'nly*] and Tx[x*], respectively,

with a common nodal vector H*.
The proof of Lemma @ is based on differentiating () in time, which leads to com-

plicated expressions. However, the techniques for proving Lemma are similar as those for
proving Lemm and Lemma B.4. Therefore, we omit the proof here and refer the readers
to Appendix aain the supplementary material.

3.6. Estimates of the remainders. The remainders dj; and d;, defined in ()
can be estimated by using the approximation properties of the dynamic Ritz projection in
Lemma . This result is presented in the following lemma and the proof is omitted. We
refer the readers to Appendix E in the supplementary material for more details.

Lemma 3.6. Under the assumptions of T em EI, there exists ho > 0 such that, for
mesh size h < ho, the remainder d;, defined in (ﬁ) satisfes the following estimate:

ply*]

4. Proof of Theorem @ and Theorem @ In this section we prove Theorem
on the optimal-order convergence of the parametric FEM for mean curvature flow_in the
L°°(0,T; L?) norm, by utilizing the estimates of g dynamic Ritz projection in Lemma

k
< CR* MIxull oy 1y s

and the estimates of the remainders in Lemma

4.1. Basic settings. The numerical solution (x, v, u) and the dynamic Ritz projection
(x*,v*,u") satisfy equations (g) and (@), respectively. By subtracting (@) from (ﬁ), we
find that the errors functions

* * *
ex=x—-y, e =v—v and e,=u—u

satisfy the following equations:

ex = ey (4.1a)
ev = —(In(Hen) —I,(H" en™)) (4.1b)

M(x)éu + A(x)ew = —(M(x) = M(y"))a" — (A(x) — A(y"))u”
+ (f(x,u) = f(y,u”)) - M(y")du. (4.1¢)

Let x? = (1 — 0)y* 4 0x for 6 € [0,1], which defines an intermediate surface I',[x’] moving
with the velocity e’ as parameter 6 € [0, 1] changes, and denote by €2, €2 and e’ the finite
element functions on Fh[xe] with nodal vectors ex, ey and ey, respectively. In particular, we
denote e, = €Y, e, = €Y and e, = €2, which are finite element functions on Inly*]. On the
intermediate surface T';[x’] we also define finite element functions
v) and uf = (H;GL7 (nZ)T)T

with nodal vectors v = (1 —0)v* +8v and u’ = (1 — #)u* + fu, respectively. We also denote
by up® = (H;?, (n;°)")7 the finite element function on T',[x’] with nodal vector u*.

Similar as the proof of Theorem P.1|, we define ¢t* € [0,7] as the maximal time such that
the numerical solution exists and the following inequalities are satisfied:

k—0.
llew (s )llwroo e < ot (4.2a)

lew(, )| zoo(r, ey < A 00 for € [0,t7]. (4.2b)
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At time t = 0 we have e,(-,0) = 0 and e, = I;u — @} on I',[x°]. Therefore, by using the
inverse inequality of finite element functions and the L? estimates of I;u — @} in Theorem
, we have

lew( 0) ooy < Ch™Hlew(, 0)|l L2, =) < Ch".

For sufficiently small h such that Ch* < h*7%!, the inequality above implies ¢t* > 0.

Note that, under condition (@L), the L? and WP norms on surfaces I';[x] and T'x[y*]
are equivalent for 1 < p < co (as shown in Lemma B.1f). This norm equivalence will be used
frequently in the following subsections. In particular, under condition (@)7 we shall prove
the following proposition (with some constants ho and C' that are independent of ¢.).

Proposition 4.1. Under the assumptions in Theorem and (@) there exists ho > 0
such that, when mesh size h < ho, the following estimate holds:

k+1
lleallLos 0,651 (0n ty=1)) + lleullLos @652 niy=1)) + leullL2(oesmt oy ey S CRE T (43)

Remark 4.1. By the local-in-time existence and uniqueness, as well as the continuity
of solutions, to the ODE system (B.4), there exists 5 > 0 such that the numerical solution
and the error estimate in (@) holds for ¢ € [0, t« + dx], with C replaced by 2C therein. This
would imply that, when h is smaller than some constant (which is independent of ¢.), (4.2)
holds for t € [0,t. + dx]. This would imply that ¢, = T (otherwise t. € (0,7] would not be
the maximal time satisfying the condition), and therefore, the error estimate in @) holds
for ¢ € [0,T]. Then, by the norm equivalence between I'y[y*] and I'y[x"], the error estimate
in (@) can be equivalently written into (2.16). This would complete the proof of Theorem

4.2. Estimates of ||ey || (0,420, [y+])) and [leull22(0,4H1 (1) [y+]))+ In this subsec-
tion, we establish an estimate of [|ew||roc(0,;02(r,[y*1)) @04 |lewll L2041 (1, [y+)) in terms of

lleall 20,1 vy 1) 30d llewllz2 0,2y iy
Lemma 4.2. Under the assumptions in Theorem @ and @ there exists ho > 0 such
that when mesh size h < ho the following estimate holds for t € [0,t*]:

t
||€u(t)||2L2(rh[y*(t)]) +/ |‘VF}l[y*]eu(s)HiQ(Fh[y*(s)])ds
o (4.4)

t
k
= C/o (lew () 1z o v+ ) + lew(®) 72, fy= o) ds + CR*F2
Proof. Testing equation () with ey, we obtain the following relation:

5 dt||€u\|L2<rh y + IV, x ei”i?(rh[x])
= —ey (M(x) — M(y"))a" — e, (A(x) — A(y"))a" (4.5)
el (f(x, w) — F(y",u")) — el M(y*)du
=1L+ 1+ I3+ 14
Where el denotes the finite element function on I‘h[xe] with @ = 1. Additionally, 93¢’ =
el = 0 and 9ge® = 0. Since u}, € I'y[y*] and @} € I'x[x*] have the same nodal vectors, by
using the equivalence of L? and W'? norms on I',[x’] and I'y[y*], and Lemma , we
have
lunllwioo@niy=n < Cllanllwroo @, x)
< Cllay, — f;uHWl’OO(Fh[x*]) + OHIA;UHWLOO(Fh[x*])
<Ch 'y o<, (4.6)
107 nunllwr.oo (0, vy < Cll(OFun) /\”Wl"’o(Fh[x*])
< C||(8t Uh — f;@{uﬂwl,oo(ph[x*]) + C’HIZ@{uHWLoo(Fh[X*])
<Ch?htt o<, (4.7)
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where Lemma and inverse inequalit, re used in the last inequalities of (@) and (@)
Then, with inequalities (| @ (@ and ( ()7 we can estimate |I1| and |I2] as follows:

[L] < ClIVryiy=eallz @, iyplleullza, v (4.8)
12| < ClIVr,iy1€all2my, iy IV, preull 2y 1ye))-
Lemma @ guarantees that

13| < CR*leall oy (4.10)

y*])-

It remains to estimate |I3|. By employing the identity (), we can bound |I3| by the sum
of five terms as follows:

* * 2 * |2 %
T3] = |eq (F(x,u) — f(y*,u*))| = ‘/ |V, gnn] un - e —/ |V, 1m0k | uh - eu
Ty lx] Tply*
= ’/1 i/ |VF} [xe]ni|2uz -eﬁd@’
df Jr, x%] g

‘/ / ’VFh nh} uh euVF’ x9] exde‘ ‘/ / ’VFh nh Qez eude‘
Fh Tplx

295, o) (Vi 10878 = Vi, 0108 Vi, 0

Fh[xe]
T 0,0
+n1~h [xe]nF} 9](v1—‘h[x6]€x) Vrh[xe]nh)uh €y d@‘
=i Is1 + Is2 + Is3 + I34 + I35, (4.11)

where nr, 07 is the unit normal vector of ', [x%], while n}, is the finite element function with

nodal vector n’ = (1 — )n* 4 fn, with n* and n being the nodal vectors of the dynamic
Ritz projection ny € Sh (Fh[y ]) and numerical solution nj € S, (I's[x]), respectively. Since

nd = n,’ o+ 0ef and uf = up o+ 0e% . I3, can be bounded as follows:

1
I5 = ‘ / / |Vrh[xe](n2’6 + 962)‘2(’&2’0 +6e%) - eZVFh[xe] el d@‘
Tpx

*,012/ .0 4 9
|vrh[x9]”h ’ (uy, 'eu)vrh[xe] c €y d@‘

Ty [x]
1
*,012] 612 0
+ / /F 6|th[x9]nh ‘ ‘6u‘ th[XQ] ewdﬁ‘
h
+ / / €2|Vph en| ‘ eu Vrh -eid@‘
Fh

+ / A 93|vr~h[x0]€i‘2!(EZFVF}L[XQ] '62 de‘
h

+ / / Vrh : vrh,[xﬂ]efL)(u;ﬁ ’ €Z)Vrh[x9] : ef: de‘
Tplx

+ / /F 292VFh[x€]n;’9 . th[xe]ei IQZ‘Q Vph[xe] . 6390 dG'
h
=: Is11 + Is12 + Is13 + 314 + I315 + I316- (4.12)

