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Abstract Numerical approximation of a stochastic partial integro-differential equation
driven by a space-time white noise is studied by truncating a series representation of the
noise, with finite element method for spatial discretization and convolution quadrature for
time discretization. Sharp-order convergence of the numerical solutions is proved up to a
logarithmic factor. Numerical examples are provided to support the theoretical analysis.
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1 Introduction

For given α ∈ (0, 2), we consider the stochastic partial integro-differential equation (PDE)


∂tψ(x, t)−∆∂1−αt ψ(x, t) = f(x, t) + σ Ẇ (x, t) (x, t) ∈ O × R+

∂1−αt ψ(x, t) = 0 (x, t) ∈ ∂O × R+

ψ(x, 0) = ψ0(x) x ∈ O
(1.1)

in a convex polygon/polyhedron O ⊂ Rd, d ∈ {1, 2, 3}, where ∆ : H2(Ω) ∩ H1
0 (O) →

L2(O) denotes the Laplacian operator, f(x, t) a given deterministic source function, ψ0(x)
a given deterministic initial data, σ a given positive parameter, and Ẇ (x, t) a space-time
white noise, i.e., the time derivative of a cylindrical Wiener process on L2(O) with an
underlying probability sample space Ω. The Caputo fractional time derivative/integral
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∂1−αt ψ is defined by (cf. [16, pp. 91])

∂1−αt ψ(x, t) :=


1

Γ (α)

∫ t

0

(t− s)α−1 ∂ψ(x, s)

∂s
ds if α ∈ (0, 1],

1

Γ (α− 1)

∫ t

0

(t− s)α−2ψ(x, s)ds if α ∈ (1, 2),

where Γ (s) :=
∫∞
0
ts−1e−tdt denotes the Euler Gamma function. If α = 1, then (1.1)

recovers the standard stochastic parabolic equation.

Problem (1.1) can be used to describe the behavior of complex phenomena in math-
ematical physics, such as viscoelasticity and heat conduction in materials with memory
subject to stochastic noises [6,17,23]. For any given initial data ψ0 ∈ L2(O) and source
f ∈ L1(0, T ;L2(O)), problem (1.1) has a mild solution ψ ∈ C([0, T ];L2(Ω;L2(O))); see
Appendix A.

Many efforts have been made in developing efficient numerical methods with rigorous
error analyses for solving (1.1), with or without the stochastic noise. In [22], Lubich et.al.
have considered the deterministic version of this problem in the case α ∈ (1, 2). The
discretization used convolution quadrature (CQ) based on backward difference methods
(BDFs) in time and piecewise linear finite elements in space. The authors have proved
optimal-order convergence rate of the numerical scheme for nonsmooth initial data. To
achieve higher-order temporal convergence rates, the CQ generated by second-order BDF
and Crank-Nicolson methods have been considered in [7] and [15] for solving (1.1) and its
equivalent formulation, respectively. Due to the singularity of the solution of fractional
evolution PDEs, the standard BDF and Crank-Nicolson CQs need to be corrected at
several initial steps to achieve the desired order of convergence. Initial correction of
higher-order BDF methods for fractional evolution PDEs has been considered in [14]
recently.

Compared with the deterministic problem, the major technical difficulties in the de-
velopment and analyses of numerical schemes for (1.1) are due to the space-time white-
noise forcing, which leads to low regularity of the solution in both time and space. In
the case α = 1, Allen et. al. [1] developed a fully discrete numerical scheme for solving
a stochastic parabolic problem, for which the white noise was approximated by piece-
wise constant random processes and a sharp order of convergence was proved. See also
Du and Zhang [9] for some special noises, Shardlow [25] for the space-time white noise
discretized by the spectral method, and Yan [28] for a nonlinear stochastic parabolic sys-
tem with Wiener process discretized by the generalized L2-projection operator. In [17],
Kovács and Printems developed a CQ based on backward Euler method for the model
(1.1) with α ∈ (1, 2), where the Q-Wiener process was discretized by the generalized L2-
projection operator. For the space-time white noise case, a strong order of convergence
of the numerical solution was proved in one-dimensional spatial domains, i.e.,

E‖ψ(·, tn)− ψ(h)
n ‖L2(O) = O(τ

1
2−

α
4−ε + h

1
α−

1
2−ε) for α ∈ (1, 2) and d = 1,

where ε can be arbitrarily small, ψ(·, tn) and ψ
(h)
n denote the PDE’s mild solution and

numerical solution at time tn, respectively, τ denotes the temporal step size, and h
denotes the spatial mesh size. For α ∈ (0, 2), a sharp order convergence rate O(τ

1
2−

αd
4 )

was proved in [12] for a CQ time discretization of (1.1) in general d-dimensional spatial
domains, with d ∈ {1, 2, 3}, without the deterministic forcing. We refer the readers to [2,
4,10] for numerical analysis of other nonlinear physical stochastic equations.

This article is a continuation of [12] in the spatially discrete setting, by truncating a
series representation of the space-time white noise and solving the truncated problem by
the finite element method. For the resulting fully discrete numerical scheme, we prove
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the sharp-order convergence

E‖ψ(·, tn)− ψ(h)
n ‖L2(O) =


O
(
τ

1
2−

αd
4 + `

1
2

hh
1
α−

d
2

)
if α ∈

[1

2
,

2

d

)
,

O
(
τ

1
2−

αd
4 + h2−

d
2

)
if α ∈

(
0,

1

2

)
,

(1.2)

up to a logarithmic factor `
1
2

h = (ln(e+1/h))
1
2 , in general d-dimensional spatial domains,

d ∈ {1, 2, 3}. The main contributions of this paper are the following.

(1) Sharper-order spatial convergence is proved in the case α ∈ (1, 2) and d = 1 (up to

a logarithmic factor `
1
2

h ).

(2) The error estimates are extended to α ∈ (0, 2d ) and multi-dimensional domains.

(3) An interesting phenomenon is found: the spatial order of convergence 1
α−

d
2 increases

to 2− d
2 as α decreases to 1

2 , and stays at this order when α further decreases.

(4) Less regularity assumption on f : the error estimates in the literature all rely on cer-
tain regularity of ∂f

∂t (even for the deterministic problems, cf. [13, Theorem 3.6] and
[22, Theorem 3.3]). We relax such conditions to an optimal integrability condition

f ∈ L
4

2+αd ,1(0, T ;L2(O)) to match the convergence rate of the stochastic problem.
Consequently, the source f does not need to be continuous in time.

