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Abstract. We propose a new parametric finite element method, referred to as the BGN-MDR
method, for simulating both mean curvature flow and surface diffusion for closed hypersurfaces, as well
as open hypersurfaces with moving contact lines in three dimensions. The method is also applicable to
closed and open curves with moving contact points in two dimensions. The proposed scheme inherits
the energy stability from the BGN scheme proposed by Barrett, Garcke, and Nürnberg in 2008, and
offers improved mesh quality similar to the minimal deformation rate (MDR) method proposed by Hu
and Li in 2022, especially for small time step sizes where the BGN scheme may become unstable and
result in deteriorated meshes.
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1. Introduction. The evolution of surfaces under geometric curvature flows, such
as mean curvature flow and surface diffusion, has attracted significant interest due to its
wide-ranging applications (see, e.g., [10, 22, 28, 31, 39]). These curvature-driven mech-
anisms are fundamental to understanding interface dynamics in physical systems, as
illustrated by phenomena such as grain boundary migration [35] and the morphological
evolution of thin solid films [47].

This article concerns the numerical approximation of a hypersurface Γ(t), t ∈ [0, T ],
in Rd, where d = 2 or 3, evolving under geometric curvature flows such as mean curva-
ture flow and surface diffusion, which are described by the following geometric evolution
equations:

v · n = −H (mean curvature flow),
v · n = ∆Γ(t)H (surface diffusion).

Here, v(·, t) denotes the velocity field of Γ(t), and the specific velocity law—whether
corresponding to mean curvature flow or surface diffusion—governs the evolution of the
surface.

The numerical approximation of geometric curvature flows governed by various
velocity laws has been extensively studied by the parametric finite element method
(FEM), which was introduced by Dziuk [25] in 1990 and has since been widely used for
computing a variety of curvature flows; see, e.g., [16,17,27]. However, computing mean
curvature flow or surface diffusion by the parametric FEM poses significant challenges,
particularly in preserving the mesh quality as the surface undergoes large deformations;
nodal points tend to cluster and the mesh becomes increasingly distorted, potentially
leading to computational breakdowns. Consequently, to address these issues, advanced
mesh remeshing techniques have been developed (see, e.g., [41, 45]). These methods
dynamically reallocate mesh points and restore mesh quality whenever it falls below a
prescribed threshold, thereby ensuring that the numerical computations are consistently
performed on meshes with good quality.

An alternative to the remeshing techniques is to impose an artificial tangential mo-
tion that continuously improves the mesh quality of the evolving surface. This idea
was introduced by Barrett, Garcke, and Nürnberg in [11–13], in which they designed
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a weak formulation that enforces the map Xm
h : Γm−1

h → Γm
h between consecutive ap-

proximate surfaces to be discrete harmonic. As a result, the method helps to preserve
the shape of mesh triangles to a certain degree. Specifically, the Barrett–Garcke–
Nürnberg (BGN) method for mean curvature flow can be formulated as follows: Find
(vmh ,Hm

h ) ∈ (Sm−1
h )d×Sm−1

h , with Sm−1
h being the piecewise linear finite element space

on the surface Γm−1
h , such that∫ (h)

Γm−1
h

vmh · nm−1
h χh =

∫ (h)

Γm−1
h

−Hm
h χh ∀χh ∈ Sm−1

h , (1.1a)∫
Γm−1
h

∇Γm−1
h

(
τvmh + id

)
· ∇Γm−1

h
ηh =

∫ (h)

Γm−1
h

Hm
h nm−1

h · ηh ∀ ηh ∈ (Sm−1
h )d, (1.1b)

where (1.1b) enforces that Xm
h := id+τvmh is a discrete harmonic map from Γm−1

h to
Γm
h , and

∫ (h)

Γm−1
h

denotes the mass-lumped quadrature for integration over Γm−1
h . In

addition, to enhancing mesh quality, the BGN method is also energy stable; that is, the
surface area decreases over time. These two advantages (improving mesh quality while
being energy stable) make the BGN method particularly suitable for computing mean
curvature flow undergoing large deformations, often up to the onset of singularities—
offering advantages over Dziuk’s original parametric FEM. Beyond mean curvature flow,
the BGN method has been successfully extended to a variety of applications, including
two-phase Navier–Stokes flows [14,15], surface diffusion [8], and axisymmetric geometric
evolution equations [5].

One drawback of the BGN method lies in the tangential velocity introduced in (1.1b).
As τ → 0, the tangential component becomes indeterminate, potentially leading to an
ill-posed system. This issue may cause numerical instabilities or even breakdown of the
simulation, particularly in three-dimensional settings.

In contrast to the BGN method, Elliott and Fritz [29, 30] introduced an artificial
tangential velocity derived from reparametrizing the evolving surface using DeTurck
flow techniques, which naturally yields the tangential component of the velocity field.
A key advantage of this approach is that it facilitates rigorous convergence analysis of
certain parametric FEMs incorporating tangential motion. This has been demonstrated
through established convergence results for curve shortening flow [30] and the mean
curvature flow of closed torus-type surfaces [42]. However, the convergence of such
methods for the mean curvature flow of general surfaces in three dimensions remains
an open and compelling question.

To address the instability of the BGN method in the limit τ → 0, Hu and Li [36]
(see also [2]) proposed an artificial tangential motion designed to minimize the energy∫

Γ

|∇Γv|2 (1.2)

subject to the constraint v ·n = u ·n, where u denotes the original velocity of the surface
(for example u = −Hn and (∆ΓH)n in mean curvature flow and surface diffusion,
respectively). The energy in (1.2) represents the instantaneous deformation rate of the
surface. Minimizing this energy under the constraint v · n = u · n leads to the following
continuous-level problem that determines the tangential component of the velocity:

−∆Γv = κn,

v · n = u · n,
(1.3)

where κ appears as the Lagrange multiplier associated with the constrained minimiza-
tion problem. This approach, referred to as the minimal deformation rate (MDR)
method, demonstrates a significant distinction depending on the discretization used.
Specifically, the MDR and BGN methods are equivalent under semi-discretization in
time (i.e., without spatial discretization), as formally shown in [36]. However, when
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spatial discretization is introduced, the two methods are no longer equivalent. In the
limit τ → 0, corresponding to semi-discretization in space, the MDR method discretizes
(1.3), which uniquely determines the tangential motion. In contrast, the BGN method
discretizes ∆Γid = −Hn, an equation that holds for any surface and thus allows for
arbitrary tangential motion. This fundamental difference explains the improved stabil-
ity properties of the MDR method as τ → 0 in the fully discrete setting. Despite its
effectiveness in maintaining the mesh quality, a major challenge of the MDR method
lies in constructing a linearly implicit full discretization scheme that preserves energy
stability—i.e., the area-decreasing property over time—that is inherent to the BGN
method. Addressing this issue remains an important open problem in the development
of the MDR approach.

In addition to the MDR method, Duan and Li [24] proposed an alternative strat-
egy that incorporates artificial tangential velocity by minimizing a deformation energy
defined on the initial surface Γ0

h, while preserving the prescribed normal velocity. The
continuous formulation of this minimal deformation (MD) approach ensures that the
flow map from the initial surface to the current surface is a harmonic map. As a re-
sult, this method can reduce mesh distortion and mitigate the accumulation of errors
across successive time steps. Similar to the MDR approach, a major challenge in the
MD approach lies in designing a linearly implicit, fully discrete scheme that preserves
the energy stability—a key property of the BGN method. While this can be achieved
through nonlinearly implicit schemes involving Lagrange multipliers [32], constructing
an efficient linearly implicit energy stable scheme that incorporates the MD tangential
motion remains an open and interesting problem.

Apart from advances in algorithm design, the convergence analysis of parametric
finite element methods (FEMs) for curvature-driven flows has progressed more slowly.
In particular, the convergence of various parametric FEMs for curvature flows of one-
dimensional curves and non-parametric FEMs for curvature flows of graph surfaces has
been established in [19, 21, 23, 26, 30, 43, 44] and [18, 20], respectively. The convergence
of parametric FEMs for the mean curvature flow, Willmore flow, and surface diffu-
sion of general closed surfaces was established by Kovács, Li, and Lubich [37, 38] for
finite elements of degree k ≥ 2 based on reformulating the governing equations using
the evolution of the normal vector and mean curvature, with error estimates derived
by comparing particle trajectories between the exact and approximate surfaces. More
recently, the convergence of Dziuk’s semi-implicit parametric FEM for the mean curva-
ture flow of general closed surfaces was proved in [3] for finite elements of degree k ≥ 3,
using a novel approach that estimates the distance between the exact and approximate
surfaces. This distance-based error analysis, which neglects the tangential motion, also
enabled the convergence proof of a stabilized BGN method for the curve shortening
flow in [4]. Although the stabilized BGN method in [4] bridges the BGN and MDR
approaches and facilitates a convergence proof (at least for one-dimensional curves),
it sacrifices the energy stability that is a hallmark of the original BGN method. The
convergence of the original BGN method—remarkable for being both energy stable and
capable of improving mesh quality through artificial tangential motion—remains an
open and challenging problem.

