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Abstract. We introduce a novel sliding interface formulation for fluid-structure interaction (FSI)
between a rotating rigid structure and incompressible fluid, improving existing methodologies with a skew-
symmetric Nitsche’s stabilization term applied on an artificial sliding interface, alongside a rotational arbi-
trary Lagrangian-Eulerian framework. This innovative approach not only preserves the energy-dissipating
property at the continuous level but also provides a robust foundation for further advancements in FSI
modeling. Our methodology includes a first-order full discretization that maintains these critical energy-
dissipating properties at the discrete level, ensuring numerical stability and accuracy. While prior contribu-
tions such as the original sliding interface method introduced by Bazilevs & Hughes (Comput. Mech.,
43(1):143–150, 2008) have been significant, theoretical analyses such as the inf-sup condition on non-
matching meshes have gone largely unaddressed. We fill this gap by proving the inf-sup condition within the
context of the isoparametric finite element method (FEM), where meshes are not only non-matching but
also overlapping, thus extending the applicability and robustness of our approach. Leveraging this inf-sup
condition along with the inherent energy-dissipating properties, we establish the unique solvability of the
fully discrete scheme. Through extensive numerical experiments, we illustrate the convergence, efficiency,
and energy-dissipating property of the proposed method.
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1. Introduction. The fluid-structure interaction (FSI) problem is a major challenge
in computational fluid dynamics, with applications in geophysics, bioengineering, and hy-
drodynamics [15, 16, 21, 25–27]. In recent decades, simulating FSI with rotating structures
has become increasingly important due to industrial and engineering demands, such as in
the design and analysis of wind turbines [5–7], ship propellers [9], jet engines [26], and
artificial heart pumps [29]. The presence of rotating bodies adds complexity to the problem
due to the significantly changing fluid domain. Developing stable and accurate schemes for
FSI involving rotating structures is crucial for advancing these applications.

In this paper, we consider the interaction between the incompressible fluid and a rigid
structure which spins around a rigid axis, see Fig. 1.1a. Mathematically, the motion of the
fluid can be described by the incompressible Navier-Stokes equations in a moving domain
Ω(t) ⊂ Rd, d = 2, 3,

ρf (∂tu+ u · ∇u)−∇ · σ(u, p) = ρf f in
⋃

t∈(0,T ]

Ω(t)× {t}, (1.1a)

∇ · u = 0 in
⋃

t∈(0,T ]

Ω(t)× {t}, (1.1b)

where σ(u, p) = 2µD(u) − pI denotes the stress tensor, D(u) =
1

2
(∇u + (∇u)T ) the

∗Y. Gao is supported by the NSFC, PR China (No. 12371406), Young Talent Fund of Xi’an Association
for Science and Technology (No. 959202413091), Shaanxi Fundamental Science Research Project for Mathe-
matics and Physics (No. 23JSQ030). J. Hu is supported in part by the CAS AMSS-PolyU Joint Laboratory
of Applied Mathematics and the Hong Kong Research Grants Council (GRF project no. 15301321). B.
Li is supported in part by the Hong Kong Research Grants Council (RFS2324-5S03) and The Hong Kong
Polytechnic University (project ID: P0051154).

†Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an Shanxi, China. E-
mail address: gaoylimath@nwpu.edu.cn

‡Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong. E-mail
address: jiashun.hu@polyu.edu.hk

§Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong. E-mail
address: buyang.li@polyu.edu.hk

1



ω(t) Ω(t)

Ωs(t)
Γ+(t) Γ−Γ−

Γ−

Γ−

(a) Geometric setting in 2d

Ω+(t)

Ω−

n

Γ(t)

Γ+(t) Γ−Γ−

Γ−

Γ−

(b) The sliding interface in 2d

Fig. 1.1: Geometric setting and the sliding interface

deformation matrix and I the identity matrix. ρf and µ denote the density and the viscosity
of the fluid. The moving domain Ω(t) is enclosed by a fixed boundary Γ− and the rotating
interface Γ+(t) which is the boundary of the rigid structure part. According to the rigid
property, the motion of the structure part is described by its angular speed ω(t). These
two systems are coupled together by non-slip boundary conditions and force balance at the
interface Γ+(t). Thus, the fluid velocity needs to satisfy the following boundary conditions,

u = ω(t)vΓ+(t) on
⋃

t∈(0,T ]

Γ+(t)× {t}, (1.1c)

u = 0 on Γ−, (1.1d)
where vΓ+

denotes the rotating velocity field on Γ+ with unit angular speed. Moreover,
the rigid structure’s angular momentum changes at a rate equal to the torque exerted by
the fluid,

Isω
′(t) = ρf

∫
Γ+(t)

(σ(u, p) · ns) · vΓ+
, (1.1e)

where Is is a constant that denotes the moment of inertia of Ωs(t) and ns denotes the
exterior normal of Ωs(t). We can compare the coupled system (1.1) with two related
problems, namely, the Dirichlet problem of Navier-Stokes equations on a moving domain
with rotating and stationary boundaries and the FSI with a rotating elastic structure.
Their common feature is that the fluid region exhibits significant but regular deformation.
In contrast, (1.1) simplifies the elastic response of the structure while preserving the energy-
dissipation property in the absence of external forces, i.e., when f = 0:

d

dt
E(t) ⩽ 0, E(t) =

1

2

∫
Ω(t)

|u|2 dx+
1

2
Isω(t)

2. (1.2)

The Dirichlet problem of Navier-Stokes equations on a rotating domain, on the other hand,
does not exhibit similar energy-dissipation property due to the Dirichlet boundary con-
ditions applied at the rotating boundary. Designing numerical schemes that respect the
energy-dissipation law (1.2) of the coupled system (1.1) can be challenging and serve as a
fundamental step for developing more sophisticated energy-dissipating methods for systems
involving rotating elastic structures.

One of the most popular methods for solving the FSI problem is the arbitrary Lagrangian-
Eulerian (ALE) finite element method (FEM) introduced by Formaggia & Nobile [19]. In
this approach, the fluid mesh moves with a mesh velocity wh to accommodate the defor-
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mations of the structure interface [1,12,22,27,28]. However, as one of the main features of
(1.1), the conflict between the rotating interface and the stationary exterior boundary of
the fluid prevents the direct application of the ALE method. The essential reason is that
the ALE method keeps the mesh connectivity, which makes the distortion of the fluid mesh
inevitable unless some computationally expensive re-meshing procedures are performed.

Many approaches have been proposed to solve the mesh distortion issue caused by
a rotating boundary. Popular solutions include the shear-slip mesh update method (SS-
MUM) [5, 6, 8, 10, 30, 31], the sliding interface method [9], and the modified ALE method
[21, 23, 29, 33]. A common feature of these methods is the usage of an artificial cylin-
drical interface. This artificial interface encloses the rotating structure and confines the
fluid domain deformation within it, while maintaining a fixed mesh outside. By exploit-
ing the symmetric properties of the cylindrical interface, the SSMUM performs an efficient
remeshing procedure by reconnecting nodes only in a single layer of elements closest to the
interface. To handle the sudden change of the finite element (FE) spaces, the SSMUM is
usually implemented in the space-time FEM framework, which allows solutions at different
time steps to be in different FE spaces, and enforces the continuity weakly by Nitsche’s
method. In contrast, the modified ALE method regards the mesh updating procedure as
the result of applying some mesh velocity, allowing the use of the ALE framework instead
of space-time FEM. However, from the ALE perspective, the magnitude of the resulting
mesh velocity is of order O(hτ−1) on the cylindrical interface, which can lead to an infinite
velocity for semi-discrete problem τ → 0 and pose difficulty for the error analysis of the
modified ALE method. Moreover, the sudden change of the finite element spaces makes it
difficult to develop energy-dissipating schemes, and strong CFL conditions are needed for
designing stable schemes in the above two approaches.