The rest of this paper is organized as follows. In section 2, we recall some basic
preliminary results, introduce the numerical scheme for problem (1.1), and state the
main results. Based on an integral representation of the numerical solution and careful
analyses of the resolvent operator, the strong convergence rates are proved in section
3 and section 4. Numerical examples are given in section 5 to illustrate the theoretical
results.

Throughout this paper, we denote by C, with or without a subscript/superscript,
a generic constant independent of n, τ , and h, which could be different at different
occurrences.

2 The main results

2.1 Notations

We denote by (·, ·) and ‖ · ‖ the inner product and norm of L2(O), respectively. The
operator norm on L2(O) is also denoted by ‖ · ‖ (as it is induced by the norm of L2(O)).
Let Ḣs(O) ⊂ L2(O) denote the Hilbert space induced by the norm

‖ϕ‖Ḣs(O) :=

∞∑
j=1

λ2sj |(ϕ, φj)|2,

where φj , j = 1, 2, . . . , denote the L2-norm normalized eigenfunctions of the Laplacian
operator−∆ corresponding to the eigenvalues λj , j = 1, 2, . . . , arranged in nondecreasing

order. In particular, Ḣ0(O) = L2(O), Ḣ1(O) = H1
0 (O) and Ḣ2(O) = H2(O) ∩H1

0 (O);
see [27]. For 1 < p < ∞ we denote by Lp,1(0, T ;L2(O)) the standard Lorentz space of
functions defined on O × (0, T ) (see [11, section 1.4]), satisfying

sup
t∈(0,T )

∫ t

0

(t− s)−
1
p′ ‖f(·, s)‖ds ≤ C‖f‖Lp,1(0,T ;L2(O)) ∀ f ∈ Lp,1(0, T ;L2(O)), (2.1)

where p′ denotes the dual of p, i.e., 1
p′ + 1

p = 1. For 1 < p < ∞, the Lorentz space

Lp,1(0, T ;L2(O)) is an intermediate real interpolation space between L1(0, T ;L2(O))
and L∞(0, T ;L2(O)) (see [5, Theorem 5.2.1]), satisfying

Lq(0, T ;L2(O)) ↪→ Lp,1(0, T ;L2(O)) ∀ q > p ≥ 1.
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Let {tn = nτ}Nn=0 denote a uniform partition of the time interval [0, T ], with a step
size τ = T/N , and un = u(x, tn). If we denote by fτ the following function (piecewise
constant in time):

fτ (·, s) =
1

τ

∫ tn

tn−1

f(·, t)dt ∀ s ∈ (tn−1, tn], n = 1, 2, . . . , N, (2.2)

then it is well known that

‖fτ‖L1(0,T ;L2(O)) ≤ ‖f‖L1(0,T ;L2(O)) ∀ f ∈ L1(0, T ;L2(O)),

‖fτ‖L∞(0,T ;L2(O)) ≤ ‖f‖L∞(0,T ;L2(O)) ∀ f ∈ L∞(0, T ;L2(O)).

The real interpolation of the last two inequalities yields (see [5, Definition 2.4.1] and [5,
Theorem 5.2.1])

‖fτ‖Lp,1(0,T ;L2(O)) ≤ C‖f‖Lp,1(0,T ;L2(O)) ∀ f ∈ Lp,1(0, T ;L2(O)). (2.3)

The last inequality will be used in this paper.
For α ∈ (0, 1], we approximate the Caputo fractional time derivative ∂1−αt u(x, tn) =

∂1−αt (u(x, tn)− u(x, 0)) by the backward Euler CQ (cf. [15, (2.4)] and [20,21,22,24]):

∂̄1−ατ (un − u0) :=
1

τ1−α

n∑
j=1

bn−j(uj − u0), n = 1, 2, . . . , N. (2.4)

For α ∈ (1, 2), we approximate the Caputo fractional time derivative ∂1−αt u(x, tn) by the
CQ without subtracting the initial data (cf. [22, (1.15)]), i.e.,

∂̄1−ατ un :=
1

τ1−α

n∑
j=1

bn−juj , n = 1, 2, . . . , N. (2.5)

In both (2.4) and (2.5), the coefficients bj , j = 0, 1, 2, . . . , are determined by the power
series expansion

(1− ζ)1−α =

∞∑
j=0

bjζ
j ∀ |ζ| < 1, ζ ∈ C.

Besides, we define the standard backward Euler difference operator

∂̄τun :=
un − un−1

τ
, n = 1, 2, . . . , N. (2.6)

The complex-valued function

δτ (ζ) =
1− ζ
τ

for ζ ∈ C\[1,∞) (2.7)

is called the generating function of the backward Euler difference operator. It plays an
important role in the analysis of the CQ. In particular, for any sequence {vn}∞n=0 ∈
`2(L2(O)) we have

∞∑
n=1

(∂̄1−ατ vn)ζn =

∞∑
n=1

1

τ1−α

n∑
j=1

bn−jvjζ
n = (δτ (ζ))1−α

∞∑
j=1

vjζ
j , ∀ |ζ| < 1. (2.8)

Let Th be a quasi-uniform triangulation of the domain O into d-dimensional simplexes
πh, πh ∈ Th, with a mesh size h such that 0 < h < h0 for some constant h0. A continuous
piecewise linear finite element space Xh over the triangulation Th is defined by

Xh = {φh ∈ H1
0 (O) : φh|πh is a linear function,∀πh ∈ Th}.
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Over the finite element space Xh, we denote the L2 projection Ph : L2(O) → Xh and
Ritz projection Rh : H1

0 (O)→ Xh by

(Phϕ, φh) = (ϕ, φh) ∀φh ∈ Xh,

(∇Rhϕ,∇φh) = (∇ϕ,∇φh) ∀φh ∈ Xh.