Overall, the BGN method remains one of the most effective numerical approaches
for simulating surface evolution under various curvature flows, due to its energy stability
and mesh-improving properties. Its main drawback lies in a potential instability related
to the choice of the time step size, which typically must be selected sufficiently large on
a case-by-case basis in numerical simulations. This requirement may, however, increase
the time discretization error.

The present paper aims to eliminate this drawback by bridging the BGN and MDR
methods while preserving the energy stability of the original BGN approach. To this
end, we propose a novel numerical scheme that not only ensures energy stability but
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also maintains high-quality meshes, even for small time step sizes. In order to clearly
delineate the commonalities and differences between the BGN and MDR methods, we
first consider their formulations when restricted to a properly defined tangential-motion
space. More precisely, we define

V̄ (T ),m−1 :=
{
ηh ∈ (Sm−1

h )d
∣∣∣ ∫ (h)

Γm−1
h

ηh · nm−1
h χh = 0 ∀χh ∈ Sm−1

h

}
, (1.4)

which comprises those vector fields that are, in a mass-lumping quadrature sense, or-
thogonal to the normal direction nm−1

h . Within this tangential space, the BGN method
in (1.1) can be recast as∫

Γm−1
h

∇Γm−1
h

(
τvmh + id

)
· ∇Γm−1

h
ηh = 0, ∀ ηh ∈ V̄ (T ),m−1,

while the finite element discretization of the MDR formulation (1.3) can be written as
follows, by eliminating the term

∫ (h)

Γm−1
h

κm
h nm−1

h · ηh using the definition of V̄ (T ),m−1 in
(1.4): ∫

Γm−1
h

∇Γm−1
h

vmh · ∇Γm−1
h

ηh = 0, ∀ ηh ∈ V̄ (T ),m−1.

The two formulations coincide when the test functions are further restricted to the
subspace

V (T ),m−1 :=
{
ηh ∈ V̄ (T ),m−1

∣∣∣ ∫
Γm−1
h

∇Γm−1
h

id ·∇Γm−1
h

ηh = 0
}
.

Therefore, the velocities of the BGN and MDR methods agree on testing functions in
V (T ),m−1 with the H1 inner product. The difference between the velocities in this two
methods lies in testing functions in the orthogonal complement of V (T ),m−1 in (Sm−1

h )d,
which is defined as V (N),m−1.

Let us denote by −∆Γm−1
h

: H1(Γm−1
h ) → Sm−1

h the discrete Laplace-Beltrami
operator, defined via a mass-lumping quadrature that fulfills∫ (h)

Γm−1
h

(
−∆Γm−1

h
f
)
· ηh =

∫
Γm−1
h

∇Γm−1
h

f · ∇Γm−1
h

ηh,

for any ηh ∈ Sm−1
h and for a fixed function f ∈ H1(Γm−1

h ). For the vector-valued case,
we define the operator −∆Γm−1

h
to act componentwise. Then V (N),m−1 is the vector

space given below:
V (N),m−1 =

{
α (−∆Γm−1

h
id) + Ih(n

m−1
h χh) : α ∈ R, χh ∈ Sm−1

h

}
.

where Ih denotes the Lagrange interpolation operator defined in (2.5). Define Tm−1
h ∈

(Sm−1
h )d as the deviation from the space span

{
Ih(n

m−1
h χh) : χh ∈ Sm−1

h

}
, i.e.,

−∆Γm−1
h

id = Ih(µ
m−1
h nm−1

h ) + Tm−1
h , (1.5)

with Tm−1
h orthogonal to the normal vector nm−1

h at every finite element node. From
(1.5), it follows that µm−1

h serves as an approximation of the curvature of Γm−1
h at time

level m− 1. Consequently, V (N),m−1 admits the following orthogonal decomposition:
V (N),m−1 = span

{
Ih(n

m−1
h χh) : χh ∈ Sm−1

h

}
⊕ span

{
Tm−1
h

}
.

Since the normal velocity of the surface is approximately determined by the specific cur-
vature flow, the main difference between the velocities in the BGN and MDR methods
lies in testing with Tm−1

h .
This observation motivates the development of a numerical scheme that bridges the
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BGN and MDR methods by specifying the component of the velocity in the direction
of Tm−1

h , with the property of preserving energy stability while ensuring robust mesh
quality with respect to the choice of the time step size. It is important to note that
modifying the velocity v along the direction of Tm−1

h does not alter the fundamental
velocity law governing the curvature flow, since Tm−1

h is a tangential vector that is or-
thogonal to the normal vector at every finite element node. Rather, this modification is
introduced to achieve a more uniform distribution of mesh points, thereby substantially
improving the quality of the computed surfaces.

The additional vector Tm−1
h defined in (1.5) quantifies the deviation of the polygo-

nal curve or polyhedral surface—obtained from the fully discretized BGN scheme—from
the conformal polyhedral surface or conformal polygonal curve introduced in [10]. Con-
formal polygonal curves inherently yield an optimal mesh because, when the spatially
semidiscrete or nonlinearly implicit BGN method for the evolution of one-dimensional
curves admits a solution, adjacent edges are of equal length provided they are not paral-
lel, see the discussion in [10]. In particular, Tm−1

h emerges from the spatial discretization
and the element-wise integration by parts performed on each curved triangle, thereby
capturing the discontinuity in the conormal vector across adjacent curved triangles. In
the case of planar curves discretized using the lowest-order FEM, if the two segments
adjoining a node ζ have unequal lengths, the vector Tm−1

h naturally points in the di-
rection of the shorter segment. Accordingly, we prescribe a tangential velocity in the
direction −Tm−1

h by enforcing the following constraint equation:∫ (h)

Γm−1
h

vmh · Tm−1
h = −αcm∥Tm−1

h ∥L2
h
. (1.6)

Here, ∥·∥L2
h

denotes the discrete L2-norm, and α is a positive, adjustable parameter that
can be varied across numerical experiments; unless specified otherwise, we set α = 1.
The scalar variable αcm ∈ R, introduced via the constraint (1.6), is proportional to the
magnitude of the velocity component in the −Tm−1

h direction and will be integrated into
the formulation of the BGN-MDR scheme for both closed surfaces and closed curves.

In addition to simulating the evolution of closed surfaces under curvature flows,
BGN methods have also been successfully applied to interface evolution problems, par-
ticularly in modeling solid-state dewetting processes involving contact line migration.
Bao et al. have developed energy-stable parametric finite element methods that incor-
porate artificial tangential velocities in the spirit of the BGN framework [5–7,9]. In this
paper, we extend these ideas by defining the normal motion space and the auxiliary
vector Tm−1

h for open surfaces with moving contact lines, as well as for open curves
with moving contact points, in a manner analogous to the treatment of closed surfaces
and curves. This extension properly incorporates the relevant boundary and contact
angle conditions, and enables us to propose a BGN-MDR numerical scheme that en-
sures both energy stability and good mesh quality, even when small time step sizes are
used.

The paper is organized as follows. In Section 2, we introduce the proposed BGN-
MDR formulation for both mean curvature flow and surface diffusion on closed surfaces
and closed curves in dimensions d = 2, 3. A series of numerical experiments are pre-
sented to demonstrate that the method not only preserves energy stability but also
maintains mesh quality even for very small time step sizes, in direct comparison with
the BGN method. In Section 3, we extend the BGN-MDR scheme to the setting of
open surfaces with a moving contact line in three dimensions, as well as to open curves
with moving contact points in two dimensions. Several numerical examples are pro-
vided to verify the optimal temporal and spatial convergence rates and to illustrate
the robustness of the proposed method in sustaining high-quality meshes for small time
step sizes.
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2. BGN-MDR scheme on closed surfaces. Let Γ0 = Γ(0) ⊂ Rd denote the
(d−1)-dimensional exact surface at the initial time t = 0. We denote by Γ0

h a piecewise
triangular surface, where each element is the image of a reference triangle under a linear
map, providing an approximation to Γ0.