Comparatively, the sliding interface approach avoids sudden mesh changes, making
it a more promising option for designing numerical schemes with unconditional stability
and energy-dissipating properties. As demonstrated in Fig. 1.1b, the artificial interface
Γ(t) splits the moving domain into two subdomains: a rotating interior domain Ω+(t) and
a stationary domain Ω−. The approach proposed in [9] decomposed the Navier-Stokes
equations on Ω(t) into subproblems, applied the ALE method on the rotating subdomain,
and coupled them together by weakly enforcing the continuity conditions on the artificial
cylindrical interface. Following the idea of interior penalty upwind discontinuous Galerkin
method (SIPG), penalty terms are added on the artificial cylindrical interface to enhance
the stability of the method. Denoting the solutions on subdomains as u± and p±, and test
functions as v± and q±, the discontinuity of test functions leads to the consistency term in
the weak form

−1

2

∫
Γ

(v+ − v−)(σ(u+, p+) · n+ σ(u−, p−) · n), (1.3)

in which the continuity of the normal stress is also weakly imposed and n denotes the unit
normal on Γ(t) pointing into Ω−(t). To stabilize this interfacial term, a skew-symmetric
penalty term in pressure and a symmetric penalty term in velocity are considered,

−1

2

∫
Γ

(u+ − u−)(q+ · n+ q− · n)− 1

2

∫
Γ

(u+ − u−)(2µDv+ · n+ 2µDv− · n). (1.4)

Finally, the convection term (u · ∇u,v) is stabilized by including an upwind stabilization
in the penalty term, i.e.,

−
∫
Γ

(u+ − u−)(v+ − v−)(neg(u+ · n) + neg(−u− · n)), (1.5)

where neg(a) = min{0, a} denotes the negative part. As a result, the subdomain problems
can be solved using different meshes: the interior mesh rotates with the structure, allow-
ing the application of the ALE method, while the exterior mesh remains fixed. However,
the mismatch in meshes, velocities, and pressures across the sliding interface introduces
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significant challenges in designing a solvable, energy-dissipating scheme. The first chal-
lenge is proving the inf-sup condition on the non-matching meshes, which is crucial for the
scheme’s solvability. This theoretical issue was left unresolved in [9]. Additionally, this
paper uses isoparametric FEM instead of isogeometric analysis for spatial discretization,
which adds complexity due to the potential overlap of the non-matching sub-meshes. The
second challenge is to preserve the energy-dissipation property, which requires a careful se-
lection of interfacial penalty terms for both the velocity and the pressure. Furthermore, the
involvement of ALE velocity introduces additional difficulties in designing a fully discrete,
energy-dissipating scheme, as discussed in [18, 20] for two-phase flows. To the best of our
knowledge, no fully discrete scheme for the FSI problem with a rotating rigid structure,
whether based on the SSMUM framework or the sliding interface method, has successfully
preserved the energy-dissipation property.

The main contribution of this paper is to propose a fully discrete energy-dissipating
sliding interface method for (1.1), using isoparametric FEM for spatial discretization. There
are two main obstacles to overcome: the penalty terms on the artificial interface, which are
present at the continuous level, and the effect of the ALE velocity on energy dissipation,
which must be carefully addressed during discretization. For the first issue, we replace (1.4)
by a skew-symmetric penalty term in both pressure and velocity,

1

2

∫
Γ

(u+ − u−)(σ(v+, q+) · n+ σ(v−, q−) · n),

which shares similarity with the discontinuous finite element methods applied to convection-
diffusion problems and the Navier-Stokes equations, as discussed in [3, 4]. Moreover, the
convection term is reformulated into the skew-symmetric form with additional boundary
terms by integration by parts, see also [2, 18,20],

(z · ∇u,v)Ωi
+

1

2
((∇ · z)u,v)Ωi

= bi(z;u,v) +
1

2

∫
∂Ωi

(z · ni)u · vdA, (1.6)

where ni represents the exterior normal of Ωi, dA denotes the surface measure on ∂Ωi,
i = ±, bi(z;u,v) is trilinear and skew-symmetric with respect to u and v,

bi(z;u,v) =
1

2
(z · ∇u,v)Ωi −

1

2
(z · ∇v,u)Ωi . (1.7)

The convection terms of the subproblems correspond to z = u+ − w+ and z = u−, re-
spectively, where w+ denotes the ALE mesh velocity inside the rotating subdomain. Using
u+ = u− on Γ, the boundary terms in (1.6) on the cylindrical interface Γ write

1

2

∫
Γ

1

2

(
(u+ · n)u+ + (u− · n)u−

)
· (v+ − v−)−

1

2

∫
Γ

(w+ · n)u+ · v+.

The first term is again stabilized in a skew-symmetric way by utilizing u+ = u− on Γ, while
the second term poses the only requirement on the ALE velocity: w+ ·n = 0 on Γ. Since the
ALE mesh rotates to fit Γ+(t), according to (1.1c), the above requirement can be fulfilled
by choosing w+ as a rotational velocity field on Γ. In this way, we derive the equivalent
energy-dissipating weak formulation for (1.1) in the continuous form with a moving ALE
frame on the rotating subdomain (see Lemma 2.1). To preserve the energy-dissipation law
at the fully discrete level, the treatment of the term ∇ · w+ on the left side of (1.6) is
essential. The case where w+ is divergence free is simpler and can be treated following the
idea of [18]. The general case where ∇·w+ ̸= 0 is more difficult and frequently encountered
in applications such as the FSI with an elastic structure and the Navier-Stokes equations
on moving domains with the Dirichlet boundary condition. In the latter case, we apply the
transport theorem to combine the ∇ · w+ term in (1.6) with the material derivative and
rewrite them into a derivative structure,

(∂•
t u+(t),v+(t))Ω+(t) +

1

2
(u+(t),v+(t)∇ ·w+(t))Ω+(t)
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=
1

2

d

dt
(u+(t),v+(t))Ω+(t) +

1

2
(∂•

t u+(t),v+(t))Ω+(t), (1.8)

where ∂•
t is the material derivative with respect to w+ (see (2.1)) and v+(t) is the test

function which automatically satisfies the vanishing material derivative property. Let τ
denote the time step size, Ωn

+ the approximate domain at tn, ϕn : Ωn
+ → Ωn+1

+ the approx-
imate flow map. Let v+ denote a test function on Ωn+1

+ . Applying the Euler method to
discretize (1.8) at t = tn as follows,

d

dt

∣∣∣
t=tn

(u+(t),v+)Ω+(t) ≈
1

τ

(
(un+1

+ ,v+)Ωn+1
+

− (un
+,v+ ◦ ϕn)Ωn

+

)
, (1.9)

(∂•
t u+(tn),v+)Ω+(tn) ≈

1

τ
(un+1

+ ◦ ϕn − un
+,v+ ◦ ϕn)Ωn

+
, (1.10)

we derive the following discretization of (1.8) which can be proved to be energy-dissipating
at the discrete time level:

1

2τ
[(un+1

+ ,v+)Ωn+1
+

− (un
+,v+ ◦ ϕn)Ωn

+
] +

1

2τ
(un+1

+ ◦ ϕn − un
+,v+ ◦ ϕn)Ωn

+
.

The energy-dissipating property of the proposed scheme plays an essential role in the unique
solvability of the velocity part as well as the long time simulation in practical computation.
Moreover, inspired by [13], we prove the inf-sup conditions for Taylor-Hood elements on
non-matching meshes. This guarantees the unique solvability of the whole system and
ensures the robustness of the proposed approach.

The rest of this paper is organized as follows. After briefly introducing the sliding
interface method, we state the main results of this paper, including the derivation of the
fully discrete scheme and the main theorems addressing the unique solvability and energy-
dissipating property of the proposed scheme in Section 2. In Section 3, we prove the main
theorems by establishing an inf-sup stability result of the composite Taylor-Hood pairs
on the non-matching isoparametric meshes. In Section 4, several numerical experiments
are performed to validate the efficiency of the proposed numerical method. Finally, some
conclusions are drawn in Section 5.

2. The numerical method and main results. In this section, we first introduce the
sliding interface method, in which the subproblem on the rotating subdomain is rewritten
in the ALE formulation and coupled with the subproblem on the stationary domain by
the Nitsche’s method. After the derivation of the equivalent formulation of the continuous
problem, we present the fully discrete scheme and the main theorem.

2.1. The sliding interface method and the ALE formulation of subproblems.
We focus on only the fluid part and introduce the sliding interface method. For simplicity,
and without loss of generality, we set ρf = 1 and assume that Γ+(t) lies inside the unit
circle. For the FSI problem with a rigid structure, Γ+(t) is purely rotating around the z
axis. In this case the position of Γ+(t) is described by its rotating angle θ(t), or the rotating
matrix R(θ(t)). We have

R(θ) =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 , d = 3; R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
, d = 2.

The anticlockwise rotating velocity field vR with the unit speed writes
vR = (−y, x, 0)T , d = 3, vR = (−y, x)T , d = 2,

and vΓ+
= vR|Γ+

. In order to deal with the rotational interior boundary, we introduce
a sliding interface to enclose it. We consider Γ, the unit circle, which divides the entire
domain into two subdomains, i.e. the rotating fluid domain Ω+(t) and the stationary fluid
domain Ω−,

Γ = Ω+(t) ∩Ω− and Ω = Ω+(t) ∪Ω− ∪ Γ,
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see Fig 1.1b. We should emphasize that the symmetric property of the sliding interface
Γ yields Ω+(t) = R(θ(t))Ω+(0). This property implies that Ω+(t) can be isometrically
mapped back to Ω+(0), which guarantees the effectiveness of applying the ALE method for
subproblem on Ω+(t).

To describe the subproblems in both the moving and fixed subdomains in a uniform way,
we also view the fixed subdomain Ω− as a moving one, denoted by Ω−(t), with a vanishing
velocity. We consider the flow maps of these subdomains: Φ±(t) : Ω±(0) → Ω±(t), where
Φ−(t) is the identity map. The ALE moving frame associated to this mapping has velocity
w± = ∂tΦ± ◦ Φ−1

± . The associated material derivatives are
∂•
t u± := ∂tu± +w± · ∇u±. (2.1)

Let us recall the transport theorem [32, Lemma 5.7] governing the evolution of integrals over
time-dependent domains. For any sufficiently regular function g :

⋃
t∈[0,T ](Ω+(t)×{t}) → R,

the following holds:
d

dt

∫
Ω+(t)

g(x, t) dx =

∫
Ω+(t)

(∂•
t g + g∇ ·w+) dx. (2.2)

Since Ω− is stationary, w− = 0 and the associated material derivative is the standard
Eulerian derivative.