It is well known that the L2 projection and Ritz projection satisfy the following
standard error estimates ([27]):

‖Phφ‖ ≤ C‖φ‖ ∀φ ∈ L2(O), (2.9)

‖Phφ− φ‖ ≤ Chγ‖φ‖Ḣγ(O) ∀φ ∈ Ḣγ(O), γ ∈ [0, 2], (2.10)

‖Phφ−Rhφ‖ ≤ Ch2‖φ‖Ḣ2(O) ∀φ ∈ Ḣ2(O). (2.11)

Through defining the discrete Laplacian ∆h : Xh → Xh by

(∆hϕh, φh) = −(∇ϕh,∇φh) ∀ϕh, φh ∈ Xh

and using the inverse inequality, the inequality (2.11) implies

‖∆h(Phφ−Rhφ)‖ ≤ Ch−2‖Phφ−Rhφ‖ ≤ C‖φ‖Ḣ2(O) ∀φ ∈ Ḣ2(O). (2.12)

Since ∆hRhφ = Ph∆φ, it follows that

‖∆hPhφ‖ ≤ ‖∆hRhφ‖+ ‖∆h(Phφ−Rhφ)‖
= ‖Ph∆φ‖+ ‖∆h(Phφ−Rhφ)‖
≤ C‖φ‖Ḣ2(O) ∀φ ∈ Ḣ2(O). (2.13)

The complex interpolation between (2.9) and (2.13) yields

‖∆γ
hPhφ‖ ≤ C‖φ‖Ḣ2γ(O) ∀φ ∈ Ḣ2γ(O), γ ∈ [0, 1]. (2.14)

Similarly, the complex interpolation between (2.11) and (2.12) yields

‖∆γ
h(Phφ−Rhφ)‖ ≤ Ch2−2γ‖φ‖Ḣ2(O) ∀φ ∈ Ḣ2(O), γ ∈ [0, 1]. (2.15)

The estimates (2.9)-(2.15) will be frequently used in this paper.

2.2 The numerical scheme and main theorem

Recall that the cylindrical Wiener process on L2(O) can be represented as (cf. [8, Propo-
sition 4.7, with Q = I and U1 denoting some negative-order Sobolev space])

W (x, t) =

∞∑
j=1

φj(x)Wj(t)

with independent one-dimensional Wiener processes Wj(t), j = 1, 2, . . . . We approximate

the space-time white noise Ẇ (x, t) by

∂̄τW
M (x, tn) =

M∑
j=1

φj(x)∂̄τWj(tn)

with M := [h−d] + 1, the largest integer that does not exceed h−d + 1. Clearly, we have

h−d ≤M ≤ Ch−d ∀ 0 < h < h0,

where the constant C may depend on h0.
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With the above notations, we propose the following fully discrete scheme for problem
(1.1): find

ψ(h)
n ∈

{
ψ
(h)
0 +Xh in the case α ∈ (0, 1]

Xh in the case α ∈ (1, 2)
n = 1, 2, . . . , N,

with ψ
(h)
0 = Phψ0, such that the following equations are satisfied for all φh ∈ Xh:(

∂̄τψ
(h)
n , φh

)
+
(
∇∂̄1−ατ (ψ(h)

n − ψ(h)
0 ),∇φh

)
= (fn, φh) +

(
σ∂̄τW

M (·, tn), φh
)
, if α ∈ (0, 1], (2.16)

(
∂̄τψ

(h)
n , φh

)
+
(
∇∂̄1−ατ ψ(h)

n ,∇φh
)

= (fn, φh) +
(
σ∂̄τW

M (·, tn), φh
)
, if α ∈ (1, 2), (2.17)

where fn is the average of f over the subinterval (tn−1, tn], i.e.,

fn =
1

τ

∫ tn

tn−1

f(·, t)dt.

Through the discrete Laplacian ∆h, we can rewrite the fully discrete scheme (2.16)-
(2.17) in the following equivalent forms:

∂̄τψ
(h)
n −∆h∂̄

1−α
τ (ψ(h)

n − ψ(h)
0 ) = Phfn + σPh∂̄τW

M (·, tn), if α ∈ (0, 1],

∂̄τψ
(h)
n −∆h∂̄

1−α
τ ψ(h)

n = Phfn + σPh∂̄τW
M (·, tn), if α ∈ (1, 2).

(2.18)

Note that ψ
(h)
0 ∈ L2(Ω;Xh) and Phfn+σPh∂̄τW

M (·, tn) ∈ L2(Ω;Xh) for n = 1, 2, . . . , N .

If the numerical solutions ψ
(h)
n ∈ L2(Ω;Xh), n = 0, 1, . . . ,m− 1, then we define

g(h)m :=


τα−1

m−1∑
j=1

bm−j∆h(ψ
(h)
j − ψ(h)

0 ) + Phfm + σPh∂̄τW
M (·, tm) if α ∈ (0, 1],

τα−1
m−1∑
j=1

bm−j∆hψ
(h)
j + Phfm + σPh∂̄τW

M (·, tm) if α ∈ (1, 2).

Then g
(h)
m ∈ L2(Ω;Xh), and the numerical solution defined by (2.18) is given by

ψ(h)
m =

{
ψ
(h)
0 + (τ−1 − τα−1b0∆h)−1

(
τ−1(ψ

(h)
m−1 − ψ

(h)
0 ) + g(h)m

)
if α ∈ (0, 1),

(τ−1 − τα−1b0∆h)−1
(
τ−1ψ

(h)
m−1 + g(h)m

)
if α ∈ (1, 2),

which is well defined in L2(Ω;Xh). By induction, the numerical solutions ψ
(h)
n ∈ L2(Ω;Xh),

n = 1, 2, . . . , N , are well defined.
The main result of this paper is the following theorem.

Theorem 1 Let α ∈ (0, 2d ) with d ∈ {1, 2, 3}, f ∈ L
4

2+αd ,1(0, T ;L2(O)) and ψ0 ∈ Ḣχ(O),
with the notation

χ = min

(
2− d

2
,

1

α
− d

2

)
, (2.19)

and assume that the spatial mesh size satisfies 0 < h < h0 for some constant h0. Then
the numerical solution given by (2.18) converges to the mild solution of (1.1) with sharp
order of convergence, i.e.,

E‖ψ(·, tn)− ψ(h)
n ‖L2(O)≤


C
(
σ+Υ (ψ0, f)

)(
τ

1
2−

αd
4 +`

1
2

hh
1
α−

d
2

)
if α ∈

[1

2
,

2

d

)
,

C
(
σ+Υ (ψ0, f)

)(
τ

1
2−

αd
4 + h2−

d
2

)
if α ∈

(
0,

1

2

)
,
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where

Υ (ψ0, f) = ‖ψ0‖Ḣχ(O)+‖f‖L 4
2+αd

,1
(0,T ;L2(O))

,

E denotes the expectation operator, `h = ln(e + 1/h), the constant C is independent of
h, τ , n, ψ0, and f (but may depend on T and h0).