Then, with norm equivalence of L and W* norms on I',[x’] and T's[y"], as well as estimates
(@ and @ the following estimates of I35, j = 1,...,6, can be derived:
Is11 < Clleull 2oy, iyl Ve, y1€zll 2, 1y
< Cllewllz @y, yn Vs y=i€all L2, iy llewll oo oy v+
18
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< OlleullLzr, yp I Ve, yezllo2 o, iy
2
Is1s < Cl[Vr,yrienlle @, e IVrny 1€zl o, e lleull Lo o o)
2k—0.2 2
< Ch ||VFh[y*]€u||L2(rh[y*]),
Ina < C||Vr,ye1enllz2, iy I Vraiyei€a oo (o, iy leullzoe (o, iye1)
k—0.
< Op*F0 3||VF;L[y*]€u||2LZ(Fh[y*])7
Is15 < C||Vr,iy=ienllL2 @,y lewll L2, iy ) I Vs y=i€ell Lo 0ty
k—0.
< CR* " el 2oy iy I Veny1€ell L2y e
Isi6 < C||Vr,y=ienllL2@uty=n leull 2, e lleallno oty n Ve, 1€l Loe (g 1y <))
2k—0.2
<Ch lewll2r, iy IV, y=1eull 2, y)- (4.13)
By summing up the estimates of Is1;, j = 1,...,6, in (1.13), we obtain
k—0.
Is1 < Clleullzzr, e + Clles @y + Ch* "2 1V, yieall L2, ye)- (4.14)
In the same way, the following estimates of Iz;, j = 2,...,5, can be obtained:

Is + Iss + Iss < Clleull2(r, fyo)) + ClIVr,1eallie e
+Ch2k70'2vah[y*]euHiz(Fh[y*]). (415)

Furthermore, by applying Young’s inequality, the term I33 can be bounded as follows:
133 g €|‘Vrh[y*]€u||i2(rh[y*]) + C(€)||€u||i2(rh[y*]). (416)

These estimates lead to

2k—0.2
h

Is| < Clleull 220, =)y + Cllexllir o, iy + (C + Ve, yeullia@, ey (417)

Then, substituting estimates (@)7() and () into (@) yields the following result:
1d
§a||ei||i2(rh[x]) + IV, seull T2, ) (4.18)
k—0. k
< Cllea 2oy ey + ClleallZaey e + (Ch* 02 + Ve, yejeallZaqey oy + CHZ2.
By employing the H' semi-norm equivalence between the surfaces T'[y*] and T'y[x], and

by choosing h and e sufficiently small, the term (Ch**~%2 + €)||Vr, [y*1€u |2L?(Fh[y*]) can be

absorbed into the left-hand side of the above inequality. This reduces (| ) to the following
result:

1 d 12 12
§a”eu||L2(Fh[x]) + ||Vrh[x]€u||L2<rh[x])
2 2 2k+2
< Clleallzn iy + Clleallzzaqr, ye + Ch™ (4.19)

Integrating the above inequality from 0 to ¢, along with the norm equivalence between surfaces
T'x[x] and Tx[y*(t)], we have

t
H@u(t)||2L2(rh[y*(t)]) +/0 ||VFh[y*(s)]eu(5)||2L2(rh[y*(s)]) ds
t
< C/ (lex ()12 (0, = oy + llew(®72 0, fye (o)) ds + CRZF2, (4.20)
0

where [|ew(0)| 12, [y (0y)) < Ch**" is used. This proves the result of Lemma @ O
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4.3. Estimates of |e,(t)|| g1 (r,[y*(+)))- In this subsection, we establish an estimate
of [lew (D)l 1 (r, 1y= (1)) I terms of [lew(t)l|r (r, v+ (1))

Lemma 4.3. Under the assumptions in Theorem @ and @ there exists ho > 0 such
that, when mesh size h < ho, the following estimate holds for t € [0,t"]:

llew (Ol ar ) =) < Cllew®ar o, v+ o)- (4.21)

Proof. Equation () can be written as ey = —Ih[(H— H") en] — I,[H" ¢ (n — n*)],
which implies (using the H' stability of Lagrange interpolation in Appendix |A| and the norm
equivalence between surfaces I'p [x*] and T'p[y*])

||6vHH1(Fh[ ) X C”eU”Hl(I‘h[x*])
< Cllenll gy, o Inn w0, x*7) + Cllenllmr o, e HR oo (o, )
+ Cllea L vy pepllenllLoe (o, ) + Cllenll oy, e e Lo 0, o)
< Cllerllmr @iy lInallwi @,y + Cllenllm @, p Hnllwie @, )
+ Cllea g, y=p llenllzoe @,y + Cllenllm o,y llea | Loe ) v+
< Cllewllgrr, =) (4.22)

where () and (@) are used in the last inequality. |
We can substitute the estimate in Lemma @amto the estimate in Lemma @ This yields
the following inequality:

llewllz (0,601 (0, 1w+ < CllewllLzio.smt @), v (4.23)
< Cllleall2o,m (mniy) + leullz2 22 niyy) + CR™
4.4. Proof of Proposition @ Since e (+,0) = 0, it follows that

Hex(t)Hill(Fh[y*(t)])
t d 2 d
—/0 16 e (e oy ) ds
d

= /Ot (2ex(s)TK(y*(s))éx(s) + ex(S)TdSK(y*(s))ex(s)) ds

t
< C/O (“ex(s)”Hl(Fh[y*(s)])”ev(S)HHl(Fh[y*(s)]) + Hex(S)H?{l(Fh[y*(s)])) ds

t t
<c / lew ()2, 1y oy ds + C / lea () 1201 (0, iy oy (4.24)
(0] 0

where the second to last inequality follows from the following estimate (which can be derived
from the expressions in Lemma B.2):
ex(s) <LK (y" (s))ex(s)| < Cllex(s)]1 [lon ()l
x ds x = @ SIHL (T [y (5)]) YRS TTW 00 (T [y* (s)])

2
< Cllex () oy 1y= (1))

in which the boundedness of ||[v;, (s)[|yy1.00 (1, [y (s)]) follows from applying the norm equivalence

between ', [y*] and 'y [x*], the triangle inequality, inverse inequality and the W'* estimate
in ( ) with p =2, i.e,

vnllwi.oo o, v+ < Cllonllw oo, x=)) 195 — Tnvllwt,o (0, (x*7) + IR0 lw 100 (10, (x*))

<C
< Ch |65 — Tivll g oy, ey + IR0 llwoo o, pep)
<C.

The right-hand side of () can be estimated with () This leads to the following
result:

t
k
llew (O 0y ty= o)) < C/O (lew ()1, ty= o + llew®)1T 20, fye o)) ds + CRZH2. (4.25)
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Then, summing up (Q) and (), we obtain the following result for ¢ € (0, ¢.]:

t
lle= ()17 ty+ e + llew @l 22 (r, iy o) +/ IV, v+ 1€u ()1 22 ey fy = o 48
0
t
< C/O (”ez(s)”ill(l“h[y*(s)]) + ”e“(s)Hiz(Fh[y*(s)])) ds + Ch2k+2, (426)

The result of Proposition follows from applying Gronwall’s inequality to () Moreover,
the discussions in Remark show that t* = T. This completes the proof of Theorem pR.2. O

5. Numerical tests. In this section, we present numerical experiments to support the
theoretical analysis for the convergence rate of the semidiscrete parametric FEM in @)

We consider the evolution of the two-dimensional sphere I'(¢) under mean curvature flow,
which was used for testing the convergence rates of numerical methods for mean curvature flow
in [B1]. The exact solution of the surface at time ¢ > 0 is a sphere of radius R(t) = \/R(0)? — 4t
with R(0) = 2, which reaches zero at time ¢ = 1. The mean curvature H and normal vector
n of the evolving sphere I'(t) can also be calculated explicitly.
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Fig. 5.1. L? norm for errors and convergence rates of the numerical solutions.
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Fig. 5.2. The H'-seminorm of the errors for finite elements of degree k = 1

We solve the problem by the algorithm in (EI) up to time T = 0.125 with finite elements of
degrees 1, 2 and 3, respectively, using a four-step backward differentiation formula (BDF), with
a sufficiently small time stepsize 7 = 0.001 such that the errors from temporal discretizations
can be neglected in testing the convergence rates of spatial discretizations.

The L? norms of the error functions &%, = &), — idr, x*], €mn = Hy, — I} H and énn =
fn—1 »n at time T are presented in Figure p.1|, which indicates that the errors of the numerical
solutions are about O(hk“) for finite elements of degree k = 1,2,3. This is consistent with
the error estimates established in Theorem P.3.