We now discuss the selection of the ALE velocity field w+. For FSI problems involving
a rotating rigid body, the domain Ω+(t) evolves according to Ω+(t) = R(θ(t))Ω+(0). In
this case, the most natural choice for w+ is the rotational velocity field:

w+(t) = ω(t)vR. (2.3)
This rotational velocity field corresponds to a special case of the general ALE velocity
obtained via harmonic extension, where wΓ(t) = ω(t)vR|Γ, and wD(t) = ω(t)vΓ+ :

∆w+(t) = 0, in Ω+(t), (2.4)
w+(t) = wΓ(t), on Γ, (2.5)
w+(t) = wD(t), on Γ+(t). (2.6)

In general, wΓ only needs to be a tangential vector field on Γ. Thus, the harmonic extension
in (2.4)–(2.6) provides more flexibility than the purely rotational case (2.3). However, this
flexibility comes at a cost: the resulting w+ is no longer divergence-free. Furthermore, such
harmonic extensions may be unavoidable for Dirichlet problems where the interior motion
wD is prescribed and not purely rotational. For these reasons, the divergence-free condition
on w+ is not enforced in the subsequent analysis.

The Navier-Stokes equations on moving domains (1.1a)–(1.1b) with Dirichlet boundary
conditions can be reformulated in the ALE framework as a coupled system of two subprob-
lems. Consider the solutions (u+, p+) and (u−, p−) satisfying the following equations:

∂•
t u± + (u± −w±) · ∇u± −∇ · σ(u±, p±) = f in

⋃
t∈(0,T ]

Ω±(t)× {t}, (2.7a)

∇ · u± = 0 in
⋃

t∈(0,T ]

Ω±(t)× {t}, (2.7b)

with Dirichlet boundary conditions:
u− = 0 on

⋃
t∈[0,T ]

Γ− × {t}, (2.7c)

u+ = wD(t) on
⋃

t∈[0,T ]

Γ+(t)× {t}, (2.7d)

and coupling conditions at the interface:
u+ = u− on

⋃
t∈(0,T ]

Γ× {t}, (2.7e)
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σ(u+, p+)n = σ(u−, p−)n on
⋃

t∈(0,T ]

Γ× {t}. (2.7f)

For the FSI problem (1.1), one replaces the Dirichlet boundary conditions (2.7c)–(2.7d) by
u− = 0 on Γ−, (2.7g)
u+ = ω(t)vΓ+(t) on

⋃
t∈(0,T ]

Γ+(t)× {t}, (2.7h)

and includes the structural dynamics equation from (1.1e):

Isω
′(t) =

∫
Γ+(t)

(σ(u+, p+) · ns) · vΓ+ . (2.7i)

The coupled system (2.7a)–(2.7b) and (2.7e)–(2.7i) constitutes the equivalent ALE sliding
interface formulation of the rotating rigid-body FSI problem (1.1).

2.2. Weak formulation of the Dirichlet problem. In this section, we derive the
weak formulation of the Dirichlet problem (2.7a)–(2.7f). Let us define spaces

VD
+ =

{
v ∈ [H1(Ω+(t))]

d : v = wD(t) on Γ+(t)
}
,

V± =
{
v ∈ [H1(Ω±(t))]

d : v = 0 on Γ±(t)
}
, Q±(t) = L2(Ω±(t)),

Q̇(t) =
{
(q+, q−) ∈ L2(Ω+(t))× L2(Ω−) :

∫
Ω+(t)

q+ dx+
∫
Ω−

q− dx = 0
}
.

We use (·, ·)Ω± to denote the L2 inner product on the domain Ω±, and ⟨·, ·⟩Γ denotes the
L2 inner product on the sliding interface Γ.

To derive the weak formulation of (2.7a)–(2.7f), we test v = (v+,v−) ∈ V+ ×V− on
(2.7a) and (q+, q−) ∈ Q̇(t) on (2.7b). According to (1.6), we can reformulate the convection
term into a skew-symmetric form with some boundary terms. According to the choice
of w+ in (2.3) or (2.4)–(2.6), since wΓ is tangential to Γ, we obtain w+ · n = 0 on Γ.
Furthermore, making use of the following facts: u± satisfies the incompressible conditions
and ui −wi = 0 on Γi(t) for i = ±, we obtain∑

i=±
((ui −wi) · ∇ui,vi)Ωi =

∑
i=±

bi(ui −wi;ui,vi) +
∑
i=±

1

2
(ui,vi∇ ·wi)Ωi

+
1

2

∫
Γ

(u+ · n)u+ · v+ − (u− · n)u− · v−dA,

where n denotes the normal vector of Γ from Ω+(t) to Ω−. Now we apply the coupling
condition (2.7e) on Γ, which indicates that the average defined below is equal to both
(u± · n)u± on Γ,

{{(u · n)u}} :=
1

2

(
(u+ · n)u+ + (u− · n)u−

)∣∣
Γ
.

Thus, we obtain∑
i=±

((ui −wi) · ∇ui,vi)Ωi
=

∑
i=±

[
bi(ui −wi;ui,vi) +

1

2
(ui,vi∇ ·wi)Ωi

]
+

1

2
⟨{{(u · n)u}} , JvK⟩Γ, (2.8)

where JvK = (v+ − v−)|Γ. Similar treatment can be applied to (∇ · σ(u±, p±),v±)Ωi by
applying the integration by parts and (2.7f). This yields

−
∑
i=±

(∇ · σ(ui, pi),vi)Ωi
=

∑
i=±

(2µDui,Dvi)Ωi
−

∑
i=±

(pi,∇ · vi)Ωi

− ⟨{{σ(u, p)n}} , JvK⟩Γ. (2.9)
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Adding these results together, we obtain∑
i=±

[
(∂•

t ui,vi)Ωi
+ bi(ui −wi;ui,vi) +

1

2
(ui,vi∇ ·wi)Ωi

]
+

∑
i=±

[
(2µDui,Dvi)Ωi

+ (qi,∇ · ui)Ωi
− (pi,∇ · vi)Ωi

]
+

1

2
⟨{{(u · n)u}} , JvK⟩Γ − ⟨{{σ(u, p)n}} , JvK⟩Γ =

∑
i=±

(f ,vi)Ωi .

Taking account for the continuity conditions of u results in the following equivalent formu-
lation for the smooth solution case:∑

i=±

[
(∂•

t ui,vi)Ωi + bi(ui −wi;ui,vi) +
1

2
(ui,vi∇ ·wi)Ωi + (2µDui,Dvi)Ωi

]
+

1

2
⟨{{(u · n)u}} , JvK⟩Γ − ⟨{{σ(u, p)n}} , JvK⟩Γ +

∑
i=±

[
(qi,∇ · ui)Ωi − (pi,∇ · vi)Ωi

]
− 1

2
⟨{{(u · n)v}} , JuK⟩Γ + ⟨{{σ(v, q)n}} , JuK⟩Γ =

∑
i=±

(f ,vi)Ωi
.

For clarity, we introduce the following notations

A(z;u,v) :=
∑
i=±

(2µDui,Dvi)Ωi +
1

2
⟨{{(z · n)u}} , JvK⟩Γ − 1

2
⟨{{(z · n)v}} , JuK⟩Γ

− 2µ⟨{{D(u)n}} , JvK⟩Γ + 2µ⟨{{D(v)n}} , JuK⟩Γ, (2.10)

B(u, q) :=
∑
i=±

−(qi,∇ · ui)Ωi + ⟨{{qn}} , JuK⟩Γ, (2.11)

where {{D(v)n}} = 1
2 (D(v+)n+ D(v−)n) denotes the average of D(v±)n on the interface.

Then, the weak formulation is to seek (u+,u−, p+, p−) ∈ L∞(0, T ;VD
+ ×V−× Q̇) such that∑

i=±

[
(∂•

t ui,vi)Ωi
+ bi(ui −wi;ui,vi) +

1

2
(ui,vi∇ ·wi)Ωi

]
+A(u;u,v) +B(v, p)−B(u, q) =

∑
i=±

(f ,vi)Ωi
, (2.12)

holds for (v+,v−, q+, q−) ∈ L∞(0, T ;V+ ×V− × Q̇). The uniqueness of solutions to (2.12)
follows from standard energy estimates.