Proof. Without loss of generality, we can assume σ = 1 in the proof of Theorem 1.
The solution of (1.1) can be decomposed into the solution of the deterministic problem∂tv(x, t)−∆∂1−αt v(x, t) = f(x, t) (x, t) ∈ O × R+

∂1−αt v(x, t) = 0 (x, t) ∈ ∂O × R+

v(x, 0) = ψ0(x) x ∈ O
(2.20)

plus the solution of the stochastic problem
∂tu(x, t)−∆∂1−αt u(x, t) = Ẇ (x, t) (x, t) ∈ O × R+

∂1−αt u(x, t) = 0 (x, t) ∈ ∂O × R+

u(x, 0) = 0 x ∈ O.
(2.21)

Similarly, the solution of (2.18) can be decomposed into the solution of the deterministic
finite element equation{

∂̄τv
(h)
n −∆h∂̄

1−α
τ (v(h)n − v(h)0 ) = Phfn

v
(h)
0 = Phψ0

if α ∈ (0, 1], (2.22)

or {
∂̄τv

(h)
n −∆h∂̄

1−α
τ v(h)n = Phfn

v
(h)
0 = Phψ0

if α ∈ (1, 2), (2.23)

plus the solution of the stochastic finite element equation{
∂̄τu

(h)
n −∆h∂̄

1−α
τ u(h)n = Ph∂̄τW

M (·, tn)

u
(h)
0 = 0.

(2.24)

In the next two sections, we prove Theorem 1 by estimating E‖u(·, tn) − u
(h)
n ‖ and

‖v(·, tn) − v
(h)
n ‖ separately. In particular, Theorem 1 follows from (3.1) and (4.1) (in

(4.1), we have χ = 1
α −

d
2 for α ∈ [ 12 ,

2
d ) and χ = 2− d

2 for α ∈ (0, 12 )).

3 Stochastic problem: estimate of E‖u(·, tn)− u(h)
n ‖

In this section, we prove the following error estimate for the solutions of (2.21) and (2.24):

E‖u(·, tn)− u(h)n ‖ ≤


C(τ

1
2−

αd
4 + `

1
2

hh
1
α−

d
2 ) if α ∈

[1

2
,

2

d

)
,

C(τ
1
2−

αd
4 + h2−

d
2 ) if α ∈

(
0,

1

2

)
.

(3.1)

To this end, we introduce a time-discrete system of PDEs:{
∂̄τun −∆∂̄1−ατ un = ∂̄τW (·, tn), n = 1, 2, . . . , N,

u0 = 0.
(3.2)

Then (2.24) can be viewed as the spatially finite element discretization of (3.2), and the
error can be decomposed into two parts:

E‖u(·, tn)− u(h)n ‖ ≤ E‖u(·, tn)− un‖+ E‖un − u(h)n ‖,
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where the first part on the right-hand side has been estimated in [12] (in [12] we have
only considered zero initial condition u(·, 0) = 0, and in this case the boundary condition
u = 0 on ∂Ω is equivalent to ∂1−αt u = 0 on ∂Ω), i.e.,

E‖u(·, tn)− un‖ ≤ Cτ
1
2−

αd
4 ∀α ∈

(
0, 2/d

)
, d ∈ {1, 2, 3}.

It remains to prove the following estimate in the next three subsections:

E‖un − u(h)n ‖ ≤


C`

1
2

hh
1
α−

d
2 if α ∈

[1

2
,

2

d

)
,

Ch2−
d
2 if α ∈

(
0,

1

2

)
.

(3.3)

3.1 Integral representations

We estimate E‖un − u(h)n ‖ by using integral representations of un and u
(h)
n , respectively.

We first introduce some notations:

Γθ,κ = {z ∈ C : |z| = κ, | arg z| ≤ θ} ∪ {z ∈ C : z = ρe±iθ, ρ ≥ κ},

Γ
(τ)
θ,κ =

{
z ∈ Γθ,κ : |Im(z)| ≤ π

τ

}
,

which are contours on the complex plane, oriented with increasing imaginary parts. On

the truncated contour Γ
(τ)
θ,κ , the following estimates hold.

Lemma 1 ([12]) Let α ∈
(
0, 2d

)
, θ ∈

(
π
2 , arccot(− 2

π )
)

and κ = 1
T be given, with δτ (ζ)

defined in (2.7). Then

δτ (e−zτ ) ∈ Σθ ∀ z ∈ Γ (τ)
θ,κ (3.4)

C0|z| ≤ |δτ (e−zτ )| ≤ C1|z| ∀ z ∈ Γ (τ)
θ,κ (3.5)

|δτ (e−zτ )− z| ≤ Cτ |z|2 ∀ z ∈ Γ (τ)
θ,κ (3.6)

|δτ (e−zτ )α − zα| ≤ Cτ |z|α+1 ∀ z ∈ Γ (τ)
θ,κ , (3.7)

where Σθ := {z ∈ C\{0} : | arg z| ≤ θ < π}, the constants C0, C1 and C are independent
of τ and κ.

Let ∂̄τW denote a piecewise constant function in time, defined by

∂̄τW (·, t0) := 0

∂̄τW (·, t) :=
W (·, tn)−W (·, tn−1)

τ
for t ∈ (tn−1, tn], n = 1, 2, . . . , N.

Similarly, we define

∂̄τWj(t0) := 0

∂̄τWj(t) :=
Wj(tn)−Wj(tn−1)

τ
for t ∈ (tn−1, tn], n = 1, 2, . . . , N.

Then the following results hold.

Lemma 2 Let α ∈
(
0, 2d

)
and δτ (ζ) be defined as in (2.7) with the parameters κ and θ

satisfying the conditions of Lemma 1.
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(1) The solution of the time-discrete problem (3.2) can be represented by

un =

∫ tn

0

Eτ (tn − s)∂̄τW (·, s)ds =

∞∑
j=1

∫ tn

0

Eτ (tn − s)φj ∂̄τWj(s)ds, (3.8)

where the operator Eτ (t) is given by

Eτ (t)φ :=
1

2πi

∫
Γ

(τ)
θ,κ

ezt
zτ

ezτ − 1
δτ (e−zτ )α−1(δτ (e−zτ )α −∆)−1φdz (3.9)

for φ ∈ L2(O).

(2) The solution of the fully discrete problem (2.24) can be represented by

u(h)n =

M∑
j=1

∫ tn

0

E(h)
τ (tn − s)φj ∂̄τWj(s)ds, (3.10)

where the operator E
(h)
τ (t) is given by

E(h)
τ (t)φ :=

1

2πi

∫
Γ

(τ)
θ,κ

ezt
zτ

ezτ − 1
δτ (e−zτ )α−1(δτ (e−zτ )α−∆h)−1Phφ dz (3.11)

for φ ∈ L2(O).