Figure p.4(a) shows the H'-seminorms of the error functions é 1, ém,n, and é, 5 (between
the numerical solution and the dynamic Ritz projection) at time 7', demonstrating second-
order convergence for finite elements of degree k = 1, which agrees with the error estimate in
Theorem P.9. In contrast, the H'-seminorms of €. n» €irn, and €}, (between the numerical
solution and the interpolated solution) is only O(h), as shown in Figure ﬁ(b)

6. Conclusion. We have defined a dynamic Ritz projection of mean curvature flow of
closed surfaces in the three-dimensional space, and have proved optimal-order error bounds
in the L? and W'? norms for the dynamic Ritz projection in approximating the solution
of mean curvature flow. By utilizing these approximation results, we have proved optimal-
order convergence of parametric FEMs for formulation ([l.9) of mean curvature flow in the
L>°(0,T; L?) norm, as well as convergence of parametric FEMs for mean curvature flow with
piecewise linear finite elements. The new approach developed in this paper — analyzing the
error of numerical approximation through a dynamic Ritz projection of the mean curvature
flow — can serve as a foundational framework for studying the convergence of numerical
approximations for other geometric flows and parametric FEMs.
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Supplementary material

This supplementary material complements the paper by providing some fundamental
results that will be used in this paper and the detailed proofs of Lemmas , which are
omitted in the paper as they are based on the same techniques used in the proofs of Lemmas

Appendix A. LP and WP stability of interpolation operator on finite
element functions of higher degree.

Let I} : C(Tn[x*]) = Su(I'n[x*]) be the Lagrange interpolation operator onto the finite
element space of polynomial degree k > 1, and let Sj;[x"] be_the sp of finite element
functions of polynomial degree » > k. In the proof of Lemma @ and we have used the
following stability results:

| Tionllo@, e < Cllenllzo,ey  for en € Shx™],

' Al
) (A1)

NN
NN
8 8

< p
HIA:LQOhHWLP(F;L[x*]) < CH@hHWl»p(rh[x*]) for ¢, € Si[x"], p

which can be proved as follows: First,
- k41| ok+1
lnon — SDhHLP(Fh[x*]) <Ch * vai[x*]SOhHLP(Fh[x*]) < CH‘PhHLP(Fh[x*]%

where the second to last inequality follows from the standard error estimate of Lagrange
interpolation, and the last inequality follows from the inverse inequality of finite element
functions in S} [x*]. Then, by using the triangle inequality, we have

ITnenllLe ey ix < Mnen = enlle @, e + lenllLee,xe < Cllonlle ), xe)-

The W' stability of I; can be proved similarly.

Appendix B. LP and WP stability of L? projection onto I';[x*].
The L? projection operator P, : L*(T'[x*]) — Si(Tx[x*]) is defined as

/ (o — Pop)xn =0 Y& L*(Th[x*]) and xn € Sp(Tn[x"]).
T [x*]

It is naturally bounded in the L? norm, ie., ||Pagllr2r, ) < Clloll2m, <) for ¢ €
L*(T',[x*]). Additionally, by the same proof of [39, Lemma 6.1], it is shown that the L>
projection P, is bounded in the L* norm, i.e., || Prg||poo (0, x*])) < Cll¢||Loe ), x*))- Then, by
the real interpolation between the L? and L stability estimates, we derive the LP stability
of Py, for 2 < p < 0, i.e.,

1PrellLe, ) < Cllellee, ) Ve € LP(Th[x"]) and 2 < p < oo.

The W stability of P, can be shown by using the inverse inequality of finite element func-
tions, the L°° stability of Py, and the approximation property of the Lagrange interpolation,
ie.,
1Phe = Tn@llwr.oo (0, ix1) < CBT [ Prp — Tngl| oo (v, o))
= Ch™ | Pule = Ing) |l oo (0 1x7))
< Ch7 Yo = Ingll oo (ry ey
< Cllellwcer, (x*))s

(B.1)

which implies that
|Prpllwtoo 0, i) < 1Php — In@llwiioo (o, i)y + Hrpllwtioory, x#) < Cll@llwtoo x4y

where the last inequality uses the W1°° stability of the Lagrange interpolation. The H'
stability of P, can be shown similarly by comparing P, with the standard H' projection
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Rh : Hl(Fh[X*D — Sh(Fh[X*D, i.e.,
1P — Rull i oy, ey < CRTHI P — Rull 2oy, o))
= Ch™|Pu(e — Rn)|l 2 (v, )

< Ch™ o = Ruell 2o, e
S Cllell e, ey

(B.2)

which implies that
1Prell oy xS 1P — Ropll g, ey + 1Be@ll o, x) < Cllelar o, =)
Then, by the complex interpolation between the H' and W1°° stability results, we have

HPh‘PHWLP(Fh[x*]) < CHQO”WLP(F;L[x*]) for 2 <p < 0.

Appendix C. Proof of Lemma @
The proof of Lemma @ is similar as the proofs for Lemma @ and Lemma @ For the
readers’ convenience, we present a complete proof and divide it into several subsections.

C.1. Basic setting. We define a discrete velocity 95 on the smooth surface I' in the
same way as [B0, Section 5.3] and [B3, Section 7.3]. In particular, the surface I' is decomposed
into curved elements which move with velocity ©j, which is defined by

d
_a(

Then the discrete material derivatives on the smooth surface I' and its interpolated surface
I'n[x*] are given by

6Z(X;(‘7t)lvt) X;('vt)l)'

Oenf=0:f +0,-Vf for f defined on T,
O hipn = Owpn + v - Ve, for ¢y, defined on T, [x*],

where ;v € Sy[x*] is the interpolated velocity (i.e., velocity of the interpolated surface
I'n[x*]). The two material derivatives above are related by

A e = (at.,hQOh)l for @p € Sp(Tr[x"]). (C.1)
It is known that (cf. [30, Lemma 5.4])
|55 — vl zoe(ry + BV (55 — v)|| Loy < CRFT (C.2)

Moreover, the surface I' can be considered as moving with velocity ;,, and the following
identities hold:

S [ 1= [@ar+reei, (©3)

d %
E/Vrf'vrg = / (Vrounf - Vrg+Vrf-Vreding + Vrf - DronVrg), (C4)
T I

where Dro;, = (Vr - 93)I3 — (Vrop + (Vrdp)T); see Lemma @ and [25, Lemma 3.1]. Since
the two functions uj, (defined on surface I'y[y*]) and 4, (defined on surface I'y[x*]) have the
same nodal vector, it follows that

(0 hur)" = 0f pay, (both with nodal vector i*). (C.5)

Since problem (@) is essentially an ODE system, we can assume that t. € (0,7] is
the maximal time such that the solution of problem (@) satisfies the following estimate for
t €[0,t.]:

Ha;y&z — f;a;u”wlﬁ(rh[x*]) < 1. (C6)
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Under this condition, we shall prove that ()f() hold for ¢ ,t«] (for some constants
ho and C which are independent of ¢.). Then, since problem @ﬁ is essentially an ODE
system, the local well-posedness of the ODE system and the continuity of 97,4 in time
imply that (B.64)~(B.64) hold for ¢ € [0, £. + 64] with some 6, > 0 and with C replaced by 2C.
This implies that

o Ak T* ne 7,2 o Ak T* ne —;
|\3t7huh—fh(9t u||W1=6(Fh[x*]) < Ch 3 ||8t7huh—fh8t u||H1(Fh[x*]) < Ohk 3 for te [O,t* +6]

The above inequality implies that (@) holds for ¢t € [0, + 0x] (when k > 1 and h is smaller
than some constant which is independent of t.). This would imply that ¢t. = T (otherwise ¢«
is not the maximal time for ([C.]) to hold) and therefore completes the proof of Lemma B.5.

C.2. Reduction to estimates of 8;hw and g. For o, € Sy[x*]* satisfying 07 ;, o =

0 on I'y[x*] and accordingly 9f,¢), = 0 on I' as a result of (@), we differentiate () in
time and using ( )7(@) This yields that

K(x")u" - ¢
= /((at',hw + OF pu) - @iz + V(07 pw + 0F pu) - VFSDZh)
r

* ~ % d * *
+ /((w +u) - ohVr - 5 + Vr(w + u) - DrojVreh) — (EK(X ))u -, (C.7)
r

where

d * * A~k 73k A~k Tk
<&K(x ))u g :/ (uh ' @hvl"h[x*] Ipv + VF’L[X*]uh ’ DF}L[X*]IhUvF;L[X*]SDh%
Ty [x*]

which follows from the identities in Lemma @ Let g € H*(T")* be the solution of the following
weak formulation:

/(g-sol+Vrg~Vrsol) :/(w~salVr~ﬁZ+er~DrﬁZerl)
T I
+/u~<plvr'177§—/ r, - oV, x) - v
T Tp[x*]
+/Vru-DrﬂZVr¢’ —/ Vi e )@ - Dry e Tn0 Ve, e 9
T Tp[x*]

= Li(p") + La(¢') + La(y') Vo' e H'(D)Y, (C.8)

where ¢ is the inverse lift of ¢! from I' onto I's[x*]. Then, substituting (@) into (@), we
have

K(x" )" ¢ = /((@',mv + 08 pu+ g)ph + V(8w + 05 u+ g) - Vrgh) Ven € Sn(Talx™])%,
r

which implies that 0f 45, (with nodal vector ") is the linear Ritz projection of 95 , w405 ,u+g
onto Sy, (Tx[x*])*. As a result, we have (see [20, Proof of Corollary 4.2], inserting (4.4) into
(3.3) and (3.5) therein)

(08 nih)! — 02w — 0% — gl oy < CRTH|OF pw + 85w + gl () (C.9)