2.3. Weak formulation of FSI and energy-dissipation property. For the deriva-
tion of the weak formulation for the FSI problem with a rigid rotating structure, we need
to pay special attention to the coupling condition (2.7h) on Γ+(t). Since the rotating speed
ω(t) is an unknown, the spaces for the solution and test functions have an additional degree
of freedom. The trial and test function spaces are changed to be

Vf = (V+ ×V−)⊕ span{(vR, 0)}. (2.13)
We shall emphasize that for test function (v+,v−) ∈ Vf , v+ may not vanish on Γ+(t). It
has no effect on the derivation of (2.8), but (2.9) needs to be modified. For (v+,v−) ∈ V f ,
satisfying v+|Γ+(t) = λvΓ+(t), we have

−
∑
i=±

(∇ · σ(ui, pi),vi)Ωi =
∑
i=±

(2µDui,Dvi)Ωi −
∑
i=±

(pi,∇ · vi)Ωi

− ⟨{{σ(u, p)n}} , JvK⟩Γ + λ

∫
Γ+

(σ(u, p) · ns) · vΓ+
,

where ns denotes the normal vector of Γ+ pointing from Ωs to Ω.
8



Let θ(t) =
∫ t

0
ω(s)ds denote the unknown rotating angle. Ω+(t) is mapped from Ω+(0)

by R(θ(t)), and the function spaces on Ω+(t) are also pushed forward from those on Ω+(0).
Using (1.1e), the weak formulation is to seek ω(t) ∈ C1([0, T ];R) and (u+,u−, p+, p−) ∈
L∞(0, T ;Vf (t)× Q̇(t)) such that u+(t)|Γ+(t) = ω(t)vΓ+(t) and∑

i=±

[
(∂•

t ui,vi)Ωi + bi(ui −wi;ui,vi) +
1

2
(ui,vi∇ ·wi)Ωi

]
+A(u;u,v)

+B(v, p)−B(u, q) + λIsω
′(t) =

∑
i=±

(f ,vi)Ωi , (2.14)

hold for any (v+,v−, q+, q−, λ) ∈ L∞(0, T ;Vf (t) × Q̇(t) × R) which satisfies v+|Γ+(t) =
λvΓ+(t). The total energy of the FSI problem is defined by

E(t) =
1

2

∑
i=±

∫
Ωi

|ui|2 dx+
1

2
Isω

2. (2.15)

When there is no external force f , the total energy of the FSI system dissipates.
Lemma 2.1. Assume f = 0. Let ω(t) and (u+,u−, p+, p−) be a smooth solution of

weak formulation (2.14). Then, (u+,u−) satisfies the energy dissipation law
d

dt
E(t) = −2µ(∥D(u+)∥2 + ∥D(u−)∥2) ⩽ 0.

Proof. Choosing (v+,v−, q+, q−, λ) = (u+,u−, p+, p−, ω) in (2.14) and using the skew-
symmetric of bi(ui −wi; ·, ·), we get

(∂•
t u+,u+)Ω+(t) +

1

2
(u+,u+∇ ·w+)Ω+(t)

+ (∂tu−,u−)Ω− +
∑
i=±

(2µDui,Dui)Ωi
+ Isωω

′ = 0. (2.16)

Next we apply the transport theorem (2.2) on Ω+(t) and obtain
d

dt

∫
Ω+(t)

1

2
|u+|2dx = (∂•

t u+,u+)Ω+(t) +
1

2
(u+,u+∇ ·w+)Ω+(t).

Thus, we obtain
d

dt

[∑
i=±

∫
Ωi

1

2
|ui|2 dx+

1

2
Isω

2
]
= −

∑
i=±

(2µDui,Dui)Ωi . (2.17)

This completes the proof of Lemma 2.1.

2.4. Isoparametric finite elements. Let {tn}Mn=0 be a uniform partition of [0, T ]
with time step size τ = T/M . For the initial subdomains Ωi(0), let T̃ 0

hi be the corre-
sponding quasi-uniform and shape-regular triangulations and let Ω̃0

h± := ∪K∈T̃ 0
h±

K be the
approximate subdomains. Since curved boundaries Γ and Γ+ are involved, the boundary
elements need to be modified into curved elements. Let K̂ denote the reference simplex.
Each curved boundary simplex K is parametrized by a unique polynomial of degree m
denoted by Fm

K : K̂ → K. For details on its construction, we refer the interested readers
to [24]. We denote the triangulation with these curved boundary elements as T 0

h±. The
finite element space of degree k on Ω0

h± is defined as

V k
h± :=

{
gh ∈ C

(
Ω0

h±
)
: gh ◦ Fm

K ∈ P k(K̂) for all K ∈ T 0
h±

}
.

In general, only the case m = k is termed as the isoparametric FEM. However, later in this
paper, the Taylor-Hood FEM will be used and the FEM spaces for the velocity and the
pressure have different degree k and k−1, k ⩾ 2. We will choose m = k−1 and call it as the
isoparametric Taylor-Hood element. In particular, for k = 2, it will become the standard
Taylor-Hood element (P2-P1) on triangulation with straight edges. Compared with the
isogeometric analysis approach [9], which eliminates geometric errors by representing the
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geometry exactly, the isoparametric FEM introduces geometric approximation errors and
non-matching meshes at artificial interfaces. Nevertheless, the isoparametric framework can
allow us to rigorously prove the discrete inf-sup condition (Theorem 3.1), ensuring the well-
posedness and stability of the fully discrete scheme. Additionally, it benefits from easier
implementation due to its compatibility with widely available FEM software.

Let us denote Ωn
h± := ∪K∈T n

h±
K. Then Ωn

h− is fixed and has two boundaries, ΓA
h−

and Γh−, which approximate Γ and Γ− respectively. For the interior subdomain, the ap-
proximate interior subdomain Ωn

h+ at t = tn is described as the image of the discrete flow
map Φn

h+ : Ω0
h+ → Ωn

h+. For consistency, we introduce the notation of discrete flow map
Φn

h− : Ω0
h− → Ωn

h−, which is an identity map. Let us denote the boundaries of Ωn
h+ as ΓA,n

h+

and Γn
h+, which approximate Γ and Γn

+ respectively.
On each subdomain Ωn

hi with i = ±, we introduce the following Taylor-Hood type finite
element spaces,

Vk(Ω
n
hi) = {vh : vh ◦ Φn

hi ∈ [V k
hi]

d},

V̊k(Ω
n
hi) = {vh ∈ Vk(Ω

n
hi) : v|∂Ωn

hi
= 0}, (2.18)

Q̃k−1(Ω
n
hi) = {qh : qh ◦ Φn

hi ∈ V k−1
hi }, (2.19)

Qk−1(Ω
n
hi) = {qh : qh ◦ Φn

hi ∈ V k−1
hi ,

∫
Ωn

hi

qhdx = 0}. (2.20)

The following inf-sup condition is satisfied on each subdomain for the isoparametric Taylor-
Hood elements, which can be proved by combining the Verfürth trick (see [11, Sect. 8.5])
and the perturbation argument in [14],

∥qhi∥L2(Ωn
hi)

≲ sup
0 ̸=vhi∈V̊k(Ωn

hi)

(∇ · vhi, qhi)Ωn
hi

∥vhi∥H1(Ωn
hi)

, ∀qhi ∈ Qk−1(Ω
n
hi). (2.21)

We introduce the notation of local flow map ϕn
h+ ∈ Vm(Ωn

hi) that maps Ωn
h+ to Ωn+1

h+ :
ϕn
h+ := Φn+1

h+ ◦ (Φn
h+)

−1 = id + τwn
h+, (2.22)

where the mesh velocity wn
h+ ∈ Vm(Ωn

h+) is either the interpolation of (2.3) or solved from
the spatial discretization of (2.4)–(2.6): solving wn

h+ ∈ Vm(Ωn
h+) such that for all test

functions vh ∈ Vm(Ωn
h+) that

(∇wn
h+,∇vh)Ωn

h+
= 0, (2.23)

wn
h+ = Imh+wΓ, on ΓA,n

h+ , (2.24)
wn

h+ = Imh+wD, on Γn
h+, (2.25)

where Imh+ denotes the interpolation with respect to Vm(Ωn
h+).

Next, we construct the composite finite element spaces by combining the finite element
spaces defined on each subdomain. We denote these spaces in curly characters.

Vn
k = Vk(Ω

n
h+)×Vk(Ω

n
h−),

V̊n
k = {(vh+,vh−) ∈ Vn

k : vh+|Γn
h+

= 0,vh−|Γh− = 0}, (2.26)

Qn
k−1 = {(qh+, qh−) ∈ Q̃k−1(Ω

n
h+)× Q̃k−1(Ω

n
h−) :

∑
i∈±

∫
Ωn

hi

qhi = 0}, (2.27)

and

Vn,D
k = {(vh+,vh−) ∈ Vn

k ,vh+|Γn
h+

= Ikh+wD(tn),vh−|Γh− = 0}.

Next we define the average and jump functions across Γ for vh ∈ Vn
k and qh ∈ Qn

k−1. We
should emphasize that the definitions of these functions are quite different from the method
in [9], where no geometrical discrepancy is involved in [9] due to isogeometric analysis.
In isoparametric FEM, the approximate boundaries ΓA,n

h± do not match Γ, requiring the
10



extension of finite element functions to Γ. We only need to extend qhi ∈ V k
hi to Γ for

any boundary element K that have a d− 1-dimensional simplex F on ΓA,n
hi . Denoting the

corresponding curved simplex on Γ as F̃ , and the curved element as K̃, we directly extend
qhi from K to K̃ with the same expression. The following remark gives a concrete example.