Let tm = mτ , m = 0, 1, . . . , N , be a partition of the time interval [0, T ], where
τ > 0 is the time step size. For m ≥ 1, let xm−1

j , j = 1, . . . , J , denote the nodes of the
numerical computed approximate surface Γm−1

h at time level tm−1.
Let Km−1

h denote the collection of triangles that constitute the approximate surface
Γm−1
h . The finite element space on Γm−1

h is defined by
Sm−1
h =

{
vh ∈ C0(Γm−1

h ) : vh
∣∣
K

is linear for all K ∈ Km−1
h

}
.

In the vector-valued case, the finite element space (Sm−1
h )l, for any positive integer l,

is defined componentwise. The vector-valued finite element function Xm
h ∈ (Sm−1

h )d

denotes the piecewise linear map from Γm−1
h onto Γm

h , uniquely determined by its value
at the finite element nodes.

2.1. Tangential-motion space and normal-motion space. We denote by nm−1
h

the piecewise normal vector on the triangulated surface Γm−1
h , i.e., the restriction

nm−1
h |K to each triangle K ⊂ Γm−1

h coincides with nm−1
K , the unit normal vector on K.

The discrete tangential-motion space V (T ),m−1 is defined as follows:
V (T ),m−1 := (2.1){
ηh ∈ (Sm−1

h )d
∣∣ (ηh, nm−1

h χh)
(h) = 0, ∀χh ∈ Sm−1

h and
∫
Γm−1
h

∇Γm−1
h

id · ∇Γm−1
h

ηh = 0
}
.

The space V (N),m−1 is defined as the orthogonal complement of V (T ),m−1 in (Sm−1
h )d:

V (N),m−1 =
(
V (T ),m−1

)⊥
= span{Ih(nm−1

h χh) | χh ∈ Sm−1
h } ⊕ span{Tm−1

h }. (2.2)
Here, the additional vector Tm−1

h is defined through the following problem: find
(Tm−1

h , µm−1
h ) ∈ (Sm−1

h )d × Sm−1
h

such that

(Tm−1
h , ηh)

(h) + (µm−1
h nm−1

h , ηh)
(h) =

∫
Γm−1
h

∇Γm−1
h

id · ∇Γm−1
h

ηh ∀ηh ∈ (Sm−1
h )d

(Tm−1
h , nm−1

h χh)
(h) = 0 ∀χh ∈ Sm−1

h ,
(2.3)

where (·, ·)(h) denotes the mass-lumping inner product on the discrete surface Γm−1
h .

Denote by {σl}Ll=1 a family of pairwise disjoint, relatively open (d − 1)-simplices that
constitute Γm−1

h . For piecewise continuous functions η, χ ∈ L∞(Γm−1
h ), which may have

jumps across the edges of {σl}Ll=1, the mass-lumping inner product is defined as follows
(see Definition 43 in [10]):

(η, χ)(h) =
1

d

L∑
l=1

Hd−1(σl)

d∑
k=1

(η · χ)
(
(q⃗l,k)

−) , (2.4)

where q⃗l,k denotes the k-th vertex of the l-th simplex, and Hd−1 is the d−1-dimensional
Hausdorff measure; here, η ((q⃗l,k)

−) = limσl∋p⃗→q⃗l,k η(p⃗). This definition is naturally
extended to vector- and tensor-valued functions, with the product between η and χ
understood as the (Euclidean) inner product. For any function f defined on Γm−1

h ,
possibly piecewise defined and discontinuous across the boundaries of the triangles, we
define its Lagrange interpolation Ihf ∈ Sm−1

h as follows:
(Ihf, wh)

(h) = (f, wh)
(h), ∀wh ∈ Sm−1

h . (2.5)
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By introducing an averaged normal vector at each finite element node, which incor-
porates the contributions from all neighboring simplices weighted by their respective
areas (in three dimensions) or lengths (in two dimensions), we define

n̂m−1
h (xm−1

j ) :=

∑
σl∋xm−1

j
|σl|nm−1

σl∣∣∣∑σl∋xm−1
j

|σl|nm−1
σl

∣∣∣ , (2.6)

where |σl| := Hd−1(σl) denotes the area (for d = 3) or length (for d = 2) of the simplex
σl, and nm−1

σl
is the constant unit normal vector associated with σl. We use the same

notation, n̂m−1
h , to denote the finite element function whose value at each node xm−1

j

coincides with the averaged normal vector n̂m−1
h (xm−1

j ). Furthermore, from the mass
lumping definition in (2.4), we obtain

(µm−1
h nm−1

h , ηh)
(h) =

1

d

L∑
l=1

|σl|
d∑

k=1

(
µm−1
h nm−1

σl
· ηh
) (

(q⃗l,k)
−)

=
1

d

J∑
j=1

(
µm−1
h (xm−1

j ) ηh(x
m−1
j ) ·

∑
σl∋xm−1

j

|σl|nm−1
σl

)

=
1

d

J∑
j=1

(∣∣∣ ∑
σl∋xm−1

j

|σl|nm−1
σl

∣∣∣µm−1
h (xm−1

j ) n̂m−1
h (xm−1

j ) · ηh(xm−1
j )

)
.

The system (2.3) can be shown to be well-posed by demonstrating that its associated
homogeneous linear system admits only the trivial solution. Specifically, choosing the
test functions ηh := Tm−1

h and χh := µm−1
h in (2.3) leads to Tm−1

h ≡ 0. Subsequently,
selecting the test function ηh := Ih(n̂

m−1
h µm−1

h ) yields µm−1
h ≡ 0, thereby establishing

the desired well-posedness.

2.2. Numerical scheme for mean curvature flow. The proposed BGN-MDR
scheme for mean curvature flow is formulated as follows: Determine

(vmh , λm
h , cm) ∈ (Sm−1

h )d × Sm−1
h × R

such that∫
Γm−1
h

∇Γm−1
h

(τvmh + id) · ∇Γm−1
h

ηh −
(
(nm−1

h λm
h , ηh)

(h) + cm(Tm−1
h , ηh)

(h)
)
= 0

(2.7a)
(vmh · nm−1

h , χh)
(h) + (λm

h , χh)
(h) = 0

(2.7b)

(vmh , Tm−1
h )(h) + αcm∥Tm−1

h ∥L2
h
= 0

(2.7c)
for all ηh ∈ (Sm−1

h )d and χh ∈ Sm−1
h . Here, λm

h serves as an approximation of the
curvature of Γm

h at time level m, which is distinct from µm−1
h in (1.5), as the latter

approximates the curvature of the previous time level surface . In practical computa-
tions, the normalized term Tm−1

h /∥Tm−1
h ∥L2

h
is homogeneous of degree zero with re-

spect to the vector Tm−1
h , and as a result, it remains uniformly bounded as ∥Tm−1

h ∥L2
h

approaches the order of machine precision. In such cases, the triangulated surface
forms a conformal polyhedron with good mesh quality (see [10]), and the definition of
(vmh , Tm−1

h /∥Tm−1
h ∥L2

h
)(h) will only drive the mesh slightly away from being conformal

polyhedral and therefore does not immediately cause mesh distortion. Based on this
observation, it is not necessary to treat the degenerate case ∥Tm−1

h ∥L2
h
= 0 separately.
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Therefore, for the remainder of our analysis on the effectiveness of the numerical scheme
(2.7), we shall assume ∥Tm−1

h ∥L2
h
̸= 0, without further clarification.

From equations (2.7b) and (2.7c), λm
h ∈ Sm−1

h and cm ∈ R can be solved as follows:

λm
h = −Ih(v

m
h · nm−1

h ) and cm = −
(
vmh ,

Tm−1
h

α∥Tm−1
h ∥L2

h

)(h)
.

Substituting the above expressions into (2.7a) yields:∫
Γm−1
h

∇Γm−1
h

(τvmh + id) · ∇Γm−1
h

ηh + (vmh · nm−1
h , nm−1

h · ηh)(h) (2.8)

+
(vmh , Tm−1

h )(h)(Tm−1
h , ηh)

(h)

α∥Tm−1
h ∥L2

h

= 0 ∀ ηh ∈ (Sm−1
h )d.

This formulation shows that the BGN-MDR method reduces to the BGN method as
α → ∞.

Under some mild conditions stated in Theorem 2.1, the well-posedness of the nu-
merical scheme (2.7) will be established.