The first statement in Lemma 2 has been proved in [12, Proposition 3.1]. The second
statement can be proved in the same way, replacing the operator ∆ by ∆h and W (·, t)
by WM (·, t) (this does not affect the proof therein). From Lemma 2, we see that

un − u(h)n =

M∑
j=1

∫ tn

0

(
Eτ (tn − s)− E(h)

τ (tn − s)
)
φj ∂̄τWj(s)ds

+

∞∑
j=M+1

∫ tn

0

Eτ (tn − s)φj ∂̄τWj(s)ds

=:In + Jn. (3.12)

We present the estimates for In and Jn in subsections 3.2 and 3.3, respectively.

3.2 Estimate of In

Now, we start to estimate In, i.e., the error of space discretization. The following lemmas
are useful in the estimates of In and Jn.

Lemma 3 ([18,19,26]) Let O denote a bounded domain in Rd, d ∈ {1, 2, 3}. Suppose
λj denotes the jth eigenvalue of the Dirichlet boundary problem for the Laplacian operator
−∆ in O. Then, we have

C∗0 j
2
d ≤ λj ≤ C∗1 j

2
d (3.13)

for all j ≥ 1, where the constants C∗0 and C∗1 are independent of j.

Proof. The well-known Weyl’s law gives the asymptotic behavior of the eigenvalues of
the Laplacian operator (see [19] and [26, pp. 322]):

lim
j→∞

λj
j2/d

= (2π)2(Bd|O|)−
2
d ,

where Bd denotes the volume of the unit d-ball. The estimate (3.13) follows immediately
from the above result. ut

The following lemma is contained in [12, Lemma 3.2].
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Lemma 4 For any z ∈ Σϕ with ϕ ∈ (0, π), we have∣∣∣∣ 1

z + λj

∣∣∣∣ ≤ Cϕ
|z|+ λj

, (3.14)

where j = 1, 2, . . . .

The following resolvent estimates will be frequently used in this paper.

Lemma 5 For z ∈ Σθ (see the definition in Lemma 1), with θ ∈ (0, π), we have the
following resolvent estimates:

‖(z −∆)−1‖+ ‖(z −∆h)−1‖ ≤ C|z|−1, (3.15)

‖∆1−γ(z −∆)−1‖+ ‖∆1−γ
h (z −∆h)−1‖ ≤ C|z|−γ , γ ∈ [0, 1]. (3.16)

Proof. The first inequality is due to the self-adjointness and nonnegativity of the op-
erators −∆ and −∆h. These properties guarantee that ∆ and ∆h generate a bounded
analytic semigroup of angle π

2 on L2(O) and (Xh, ‖·‖L2(O)), respectively; see [3, Example
3.7.5 and Theorem 3.7.11].

Recall that λj and φj , j = 1, 2, . . . , are the eigenvalues and eigenfunctions of the
operator−∆ (see Section 2.1). The second inequality is due to the interpolation inequality

‖∆1−γϕ‖ =
∥∥∥ ∞∑
j=1

λ1−γj (φj , ϕ)φj

∥∥∥
=
( ∞∑
j=1

λ2−2γj |(φj , ϕ)|2
) 1

2

=
( ∞∑
j=1

|(φj , ϕ)|2γλ2−2γj |(φj , ϕ)|2−2γ
) 1

2

≤
( ∞∑
j=1

|(φj , ϕ)|2
) γ

2
( ∞∑
j=1

λ2j |(φj , ϕ)|2
) 1−γ

2

(use Hölder’s inequality)

≤ ‖ϕ‖γ‖∆ϕ‖1−γ .

Substituting ϕ = (z −∆)−1φ into the inequality above yields

‖∆1−γ(z −∆)−1φ‖ ≤ ‖(z −∆)−1φ‖γ‖∆(z −∆)−1φ‖1−γ

≤ (C|z|−1‖φ‖)γ(C‖φ‖)1−γ

≤ C|z|−γ‖φ‖.

This proves the first part of (3.16). The estimate of ‖∆1−γ
h (z − ∆h)−1‖ can be proved

similarly (by using the eigenvalues and eigenfunctions of −∆h). ut
The following lemma is concerned with the difference between the continuous and

discrete resolvent operators.

Lemma 6 Let α ∈
(
0, 2d

)
and δτ (ζ) be defined as in (2.7) with the parameters κ and θ

satisfying the conditions of Lemma 1. Then we have∥∥[(δτ (e−zτ )α −∆)−1 − (δτ (e−zτ )α −∆h)−1Ph]φj
∥∥ ≤ Ch2ε(|z|α + λj)

−(1−ε) (3.17)

for all ε ∈ [0, 1] and j = 1, 2, . . . ,M .

Proof. First, (3.4) yields that δτ (e−zτ )α ∈ Σαθ for z ∈ Γ (τ)
θ,κ . Consequently, we have (cf.

[22, pp. 7]) ∥∥(δτ (e−zτ )α −∆)−1 − (δτ (e−zτ )α −∆h)−1Ph
∥∥ ≤ Ch2. (3.18)

Second, by Lemma 1 and Lemma 5, there exists a constant C which depends only on
θ and α such that

‖(δτ (e−zτ )α −∆)−1‖ ≤ C|δτ (e−zτ )|−α ≤ C|z|−α ∀ z ∈ Γ (τ)
θ,κ , (3.19)
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‖(δτ (e−zτ )α −∆h)−1Ph‖ ≤ ‖(δτ (e−zτ )α −∆h)−1‖‖Ph‖ ≤ C|z|−α ∀ z ∈ Γ (τ)
θ,κ . (3.20)

Since (δτ (e−zτ )α −∆)−1∆ = (δτ (e−zτ )α −∆)−1δτ (e−zτ )α − I, it follows that

‖(δτ (e−zτ )α −∆)−1∆‖ ≤ C.