Remark 2.1. For FEMs of degree k which satisfies k ⩾ m, the extension of a linear
function in K remains the same formula in K̃.

Then, for vh ∈ Vn
k , we define

JvhK := vh+|Γ − vh−|Γ, {{vh}} :=
1

2

(
vh+|Γ + vh−|Γ

)
.

Furthermore, we introduce the following (semi-)norms for vh ∈ Vn
k and qh ∈ Qn

k−1:

∥qh∥L2 =
∑
i=±

∥qhi∥L2(Ωn
hi)

, |vh|1 =
∑
i=±

∥∇vhi∥L2(Ωn
hi)

+ h−1/2∥ JvhK ∥L2(Γ),

and the following bilinear forms,

An
h(z;u,v) := (2µDui,Dvi)Ωn

hi
+

1

2
⟨{{(z · n)u}} , JvK⟩Γ − 1

2
⟨{{(z · n)v}} , JuK⟩Γ

− 2µ⟨{{D(u)n}} , JvK⟩Γ + 2µ⟨{{D(v)n}} , JuK⟩Γ, (2.28)

Bn
h (v, q) :=−

∑
i=±

(divvi, qi)Ωn
hi

+ ⟨{{q}} , Jv · nK⟩Γ, (2.29)

and bnhi(z;u,v) by replacing Ωi in (1.7) with Ωn
hi.

2.5. Fully discrete numerical scheme and main theoretic results. We begin
with the derivation of the fully discrete scheme for (2.12). First, we consider the spatial semi-
discretization of (2.12) by replacing wi, ∂•

t , and Ωi in (2.12) with their discrete counterparts
whi, Dth := ∂t +whi · ∇, and Ωhi:

(Dthuh+,ψh+)Ωh+(t) +
1

2
(uh+,ψh+∇ ·wh+)Ωh+(t) + (∂tuh−,ψh−)Ωh− +Bh(ψh, ph)

+
∑
i=±

bhi(uhi −whi;uhi,ψhi) +Ah(uhi;uhi,ψhi)−Bh(uh, qh) =
∑
i=±

(f ,ψhi)Ωhi
, (2.30)

where bhi, Ah, and Bh denote the corresponding bilinear forms analogous to those defined
in (1.7) and (2.10)–(2.11), but with the exact domain Ωi replaced by its approximation Ωhi.

Similar to the transport theorem (2.2), we also have the discrete version: for gh defined
on ∪t∈[0,T ]Ωh+(t)× {t}:

d

dt

∫
Ωh+(t)

gh(x, t)dx =

∫
Ωh+(t)

Dthgdx+

∫
Ωh+(t)

g(x, t)∇ ·wh+dx.

Thus, for uh+(x, t) and ψh+(x, t) defined on ∪t∈[0,T ]Ωh+(t)× {t}, we have
d

dt
(uh+,ψh+)Ωh+

= (Dthuh+,ψh+)Ωh+
+ (uh+, Dthψh+)Ωh+

+ (uh+,ψh+∇ ·wh+)Ωh+
.

Then the first two terms in (2.30) can be reformulated into:
1

2

d

dt
(uh+,ψh+)Ωh+(t) −

1

2
(uh+, Dthψh+)Ωh+(t) +

1

2
(Dthuh+,ψh+)Ωh+(t). (2.31)

Next, we discuss the temporal discretization of (2.31). Given a test function vh+ defined
on Ωn+1

h+ = ϕn
h+(Ω

n
h+), we choose the space-time test function such that Dthψh+ = 0 and

ψh+(tn+1) = vh+. Thus the second term in (2.31) vanishes and ψh+(tn) = vh+ ◦ ϕn
h+.

Thus, we discretize (2.31) as follows:
d

dt

∣∣∣
t=tn

(uh+,ψh+)Ωh+(t) =
1

τ
[(un+1

h+ ,vh+)Ωn+1
h+

− (un
h+,vh+ ◦ ϕn

h+)Ωn
h+

] +O(τ),

(Dthuh+,ψh+)Ωh+(tn) =
1

τ
(un+1

h+ ◦ ϕn
h+ − un

h+,vh+ ◦ ϕn
h+)Ωn

h+
+O(τ),

11



which leads to the following fully discrete scheme for (2.12):
Step 1: For given Ωn

h± and un
h±, solve wn

h+ from (2.23)–(2.25). Set
ϕn
h+ = id + τwn

h+. (2.32a)

Step 2: Let Ωn+1
h+ = ϕn

h+(Ω
n
h+). Find (un+1

h , pn+1
h ) ∈ Vn+1,D

k ×Qn+1
k−1 such that

1

2τ
[(un+1

h+ ,vh+)Ωn+1
h+

− (un
h+,vh+ ◦ ϕn

h+)Ωn
h+

] +
1

2τ
(un+1

h+ ◦ ϕn
h+ − un

h+,vh+ ◦ ϕn
h+)Ωn

h+

+
1

τ
(un+1

h− − un
h−,vh−)Ωh− +

∑
i=±

bn+1
hi ((un

hi −wn
hi) ◦ (ϕn

h+)
−1;un+1

hi ,vhi) (2.32b)

+An+1
h (un

h ◦ (ϕn
h+)

−1;un+1
h ,vh) +Bn+1

h (vh, p
n+1
h )−Bn+1

h (un+1
h , qh) =

∑
i=±

(fn+1,vhi),

holds for all (vh, qh) ∈ V̊n+1
k ×Qn+1

k−1 .
Fully discrete scheme for (2.14) without external force, i.e., f = 0:
Step 1: For given Ωn

h±, ωn and un
h±, determine wn

h+ by interpolating (2.3) or solving
from (2.23)–(2.25) with wD = ωnvΓ+ . Set

ϕn
h+ = id + τwn

h+. (2.33a)
Step 2: Let Ωn+1

h+ = ϕn
h+(Ω

n
h+). Find (un+1

h , pn+1
h , ωn+1) ∈ Vn+1

k ×Qn+1
k−1 ×R such that

un+1
h |Γn+1

h+
= ωn+1vR|Γn+1

h+
, un+1

h |Γn+1
h−

= 0, (2.33b)

and
1

2τ
[(un+1

h+ ,vh+)Ωn+1
h+

− (un
h+,vh+ ◦ ϕn

h+)Ωn
h+

] +
1

2τ
(un+1

h+ ◦ ϕn
h+ − un

h+,vh+ ◦ ϕn
h+)Ωn

h+

+
1

τ
(un+1

h− − un
h−,vh−)Ωh− +

1

τ
Isλ(ω

n+1 − ωn)

+
∑
i=±

bn+1
hi ((un

hi −wn
hi) ◦ (ϕn

h+)
−1;un+1

hi ,vhi)

+An+1
h (un

h ◦ (ϕn
h+)

−1;un+1
h ,vh) +Bn+1

h (vh, p
n+1
h )−Bn+1

h (un+1
h , qh) = 0 (2.33c)

hold for any (vh, qh, λ) ∈ Vn+1
k ×Qn+1

k−1 × R that satisfies
vh+|Γn+1

h+
= λvR|Γn+1

h+
, vh−|Γn+1

h−
= 0. (2.33d)

Remark 2.2. To handle the constraint (2.33b), we decompose the solution as:
un+1
h+ = ũn+1

h+ + ωn+1vR,

where ωn+1 is a scalar unknown and ũn+1
h+ vanishes on Γn+1

h+ . Then (2.33b) can then be
reformulated as an unconstrained problem. We seek (ũn+1

h , pn+1
h , ωn+1) ∈ V̊n+1

k ×Qn+1
k−1 ×R

such that (2.33c) is satisfied for two test function classes:
• Type I: any (vh, qh, 0) ∈ V̊n+1

k ×Qn+1
k−1 × R

• Type II: (vh+,vh−, qh, λ) = (vR, 0, 0, 1).
To clarify the matrix assembly process while avoiding lengthy formulas, we focus on

implementing the first two lines of (2.33c). The remaining terms follow standard assembly
procedures.

Let us denote the nodal values of (ũn+1
h+ , ũn+1

h− ,vR) as (Ũn+1
+ , Ũn+1

− , V R), and denote the
mass matrix of Vk(Ω

n+1
hi ) as Mn+1

i . Note that the basis functions on Ωn+1
h+ can be pulled

back to the basis functions on Ωn
h+ by ϕn

h+, ũn+1
h+ ◦ϕn

h+ corresponds a finite element function
in Vk(Ω

n
h+) with nodal values Ũn+1

+ . By testing functions of Type I, the matrix-vector
forms of (ũn+1

h+ ,vh+)Ωn+1
h+

and (ũn+1
h+ ◦ ϕn

h+,vh+ ◦ ϕn
h+)Ωn

h+
are Mn+1

+ Ũn+1
+ and Mn

+Ũ
n+1
+

respectively. By testing functions of Type II, the matrix-vector form of (ũn+1
h+ ,vh+)Ωn+1

h+

writes (Mn+1
+ V R)T Ũn+1

+ . Other terms can be expressed similarly. As a result, the first two
12



lines in (2.33c) can be written into the matrix-vector formulation:

1

τ

Is + cn+1/2 (M
n+1/2
+ V R)T

M
n+1/2
+ V R M

n+1/2
+

Mn+1
−


ωn+1

Ũn+1
+

Ũn+1
−

− 1

τ

Is + cn (Mn
+V

R)T

Mn
+V

R Mn
+

Mn
−

ωn

Ũn
+

Ũn
−

 ,

(2.34)

where M
n+1/2
+ := (Mn+1

+ + Mn
+)/2, cn+1/2 = (V R)TM

n+1/2
+ V R and cn = (V R)TMn

+V
R.