Theorem 2.1. Assume that the discrete surface (or the discrete curve) Γm−1
h

satisfies the following mild conditions:
(A1) The elements are nondegenerate, i.e., for each K ⊂ Km−1

h , it holds |K| > 0.
(A2) The normal vectors fulfill

dim
(
span

{
(nm−1

h ϕh, 1)
(h)
∣∣ϕh ∈ Sm−1

h

})
= d.

Then, the numerical scheme (2.7) is well-posed, i.e., there exists a unique solution
(vmh , λm

h , cm) ∈ (Sm−1
h )d × Sm−1

h × R.
Proof. It suffices to demonstrate that the following homogeneous system admits

only the trivial solution:∫
Γm−1
h

∇Γm−1
h

τvmh · ∇Γm−1
h

ηh −
((

nm−1
h λm

h , ηh
)(h)

+ cm
(
Tm−1
h , ηh

)(h))
= 0 (2.9a)

(
vmh · nm−1

h , χh

)(h)
+
(
λm
h , χh

)(h)
= 0 (2.9b)(

vmh , Tm−1
h

)(h)
+ αcm∥Tm−1

h ∥L2
h
= 0 (2.9c)

for ηh ∈ (Sm−1
h )d and χh ∈ Sm−1

h . By choosing the test functions ηh := vmh and
χh := λm

h in (2.9), solving for cm from (2.9c), and then summing the equations (2.9a)
and (2.9b), we obtain

τ∥∇Γm−1
h

vmh ∥2
L2(Γm−1

h )
+ ∥vmh · nm−1

h ∥2L2
h
+ ∥Tm−1

h ∥(h)
L2

h

∣∣∣(vmh ,
Tm−1
h

α ∥Tm−1
h ∥L2

h

)(h)∣∣∣2 = 0,

(2.10)
which implies

∥∇Γm−1
h

vmh ∥L2(Γm−1
h ) = 0, (2.11a)

Ih(v
m
h · nm−1

h ) = 0. (2.11b)
From the nondegenerate condition (A1), equation (2.11a) immediately implies that vmh
is a constant vector field, that is, there exists a constant vector vconstant such that
vmh = vconstant. In conjunction with (2.11b), this entails

vconstant · (nm−1
h ϕh, 1)

(h) = 0.

Hence, by condition (A2), one deduces that vconstant = 0, implying vmh ≡ 0. Substituting
8



vmh = 0 into (2.9b) immediately yields λm
h = 0, and then from (2.9c) it follows that

cm = −
(
vmh ,

Tm−1
h

α ∥Tm−1
h ∥L2

h

)(h)
= 0.

Remark 2.1. Condition (A2) requires that the discrete vertex normals of Γm−1
h

span Rd. This condition is violated only in exceptional cases; for example, it is always
satisfied for surfaces Γm−1

h without self-intersections (see Remark 65 in [10]). This mild
assumption (A2) is widely used in proving the well-posedness of numerical schemes for
curvature flows; see, for example, [9, 34,40].

Moreover, the following theorem states that the proposed BGN-MDR scheme is
unconditionally energy stable (area decreasing) for mean curvature flow.

Theorem 2.2. Let vmh ∈ (Sm−1
h )d denote the solution of (2.8). Then the area of

the discrete surface satisfies
|Γm

h | ⩽ |Γm−1
h | for m = 1, 2, . . . , N,

where |Γm
h | represents the area of the numerical surface Γm

h .
Proof. Choosing the test function ηh = vmh in (2.8) leads to∫

Γm−1
h

∇Γm−1
h

(τvmh + id) · ∇Γm−1
h

vmh +
(
vmh · nm−1

h , vmh · nm−1
h

)(h)
+

[
(vmh , Tm−1

h )(h)
]2

α∥Tm−1
h ∥L2

h

= 0.

(2.12)
By substituting the following inequality (see [12, (2.21)] or [11, (2.31)]) into (2.12)∫

Γm−1
h

∇Γm−1
h

(τvmh + id) · ∇Γm−1
h

vmh ⩾ |Γm
h | − |Γm−1

h |, (2.13)

we obtain |Γm
h | − |Γm−1

h | ⩽ 0.
We demonstrate the advantages of the BGN-MDR method in improving mesh qual-

ity through the following examples.
Example 2.1. We consider a torus-shape surface in Figure 2.1(a), defined by the

parametrization

x =

 (1 + 0.65 cosφ) cos θ
(1 + 0.65 cosφ) sin θ
0.65 sinφ+ 0.3 sin(5θ)

 , θ ∈ [0, 2π], φ ∈ [0, 2π].

Numerical simulations of mean curvature flow starting from the torus-shaped initial
surface described above, obtained by using the BGN and BGN-MDR schemes with
5592 triangles, are shown in Figure 2.1. Both methods achieve good mesh quality with
a time step size of τ = 0.005, as illustrated in Figures 2.1(d) and 2.1(e). However, when
the step size is reduced to τ = 10−4, the BGN scheme tends to exhibit mesh distortion,
whereas the BGN-MDR scheme continues to preserve good mesh quality, as shown in
Figures 2.1(b) and 2.1(c).

Furthermore, Figure 2.2 shows the energy stability (area decrease) of the BGN-
MDR scheme and the evolution of ∥Tm−1

h ∥L2
h
. These numerical results demonstrate the

superiority of the BGN-MDR method over the BGN method in improving mesh quality,
while maintaining energy stability.

Example 2.2. We consider the dumbbell-shape surface shown in Figure 2.3(a),
defined by the parametrization

x =

(0.6 cos2 φ+ 0.4) cos θ sinφ
(0.6 cos2 φ+ 0.4) sin θ sinφ

cosφ

 , θ ∈ [0, 2π], φ ∈ [0, 2π].

Under mean curvature flow, the dumbbell-shaped surface evolves into a sphere which
9



(a) Initial Surface

(b) BGN scheme for τ = 10−4 (c) BGN-MDR scheme for τ = 10−4

(d) BGN scheme for τ = 0.005 (e) BGN-MDR scheme for τ = 0.005

Fig. 2.1: Surface evolution in Example 2.1

(a) Evolution of surface area (b) Evolution of ∥T∥L2
h

Fig. 2.2: Evolution of surface area and ∥T∥L2
h

in Example 2.1.
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then shrinks to a point singularity. To enhance the stability of the BGN-MDR algorithm
in the presence of the blow-up of ∥Tm−1

h ∥L∞ near the singularity, for t ≥ 0.0908 we
modify the constraint equation (2.7c) by incorporating the factor

(area(Γm−1
h ))1/2

(area|t=0.0908)1/2

which compensates for the surface area diminishing to zero as the evolution progresses.
The modified constraint equation can be written as follows:(

vmh ,
−Tm−1

h

∥Tm−1
h ∥L2

h

)(h)

+ cm ·
(area(Γm−1

h ))1/2

(area|t=0.0908)1/2
= 0. (2.14)

We employ the BGN method and the proposed BGN-MDR method with mesh size
h = 0.06, with 3836 triangles and 1920 vertices. To accurately resolve the solution near
the blow-up time, the time step size is reduced from τ1 = 10−4 to τ2 = 2 × 10−7 for
t ≥ 0.0908. Both the BGN and BGN-MDR schemes yield good mesh quality under
mean curvature flow; see Figures 2.3(d) and 2.3(e).

However, when the time-step is reduced from τ1 = 10−5 to τ2 = 10−7, the BGN
scheme tends to exhibit deteriorated mesh quality, whereas the BGN-MDR scheme
maintains a high-quality mesh; see Figures 2.3(b) and 2.3(c). These results demonstrate
the superiority of the BGN-MDR method in improving the mesh quality.