+C inf ot pw+ 08 u+g—x .
e €Sn Ty ) I t,h t,h g XhHHl(r)

and

(08 i)' — 9% pw — O pu — gll2y < Ch* 08w + 8 ju + gllmr (C.10)

+Ch inf O pw + 08 pu+ g — Xl i -
XheSh(Fh[x*DH t,h t,h g—xnlu (1)
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Hence, by using the triangle inequality, we have

108 ntth)! — O null iy < CUIOS AW ey + gl ry) + CRE 108 null gy

XnE€Sh (Lp[x*
and
H(at.,hﬁ’);b)l - at.,huHL2(F) < ||3t.,thL2(r) +llgllz@y + Ch(Hat.,hw”Hl(r) + gl e ry)
+ ChFTY68 hu +Ch inf o8 hu — X .
I t,h ||H1<r) x;,eSh(Fh[x*])” t,h Xh||H1(F)
(C.12)

It remains to estimate the right-hand sides of () and ()

C.3. Estimate for |g||z1(r). We estimate [|g||z1(r) from the expression in (@)7
where L1 (¢') can be estimate using boundedness of ||V} || oo (1) as shown in (@) and
; ),

the estimate of [|w|| g1 (ry in (B.63), i.e.,
L1 < Cllwll oy IV ra7 [ oo 0 10 a1y < CRMI 1 oy

Given the following established estimate(which follows from [@, Proposition 2.7 and relations
(2.1)-(2.12)]):

1V - 3) ™" = Ve, ey Tivllec, e

~ HVF . ’D;: — (VF}L[X*] . f;:’l))l”Lp(F)

< Ve - (@ = 0)llr) +I1Ve v = (Vo e - Liv) ooy

< Ch”, (C.13)

we apply Lemma @ and (), along with considering the estimates for surface perturbation
via the lift map. Consequently, we have

|La ()| < |/l—“u«¢ZVr‘-’1§;7/l—: [ ]ufl'go(Vr-f;;)fl‘
nlx*

! eV [ oy Biv)]
Ty [x*

T [x*]
+ | / u o(Vry, e - Tyw) — / iy, - (Vi o) - Iho)|
Ty [x*] Tp[x*]

< Chk”SOZHL?(r)-

Similarly, by employing the result of Lemma @ and following a process analogous to the one
described above, we obtain
l kL
|L3(0)] < Ch%|lo || gy

Therefore, by substituting Lpl = g into (@) and utilizing the above-established estimates of
Li(¢"), La(¢') and Lz(¢'), we obtain

gl 2 ry < CR". (C.14)

C.4. Estimate for |g|/z2r). Next, we estimate |||l 2(r) via a duality argument.
Specifically, we define ¢' € H*(I')* to be the solution of

o' — Argl =g on T, (C.15)
which satisfies the following standard H? regularity estimate:

H@IHHZ(F) < COligllzzry- (C.16)
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By testing ([C.15) with g and estimating the right-hand side of (@), we shall prove the
following result:

H9||2L2(F) = /(9901 + Vrg- VFSOZ) < Chk—HH(leH?(F)- (C~17)
r

This, together with (), would imply the following estimate:
llgllz @y < ChFt. (C.18)

It remains to prove the inequality in () This is achieved by estimating the right-hand
side of (@) as follows.

Firstly, |L1(¢")| can be estimated by using integration by parts (after approximating o;;
by v in the integrand), i.e.,

L) = [ (w0 ¢'Ve 55 + Trw: DetiVeg)
= /(w @'V - 0} + Vrw - DroVrg') + / Vrw - Dr(}, — v) Vg
r r

:/[w-«plvr-'DZ—w-(Vr~(DFUVFgol))]+/er-Dr(ﬂ;§—v)Vr<pl
T T

~% 1 l
< CH“’”L%F)HVF '”h||L°°(F)H<P HH2(F) + CHw”Iﬂ(F)HS@ ||H2(r)
% 1
+ Clfwll g1 0y | Dr (355 = )|z 10 1 oy
Cllwll 2y ' zz2 0y + Chllwll s oy |l zr2ry  (here (C.3) s used)

<
< Cth”SOlHH?(F)»

where we have used the estimate of ||w||p 2y and [Jw|| g1y in ()

Secondly, |Le (cpl)\ can be estimated by defining and utilizing intermediate surfaces be-
tween I'p[x*] to I'. Namely, we define

2= (1 —0)z' + 0z for £ € T[x"] and I := (1 -0 +00,[x"] = {z’ : 2z € [[x"]}.

Let u®, ©%, #¢ and e’ be functions on I'? defined by

u’(@%) = (1 = O)u(z') + 0@} (x),

¢’ (2") = p(x) = ¢'(a"),

oy () = (1 — 0)o;, (=" + 017 v(x),

e (x’) =z — 2 for x € Tp[x"].

Then the surface I'’ moves with velocity €’ (as 6 changes) and
ogu’ (z%) = uj(x) —u(2h), 950 =0 and 830 («°) = Ijv(x) — o5 (zh).
From (@) we conclude that
055k ()| = | Lyv(z) = 5(a")] < [v(z) —o(a')| + |v(a') — ()] < CR*TL (C.19)
Since
Ve p12” = Ve, ejid] o, ey = (1= OV perje o, ery < CBF for 2 <p < oo,

it follows that the LP(I'%) norm of f is equivalent to the LP(I'y[x*]) norm of f o X% The
result of Lemma B.4 and the norm equivalence between '’ and ', [x*] imply that

086’ (2%)]| L2 (roy < Clitts, — u™ 2 (e, perpy < CR*F (C.20)
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Then |L2(¢")| can be rewritten as follows:

ILa(e)] = /u r - @z—/[ Ve i
Ty [x*

:/da/rg Ve - vhde‘

- / 6 (T B (Vo ) 05 - 7 (Vo - 3]0

/ / (Vo - 9305 — tr(Vpe e’ Vo tp) + tr[n’ (n®) T (Vioe®) T Vo dr)]) do
e
=1 |La1(¢") + L2 (¢") + Las(¢') + Laa(¢') + Las (¢")].

The term Laa(¢') can be estimated by utilizing () and [|Ve -ﬁzHLm(Fe) < C. The latter
result follows from (@) and ||V, x*] - jh'l)”Loc(Fh[x*]) < C, and the equivalence of norms on
I'?, 6 € [0,1]. These results, and the equivalence between ||909||L2(r9) and ||¢'(|z2(r), lead to
the following estimate of ng(gol):

|L22(99l)| hk“”@ ||L2(F)

The term Lzl( ) can be rewritten as follows:
=] [ [ [ oo e = [ (O] a0
r r

+/Fu.¢l(vr.f;;;7VF.fu)(Vpel)+/Fu~gol(Vr-v)(VF€1)‘

= \L211(<,0l) + L212(§0l) + L213(<,Dl)\.

0
d «@ « ~Q «
L211(30l):/ 5/ u®p*(Vre - 05 )(Vre - %) da
0 ro

- /09/F 4™ (Vra - 5) (Ve - €7)(Vra - €%) + 00u” 9™ (Ve - 5)(Vra - ¢)
UGBS (Vre  52)(Vra - €) + 4 (Ve - 5)08(Vra - )] da,
where 9% (Vre - 05) and 8% (Vra -e“) can be further expressed as follows using relation ()
9a(Vra - 03) = (Vra - 9337) — (Vree® — nranga(Vrae®) ) Vra oy
95 (Vra - %) = (Vra - 95e”) — (Vrae® — nranta(Vrae) )Vrae®.
By using the norm equivalence between I' and T'“, and the interpolation error estimates
e[| oo (pay ~ [lidr, ey 1drh[x*1||L°°<rh by < CRE (C.21)
[Vree®|| oo ray ~ [V per) (i, ey = idry o)l oo (0 ey < OB,
as well as the estimates in ()7(), we can derive the following estimate of Lo1i('):
[Lan (@) < CR ¢!l aey < O aqry-
The term Lai2(¢') can be estimated by employing inequalities (@) and (), ie.,
|L2r2(0)] < CR*M |19 | 2oy < CRE M@ 2y

The term Lglg(cpl) can be estimated with integration by parts, which allows us to transfer the
gradient from e' to Hy'(Vr - v). This, along with () leads to the following result:

|L213(<Pl)‘ hk“”@ ||H1(F)
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By employing a similar method as that for estimating Lo1 ('), we can derive the following
result:

|Laa(¢") + L2a(¢") + Las(¢")] < CR* @' g1 .-
Combining the estimates for |La;(¢')| for i = 1,...,5, we have the following result:
1L2(¢")] < CR™ 19 |11 .-

Thirdly, we can estimate |Lz(p')| similarly as |La(¢')|, by utilizing the intermediate
surface I'Y between I',[x*] and I'. This leads to the following result:

1Ls ()| < CRM 1@ 2 -

Substituting these estimates for L;(¢') for i = 1,2, 3 into (@), we obtain
‘/(gwl +Vrg - erl)‘ < CR* ™M@ | 2 oy (C.22)
r

This proves () and therefore completes the proof of ()

C.5. Estimate for ||0},w| g1 (r). To estimate |07 ,w| 1), we need to consider the
time derivative of () by extending ¢' € H*(T')* in time in such a way that

tne' = Ornp) =0, (C.23)

where 8;,,14,0[ denotes the material derivative with respect to velocity @j. For y? := (1-0)x*+
Oy*, let 4y, ¢4 and €9 be the finite element functions on the intermediate surface I'y[y?] with

nodal vectors u*, Py and ey, := y* — x*, respectively. Then the surface I';,[y®] moves with
velocity é9 as 6 € [0, 1] changes, and

s = 95¢h = 0.