Consequently, we have

‖(δτ (e−zτ )α −∆)−1φj‖ = ‖(δτ (e−zτ )α −∆)−1∆∆−1φj‖
≤ ‖(δτ (e−zτ )α −∆)−1∆‖‖∆−1φj‖
≤ Cλ−1j ,

which together with h2 ≤ Cλ−1M (since M = [h−d]+1 ∼ h−d and λM ≤ CM
2
d by Lemma

3) implies

‖(δτ (e−zτ )α −∆h)−1Phφj‖
≤ ‖(δτ (e−zτ)α−∆)−1φj‖+ ‖[(δτ (e−zτ)α−∆)−1−(δτ (e−zτ)α−∆h)−1Ph]φj‖
≤ Cλ−1j + Ch2

≤ Cλ−1j (3.21)

for j = 1, · · · ,M . Therefore, (3.19)-(3.21) leads to∥∥[(δτ (e−zτ )α −∆)−1 − (δτ (e−zτ )α −∆h)−1Ph
]
φj
∥∥ ≤ C min{|z|−α, λ−1j }
≤ C(|z|α + λj)

−1. (3.22)

Finally, interpolation between (3.18) and (3.22) yields (3.17). This completes the proof
of Lemma 6. ut

Now, we turn to the estimate of In. From Lemma 6, and choosing β ∈ (0, 1), it is
easy to derive

‖
(
Eτ (t)− E(h)

τ (t)
)
φj‖2

≤
(∫

Γ
(τ)
θ,κ

|ezt||δτ (e−zτ )|α−1‖[(δτ (e−zτ )α −∆)−1 − (δτ (e−zτ )α −∆h)−1Ph]φj‖dz
)2

≤
(
C

∫
Γ

(τ)
θ,κ

e|z|t cos(arg(z))|z|α−1(|z|α + λj)
−(1−ε)h2ε |dz|

)2

≤ Ch4ε
(∫

Γ
(τ)
θ,κ

e|z|t cos(arg(z))
|dz|
|z|β

)(∫
Γ

(τ)
θ,κ

e|z|t cos(arg(z))
|z|2α−2+β

(|z|α + λj)2−2ε
|dz|

)

≤ Ch4εtβ−1
∫
Γ

(τ)
θ,κ

e|z|t cos(arg(z))
|z|2α−2+β

(|z|α + λj)2−2ε
|dz| ,

where |dz| denotes the arc length element. By choosing κ = 1
T we have∫

Γ
(τ)
θ,κ

e|z|t cos(arg(z))
|dz|
|z|β

≤
∫ π

τ sin(θ)

κ

e−rt| cos(θ)|
dr

rβ
+

∫ θ

−θ
eκt cos(ϕ)

dϕ

κβ−1

≤ Ctβ−1. (3.23)

Since
Wj(ti)−Wj(ti−1)

τ , i = 1, . . . , n, and j = 1, 2, . . . , are stochastically independent of
each other, it follows that

E‖In‖2 =

M∑
j=1

E
∥∥∥∥ n∑
i=1

Wj(ti)−Wj(ti−1)

τ

∫ ti

ti−1

(Eτ (tn − s)− E(h)
τ (tn − s))φjds

∥∥∥∥2
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=

M∑
j=1

n∑
i=1

1

τ

∥∥∥∥∫ ti

ti−1

(Eτ (tn − s)− E(h)
τ (tn − s))φjds

∥∥∥∥2

≤
M∑
j=1

n∑
i=1

∫ ti

ti−1

‖Eτ (tn − s)− E(h)
τ (tn − s))φj‖2ds (Cauchy–Schwarz inequality)

=

M∑
j=1

∫ tn

0

‖
(
Eτ (t)− E(h)

τ (t)
)
φj‖2dt

≤ Ch4ε
∫ tn

0

tβ−1
∫
Γ

(τ)
θ,κ

e|z|t cos(arg(z))
M∑
j=1

|z|2α−2+β

(|z|α + λj)2−2ε
|dz|dt

= Ch4ε
∫ tn

0

tβ−1
∫
Γ

(τ)
θ,κ

e|z|t cos(arg(z))|z|2εα−2+β
M∑
j=1

(
|z|α

|z|α + λj

)2−2ε

|dz|dt.

(3.24)

Since
( |z|α
|z|α+λj

)2−2ε ≤ 1 for ε ∈ [0, 1], it follows that

M∑
j=1

(
|z|α

|z|α + λj

)2−2ε

≤M ≤ Ch−d,

where the last inequality is due to our choice M = [h−d] + 1. Thus (3.24) reduces to

E‖In‖2 ≤ Ch4ε−d
∫ tn

0

tβ−1
∫
Γ

(τ)
θ,κ

e|z|t cos(arg(z))|z|2εα−2+β |dz|dt

≤ Ch4ε−d
∫ tn

0

tβ−1
∫ π

τ sin(θ)

κ

e−rt| cos(θ)|r2εα−2+β drdt

+ Ch4ε−d
∫ tn

0

tβ−1
∫ θ

−θ
eκt cos(ϕ)κ2εα−1+β dϕdt

= Ch4ε−d
∫ π

τ sin(θ)

κ

r2εα−2+β
∫ tn

0

tβ−1e−rt| cos(θ)| dtdr

+ Ch4ε−d
∫ tn

0

tβ−1κ2εα−1+β
∫ θ

−θ
eκt cos(ϕ) dϕdt

≤ Ch4ε−d
(∫ π

τ sin(θ)

κ

r2εα−2 dr + κ2εα−1+β
∫ tn

0

tβ−1dt

)
≤ Ch4ε−d

(
1

1− 2εα
κ2εα−1 − 1

1− 2εα

(
π

τ sin(θ)

)2εα−1

+ κ2εα−1(κtn)β
)
.

For α ∈ [ 12 ,
d
2 ), we choose ε = 1−1/`h

2α with `h = ln(e + 1/h) and h−1/`h ≤ e (can recall
that κ = 1

T ), we have

E‖In‖2 ≤ CT
1
`h `hh

2
α−d. (3.25)

For α ∈ (0, 12 ), we choose ε = 1 and get

E‖In‖2 ≤ CT 1−2αh4−d. (3.26)
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3.3 Estimate of Jn

In this subsection, we present the estimate of Jn in (3.12), completing the proof of (3.1).
In view of the definition of Eτ (t) in (3.9), by using Lemma 1 and (3.14) to estimate
|δτ (e−zτ )α−1| and |(δτ (e−zτ )α + λj)

−1|, we obtain

‖Eτ (t)φj‖2 =

∣∣∣∣ 1

2πi

∫
Γ

(τ)
θ,κ

ezt
zτ

ezτ − 1
δτ (e−zτ )α−1(δτ (e−zτ )α + λj)

−1dz

∣∣∣∣2
≤ C

(∫
Γ

(τ)
θ,κ

|ezt|
∣∣∣∣ zτ

ezτ − 1

∣∣∣∣|δτ (e−zτ )|α−1(|δτ (e−zτ )|α + λj)
−1dz

)2

≤ C
(∫

Γ
(τ)
θ,κ

|ezt||z|α−1(|z|α + λj)
−1dz

)2

(use (C.1) here)