(a) Initial Surface

(b) BGN with τ1 = 10−5 and τ2 =
10−7 at T = 0.0906655

(c) BGN-MDR with τ1 = 10−5,
τ2 = 10−7 at T = 0.0906106

(d) BGN with τ1 = 10−4, τ2 = 2×
10−7 at T = 0.0908936

(e) BGN-MDR with τ1 = 10−4,
τ2 = 2× 10−7 at T = 0.0909028

Fig. 2.3: Surface evolution in Example 2.2
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2.3. Numerical scheme for surface diffusion. In the BGN-MDR scheme for
mean curvature flow, the constraint equation (2.7c) imposes an artificial tangential
velocity along the direction Tm−1

h , as defined in (2.3). By adopting this constraint, we
formulate the BGN-MDR scheme for surface diffusion as follows: Find

(vmh , λm
h , cm) ∈ (Sm−1

h )d × Sm−1
h × R

such that∫
Γm−1
h

∇Γm−1
h

(τvmh + id) · ∇Γm−1
h

ηh − (λm
h nm−1

h , ηh)
(h) − cm(Tm−1

h , ηh)
(h) = 0 (2.15a)

(vmh · nm−1
h , χh)

(h) +

∫
Γm−1
h

∇Γm−1
h

λm
h · ∇Γm−1

h
χh = 0 (2.15b)

(vmh , Tm−1
h )(h) + αcm∥Tm−1

h ∥L2
h
= 0 (2.15c)

for all ηh ∈ (Sm−1
h )d and χh ∈ Sm−1

h .
The well-posedness of the numerical scheme in (2.15) is shown in the following

theorem.
Theorem 2.3. Assume that the discrete surface (or the discrete curve) Γm−1

h
satisfies the following mild conditions:

(A1) The elements are nondegenerate, i.e., for each K ⊂ Km−1
h , it holds |K| > 0.

(A2) The normal vectors fulfill
dim

(
span

{
(nm−1

h ϕh, 1)
(h)
∣∣ϕh ∈ Sm−1

h

})
= d.

Then the numerical scheme in (2.15) possesses a unique solution
(vmh , λm

h , cm) ∈ (Sm−1
h )d × Sm−1

h × R.
Proof. In order to establish the existence and uniqueness of solutions to (2.15),

it is sufficient to show that the following homogeneous system admits only the trivial
solution:∫

Γm−1
h

∇Γm−1
h

τvmh · ∇Γm−1
h

ηh − (λm
h nm−1

h , ηh)
(h) − cm(Tm−1

h , ηh)
(h) = 0 (2.16a)

(vmh · nm−1
h , χh)

(h) +

∫
Γm−1
h

∇Γm−1
h

λm
h · ∇Γm−1

h
χh = 0 (2.16b)

(vmh , Tm−1
h )(h) + αcm∥Tm−1

h ∥L2
h
= 0 (2.16c)

for all ηh ∈ (Sm−1
h )d and χh ∈ Sm−1

h .
By choosing ηh := vmh in (2.16a) and χh := λm

h in (2.16b), and then summing
equations (2.16a)–(2.16c), we obtain

τ∥∇Γm−1
h

vmh ∥2
L2(Γm−1

h )
+ ∥∇Γm−1

h
λm
h ∥2

L2(Γm−1
h )

+
1

α
|cm|2/∥Tm−1

h ∥L2
h
= 0. (2.17)

Consequently, it follows that
∥∇Γm−1

h
vmh ∥L2(Γm−1

h ) = 0, (2.18a)
∥∇Γm−1

h
λm
h ∥L2(Γm−1

h ) = 0, (2.18b)
1

α
|cm|2∥Tm−1

h ∥L2
h
= 0. (2.18c)

Substituting (2.18b) into the weak formulation (2.16b) yields
Ih(v

m
h · nm−1

h ) = 0. (2.19)
From the nondegenerate condition (A1) and the condition (A2), equations (2.18a) and
(2.19) imply that vmh ≡ 0. Furthermore, by selecting ηh := Ih(λ

m
h nm−1

h ) in (2.16a) and
noting that vmh ≡ 0 along with the condition (Tm−1

h , λm
h nm−1

h )(h) = 0 inherent in the
12



definition of Tm−1
h , one obtains

(λm
h nm−1

h , λm
h nm−1

h )(h) = 0, (2.20)
which implies that λm

h ≡ 0. Finally, employing vmh ≡ 0 in conjunction with the con-
straint (2.18c) immediately yields

cm =
1

α

(
vmh ,

−Tm−1
h

∥Tm−1
h ∥L2

h

)(h)
= 0. (2.21)

Therefore, the homogeneous linear system in (2.16) admits only the trivial solution,
which in turn implies that the original linear system in (2.15) possesses a unique solution.

The following theorem states that the BGN-MDR scheme for surface diffusion is
unconditionally energy stable (area decreasing).

Theorem 2.4. Let (vmh , λm
h , cm) ∈ (Sm−1

h )d × Sm−1
h ×R be the numerical solution

of surface diffusion determined by (2.15). Then the following inequality holds:
|Γm

h | ⩽ |Γm−1
h | for m = 1, 2, . . . , N, (2.22)

where |Γm
h | denotes the area of the numerical surface Γm

h .
Proof. By choosing the test function ηh := vmh in (2.15a) and χh := λm

h in (2.15b),
and subsequently summing up equations (2.15a)-(2.15c), we obtain∫

Γm−1
h

∇Γm−1
h

(τvmh + id) · ∇Γm−1
h

vmh + ∥∇Γm−1
h

λm
h ∥2

L2(Γm−1
h )

+
1

α
|cm|2∥Tm−1

h ∥L2
h
= 0.

(2.23)
By substituting inequality (2.13) into (2.23), we obtain

|Γm
h | − |Γm−1

h | ⩽
∫
Γm−1
h

∇Γm−1
h

(τvmh + id) · ∇Γm−1
h

vmh ⩽ 0. (2.24)

This completes the proof.
The advantages of the BGN-MDR method for surface diffusion in improving the

mesh quality are shown in the following example.
Example 2.3. We consider surface diffusion with an initial surface being a box

centered at (0, 0, 0) with dimensions 1×6×1 in the x-, y-, and z-directions, respectively.
The numerical results obtained by the BGN and BGN-MDR methods with mesh size
h = 0.2 and time step size τ = 10−2 are shown in Figures 2.4(d) and 2.4(e), where both
schemes preserve good mesh quality.

However, when the smaller time step size τ = 10−4 is employed, the BGN scheme
produces mesh distortion, whereas the BGN-MDR scheme maintains good mesh quality;
see Figures 2.4(b) and 2.4(c). Furthermore, Figure 2.5 shows the evolution of the surface
area and ∥Tm−1

h ∥L2
h
. These numerical results demonstrate the superiority of the BGN-

MDR method over the BGN method in improving mesh quality while maintaining
energy stability.

Example 2.4. We also consider the surface diffusion flow starting from an initial
surface given by a box centered at (0, 0, 0) with dimensions 1× 8× 1 in the x-, y-, and
z-directions, respectively. Numerical results obtained using the BGN and BGN-MDR
methods with mesh size h = 0.2 and time step size τ = 10−3 are shown in Figures 2.6(d)
and 2.6(e). Both schemes preserve good mesh quality and are capable of predicting the
pinch-off time associated with singularity formation.

However, when a smaller time step size τ = 10−4 is used, the BGN scheme leads
to mesh distortion, whereas the BGN-MDR scheme continues to preserve good mesh
quality and still predicts the pinch-off time; see Figures 2.6(b) and 2.6(c). Furthermore,
Figure 2.7 presents the evolution of the maximum mean curvature over the discrete sur-
face and clearly demonstrates its blow-up behavior as the pinch-off time is approached

13



(a) Initial Surface

(b) BGN scheme for τ = 10−4 (c) BGN-MDR scheme for τ = 10−4

(d) BGN scheme for τ = 10−2 (e) BGN-MDR scheme for τ = 10−2

Fig. 2.4: Surface evolution in Example 2.3

(a) Surface areas versus time t (b) ∥T∥L2
h

values versus time t

Fig. 2.5: Evolution of surface area and ∥Tm−1
h ∥L2

h
in Example 2.1.

during the formation of the singularity.

3. BGN-MDR scheme for open surfaces with moving contact lines.

3.1. Introduction to solid-state dewetting (SSD). Solid-state dewetting (SSD)
is an evolution phenomenon on open surfaces driven by surface diffusion and charac-
terized by moving contact lines. As a thin film migrates along a substrate, a contact
line forms at the junction of the solid, vapor, and substrate phases, adding extra kinetic

14



(a) Initial Surface

(b) BGN scheme with τ = 10−4

(t = 0.3509)
(c) BGN-MDR scheme with τ = 10−4

(t = 0.3793)

(d) BGN scheme with τ = 10−3

(t = 0.369)
(e) BGN-MDR scheme with τ = 10−3

(t = 0.389)

Fig. 2.6: Surface evolution in Example 2.4

(a) Maximum mean curvature values
versus time t (prior to pinch-off).

(b) Maximum mean curvature values
versus time t (near pinch-off)

Fig. 2.7: Evolution of maximum mean curvatures in Example 2.4.

complexity [1, 46,47].
In this section, we introduce the BGN-MDR scheme, which extends our previous

approach for closed surfaces, for mean curvature flow and surface diffusion of open
surfaces with moving contact lines.