The first row in (2.34) refers to the equation obtained by testing the Type II test functions,
while the other rows refer to testing the Type I test functions.

Remark 2.3. Modified schemes can be introduced by adjusting the bilinear forms An
h

and Bn
h in (2.28)–(2.29). The first variant replaces the exact interface integral on Γ with

numerical quadrature approximations on Γ. The second variant incorporates a continuity
penalty term αh−1⟨JuK , JvK⟩Γ into An

h with α > 0. In general, we denote their bilinear
forms as Ãn

h and B̃n
h . To be specific, we employ a quadrature rule with weights {sk} and

nodes {xk} ⊂ Γ, and define the practical inner product:
⟨f, g⟩h :=

∑
k

skf(xk)g(xk).

Then we have

Ãn
h(z;u,v) := (2µDui,Dvi)Ωn

hi
+

1

2
⟨{{(z · n)u}} , JvK⟩h − 1

2
⟨{{(z · n)v}} , JuK⟩h

− 2µ⟨{{D(u)n}} , JvK⟩h + 2µ⟨{{D(v)n}} , JuK⟩h +
α

h
⟨[u], [v]⟩h.

Crucially, it is direct to verify that the modification maintains the key inequality:
Ãn

h(z;u,u) ⩾
∑
i=±

(2µDui,Dui)Ωn
hi
. (2.35)

Now, we present the main theoretic results of this paper, addressing the unique solv-
ability of (2.32b) and (2.33b)–(2.33d), and the energy-dissipating properties.

Theorem 2.2. The fully discrete scheme (2.32) for the Navier-Stokes equations on a
moving domain is uniquely solvable. Moreover, if wD = 0 and f = 0, we have

Ẽn+1 − Ẽn =− 2µτ(∥D(un+1
h+ )∥2

Ωn+1
h+

+ ∥D(un+1
h− )∥2Ωh−

)− 1

2
∥un+1

h+ ◦ ϕn
h+ − un

h+∥2Ωn
h+

− 1

2
∥un+1

h− − un
h−∥2Ωh−

⩽ 0, (2.36)

where Ẽn is defined as

Ẽn =
1

2
[∥un

h+∥2Ωn
h+

+ ∥un
h−∥2Ωh−

]. (2.37)

Theorem 2.3. The fully discrete scheme (2.33) is uniquely solvable. Let un+1
h , pn+1

h ,
ωn+1 denote the numerical solutions at tn+1. Then, the discrete energy-dissipation law is
satisfied.

En+1 − En =− 2µτ(∥D(un+1
h+ )∥2

Ωn+1
h+

+ ∥D(un+1
h− )∥2Ωh−

)− 1

2
∥un+1

h+ ◦ ϕn
h+ − un

h+∥2Ωn
h+

− 1

2
∥un+1

h− − un
h−∥2Ωh−

− Is
2τ

(ωn+1 − ωn)2 ⩽ 0, (2.38)

where En is defined as

En =
1

2
[∥un

h+∥2Ωn
h+

+ ∥un
h−∥2Ωh−

] +
1

2
Is|ωn|2. (2.39)

3. Proofs of Theorems 2.2–2.3. Since (2.33) is a linear system, the uniqueness leads
to the existence of solutions. The uniqueness of (2.32b) and (2.33b)–(2.33d) can be proved
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based on the energy-dissipation properties (2.36) and (2.38) and the inf-sup condition of
Bn+1

h in Theorem 3.1.

3.1. Proof of energy dissipation. We first present the proof of Theorem 2.3.
Proof. [Proof of (2.38)] Taking (vh, qh, λ) = (un+1

h , pn+1
h , ωn+1) in (2.33b)–(2.33d). By

using the skew-symmetric of bn+1
hi (·; ·, ·) with respect to the last two entries, we get

1

2τ

[
∥un+1

h+ ∥2
Ωn+1

h+

− 2(un
h+,u

n+1
h+ ◦ ϕn

h+)Ωn
h+

+ ∥un+1
h+ ◦ ϕn

h+∥2Ωn
h+

]
(3.1)

+
1

τ
Isω

n+1(ωn+1 − ωn) +
1

τ
(un+1

h− − un
h−,u

n+1
h− )Ωh− +

∑
i=±

(2µDun+1
hi ,Dun+1

hi )Ωn+1
hi

= 0.

Using (a− b)a = 1
2 (a

2 − b2) + 1
2 (a− b)2, we obtain

1

2τ

[
∥un+1

h+ ∥2
Ωn+1

h+

− ∥un
h+∥2Ωn

h+
+ ∥un+1

h+ ◦ ϕn
h+ − un

h+∥2Ωn
h+

]
+

Is
2τ

(|ωn+1|2 − |ωn|2 + (ωn+1 − ωn)2) +
∑
i=±

(2µDun+1
hi ,Dun+1

hi )Ωn+1
hi

+
1

2τ

[
∥un+1

h− ∥2Ωh−
− ∥un

h−∥2Ωh−
+ ∥un+1

h− − un
h−∥2Ωh−

]
= 0. (3.2)

This completes the proof of (2.38).
Remark 3.1. (2.36)–(2.37) in Theorem 2.2 can be proved similarly since the assump-

tion wD = 0 leads to the equivalence of the test and the trial function spaces. The modified
scheme introduced in Remark 2.3 maintains the energy-dissipation property. This follows
from an analogous proof using the key inequality (2.35) and the inherent skew-symmetry
of the formulation.

Theorem 3.1. The following inf-sup condition holds true for all n,

sup
vh ̸=0∈V̊n+1

k

Bn+1
h (vh, qh)

|vh|1
≳ ∥qh∥L2 , ∀qh ∈ Qn+1

k−1 .

Remark 3.2. In the following proof, we focus on the two-dimensional case for sim-
plicity of geometrical description. The proof for the cylindrical artificial interface in three
dimensions proceeds similarly, with some additional details noted in Remarks 3.3.

The proof of Theorem 3.1 relies on the following lemmas.
Lemma 3.2. There exists a constant C > 0 such that for any qh ∈ Qk−1(Ω

n+1
h+ ) ×

Qk−1(Ω
n+1
h− ) (see (2.20)), there exists vh ∈ V̊k(Ω

n+1
h+ ) × V̊k(Ω

n+1
h− ) (see (2.18)) satisfying

the following estimates:
|vh|1 ⩽ C∥qh∥L2 , ∥qh∥2L2 ⩽ CBn+1

h (vh, qh). (3.3)
Proof. According to the inf-sup conditions (2.21) on subdomains, there exists ṽhi ∈

V̊k(Ω
n+1
hi ) such that

∥qhi∥L2(Ωn+1
hi ) ≲

(∇ · ṽhi, qhi)Ωn+1
hi

∥ṽhi∥H1(Ωn+1
hi )

.

Then we choose vhi = −cṽhi with c = ∥qhi∥L2(Ωn+1
hi )/∥∇ṽhi∥L2(Ωn+1

hi ) to obtain

∥∇vhi∥L2(Ωn+1
hi ) = ∥qhi∥L2(Ωn+1

hi ), (3.4)

∥qhi∥2L2(Ωn+1
hi )

≲ −
∫
Ωn+1

hi

∇ · vhiqhi. (3.5)

Now we are going to prove vh = (vh+,vh−) satisfies (3.3). Note that vhi|ΓA,n+1
hi

= 0 and
dist(ΓA,n+1

hi ,Γ) ≲ hm+1, by the mean value theorem, the inverse inequality, and (3.4), we
obtain

∥vhi∥L2(Γ) ≲ ∥vhi∥L∞(Γ) ≲ hm+1∥∇vhi∥L∞(Ωn+1
hi ) ≲ hm+1−d/2∥∇vhi∥L2(Ωn+1

hi ). (3.6)
14



Thus, for m ⩾ 1, we obtain
|vh|1 ≲

∑
i=±

∥∇vhi∥L2(Ωn+1
hi ) + h−1/2∥vhi∥L2(Γ) ≲

∑
i=±

∥qhi∥L2(Ωn+1
hi ).