≤ C
(∫

Γ
(τ)
θ,κ

e|z|t cos(arg(z))
|dz|
|z|β
|dz|

)(∫
Γ

(τ)
θ,κ

e|z|t cos(arg(z))
|z|2α−2+β

(|z|α + λj)2
|dz|

)
≤ Ctβ−1

∫
Γ

(τ)
θ,κ

e|z|t cos(arg(z))
|z|2α−2+β

(|z| dα2 + j)
4
d

|dz|, (3.27)

where we have used (3.23). In view of (3.12), we have

E‖Jn‖2 ≤
∫ tn

0

∞∑
j=M+1

‖Eτ (t)φj‖2dt

≤ C
∫ tn

0

tβ−1
∫
Γ

(τ)
θ,κ

e|z|t cos(arg(z))
∞∑

j=M+1

|z|2α−2+β

(|z| dα2 + j)
4
d

|dz|dt

≤ C
∫ tn

0

tβ−1
∫
Γ

(τ)
θ,κ

e|z|t cos(arg(z))
|z|2α−2+β

(|z| dα2 +M)
4
d−1
|dz|dt

≤ C
∫ tn

0

tβ−1
∫ π

τ sin(θ)

κ

e−rt| cos(θ)|
r2α−2+β

(r
dα
2 +M)

4
d−1

drdt

+ C

∫ tn

0

tβ−1
∫ θ

−θ
eκt cos(ϕ)

κ2α−1+β

(κ
dα
2 +M)

4
d−1

dϕdt

= C

∫ π
τ sin(θ)

κ

r2α−2+β

(r
dα
2 +M)

4
d−1

∫ tn

0

tβ−1e−rt| cos(θ)|dtdr

+ C

∫ tn

0

tβ−1
κ2α−1+β

(κ
dα
2 +M)

4
d−1

∫ θ

−θ
eκt cos(ϕ)dϕdt

≤ C
∫ π

τ sin(θ)

κ

r2α−2

(r
dα
2 +M)

4
d−1

dr +
C(κtn)βκ2α−1

(κ
dα
2 +M)

4
d−1

≤ C
(∫ min{M

2
dα , π

τ sin(θ)
}

κ

r2α−2

M
4
d−1

dr +

∫ π
τ sin(θ)

min{M
2
dα , π

τ sin(θ)
}

r2α−2

r2α−
dα
2

dr

)
+

Cκ2α−1

(κ
dα
2 +M)

4
d−1

≤ C
(∫ min{M

2
dα , π

τ sin(θ)
}

κ

r2α−2

M
4
d−1

dr +M1− 2
dα

)
+

Cκ2α−1

(κ
dα
2 +M)

4
d−1

. (3.28)

We estimate E‖Jn‖2 in three different cases by using M = [h−d] + 1 ≤ Ch−d.
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In the case α ∈ ( 1
2 ,

2
d ), (3.28) reduces to

E‖Jn‖2 ≤ C
(∫ M

2
dα

κ

r2α−2

M
4
d−1

dr +M1− 2
dα

)
+ CM1− 4

d

≤ CM1− 2
dα ≤ Ch 2

α−d. (3.29)

In the case α ∈ (0, 12 ), (3.28) yields

E‖Jn‖2 ≤ C
(
T 1−2αM1− 4

d +M1− 2
dα

)
≤ C(1 + T 1−2α)M1− 4

d

≤ C(1 + T 1−2α)h4−d. (3.30)

In the case α = 1
2 , (3.28) implies

E‖Jn‖2 ≤ C
(∫ M

2
dα

κ

r−1

M
4
d−1

dr +M1− 2
dα

)
+ CM1− 4

d ≤ C(lnM + lnT )M1− 4
d

≤ C(`h + lnT )h
2
α−d. (3.31)

It is well-known that (E‖un−u(h)n ‖)2 ≤ E‖un−u(h)n ‖2, substituting (3.25)-(3.26) and
(3.29)-(3.31) into (3.12) yields (3.3), completing the proof of (3.1).

4 Deterministic problem: estimate of ‖v(·, tn)− v(h)
n ‖

In this section, we estimate the error ‖v(·, tn) − v(h)n ‖ by minimizing the regularity re-
quirement on ψ0 and f to match the convergence rate proved in the last section, where

v and v
(h)
n are the solutions of (2.20) and (2.22) or (2.23), respectively. In particular, we

prove the following estimate for α ∈
(
0, 2d

)
:

‖v(·, tn)− v(h)n ‖ ≤ C
(
‖ψ0‖Ḣχ(O)+‖f‖L 4

2+αd
,1
(0,tn;L2(O))

)(
τ

1
2−

αd
4 + hχ

)
, (4.1)

where χ ∈ (0, 2− d
2 ) is defined in (2.19). To this end, we introduce the semi-discrete finite

element problem {
∂tv

(h) −∆h∂
1−α
t v(h) = Phf

v(h)(·, 0) = Phψ0.
(4.2)

Then (2.22) or (2.23) can be viewed as the time discretization of (4.2), with the following
decomposition:

‖v(·, tn)− v(h)n ‖ ≤ ‖v(·, tn)− v(h)(·, tn)‖+ ‖v(h)(·, tn)− v(h)n ‖.

We estimate ‖v(·, tn) − v(h)(·, tn)‖ and ‖v(h)(·, tn) − v(h)n ‖ in the next two subsections,
respectively.

4.1 Spatial discretization: estimate of ‖v(·, tn)− v(h)(·, tn)‖

In this subsection we estimate ‖v(·, tn) − v(h)(·, tn)‖, where v and v(h) are solutions of
(2.20) and (4.2), respectively. Next, we consider the following three cases:
Case 1: ψ0 6= 0, f = 0, α ∈ (0, 1] ∩ (0, 2d ).
Case 2: ψ0 6= 0, f = 0, α ∈ (1, 2d ). (This requires d = 1, cf. Theorem 1)
Case 3: ψ0 = 0, f 6= 0.
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In Case 1, the solutions of (2.20) and (4.2) are given by v(·, tn) = ψ0 and v(h)(·, tn) =
Phψ0, n = 1, 2, . . . , respectively (this follows from setting f = 0 and σ = 0 in (A.3) of
Appendix A). Consequently, we have

‖v(·, tn)− v(h)(·, tn)‖ = ‖ψ0 − Phψ0‖ ≤ C‖ψ0‖Ḣχ(O)h
χ,

where we have used (2.10) in the last inequality.
In Case 2, we note that the PDE problem (2.20) is equivalent to (multiplying both

sides by the operator ∂α−1t )∂αt v(x, t)−∆v(x, t) = 0 (x, t) ∈ O × R+

v(x, t) = 0 (x, t) ∈ ∂O × R+

v(x, 0) = ψ0(x) and ∂tv(x, 0) = 0 x ∈ O
(4.3)

and the finite element problem (4.2) is equivalent to (for the same reason){
∂αt v

(h) −∆hv
(h) = 0

v(h)(·, 0) = Phψ0 and ∂tv
(h)(·, 0) = 0.