When 0 is fixed and ¢ increases, the surface I' h[yg] moves with velocity v, which is a finite
element function on I'y[y°®] with nodal vector

=1 -0)Iw+06v".

Let €9 be the finite element function on I',[y?] with nodal vector v* — Iv, which is the same
as the nodal vector of —Ij(Hjia}, — I} HI;n). Hence, by using the L and W' stability of I
see Appendix A), and the W' and L? estimates of the dynamic Ritz projection in Lemma
and Lemma B.4, we can derive the following estimates:
HegHLz(Fh[ye]) < CR*™ and  |l€d|w. POy S < Ch¥ for 2 < p < oco. (C.24)

For a function f defined on I's[y’] (such as f = 4, and f = ¢}), we denote by Of, f the
material derivative with respect to the velocity v¢. By differentiating () in time we obtain

[ @+ Vidtw - T
I
d * * * ~ % ~ %
— GlKG) ~KE)u" - (Prg)] - [ (w- ¢!V -5+ Vrw- Dedii Vo)
I
__dd i - @y + V i -V 29)d6 'Vr -} 4+ Vrw - Drig Vg
Y a0 6(Uh'30h+ Lo ly?1h - Vi, yo1Pr)d0 — | (w- 'V -3, + Vew - Droy Vrg')
0 Thly r

d [! N 0 0 N .6
- _E/O /F o, O EnV gy G+ Vg - Dy 018 Ve o) £)40
h

— /(w . SDZVF . 17;; + V9w - DF’D;VFQDZ)
T
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1
—// ﬁg'ﬂﬁivrh[ye]'ézvrh[yervﬁda
Tply
/ / O nith, - PRV r, (yo) - Eydo
Tply

—/ / ai.a;hqaﬁvrh[ye] -&5de
Tply
/ / » if, - @1 (Ve 1501 Ol = 00(T, 10 oA Vi, y0)€0)
Tpl
~0
+ tafnr, oy, (yo) (Vr, o vh) Vrhly]ey])de
1
~0 ~0 ~0 0
*/ / Vr,iyo)Un - Dr, y01€y Ve, (yo)$hVr, [yo) - vndl
0 JTh[y?]
' or a2l - D ¢ 5946
- bV, [yo)Uh - Dry 1018y YV, [y0)Pn
0 JTy[y?]
' a9 - o8, D AV 5946
- Vi, iy01Uh - OrnDr, y01€y V1, yo1Ph
0 JTyly?]
! ~0 ~0 ne ~0
- Vi, vk - Dr, (y018400n Vi, (yo1#ndd
0 JTy[y?]

— /(w . LprF . f); + Vrow - Drf);thpl)
T

9
=: ZWj. (C.25)

Since 05,4 has nodal vector u*, it follows from (@) that (|0 a5 ||y, s,y S C. By
ing the estimate of ||V el W [5°] V[‘h 1 (dr, (x*] — yh)||L2(Fh[x*]) in Lemma
, as well as 1nequa11tles i @ , we can derive the following estimate:

Wi+ [Wa| + [Ws| + [Wo| < CR* [l 1. ry,

The term |Ws| can be estimated by using relation (B.1§), which allows us to write
6;hvl-\h[ye]ﬂz as

o ~0 o -0 0 T ~0
OV, lyo)h = Vi, ly Oinih, = (Vi (yo]0h = 1, (o), o) (Vi fyo)00) 1) Ve, o -

This, together with Lemma @ and (@), implies ||8;hvrh[ye]ﬂflHLG(Fh[ye]) < C and therefore

° ~0 A0 ~0 k 1
We| < CllOLR VT, yerinllLo e, yop | Py o1yl s o, o I Ve, o1 2hll L2 ey iy < CRUN 1 (ry-

The estimate of |W3| depends on the estimate of Bf’hgﬁz. Since (05 ,¢)" = (05 ,¢') =0, as
shown in (), where ¢ = (¢')~" and 05 ,¢' denotes the material derivative with respect to
velocity o7, differentiating equation 0 = frh[x*](PMp — ©)xr with respect to time, we obtain
the following relation for all functions x» € Sp(I'n[x"]) such that 97, xn = 0:

d
0= (Prp — @)Xn
at Jr, per)
= / O n(Prp — @)xn + / (Prne — ©)XnVr, [x*] - Vn (C.26)
Tp[x*] Iy [x*]

= / 0f n Proxn + / (Prtp — @)Xn VT, [x*]
Ty [x*]

Lp[x*]
This implies the following estimate by the duality argument:

1081 Prll 2 ey o)y < ClIPhe — @l 2, ey < CRIS | mn (ry- (C.27)
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From the definition of 95,3}, and inequality (), along with the norm equivalence on I';[y?]
and I',[x"], we obtain

108 @0l 20, oy = 1080 Prg) © X o (Vi) "l 2o, yory < CRIC e (rys (C.28)

) and the estimate of ||V, [yB]éZHL2(Fh[y9]) ~ [V, s (idry, ) =9 )| 2 (1, [x+]) in Lemma

here Y} : I') — Fh[yg] is the finite element flow map with nodal vector y. By utilizing
@e obtain

(Wal < CR* i@ -

In order to estimate |Wg|, we use relation (B.1§) again to write 6{,thh[ye]¢Z as

° ~0 o ~0 0 T ONT ~0
nVr, y01Ph = Vi, 1y 9tnPh — (Vi 1yo)0h = 1y, yo1700, 1y0) (Vi [y010R) )V, (yo1Ph

where V. [ye]a;hgaz can be estimated by combining the inverse inequality with ()7 ie.,
o .0 — o .0 !
Ve, 591050 @h L2y iy < Ch 08 n@h Nl L2 (0 1yey) < ClI@ arr(ry- (C.29)

This, together with the estimate of ||Vy, [yG]égHLQ(Fh[yB]) ~ Ve, e (e, e = T0) 20, )
in Lemma B.3, leads to the following result:

Ws| < CRE(19! |1 (-

Since 97 pidr, g, (o = Iiv = —I}(Hn) = —I;(I; HI;n) and 8,95 = — I (H*7*) on
T'p[x*]. The latter follows from relation y* = —I,(H" e n*) in (@)7 the following identity
holds:

(] ~ d A~k . * -_— (] A~k . * —_—
A nes = [&((yh —idr, x]p, perp) © Xh)] o (V) =00 (g — idr, s, 1r)) © Xh © )™
= —(In(H*?") — Ir(I; HIin)) o Xj o (Vi)™

By using the stability of I; in the H'(I',[x*]) norm for products of finite element functions
(see [@, Lemma 5.3]) and Lemma @, we obtain:

C\(H*2) = LT H )| o )
CI\H" = InH| g1 rp )y + ClIA" = Tinll g o, ey < CRE

o A0
10, n eyl m oy, 1yo)

<
(C.30)
<

Using the inequality (% and the estimate of HVrh[ye]ézHL?wh[ye]) ~ IV, 5 (idr), =] —
Ii)llz2(r, x+)) in Lemma B.3, we derive that
[Wa| + [Wr| < Cth‘PZHHl(Fy
As a result, substituting ¢' = 0 ,w into () yields
108 hwl g1 (ry < CH". (C.31)

C.6. Proof of the H! estimates in Lemma @ Now, substituting () and
() into (), along with assumption (@), we obtain

8. A*l_ac <Chk C inf 6. Ut
[1(9F ntin) Ertll g1y < + XILES}ILr(th[X*D 106.nu — Xall a1 ()

=Ch* +C inf )Hat'qu(ﬁZffu)-VrufxthHup)

Xn€Sp(Cplx*]
< Ch* + C|0fu — (187 w)' | 1 (s
where the last inequality follows from choosing x5 = I;0f v and utilizing ||0, —v]| 11y < Ch*.
The latter has been shown in (@) Since Ofu is a smooth function on T, it follows that
|0 u — (IZB{u)l\|H1(F) < ChF and therefore
(08 nith)' — O ull gy < CR* for t € [0, ¢, + 4] (C.32)
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C.7. Estimate for ||(9t"hw||Lz(p). We estimate |0 ,wl|L2(ry via a duality argument.
Specifically, we define ' € H*(I')* to be the solution of

@' — Arg' =88 ,w on T, (C.33)
which satisfies the following standard H? regularity estimate:
||<Pl||H2(r) < O)97 pwll L2 (- (C.34)

By testing () with 07 ,w and estimating the right-hand side of (), we shall prove the
following result:

0Tl = [@hw- ¢! + Trotuw - Vee) < O ney. (C39)
This, together with (), would imply the following estimate:

108 hw| 2y < CHFT (C.36)

It remains to prove the inequality in () This is achieved by estimating W;, j =1,...,9,
on the right-hand side of () as foll

The same as before (see Section ﬁ), we denote by 4, @9 and ég the finite element
functions on surface Fh[ye} with nodal vectors u*, Pry and ey := y* — x*, respectively, and
denote ¢, = @) = Pryp € Sp[x"] = Su[y"]. Then the surface I',[y?] moves with velocity ¢/ as
0 € [0, 1] changes, and

05, = 9395, = 0.