3.2. Mathematical model and governing equations in two dimensions
(2D). Let the evolving curve

Γ(t) = X(s, t) =

(
x(s, t)
y(s, t)

)
,

15



parameterized by the arc length s ∈ [0, L(t)], represent the film-vapor interface. Here,
L(t) denotes the length of the curve, and xl

c(t) and xr
c(t) are the positions of the left

and right moving contact points, respectively. The surface diffusion and mean curvature
flow are governed by

Surface diffusion:
{

∂tX · n = ∂2
sκ, 0 < s < L(t), t ⩾ 0,

κ = −
(
∂2
sX
)
· n, n =

(
−∂sy, ∂sx

)T
,

Mean curvature flow:
{

∂tX · n = −κ, 0 < s < L(t), t ⩾ 0,

κ = −
(
∂2
sX
)
· n, n =

(
−∂sy, ∂sx

)T
,

where κ is the curvature and n is the unit normal vector. The initial condition is

X(s, 0) = X0(s) =

(
x0(s)
y0(s)

)
, s ∈ [0, L0].

The boundary conditions are as follows. At the contact points, the interface satisfies
the contact point condition

y(0, t) = 0, y(L, t) = 0, t ⩾ 0,

and Young’s law (contact angle condition)
cos θld = σ = cos θrd, t ⩾ 0,

where θld and θrd are the angles between the interface and the substrate at the left and
right contact points, respectively. For surface diffusion, an additional zero-flux condition
is imposed:

∂sκ(0, t) = 0, ∂sκ(L, t) = 0, t ⩾ 0.

For any test function η := (η1, η2) ∈ H1(Γ(t)) × H1(Γ(t)), the following relation
holds from integration by parts:

(κn, η)Γ(t) = (−∂2
sX, η)Γ(t) = (∂sX, ∂sη)Γ(t) − (∂sX · η)

∣∣∣s=L(t)

s=0
(3.1)

= (∂sX, ∂sη)Γ(t) − σ [ηr1 − ηl1]−
√

1− σ2 [ηr2 − ηl2], (3.2)
where the last equality is obtained by applying Young’s law and the pairs (ηr1, η

r
2) and

(ηl1, η
l
2) denote the values of η at the right and left moving contact points, respectively.

Correspondingly, a functional Lm−1
h (ηh) is defined on the finite element function

space (Sm−1
h )2 under spatial discretization by

Lm−1
h (ηh) :=

(
∂sX

m−1
h , ∂sηh

)
− σ [ηr,m−1

h,1 − ηl,m−1
h,1 ]−

√
1− σ2 [ηr,m−1

h,2 − ηl,m−1
h,2 ].

By virtue of the Riesz representation theorem, it is deduced that there exists νm−1
h ∈

(Sm−1
h )2 such that

Lm−1
h (ηh) =

(
νm−1
h , ηh

)(h) for all ηh ∈ (Sm−1
h )2.

Then the tangential vector Tm−1
h is defined similarly to the equation (2.3), and it

is required to determine (Tm−1
h , λh) ∈ (Sm−1

h )2 × Sm−1
h such that(

Tm−1
h , ηh

)(h)
+
(
λh n

m−1
h , ηh

)(h)
=
(
νm−1
h , ηh

)(h)
, ∀ηh ∈ (Sm−1

h )2,(
Tm−1
h , nm−1

h χh

)(h)
= 0, ∀χh ∈ Sm−1

h .
(3.3)

In this formulation, Tm−1
h ∈ (Sm−1

h )2 is understood to represent the component of νm−1
h

that is orthogonal to the space span{Ih(nm−1
h χh) | χh ∈ Sm−1

h }.
3.3. Numerical scheme for mean curvature flow and surface diffusion in

2D. Let S̊h(Γ
m−1
h ) denote the subspace of Sm−1

h comprising finite element functions
16



that vanish on ∂Γm−1
h , and define Xm−1

h := Sm−1
h × S̊h(Γ

m−1
h ); the discrete velocity

vmh of the flow map Xm
h is accordingly assumed to lie in Xm−1

h so as to ensure that
the contact point condition is satisfied. By emulating the BGN-MDR scheme (2.7) for
closed surfaces, the following numerical scheme for mean curvature flow of open curves
with moving contact points is proposed: Find (vmh , λm

h , cm) ∈ Xm−1
h × Sm−1

h × R such
that

(∂s(τv
m
h + id), ∂sηh)−

(
λm
h nm−1

h , ηh
)(h) − cm

(
Tm−1
h , ηh

)(h)
= σ

[
ηr,m−1
h,1 − ηl,m−1

h,1

]
,

(3.4a)(
vmh · nm−1

h , χh

)(h)
+
(
λm
h , χh

)(h)
= 0, (3.4b)(

vmh , Tm−1
h

)(h)
+ αcm∥Tm−1

h ∥L2
h
= 0 (3.4c)

for all (ηh, χh) ∈ Xm−1
h × Sm−1

h . By solving for λm
h and cm from (3.4b) and (3.4c), the

above scheme (3.4) may be equivalently reformulated in a manner that closely parallels
the numerical scheme in (2.8):

(∂s(τv
m
h + id), ∂sηh) +

(
vmh · nm−1

h , ηh · nm−1
h

)(h)
+

(
Tm−1
h , ηh

)(h)(
Tm−1
h , vmh

)(h)
α∥Tm−1

h ∥L2
h

= σ
[
ηr,m−1
h,1 − ηl,m−1

h,1

]
, for all ηh ∈ Xm−1

h . (3.5a)
Furthermore, the BGN-MDR numerical scheme for surface diffusion of open curves

with moving contact points is formulated as follows: Find (vmh , λm
h , cm) ∈ Xm−1

h ×
Sm−1
h × R such that

(∂s(τv
m
h + id), ∂sηh)−

(
λm
h nm−1

h , ηh
)(h) − cm

(
Tm−1
h , ηh

)(h)
= σ

[
ηr,m−1
h,1 − ηl,m−1

h,1

]
,

(3.6a)(
vmh · nm−1

h , χh

)(h)
+
(
∂sλ

m
h , ∂sχh

)
= 0, (3.6b)(

vmh , Tm−1
h

)(h)
+ αcm∥Tm−1

h ∥L2
h
= 0 (3.6c)

for all (ηh, χh) ∈ Xm−1
h ×Sm−1

h . In an analogous fashion to the proofs of well-posedness
for the BGN-MDR numerical schemes for closed surfaces, as established in Theorems
2.1 and 2.3, the well-posedness of the schemes for open curves with moving contact
points can similarly be rigorously verified under the same mild conditions, since the
boundary term

σ
[
ηr,m−1
h,1 − ηl,m−1

h,1

]
in (3.4a) or (3.6a) is eliminated in the corresponding homogeneous system.

Theorem 3.1. Assume that the discrete curve Γm−1
h satisfies the following mild

conditions:
(A1) The elements are nondegenerate, i.e., for each K ⊂ Km−1

h , it holds |K| > 0.
(A2) The normal vectors fulfill

dim
(
span

{
(nm−1

h ϕh, 1)
(h)
∣∣ϕh ∈ Sm−1

h

})
= 2.

Then the BGN-MDR schemes in (3.4) and (3.6) are well-posed, guaranteeing the exis-
tence of a unique solution (vmh , λm

h , cm) ∈ Xm−1
h × Sm−1

h × R.
Moreover, the BGN-MDR numerical scheme maintains energy stability for both

mean curvature flow and surface diffusion. More precisely, the following theorem holds.
Theorem 3.2. Let (vmh , λm

h , cm) ∈ Xm−1
h × Sm−1

h × R be the solution of (3.6);
then, the discrete energy

Wm
h := |Γm

h | − σ
(
xm
r − xm

l

)
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is non-increasing, in the sense that
Wm

h ⩽ Wm−1
h for m = 1, 2, . . . , N.

Here, xm
l and xm

r denote, respectively, the x-axis coordinates of the left-moving and
right-moving contact points at time level tm.

Proof. Choosing test functions ηh := vmh in (3.6a) and χh := λm
h in (3.6b) yields

(∂s(τv
m
h + id), ∂sv

m
h ) + (∂sλ

m
h , ∂sλ

m
h ) +

1

α
s(cm)2∥Tm−1

h ∥L2
h

=
σ

τ

[
(xr

c(tm)− xl
c(tm))− (xr

c(tm−1)− xl
c(tm−1))

]
.