In addition, using trace inequality leads to
⟨{{qhn}} , JvhK⟩Γ ≲ h−1/2max

i=±
∥qhi∥L2(Ωn+1

hi )max
i=±

∥vhi∥L2(Γ) ≲ h1/2∥qh∥2L2 , (3.7)

where the last line can be proved for d = 2 by using (3.4) and (3.6) and for d = 3 by using
Remark 3.3. Thus, by choosing h sufficiently small, we have
Bn+1

h (qh,vh) = −
∑
i=±

(divvhi, qhi)Ωn+1
hi

+ ⟨{{qhn}} , JvhK⟩Γ ⩾ (c− h1/2)∥qh∥2L2 ⩾ c∥qh∥2L2 .

Remark 3.3. For the cylindrical artificial interface where d = 3, the same proof can
work for m ⩾ 2 by using (3.6). For d = 3 and m = 1, we should refine the estimate of
∥vhi∥L2(Γ) in the following way. Note that the cylindrical artificial interface consists of the
top and the bottom bases and the lateral surface. Since the top and the bottom bases are
flat, no geometric discrepancy is involved and thus both vh± vanish. Next, we consider the
boundary element K with a face F that approximates F̃ on the lateral surface. Assume F
lies on the x1 − x2 plane and F̃ is described as a graph (x1, x2, ϕ(x1, x2)). Denote the lift
function from F to F̃ as φ such that φ((x1, x2, 0)) = (x1, x2, ϕ(x1, x2)). Then |φ(x)−x| ⩽ h2

for x ∈ F and det(Dφ) = 1 +O(h2). Thus, using vhi = 0 on F ,

∥vhi∥2L2(F̃ )
≲

∫
F

∣∣∣ ∫ ϕ(x1,x2)

0

∂x3vhidx3

∣∣∣2dx1dx2

≲
∫
F

|ϕ(x1, x2)|
∫ ϕ(x1,x2)

0

|∇vhi|2dx3dx1dx2

≲ sup
x∈F

|φ(x)− x|∥∇vhi∥2L2(K).

By summing up the boundary elements, we obtain
∥vhi∥L2(Γ) ≲ h∥∇vhi∥L2(Ωn+1

hi ). (3.8)

Lemma 3.3. Let P ∗
h denote a one dimensional linear subspace of R2,

P ∗
h = {(ph+, ph−) ∈ R2 : ph+|Ωn+1

h+ |+ ph−|Ωn+1
h− | = 0}. (3.9)

There exist h0 > 0 and C > 0 such that for h ⩽ h0 and any ph ∈ P ∗
h , there exist functions

vh+ ∈ Vk(Ω
n+1
h+ ) and vh− ∈ Vk(Ω

n+1
h− ), such that

vh+|Γn+1
h+

= 0, vh−|Γn+1
h−

= 0,

and vh = (vh+,vh−) satisfies
|vh|1 ⩽ C∥ph∥L2 , ∥ph∥2L2 ⩽ CBn+1

h (vh, ph). (3.10)

Proof. We first assume the existence of smooth functions gi on Ωi for i = ± such that
gi|Γi = 0 and

g+|A+,δ
= g, A+,δ := {(x1, x2, x3) : 1− δ ⩽ x2

1 + x2
2 ⩽ 1},

g−|A−,δ
= g, A−,δ := {(x1, x2, x3) : 1 ⩽ x2

1 + x2
2 ⩽ 1 + δ},

for g = (x1, x2, 0)
T and some δ < 1. For 2 dimensional case, g contains only the first two

components. Such smooth functions can be easily constructed as a radial function. We
emphasize that g is equal to the unit exterior normal vector field nΓ of Γ.

We are going to prove that the following choice of vh = (vh+,vh−) satisfies (3.10),
vhi = (|Ωn+1

h− |ph− − |Ωn+1
h+ |ph+)Ihigi, i = ±,

where Ihi denotes the interpolation with respect to Vk(Ω
n+1
hi ). Via the definition of inter-
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polation, it is direct to deduce the following boundary behaviour. First, vhi ∈ Vk(Ω
n+1
hi )

and vanishes on Γn+1
hi . Second, for h < δ/4, Ai,δ covers the layer of elements adjacent to

Γ in Ωn+1
hi . Consequently, gi is linear in Ai,δ and the interpolation Ihigi exactly matches

g within this layer. This property also works for the case of the high-order isoparametric
finite elements, see [24, P. 3 (4)] and Remark 2.1. By extension, we obtain Ihigi|Γ = nΓ.
In consequence, JvhK = 0. (3.11)
By H1 stability of the interpolation, we have

|vh|21 = (|Ωn+1
h− |ph− − |Ωn+1

h+ |ph+)2
∑
i=±

∥∇Ihigi∥2L2(Ωn+1
hi )

≲ ∥ph∥2L2 .

Furthermore, using (3.11), the Stokes theorem, and phi is constant, we obtain

Bn+1
h (vh, ph) = −

∑
i

phi

∫
Ωn+1

hi

divvhi

= (|Ωn+1
h− |ph− − |Ωn+1

h+ |ph+)
∑
i=±

phi

∫
ΓA,n+1
hi

g · nhi,

where nhi denotes the exterior normal vector of ΓA,n+1
hi . According to [17, Prop. 2.3] and

noticing that the orientation of Ωn+1
h− , we have

∥nh+ − g∥L∞(ΓA,n+1
h+ ) ≲ hm, ∥nh− + g∥L∞(ΓA,n+1

h− ) ≲ hm.

Since dist(ΓA,n+1
hi ,Γ) ≲ hm+1, we obtain∫

ΓA,n+1
h+

g · nh+ =

∫
ΓA,n+1
h+

x2
1 + x2

2 +O(hm) = 2π +O(hm),∫
ΓA,n+1
h−

g · nh− =

∫
ΓA,n+1
h−

−(x2
1 + x2

2) +O(hm) = −2π +O(hm).

Thus,
Bn+1

h (vh, ph) ⩾ 2π(ph+ − ph−)(|Ωn+1
h− |ph− − |Ωn+1

h+ |ph+)− chm∥ph∥2L2 .

Further, for the first term, after introducing

D =

(
|Ωn+1

h+ | 0

0 |Ωn+1
h− |

)
, B =

(
−1 1
1 −1

)
,

we have
(ph+ − ph−)(|Ωn+1

h− |ph− − |Ωn+1
h+ |ph+) = pThDBph = qT B̂q,

where B̂ = D1/2BD−1/2 and q = D1/2ph. Since B̂ is similar to the semi-positive definite
matrix B, it has two eigenvalues 0 and 2 and the null space N(B̂) is spanned by D1/2e1
with e1 = (1, 1)T . Now, using ph ∈ P ∗

h leads to
(q,D1/2e1) = (ph, De1) = ph+|Ωn+1

h+ |+ ph−|Ωn+1
h− | = 0,

meaning that q ∈ N(B̂)⊥. Thus,
qT B̂q ⩾ 2qT q = 2∥ph∥2L2 .

Thus, choosing h sufficiently small (independent of p), we conclude that
Bn+1

h (vh, ph) ⩾ 2π∥ph∥2L2 .

Proof. [Proof of Theorem 3.1] For any ph ∈ Qn+1
k−1 , we perform the following decompo-

sition to its components: phi = p̃hi + p̄hi such that p̄hi are constants and∫
Ωn+1

hi

p̃hi = 0, (3.12)
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which means p̄hi and p̃hi are orthogonal in the L2 inner product. According to (2.27),
p̄h = (p̄h+, p̄h−) ∈ P ∗

h . Applying Lemma 3.2–Lemma 3.3, we have ṽh and v̄h such that
|ṽh|1 ⩽ C0∥p̃h∥L2 , ∥p̃h∥2L2 ⩽ C0B

n+1
h (ṽh, p̃h), (3.13)

|v̄h|1 ⩽ C0∥p̄h∥L2 , ∥p̄h∥2L2 ⩽ C0B
n+1
h (v̄h, p̄h). (3.14)

Further, since p̄hi is constant and ṽhi ∈ H1
0 (Ω

n+1
hi ), by integration by parts and (3.6)–(3.8),

we obtain
|Bn+1

h (ṽh, p̄h)| = |⟨{{p̄h}} , JṽhK · n⟩Γ| ≲ max
i=±

∥p̄hi∥L2(Γ)max
i=±

∥ṽhi∥L2(Γ)

≲ h∥p̄h∥L2max
i=±

∥∇ṽhi∥L2(Ωn+1
hi ) ⩽ ch(∥p̄h∥2L2 + ∥p̃h∥2L2). (3.15)

By boundedness of Bn+1
h (using trace inequality and the penalty term in | · |1), we obtain

Bn+1
h (v̄h, p̃h) ⩽ c0|v̄h|1∥p̃h∥L2 . (3.16)

Then we consider vh = (vh+,vh−) with vhi = ṽhi + γv̄hi with γ = c−2
0 C−4

0 /4. Then we
get

|vh|21 ≲ |ṽh|21 + |v̄h|21 ≲ ∥ph∥2L2 .

Collecting (3.13)–(3.16), we obtain
Bn+1

h (vh, ph) = Bn+1
h (ṽh, p̃h) + γBn+1

h (v̄h, p̄h) + γBn+1
h (v̄h, p̃h) +Bn+1

h (ṽh, p̄h)

⩾ C−1
0 ∥p̃h∥2L2 + C−1

0 γ∥p̄h∥2L2 − c0γ|v̄h|1∥p̃h∥L2 − ch(∥p̄h∥2L2 + ∥p̃h∥2L2).