When 6 is fixed and t increases, the surface Fh[y | moves with velocity v}, which is a finite
element function on I', [y?] with nodal vector

vl = (1 =0T+ 6v".
By comparing frh[ygl af - @Zvrh[ye] . éz \ YR vl d# with its value at = 0, and using the

Newton—Leibniz rule, we have

1
Wy = / / al - ‘thrh ey \S -vpde
Tnly?]
/ / P / U - PRV, [ye] - €y Vr,ye] - Vi dadf  (Newton-Leibniz rule)
Tply*]

/ U - PRV, x*] - €y V), [x] - v (value at 6 = 0)
Ty [x*]
=: W1 + Wia.
Since A%0f = 0562 = 0, 95¢% = 0 and d%vf = €2, it follows that, by using formula (B.18),

l
(Wi C(H ||w1 ST yeD T ”61;HW1 6(Tp [y )Hev llwt. S (Thly] )||80 HHI(F)

Ch* HSO HHl(I‘)a

where we have used Lemma @ and () in estimating |5 |lw 1.6 (1, [yo)) @and [[€5]lw1.6(r, [ye))
in the last inequality, respectively. By estimating the surface perturbation error between
In[x*] and T', and using integration by parts for the integral on I' to remove the gradient
operator Vr from (éy)l, along with error estimates of Lagrange interpolation, we have

<
<

[Was <| / @+ PRV per) + €y Vi o) < o — / (@) - (1) Ve - () Vi - ()|
Ty [x*] T

+\/ )'Vr - (&) (Vr - (Ihv)! = Vr - v) +‘/ )lvr-(éy)lvp-u(

< CR**||g! |y +Ch2k||<ﬂ |y + CR* 1! lgr oy < < CR*M ¢! et (ry-
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This proves that
Wi < CthHSOZHHl(F)» (C.37)

Similarly, by converting the integral from I',[y’] to I' and then applying integration by
parts along with the induction assumption (C.]), we can derive the following estimate:

|Wa| = ‘/ / Opntth, - PRV p, 1yo -ézdﬁ‘ < CR* M| | oy (C.38)
Tply?]
By using ()7 we have
[Ws| < CthH@ZHHl(F)- (C.39)

By using (@), the first inequality in (), and the first equality in (), we have

MO8 R BRI L2y )

-0
197 n@hlEt (r), o)) <
< ChHIPuo — @z, )y < CRIE 2y,

which implies that
[Ws| < CR* @ | 2y (C.40)

ince 0 he has the same nodal vector as 0y, — I; »v, by the similar method along with Lemma
and 1nequahty ( , we can obtain the following estimates for W;, j =4,5,7,9, i.e.,

Wil + [Wa| + [Wr| + [Wol < CR* 0 2y (C.41)
It remains to prove the following result:

[We| < CthHWZHHZ(F)- (C.42)

This can be done similarly by converting the integral in the expression of Ws from I'y[y?] to
I'y[x*], and using the Newton—Leibniz formula, we have

1
We = / / [ a;’hvrh[yg]ﬁz ’ DFh,[y"]ézVFh[ye]@Z de
Thly

6
d o A AC ~Q
:/ / (T/ 95 Vrylye)Un - Dr[ye1€y Vi, [ye] Pk dordd
o Jo 9¥Jrylye]

Ty [x*
=: We1 + Wea, (0.43)

where Wg1 can be rewritten as follows:

1 )
We1 :/ / 9} V1, 1y * Dry,ly>1€y Vi, ya) 95 Vi, [yo) - € dadd
FOL

/ / / atthh a]uh) Dph[ya]é??VFh[ya]@%dOéde
Cply®]

+/ / / VT, iy 1 + 0a(Dr, [yo1€y) Ve, [yo1 P, dadd
0 Tply

1 ]
[ ] O Dry e 508 (Ve e ) da s
0 JO JIpL[y¥]

=: We11 + We12 + We1z + Weia.
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Since the nodal vector of 97,4, is 01, which is independent of «, it follows that 9307 45 = 0.
Hence, by applying 0; ;, and 9, to V[‘h 1y, sequentially and using relation ( ), we obtain
OV, = Vi, ye1 005 — (Vi o) 07 — 1y o)y, el (Veglye)vn) ) Vi, (ye) @i
OLOL AV vy 8k = —(Vrylye1€) — nryyo1nd, iye) (Vi ye18y) )V, ye1 05
= 02(Vryye1 i = nryya1nny, o) (Ve ye1vR ) ) Vi, lye1dn
a T ay T
+ (Ve iye)vh = ey yegnr, iye) (Vo ya vk) )
~ T ~
(Ve ye18y = e, lye1nl, iye) (Ve ye18y) )V, fye)dn
where
. e [ e pNe T a
05(Vr,ye1) = Vi, ly10205 — (Ve ye18y — nr, fye) iy, o) (Ve ye185) ) Vi, fye)vh
danr,ye] = =(Vr,ye1€5)nr, [ye)-
Since 95v; = ey, which has been estimated in (), it follows that
105(Vruye1vi) sy yeny + 10anr, o1l Lo vy, e
CHevHWl 6(Ty [ye]) +C||6y||W1 6(M'plye]) Ch

By using this result and the estimate of ||V, [ye)€5 || e (), [yo]) ~ |V, e dr, <) —95) | Lo (), )
in Lemma B.3, as well as the estimate of ||V, (y10f 05 L6(r, [yo]) In ), we have

10£n Vr tyer@inll Lo ry o)) < C
and
106081V, yo1tn | L3 (r, yon < Clléy lwis, yon 107wtk w6, fya))
+ C|9a (Ve a]Uh)HLG(Fh )+CH8 nry,| “]||L6(rh[y al)
+ ClIVr, i€y llLer, e
< Ch".
This implies that
2k
[We11| < Cl1081 Ve, 1@ Lo ey o 15 e o, tyop 195 L1 oy yepy < CRI0! |y
[Wera| < CllO805 1V, tye1@i |3 (0 tyony 165 s oy o 190 L2 oy ety < CRZENI! -
The estimates of [Wg1s| and |We14| can be done similarly by using relation (B.18), i.e.,
[We1s| + |[We14]
° ~ A~ |2 PN} 2k 1
< OO nVr, tyo1@r L6 (0, tyen 1€y 1w 1.6 (0, yep 198 | a1 (o) iyey < CRT 1@ |11 (ry-
Therefore, we have
[Wer| < CR** 10! | 11 ry- (C.44)

The estimate of |Ws2| can be obtained by changing the underlying surface from I'j[x*]
to I and then performing integration by parts on I'. This can be done by defining a family of
intermediate surfaces I'?, 6 € [0, 1], between smooth surface I' and interpolated surface 'y [x"],
ie.,

I’ = (1- 0T +00u[x"] = {2’ : z € Th[x"]}, with 2’ := (1 -0)z' + 0z for = € Tn[x"].

Let uf, ¢, ¢ e and e? be functions on T'? defined by

1—0)u(a') + Oij (z),
¢’ (2%) = (1 - 0)¢' () + 02} (),

>
R
—~
8
£
~—
I
—
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(x°) = é,(z) = §p —x (see the definition in Section @),
) =x—2 for z € T'p[x"].

By this definition, ¢° = ¢' and ¢) = ¢!, and surface I'Y moves with velocity e’ as 6 € [0,1]
changes. Moreover, the following relations hold:

R’ (z) = ap(x) —u(z), 95¢°(2%) = i (z) — ¢'(z'), and 85¢)(2") = 0.

Then we can rewrite Ws2 as follows by using formula ()

We2

/ Vi, x*100 1 - Dr, x*1€y V), [x*] Ph
T'p [X*]

T * * T ¥ T K A A~k
- /r [ ][Vrh["*ﬂhv =11, ] (P, ) (Ve 00) IV e Dy, 1€y Vi, e P
x>
=: We21 + Weaa.