Then, by substituting inequality (2.13) into the above relation, we obtain

Wm
h −Wm−1

h ⩽ (∂sX
m
h , ∂s(X

m
h −Xm−1

h ))−σ
[
(xr

c(tm)−xl
c(tm))−(xr

c(tm−1)−xl
c(tm−1))

]
⩽ 0,

which completes the proof.
The energy stability of the BGN-MDR numerical scheme for mean curvature flow

is similarly established by an analogous argument.
The convergence and performance of the BGN-MDR method for mean curvature

flow of open curves with moving contact points are tested in the following two examples.
Example 3.1. We consider the evolution of a curve in mean curvature flow with

two endpoints constrained to the lines x = −π/4 and x = π/4, with the initial curve
Γ0 parametrized by

(x(θ), y(θ)) =
(
θ, − ln(cos θ) + 2

)
, θ ∈

[
−π

4
,
π

4

]
.

The parametrization of the exact solution is given by (x(θ), y(θ) + t), as shown in [33].
Since the constraints on the contact points are now specified on two parallel lines, rather
than on the x-axis, our numerical scheme must be adapted accordingly. This involves
updating the constraints in the function space to reflect the new locations of the contact
points, as well as adjusting the boundary terms in the relation (3.1) through integration
by parts. Consequently, an analogous weak form for the derivation of the vector Tm−1

h
and the corresponding numerical scheme for mean curvature flow can be constructed
for the case where the contact points are located on x = ±π/4.

Figure 3.1(a) illustrates the evolution of the curve obtained with 31 mesh points
and a time step size of τ = 10−3. Moreover, Figure 3.1(b) shows that the distance
errors between numerical and exact curves attains second-order convergence.

Example 3.2. We consider the evolution of a curve in mean curvature flow with
the two contact points constrained to the x-axis, with initial curve being a unit half
circle. It is known that the exact evolving curve remains a half circle with radius
r(t) =

√
1− 2t. The numerical solution given by the BGN-MDR scheme is presented

in Figure 3.2, which demonstrates that the mesh quality is well preserved during the
evolution from T = 0 to T = 0.2.

Moreover, Figures 3.3 and 3.4 present the distance errors and curvature errors from
the spatial and temporal discretizations, respectively, demonstrating that the method
attains the desired convergence rates in both space and time. Figure 3.5 shows the
auxiliary cm values for different mesh sizes. It can be observed that the cm values
decrease as the mesh is refined, indicating that cm → 0 as h → 0. Figure 3.6 illustrates
that, even when starting from a nonuniform mesh, the proposed numerical scheme leads
to increasingly uniform mesh point distribution as time evolves.

3.4. Model and governing equations in three dimensions (3D). Following
the framework in [7] and [9], we consider a thin film on a flat substrate whose film–vapor
interface, Γ(t), is parameterized by

X(·, t) =
(
X1(·, t), X2(·, t), X3(·, t)

)
: Γ0 × [0, T ] → R3,
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(a) Evolution of the curve (b) Errors from spatial discretization

Fig. 3.1: Numerical results in Example 3.1.

Fig. 3.2: Evolution of the curve in Example 3.2.

with Γ0 denoting the initial configuration, and its evolution being described by the veloc-
ity field v(·, t) = ∂tX(·, t). The film-substrate interface S1(t) is a flat, two-dimensional
domain that intersects Γ(t) along the contact line ∂Γ(t) = Γ(t)∩S1(t), which is assumed
to form a simple closed curve oriented by the mapping X(p, t) for p ∈ ∂Γ0.

The evolution of Γ(t) driven by surface diffusion, wherein the interface meets the
substrate plane R2 × {0} along ∂Γ(t), is governed by

v · n = ∆Γ(t)H on Γ(t),

H = −∆Γ(t)id · n on Γ(t),

where n denotes the unit normal vector and H is the mean curvature.
For mean curvature flow, the evolution equations will be given as follows:

v · n = −H on Γ(t),

H = −∆Γ(t)id · n on Γ(t).
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(a) Spatial discretization distance er-
rors

(b) Temporal discretization distance er-
rors

Fig. 3.3: L∞(0, 0.2;L2) norm of the distance errors between the numerical and exact
curves in Example 3.2.

(a) Spatial discretization curvature er-
rors

(b) Temporal discretization curvature
errors

Fig. 3.4: L∞(0, 0.2;L2) norm of the curvature errors between the numerical and exact
curves in Example 3.2.

These equations are subject to the contact line condition
X3(·, t)

∣∣
∂Γ

= X(·, t) · e3 = 0 for t ⩾ 0,

and the Young’s law (contact angle condition)
µ∂ · n∂ = cos θ.

Here, µ∂ is the conormal vector on ∂Γ(t) (orthogonal to both ∂Γ(t) and n), n∂ is
the normal to ∂Γ(t) within the substrate plane, and θ is the constant contact angle
determined by the material properties of Γ(t) and the substrate. Moreover, for surface
diffusion, the zero-mass flux condition(

µ∂ · ∇Γ(t)H
)∣∣

∂Γ
= 0 for t ⩾ 0,
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(a) cm versus time t (coarse mesh) (b) cm versus time t (fine mesh)

Fig. 3.5: Comparison of cm versus time t for coarse and fine meshes in Example 3.2.

(a) Curve evolution with nonuniform
mesh (initial mesh size is small on the
left and big on the right).

(b) Curve evolution with nonuniform
mesh (initial mesh size is small near the
endpoints and big in the middle).

Fig. 3.6: Curve evolution for two different nonuniform meshes in Example 3.2.

must also be imposed.
For any test function η := (η1, η2, η3) ∈ H1(Γ(t)) × H1(Γ(t)) × H1(Γ(t)), the fol-

lowing equation holds obtained from integration by parts∫
Γ(t)

Hn · η =

∫
Γ(t)

−∆Γ(t)id · η =

∫
Γ(t)

∇Γ(t)id · ∇Γ(t)η −
∫
∂Γ(t)

µ∂ · η

=

∫
Γ(t)

∇Γ(t)id · ∇Γ(t)η −
∫
∂Γ(t)

(µ∂ · n∂)(η · n∂)−
∫
∂Γ(t)

(µ∂ · e3)(η · e3)

=

∫
Γ(t)

∇Γ(t)id · ∇Γ(t)η −
∫
∂Γ(t)

cos θ n∂ · η −
∫
∂Γ(t)

sin θ e3 · η,

where the last equality is obtained by applying Young’s law.
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Then the functional Lm−1
h (ηh) is defined on the finite element function space (Sm−1

h )3

as follows:

Lm−1
h (ηh) :=

∫
Γm−1
h

∇Γm−1
h

id · ∇Γm−1
h

ηh −
∫ (h)

∂Γm−1
h

cos θ nm−1
∂,h · ηh −

∫ (h)

∂Γm−1
h

sin θ e3 · ηh,

where nm−1
∂,h denotes the piecewise normal vector on the discrete curve ∂Γm−1

h within
the substrate plane. By virtue of the Riesz representation theorem, it is deduced that
there exists νm−1

h ∈ (Sm−1
h )3 such that

Lm−1
h (ηh) =

(
νm−1
h , ηh

)(h) for all ηh ∈ (Sm−1
h )3.

Then the tangential vector Tm−1
h is defined similarly to the equation (3.3), and it

is required to determine (Tm−1
h , λh) ∈ (Sm−1

h )3 × Sm−1
h such that(

Tm−1
h , ηh

)(h)
+
(
λh n

m−1
h , ηh

)(h)
=
(
νm−1
h , ηh

)(h)
, ∀ηh ∈ (Sm−1

h )3,(
Tm−1
h , nm−1

h χh

)(h)
= 0, ∀χh ∈ Sm−1

h .
(3.7)

3.5. Numerical scheme for mean curvature flow and surface diffusion in
3D. Let S̊h(Γ

m−1
h ) denote the subspace of Sm−1

h consisting of finite element functions
that vanish on ∂Γm−1

h . The product space Xm−1
h := Sm−1

h × Sm−1
h × S̊h(Γ

m−1
h ) is then

defined. The discrete velocity vmh of the flow map Xm
h is assumed to lie within Xm−1

h ,
ensuring that the contact line condition is satisfied.