Combining with

c0γ|v̄h|1∥p̃h∥L2 ⩽ 1

4
γC−1

0 ∥p̄h∥2L2 + c20γC
3
0∥p̃h∥2L2 ,

and choosing h sufficiently small, we obtain
Bn+1

h (vh, ph) ⩾ (2C0)
−1∥p̃h∥2L2 + (2C0)

−1γ∥p̄h∥2L2 .

This ends the proof.
Proof. [Proof of Theorem 2.2–2.3] We first prove the unique solvability of (2.33b)–

(2.33d). According to Remark 2.2, (2.33b)–(2.33d) is a linear system. Thus, it suffices
to prove the uniqueness of solutions. The uniqueness of the velocity un+1

h and ωn+1 can
be proved by using the energy dissipating property (2.38). Then the inf-sup condition in
Theorem 3.1 leads to the uniqueness of pn+1

h . This ends the proof of Theorem 2.3.
For the Dirichlet problem, the proof for the uniqueness of solution is similar. Suppose

there are two solutions (un+1
h , pn+1

h ) and (ũn+1
h , p̃n+1

h ) of (2.32b). Since (2.32b) is linear, the
difference of these two solutions satisfies the same equation with vanishing f and Dirichlet
boundary conditions. According to Theorem 2.2 and Remark 3.1, we obtain the uniqueness
of the velocity, while the uniqueness of the pressure can be obtained from Theorem 3.1.

4. Numerical examples. In this section, we present numerical examples to demon-
strate the convergence rates of the proposed method and validate the energy-dissipating
property obtained in Theorem 2.3. The proposed numerical scheme is implemented by the
open sourced high performance Python package: NGsolve; see https://ngsolve.org.

4.1. Convergence tests. In this section, we apply the proposed scheme on the Navier-
Stokes equations on a moving domain with Dirichlet boundary conditions to validate its
convergence rates. The moving domain is enclosed by a rotating interior boundary and a
fixed rectangular boundary of [−1.5, 1.5]×[−1.5, 1.5]. For convenience of error measurement,
we consider an example with manufactured exact solutions. To ensure the smoothness of
the exact solutions, we consider the interior boundary which is described as the zero level
set of ϕ(x, y, t) defined by

ϕ(x, y, t) = k8(x2 + y2)3 − 0.01k2

− k4a2(x cos(ωt) + y sin(ωt))2(−x sin(ωt) + y cos(ωt))2.

17



The parameter ω describes the angular velocity and is set to be π. The other shape pa-
rameters are chosen as k = 1.5, a = 3, and µ = 1. The geometric setting is demonstrated

Fig. 4.1: Geometric setting and the sliding interface (convergence tests).

in Fig. 4.1. The mesh at T = 0.1 is demonstrated in the right panel of Fig. 4.1, where the
rotating mesh and the stationary mesh have overlap near the artificial circular interface.
The exact velocity field and the exact pressure are given as follows,

u(x, y, t) = ω

(
−y
x

)
+ g

(
gy
−gx

)
, p(x, y, t) = ϕ(x, y, 0)x exp(−2(x2 + y2)),

where g(x, y, t) = ϕ(x, y, t)(x2 − 1.52)(y2 − 1.52) exp(−6(x2 + y2)). It is obvious that u
satisfies the incompressible condition and the Dirichlet boundary condition on the rotating
interior boundary. According to the exact solutions of u and p, we determine the initial
value u0 and the right-hand side f correspondingly. The artificial interface is set at the
circle with radius RI = 1.
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Fig. 4.2: Errors of spatial and temporal discretizations

On each subdomain, we use the P2-P1 element for spatial discretization which satisfies
the inf-sup conditions on subdomains. To investigate the spatial convergence rate of the
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proposed method, we choose T = 3 and a sufficiently small time stepsize τ = T/20000. As
demonstrated in Fig. 4.2, both the velocity error in H1 norm and the pressure error in L2

norm exhibit a second order convergence. The temporal convergence is tested with T = 3
and a small mesh size h = 0.06. The first order temporal convergence rates of both the
velocity error in H1 and the pressure error in L2 are validated in Fig. 4.2. As discussed in
Section 2.4, geometric approximation errors are involved in the proposed method. However,
this numerical experiment confirms that P2-P1 Taylor-Hood elements on straight-edged
triangulations achieve optimal convergence rates despite these errors.

4.2. Motion of the fluid driven by a forced rotator. In this section, we apply the
proposed scheme (2.32) to simulate the motion of the fluid driven by a slender four-blade
propeller with a given velocity. In this example, we set µ = 0.01. The Dirichlet boundary
condition in (2.7d) is set by wD = ω(t)vΓ+(t) with

ω(t) =

{
t, t < 2,

2, t ⩾ 2.

The geometric setting together with the computational mesh are illustrated in Fig 4.3.

Fig. 4.3: Sliding interface and computational mesh (example of forced rotator).

Compared with the first case where the interior boundary is smoother, slender blades typ-
ically induce stronger vortex effects in the fluid motion. This is because of the sudden
changes in flow direction at the corners, which leads to the generation of strong vortices.

As demonstrated in Fig. 4.4a–4.4b, at the beginning several rotations, the pressure
rapidly increases in front of the blades (windward side) due to the fact that the fluid has
been pushed, creating a high-pressure zone. Conversely, behind the blades (in the wake
region), the fluid is pulled, leading to a drop in pressure and forming a low-pressure zone.
Around the blades, the pressure gradient becomes pronounced.

Under the influence of the rotating blades, see in Fig. 4.4c–4.4d, the fluid continuously
accelerates. The centrifugal force causes the pressure to be lower in the central region of
the cavity, while it becomes higher near the cavity’s outer edges (close to the walls). As
time progresses, due to the no-slip boundary condition, the pressure near the cavity walls
gradually increases. This occurs because the fluid is decelerated as it approaches the walls,
leading to the build-up of the pressure.

4.3. Energy dissipation of the FSI problem. In this section, we validate the
energy-dissipating property of the proposed fully discrete scheme (2.33) for the FSI problem.
The FSI problem considered here is the continuation of the movement of the four-blade
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(a) T=2 (b) T=4

(c) T=8 (d) T=28

Fig. 4.4: Streamlines and pressure field (example of forced rotator)

propeller from the previous section after T = 30, but without any driving force applied to
the rotating structure. This allows for the free interaction between the rotating propeller
and the fluid. In other words, we solve (2.33) with initial velocity field and the geometry
set by the solution of the previous section at T = 30, which is demonstrated in Fig 4.6a.
Thus, the initial velocity field weakly satisfies the incompressible condition and we continue
the time counting, meaning T = 30 is the starting time of FSI.

After the driving force is removed, the slender four-blade propeller will continue to
rotate due to inertia. As the viscous forces of the fluid exert resistance on the propeller, its
angular speed ω will gradually decrease, as validated in Fig 4.5.
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Fig. 4.5: Decay of angular velocity and total energy (FSI with a rotating rigid structure)

We present several snapshots of the streamlines of the fluid field at different times in
Fig 4.6a-Fig 4.6d. After the removal of the driving force, the flow field will gradually evolve
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(a) T=30 (b) T=35

(c) T=40 (d) T=45

Fig. 4.6: Streamlines and pressure field (FSI with a rotating rigid structure)

from active movement to a state of rest. Initially, the flow shows significant velocity and
pressure magnitudes. As the propeller slows down, the velocity field becomes less dynamic.
The system’s total kinetic energy decreases over time, as evidenced in Fig 4.5.

Finally, we illustrate the energy dissipation between consecutive time steps in Fig 4.7.
According to Theorem 2.3, the total energy should always decrease. Fig 4.7 demonstrates
that En+1 − En ⩽ 0, which is consistent with the theoretical analysis, and validates the
effectiveness of the proposed method in preserving the energy dissipation of the original
FSI problem. Because of the energy-dissipating property, the proposed method is robust
for long time simulation for FSI problems with a rotating rigid structure.
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Fig. 4.7: Energy dissipation (FSI with a rotating rigid structure)

5. Conclusion. In this paper, we have proposed a fully discrete energy dissipating
scheme for simulating the fluid-structure interaction with a rotating rigid structure in
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the framework of the sliding interface method. A skew-symmetric Nitsche’s stabilization
term on the artificial sliding interface, alongside a rotational arbitrary Lagrangian-Eulerian
framework have been employed to preserve the energy-dissipating property at the continu-
ous level and to guarantee the good mesh quality simultaneously. At the discrete level, a first
order fully discretization has been proposed and proved to preserve the energy-dissipating
property. Moreover, the inf-sup condition has been proved for Taylor-Hood type elements
on non-matching or overlapping sub-meshes, leading to the applicability and robustness of
the proposed approach. Based on the energy dissipating property and the inf-sup condi-
tion, the unique solvability of the fully discrete scheme has been proved. The accuracy and
the energy-dissipation law of proposed method have been validated by extensive numerical
examples.
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