We can further approximate We21 by fr Vrogu - Dréévrcpl and use Newton-Leibniz rule,
ie.,

! d (] ~ ~ ~ (] ~
Wea1 = / T Vo O ni’ - Dro ezvre @7 do + / Vrdfu - Dré,Vre'
0 re r

1 1
- / Vo9t - Droéd Vo’ Ve - e’ df + / / Vo0t a’ - DroélVro@” do
o Jr° o Jre
! o 0 o ~0 ~0 ! o 0 A0 e ~0
+ Vr5eOs i - 09 Dreéy,Vie@  db + Vr5o0ppt - Droé,0g Ve @ df
0 ro 0 o
+ / Vrotu - Dréyvrsol =: We211 + We212 + We213 + We214 + Weo1s.
r

By using the following estimates
1084 8° |l w16 roy < C (as a result of (@))
”éZHleG(FG) ~ gn = idry, e llws ooy, o)) < Ch*  (shown in in Lemma @)
||€9|\W1,6(r0) < COh* (error of interpolating surface I').
we have
[Wea11| < Hat.,hﬂguwlvﬁ(rﬁ)Hégnwlvs(rﬂ)||959HH1(1‘9)Heeuwlﬁ(re) < Ch%”sf’lHHl(F)-

By using formula (), we see that 93 Ve 8{7hﬁ9 is equal to V69507 ,4° plus a term which

is bounded by Vyee’ times V6 0;,4°. Therefore,

(\IVreae?@Z,hﬁelle@e) + H€G||le3(r9) Hat.,hagHWLG(F@))Héz||W1>3(F9)”@0HW1,5(F9)
2%k 1

Ch™% e HHZ(F)v

where the last inequality uses the Sobolev embedding H?(T") < W%(T"), the following result
that follows from ()

|\Vr9858t.,hﬁe||1:2<r9) < O||(353;,h719)l“H1(r) = C||(dF nai)' — Ot ullgrry < Ch*,

and the following result pertains to the interpolation error caused by the perturbation of the
surface: , X
HVFBQ ||Loo(pe) < Ch .

Moreover, Wea13 and Wee14 can be estimated similarly by using the following results:
0 1 N l l !
IVred5onll2@ey <l = (@5) lmr@y = I — (Po) lmrry < Chll¢' |2
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This would yield the following results:
|Wea1s| + [Weara| < CR*[|¢' | 2 ry.-
Then, Ws215 can be estimated with integration by parts and the estimate of [[é,|[ 2y ~

19 — idr, x=)llL2(r, x+)) in Lemma @, with |[Weais| < Ch**'|@'||g2(ry. This proves the
following result (by summing up the estimates of \ngj\ j=1,...,5):

[Wez1| < CR 1@ |12 ry-

Note that |Ws22| can be estimated similarly as |We21|, with |Wea2| < Chk“HgolHHz(F). By
summing up the estimates of [Wg21| and |We22| we obtain

[Woal < CH** 6 2 o). (C.45)

ituting (E‘ Z)I) and ([1 a into (E) a ield ) en, substituting the esti-
@ B

49) into the right-hand side of () ylelds f) and therefore completes

C.8. Proof of the L? estimates in Lemma @ By substituting estimates (),
([1 a) (Ef i) and (IC.36) into (EI a), we obtain the following result:

108 nan)' — Opnullp2ry < Ch**' + Ch inf 108 nu — Xl a1
XnE€Sh (Tp[x*])

<CR* 4 Ch||; pu — (Ihat.u)l”Hl(F)
= Ch* + Ch)|0fu + (05, — v) - Vu — (1598 w) | 1 ooy
< OB+ Ch|0Fu — (107 w)! || 11

where the last inequality follows from the application of the triangle inequality and the es-
timate of |0}, — v||g1(ry in (C.4). The last inequality, together with a standard estimate of

interpolation error ||0fu — (I;(?t'u)le(F), implies the following L? estimate:
108 ntth)! — Bl L2y < CR*T for t € [0, ¢, +4]. (C.46)

This proves ()7() for t @0, t.] and therefore completes the proof of Lemma @, as

discussed at the end of Section O

Appendix D. Proof of Lemma @

The proof of Lemma @ is similar as the proof for Lemma @ For the readers’ conve-
nience, we present a complete proof and divide into several sections.

For a finite element function x, € Si[y*]* we denote by X, the finite element function
on T'y[x*] with the same nodal vector as x., and denote by %, the lift of %, from I',[x*] to I".
Then equation (@) implies that

/a;u-x;+/vpu-vp>g; :/|vm|2u.f<; Vxw € Suly" ] (D.1)
r N r

The definition of the dynamic Ritz projection in () implies that

/ Vrh[y*wi-Vrh,[y*]xu—/vru-vrxi :/u-xi—/ wpxu  (D2)
Tply~] r r Thly*]
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By subtracting (@) from () and utilizing (@), we have
/ d:i * Xu
Tply*]
— [ g [t dir [ Ve Ve - [ Veus gl
Tply*] r Tply*] r
[ venlugh= [ (O emil
r Cply*]
— [ o [ore it [udio [ ui
Ty r r Ty ly*]

nly*]
2 ~l * 12 %
+/ IVen|“u - Xu */ IV, iy 1mnl un - X
r Tply*]

— / s X+ / Lo X+ / s o xu € Suly]".
Tply*] Tply*] Thly*]

The three terms on the right-hand side of (@) are estimated in the following lemmas.
Lemma D.1. Under the assumptions of Theorem @, the following estimates hold:

’/ dz,l * Xu
Tply*]

’/ d;,Q * Xu
Tply*]

Proof. By using the triangle inequality, we have

‘/ d;i,Q * Xu
Tply*]

[ [ i
r Tply*]

| fod- [ wtnfs| [ wts [ Gk
r Ty [x*] Ty [x*] Tp[x*]

[ - [ i
Ty, [x*] Tply*]

< ON P laacrey + O el + | [ et [ uis
Tp[x*] Tply*]

(D.3)

kt1
< CR" " Ixull gty iy

< " Ixull g iy

(D.4)

+

+

)

where the first term on the right-hand side is obtained by using the standard estimates for the
geometric perturbation errors in [30, Lemma 5.6] (also see [33, Lemma 7.4]), and the second
term on the right-hand side of the inequality above is obtained by using error estimates for
the Lagrange interpolation, i.e., |u— (I;u)"| Loy < Ch*"'. In both terms we have converted
Ixull2(r, <) to [IXullL2(r, [y+) Dy using the norm equivalence between I'n[x*] and I'n[y*].
The third term on the right-hand side of the inequality above can be estimated as follows.

Let y? = (1 — 0)x* + 0y™, let X2, u} and ez be the finite element functions on I's[y?)
with nodal vectors Xu, (1 — 0)I,u + 6u* and ey :=y* — x*, respectively. Then

ogul =€’ and 95%% =0,

where ez is the finite element function on Fh[yg] with nodal vector u* — Iyu. The surface
r h[yg] is moving with velocity ez as 0 changes from 0 to 1. Then, Lemma and the
equivalence of norms on I'y[y%], 8 € [0,1], imply that
0 0 k
legllLz o, wony + lewll Lz (o, yey) < CREF (D.5)
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By using (@), along with the equivalence of L? norm on I'y[y’] and 'y [y*], we have

‘/ Ihu Xu_/ up, - Xu
Tp[x*] Tply*
uh Xud@‘
‘/ do /ph ¥
= ‘/ / (6ﬁ'xﬁ+ui-xiv-e§)d9‘
0 JT4[y?)

1 1
0 0 [4 0 [4
< C/ HeuHL2(Fh[y9]) qu||L2(Fh[ye])d0 + ’ / / : Up, * Xuvl“h[y"] . 6yd0‘
0 0 JTyhly

1
k+1 (4 0 0
< Ch + HXuHLZ(F;L[y*]) + ’/(; /F , Up, * Xuvrh[ye] . eyde‘.
h

The second term on the right-hand side of the last inequality can be estimated as follows (by
using the triangle inequality):

] e e < [T = @) 60 Ty )
Thly?] p[x*] T

/ @) - () [(Vep ey - €)' — Vi - (€2)1]

1 0 d
+ / / —/ U - X V), [yo -eo‘dad9’
o o da ' [ye] nly®] Y

#| [ v ]

= J1+ J2 + Js + Ji < CR* Xl oy ey »

where Ji1 is estimated by applying the geometric perturbation errors (see [@, Lemma 5.6]
and [@, Lemma 7.4]); Jo is estimated by applying the chain rule of partial differentiation and
Lemma @, which imply that

2k
<& N2 mh IV, 1€l L2y ey < CRFIRE N 20y 1y 1)

Js is estimated by utilizing identities () and (), Ju is estimated by applying integration
by parts which transfers the gradient operator Vr from (e,)" to (a})" - (x5)".
This proves the desired upper bound for the third term on the right-hand side of (@),

and therefore completes the proof for the second result of Lemma . The first result of
Lemma ﬁ can be proved in the same way by using Le a B.jg. 0
Lemma D.2. Under the assumptions of Theorem 2.1, the following estimate holds:

k
< Ch + HXU”Hl(Fh[y 1)+

’/ u3 Xu
Tply*]
Proof. Observe that

‘/ dh s+ Xu /IVrn|2u~>22—/ IV, =1k *uh - X
Tply*] r Tply*]

/ VenfPu - 2, — / Ve, e TP T - X
T Ty [x*]

+ '/ \Vrh[x*]f;mzf;tu “ Xu —/ Ve, iy mhlun - xul- (D.6)
Ty [x* ply*]

The first term on the right-hand side of (@) can be estimated as follows:

‘/ |Vm\2u'f<5i_/ Ve, e Innl* T - X
r Fh[X*]
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< ‘/|Vrn|2u~f<i—/ Ve, egn Pu™" - X
r Tp[x*]

" ‘ / Ve pegn ™ Pu™ x| = / Ve, e Inn* T - X
Ty [x*] Tp[x*]
=: 1 + F. (D.7)
To estimate Fi, we denote

2% = (1= 0)z' + 0z for x € Ty[x"] and T°:= (1 -0 +60,[x"] = {2’ : z € T1[x"]}.