Using the vector Tm−1
h defined in (3.7), the BGN-MDR scheme for mean curvature

flow of an open surface with a moving contact line is proposed. The goal is to find
(vmh , λm

h , cm) ∈ Xm−1
h × Sm−1

h × R such that the following system is satisfied:∫
Γm−1
h

∇Γm−1
h

(τvmh + id) · ∇Γm−1
h

ηh − (λm
h nm−1

h , ηh)
(h) − cm(Tm−1

h , ηh)
(h)

=

∫
∂Γm−1

h

cos(θ)n
m− 1

2

∂,h · ηh, ∀ηh ∈ Xm−1
h , (3.8a)

(vmh · nm−1
h , χh)

(h) + (λm
h , χh)

(h) = 0, ∀χh ∈ Sm−1
h , (3.8b)

(vmh , Tm−1
h )(h) + αcm∥Tm−1

h ∥L2
h
= 0. (3.8c)

For the numerical approximation of n∂ on the discrete cure ∂Γm−1
h , we adopt the ap-

proach presented in equation (3.7) of [9]. This choice is not arbitrary; it is selected to
ensure the dissipation of surface energy. The approximated conormal vector n

m− 1
2

∂ at
the boundary ∂Γm−1

h is defined by

n
m− 1

2

∂ =
1

2

(
∂sX

m−1
h + ∂sX

m
h

)
× e3, (3.9)

where s denotes the arc length parameter on the boundary curve ∂Γm−1
h .

Additionally, the BGN-MDR numerical scheme for surface diffusion of an open
surface with a moving contact line is formulated as follows: find (vmh , λm

h , cm) ∈ Xm−1
h ×

Sm−1
h × R such that the system∫

Γm−1
h

∇Γm−1
h

(τvmh + id) · ∇Γm−1
h

ηh − (λm
h nm−1

h , ηh)
(h) − cm(Tm−1

h , ηh)
(h)

=

∫
∂Γm−1

h

cos(θ)n
m− 1

2

∂,h · ηh, ∀ηh ∈ Xm−1
h , (3.10a)

(vmh · nm−1
h , χh)

(h) +

∫
Γm−1
h

∇Γm−1
h

λm
h · ∇Γm−1

h
χh = 0, ∀χh ∈ Sm−1

h , (3.10b)
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(vmh , Tm−1
h )(h) + αcm∥Tm−1

h ∥L2
h
= 0 (3.10c)

is satisfied.
Remark 3.1. In three dimensions, the appearance of Xm

h in the definition of nm− 1
2

∂
in (3.9), which is subsequently used in (3.8a) and (3.10a), prevents the establishment
of well-posedness as in the two-dimensional case. This is due to the contribution of the
boundary term in the bilinear form. While this boundary term is crucial for preserving
energy dissipation, it precludes a formal proof of well-posedness. However, if nm−1

∂

is used in place of n
m− 1

2

∂ in (3.8a) and (3.10a), the boundary term can instead be
treated as part of the linear form. This modification enables the establishment of well-
posedness by employing an argument analogous to the proof of well-posedness in the
two-dimensional case.

Furthermore, the BGN-MDR numerical scheme for open surfaces with moving con-
tact lines preserves unconditional energy stability for both mean curvature flow and
surface diffusion due to the specific construction of nm− 1

2

∂,h , as outlined in [9].
Theorem 3.3. Let (vmh , λm

h , cm) ∈ Xm−1
h × Sm−1

h × R be the solution to the weak
formulation (3.10). The scheme guarantees that the discrete surface energy Wm

h :=
|Γm

h | − cos θ|Sm
1 | is non-increasing over time, i.e.,

Wm
h ⩽ Wm−1

h for m = 1, 2, . . . , N. (3.11)
Here, Sm

1 denotes the discrete film-substrate interface at the time level tm, which serves
as an approximation to the film-substrate interface S1(t

m).
Proof. By choosing ηh := vmh in (3.10a) and χh := λm

h in (3.10b), and sum up
equations (3.10a)–(3.10c), we obtain the following relation:∫

Γm−1
h

∇Γm−1
h

(τvmh + id) · ∇Γm−1
h

vmh + ∥∇Γm−1
h

λm
h ∥2

L2(Γm−1
h )

+
1

α
s(cm)2∥Tm

h ∥L2
h

=
1

τ
cos θ

∫
∂Γm−1

h

n
m− 1

2

∂,h · (Xm
h − id).

(3.12)

From [9, Lemma 3.1] we know that the right-hand side of (3.12) can be written as∫
∂Γm−1

h

n
m− 1

2

∂,h · (Xm
h − id) = |Sm

1 | − |Sm−1
1 |. (3.13)

Therefore, substituting (3.13) and (2.13) into (3.12) leads to Wm
h −Wm−1

h ⩽ 0.
The convergence and performance of the BGN-MDR method for mean curvature

flow of open surfaces with moving contact lines are shown in the following two examples.
Example 3.3. We simulate the mean curvature flow of half-sphere with a moving

contact line on the plane z = 0 by using the BGN-MDR scheme in (3.8). The exact
solution of this problem is a half-sphere with radius r(t) =

√
1− 4t.

Figures 3.7(a) and 3.7(b) show that the errors from spatial and temporal discretiza-
tions are O(h2) and O(τ), respectively, in the L∞(0, 0.1;L2)-norm, demonstrating the
convergence of the proposed BGN-MDR scheme for open surfaces with moving contact
lines.

In this example, we also compare the results obtained with different values of α.
Figure 3.8(a) presents the evolution of discrete curvature for various choices of α, while
Figure 3.8(b) depicts the corresponding evolution of discrete energy. It can be observed
that the curves for the three values of α nearly overlap, indicating that discrete cur-
vature and energy can be computed with good accuracy for a wide range of α. This
demonstrates that α can be chosen freely to optimize the mesh quality.

Example 3.4. Next, we present numerical simulations for surface diffusion of an
open surface with a moving contact line constrained to the plane z = 0 with 60◦ and
120◦ contact angles, respectively, with the initial surface being a 1×6×1 box centered at
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(a) Spatial discretization errors (b) Temporal discretization errors

Fig. 3.7: L∞(0, 0.1;L2) errors of the numerical solutions in Example 3.3

(a) Discrete curvature for varying α (b) Discrete energy for varying α

Fig. 3.8: Discrete energy and curvature versus time for varying α in Example 3.3.

(0, 0, 0). We present numerical simulations with the BGN method and the BGN-MDR
method with parameter α = 0.01.

The numerical simulation with the 60◦ contact angle is presented in Figure 3.9. By
using mesh size h = 0.2 and time step size τ = 10−2, both the BGN and BGN-MDR
schemes exhibit satisfactory mesh quality, as illustrated in Figures 3.9(d) and 3.9(e).
In contrast, when a smaller time step size τ = 10−3 is used, the BGN scheme becomes
unstable and breaks down at T = 0.549, and the BGN-MDR scheme remains stable
and yields good mesh quality throughout the evolution; see Figures 3.9(b) and 3.9(c).

The numerical simulation with the 120◦ contact angle in presented in Figure 3.10.
By using mesh size h = 0.2 and time step size τ = 10−2, both schemes maintain
satisfactory mesh quality, as shown in Figures 3.10(c) and 3.10(d). However, when a
smaller time step size τ = 10−3 is used, the BGN scheme becomes unstable and breaks
down at T = 0.227. In contrast, the BGN-MDR scheme remains stable and continues
to produce good mesh quality throughout the evolution up to T = 2; see Figures 3.10(a)
and 3.10(b).
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(a) Initial Surface

(b) BGN with τ = 10−3 at T = 0.454 (c) BGN-MDR with τ = 10−3 at T = 2

(d) BGN with τ = 10−2 at T = 2 (e) BGN-MDR with τ = 10−2 at T = 2

Fig. 3.9: Surface evolution with a 60◦ contact angle in Example 3.4

(a) BGN with τ = 10−3 at T = 0.181 (b) BGN-MDR with τ = 10−3 at T = 2

(c) BGN with τ = 10−2 at T = 2 (d) BGN-MDR with τ = 10−2 at T = 2

Fig. 3.10: Surface evolution with a 120◦ contact angle in Example 3.4

4. Conclusion. We propose a new parametric FEM, referred to as the BGN-MDR
method, for simulating the evolution of curves and surfaces under mean curvature flow
and surface diffusion, applicable to both closed surfaces and open surfaces with moving
contact lines or points. The proposed BGN-MDR method bridges the strengths of the
BGN and MDR methods: it maintains good mesh quality similar to the MDR method,
while also preserving energy stability as in the BGN method. Numerical simulations
demonstrate the advantages of the proposed approach on benchmark problems involving
both closed and open surfaces.
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