Let u?, n?, € and x% be functions on I'? defined by

W (2% = u@h), n’@?) =n@h, f@)=z—2" and x4(2%) = xu(z) for x € Iy[x7].

g’ = 9‘Xﬁ=0 and 9gn’ =0,

and

P = ‘/01 %/Fe |Vrgn9|2u9~xzd€'
| [ e i a0
0 Jre
+ /01 /1“9 2V on - (VF985n6 — Ve’ Vien® + VG(VG)T(VFeeG)TVFene)ue . XZd@‘
=: |Fi1 + Fiz],

where 19 is the unit normal vector on I'?. Notice that the following identity holds:
1
F11 = / / |VF9’I”L0|2(VF9 . 69)u9 . XZda
o Jre
1
= [ 1900 B T el = [ Veal (91 e 3] a0
0 re r
+/ \Vrn|2(Vr . €l)u . )A(it =: Fi11 + Fii2.
r

By employing the intermediate surface again and referencing the inequality ||V e -e? HLoo(Fe) <
Ch* induced from Lagrange interpolation error estimates, we obtain

|F111| < CHVFS -eeHiw(re)HXiHsz) < Cth"Xu||H1(Fh[x*])-

By integration by parts and referencing the inequality ||60||Loo(1"8) < Ch**! from Lagrange
interpolation error estimates, we have

0 N k N
[Pzl < Clle ||L<x>(r9)||VFXuHL2(F) <Ch +1HXUHH1(Fh[x*])'

The term Fi2 can be estimated in the same way as Fi1 (split it into two parts, separately,
and using integration by parts for the second part). Hence,

Fiy < CR* IRl i oy, e - (D.8)

By using the triangle inequality, we have

= ‘ / |VF;L[X*]n_l|2u_l “Xu — / |VF}L[X*]j;n|2j;u “ Xu
Ty [x*] p[x*]

<[ e P = ).
p[x*]
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+ ‘ /1" : *](|Vrh[x*]n7l|2 _ |VFh[x*]IA}tn‘2)j}tu s
hlx
=: Fo1 + Foo.
By using error estimates of Lagrange interpolation, we have
Far < Cllu™ = Bull ey e Rl ez, ey < OB Rl ey < OB IRulz e ey

Let n=n~' — I/n, then

Fy =

/ (Vo™ + Vi e Inn) - Vi e (T Xa)
F}L[X*]

s ’ / [ }(Vrh[x*J”l + Vo, e Iin = 2(Ven) ™) - Vi, pegn(Tiu - Ru)
Ty [x*

+

/r [ ]Q(VFN)_Z Vi ey (L Xu) = 2/va - Ven (L X“)l‘
W
+ '2 /1: Vrn - Vrn' (f;u . )%u)l’ =: Foo1 + Fhaa + Fhas.
Since the following inequality holds (Lagrange interpolation error estimates)
Il L2, x*) + PRIV, el L2, ) < ChFH!, (D.9)
along with error estimates from perturbation of surfaces, we have
Foor + Fazo < Ch%“)?unm(rh[x*])-

tilizing integration by parts to remove the gradient Vr from 7', along with inequality
(D.9), we have

Fazs < ClIn'll 2oyl Rull oy ey < CRH IRl a1 oy e -
Then we obtain
Fy < Fo1 + Foa1 + Faop + Fhos < CthH)A(uHHl(rh[x*])- (D.10)

Substituting the estimates of Fy and F> into (@), we obtain the following result for the first
term on the right-hand side of (D.4):

k41~
< CR" Xl oy, )

v [ Ve finPhue
r Tp[x*]
< Chk+1||>2u”H1(1"h[y*])7 (Dll)

where norm equivalence of W norm on I'y, [x*] and T [y*] has been used in the last inequality.
The second term on the right-hand side of (D.§) can be estimated by employing the
intermediate surface again between I'y[x*] and T'x[y*]. Recall that y* = (1 — 6)x* + 0y™.
Let x%, w9, n? and ez be the finite element functions on Fh[ye} with nodal vectors xu,
(1—-0)Ipu+0u*,(1 —0)Iyn+ 6n* and ey :=y — x, respectively. Then
Ggup =€u, gy =¢n and IR, =0,
where ef and e are the finite element functions on I',[y°] with nodal vectors u* — I u and

n* — Inn, respectively. The surface Fh[ye] is moving with velocity ez as 0 changes from 0 to
1. Then, Lemmas @and imply that

0 ) k+1
”eyHL2(Fh[y9]) + hHey”Hl(rh[y@]) < Ch** , (D.12)

bz, o + Pllenllar, oy < CR*HY, (D.13)
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HezHLz(Fh,[ye]) + hHEZHHl(Fh[yG]) S Ohk+1. (D14)
Then the second term on the right-hand side of (@) can be estimated as follows:

’ / |th[x*]jZn‘2f;u X~ / |thb’*]nZ|2uz " Xu
T [x*] Tply*]

1
d 0,2 6 [
= — v © X 46
,/0 de /Fh[ye]‘ Fh[ye]nh‘ Up - X

1

0120 0 02 0 o .

= / / : 9](|th,[y9]nh|2eu *Xu + |V1"h[y9]’n,h|2(uh . Xu)vl"h[ye] . ey) do
0 JThly

1
* /0 /r y?] QVFh[yB]nZ ' (VFh[y"]agnz - Vl“h[y"]ezvl“h[y"]”fl + VQ(VG)T(VFh[ysleZ)Tth[ye]nz) (uz . XZ) de‘
hlY
1
Iy |vrh[ye]ni|2eﬁ~xﬁde‘
0 JTp[y?
1
) 0 0 0
+ /0 /F ol Ve, oyl (uh - Xu) Vi yo) - € de‘
hlY

1
+ // QVrh,[ye]”Z'Vrh[yeJei(“i'Xﬁ)de‘
0 JTp[y?)

N

1
+ / / 2(Vr, o7 - Vi, 1€y Vi, (po70) (Ui - Xa) dé”
0 JTy[y?

1
+ / / 2(Vry o i @R) (Ve y01€0) " (Ve o)) (uh - X) d‘"‘
0 JTyy?]
5
= > (D.15)
j=1

where /¥ is the unit normal vector on I'y[y’]. By using inequality ()7 we have

1
E:‘// |Vr,l[ye]n2|2(ei-xﬁ)d6|
0 JTh[y?]

0 012 0
< COlleull2 @, yon IV, wormnll 2o oy, oy Ixull Lo o, o)

k
< CH* YIxull e, iy

where norm equivalence of LP and W'? norms on I'y[y’] and I'y[y*] are used in the last
inequality. Observe that F2 can be rewritten as follows:

1
Ey = ‘/ / |V1‘h,[y9]nz|2(uz 'Xﬁ)vl“h,[ye] -ezdé"
0 Jryly?]
1
< ‘/ [/ Ve, oyl (ufh - X0) Vi, o) - € _/ IV b il (I %) Ve, e+ €5]d0
0 I I'p[x*]
Tx 12/ 7k ~ 0 2 ~l 04!
+‘/ |th[x*]Ihn| (IhU'Xu)VFh[x*] = _/ |V1"n| (u-xu)Vr ’ (ey)
T ] "

+ ‘ / |Vrn\2(u . )ZL)VF . (eg)l‘ =: Fo1 + FEa2 + Fas. (D.16)
r

By employing the intermediate surface between I'y[y’] and T'x[x*] again and referencing the
inequalities (i; lj), (D.13) and (|D.14), we obtain

2k
Ea1 < ORI xull 20 1y+))-

By employing the intermediate surface between I', [x*] and I" throughout the lift map and uti-
lizing the inequality ||V, x+] - (z — 2")||r (0, x+)) < Ch* induced from Lagrange interpolation
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error estimates, we obtain
2k
E22 < Ch HX’U'HLQ(F;,,[y*])'

By using integration by parts along with inequality (), we derive

0 k1

E2s < Clley |2, peop Il (0n iy < CAEHIxall oy iye-
Substituting the estimates of Ey; for j = 1,2,3 into ([D.1q), we obtain
E; < Chk+1|lxu”H1(Fh[y*])'

The terms F3, F4 and Fs can be estimated similarly as Fa, then we have

E3 + E4 + E5 < Chk+l ||Xu||H1 (Thly*]):
Substituting the estimates of E; for j = 1,2,3,4,5 into (), we obtain the following result
for the second term on the right-hand side of (D.4):
< Chk+1||XuHH1(Fh[y*])-

(D.17)

‘/ Ve, e Inn Tiu - Xu —/ IV, by 17 20 - Xu
T [x*] Tply*]

Then substituting inequalities () and () into inequality (@), we obtain

’ / dz,3 * Xu
Tply*]
which proves Lemma @ O

Substituting results from Lemma ﬂ and Lemma @ into (@), we obtain

Tply*]

k
< CR " Ixull i o iy 1)

k
< CR " Ixull oy =)

which proves Lemma @
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