(4.4)

By Laplace transform, v = E(t)ψ0 and v(h) = E(h)(t)Phψ0, where the operators E(t) :
L2(O)→ L2(O) and E(h)(t) : Xh → Xh are given in Appendix A. An error estimate for
(4.3) and (4.4) was presented in [13, Theorems 3.2]:

‖v(·, tn)− v(h)(·, tn)‖ ≤ C‖ψ0‖Ḣ2(O)h
2. (4.5)

The boundedness of the solution operators E(t) : L2(O)→ L2(O) and E(h)(t) : Xh → Xh

(see Appendix A, (A.4) and (A.6)) implies

‖v(·, tn)− v(h)(·, tn)‖ = ‖E(tn)ψ0 − E(h)(tn)Phψ0‖
≤ ‖E(tn)ψ0‖+ ‖E(h)(tn)Phψ0‖
≤ C‖ψ0‖.

(4.6)

Then the interpolation between (4.5) and (4.6) yields

‖v(·, tn)− v(h)(·, tn)‖ ≤ C‖ψ0‖Ḣχ(O)h
χ. (4.7)

In Case 3, we have

Phv(·, tn)− v(h)(·, tn) = Ph

(
v(·, tn)− v(h)(·, tn)

)
= Ph

(∫ tn

0

E(tn − s)f(·, s)ds−
∫ tn

0

E(h)(tn − s)Phf(·, s)ds
)

= Ph

∫ tn

0

E(tn − s)(f(·, s)− Phf(·, s))ds

+ Ph

∫ tn

0

(
E(tn − s)− E(h)(tn − s)Ph

)
Phf(·, s)ds

=: I(h)(tn) + J (h)(tn), (4.8)

where

I(h)(tn) =

∫ tn

0

1

2πi

∫
Γθ,κ

ez(tn−s)zα−1Ph(zα −∆)−1(f(·, s)− Phf(·, s))dzds

=

∫ tn

0

1

2πi

∫
Γθ,κ

ez(tn−s)zα−1Phwz(·, s)dzds
(4.9)
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with

wz(·, s) = (zα −∆)−1(f(·, s)− Phf(·, s)), (4.10)

which satisfies

‖wz(·, s)‖Ḣ2(O) = ‖∆−1∆(zα −∆)−1(f(·, s)− Phf(·, s))‖Ḣ2(O)

≤ C‖∆(zα −∆)−1(f(·, s)− Phf(·, s))‖
≤ C‖f(·, s)− Phf(·, s)‖. (4.11)

By using the Ritz projection operator Rh, equation (4.10) implies

((zα −∆h)Phwz +∆h(Phwz −Rhwz), φh) = zα(wz, φh) + (∇Rhwz,∇φh)

= zα(wz, φh) + (∇wz,∇φh)

= ((zα −∆)wz, φh)

= (f − Phf, φh) = 0 ∀φh ∈ Xh,

i.e., Phwz = −(zα −∆h)−1∆h(Phwz −Rhwz). Consequently, we obtain

|z|γα‖Phwz(·, s)‖ = ‖|z|γα(zα −∆h)−γ [∆h(zα −∆h)−1]1−γ∆γ
h(Phwz(·, s)−Rhwz(·, s))‖

≤ C‖∆γ
h(Phwz(·, s)−Rhwz(·, s))‖

≤ C‖wz(·, s)‖Ḣ2(O)h
2−2γ (here we use (2.15))

≤ C‖f(·, s)− Phf(·, s)‖h2−2γ (here we use (4.11))

≤ C‖f(·, s)‖h2−2γ .

By choosing γ = 1− 1
2χ so that 2− 2γ = χ, the inequality (4.9) reduces to

‖I(h)(tn)‖ ≤ C
∫ tn

0

∫
Γθ,κ

|ez(tn−s)||z|(1−γ)α−1|z|γα‖Phw(·, s)‖|dz|ds

≤ C
∫ tn

0

∫
Γθ,κ

|ez(tn−s)||z| 12χα−1‖f(·, s)‖hχ|dz|ds

≤ Chχ
∫ tn

0

(tn − s)−
1
2χα‖f(·, s)‖ds.

(4.12)

Furthermore, applying the similar analysis in Lemma 6, we have

‖(zα −∆)−1 − (zα −∆h)−1Ph‖ ≤ Ch2, (cf. [22, pp. 7])

‖(zα −∆)−1 − (zα −∆h)−1Ph‖ ≤ C|z|−α. (resolvent estimate, see (3.15))

The interpolation of the last two inequalities yields

‖(zα −∆)−1 − (zα −∆h)−1Ph‖ ≤ C|z|−γαh2−2γ ∀ γ ∈ [0, 1].

Again, by choosing γ = 1− 1
2χ (so that 2− 2γ = χ), we have

‖J (h)(tn)‖

=

∥∥∥∥Ph ∫ tn

0

1

2πi

∫
Γθ,κ

ez(tn−s)zα−1
(

(zα −∆)−1−(zα −∆h)−1Ph

)
Phf(·, s)dzds

∥∥∥∥
≤
∫ tn

0

∫
Γθ,κ

|ez(tn−s)||z|α−1‖(zα −∆)−1 − (zα −∆h)−1Ph‖‖Phf(·, s)‖|dz|ds

≤ C
∫ tn

0

∫
Γθ,κ

|ez(tn−s)||z|α−1|z|−(1− 1
2χ)αhχ‖f(·, s)‖|dz|ds
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≤ Chχ
∫ tn

0

(∫
Γθ,κ

|ez(tn−s)||z| 12χα−1|dz|
)
‖f(·, s)‖ds

≤ Chχ
∫ tn

0

(tn − s)−
1
2χα‖f(·, s)‖ds. (4.13)

Substituting (4.12) and (4.13) into (4.8) yields

‖Phv(·, tn)− v(h)(·, tn)‖ ≤ Chχ
∫ tn

0

(tn − s)−
1
2χα‖f(·, s)‖ds. (4.14)

Furthermore, we can see that

‖v(·, tn)− Phv(·, tn)‖
≤ Chχ‖v(·, tn)‖Ḣχ(O)

≤ Chχ‖∆ 1
2χv(·, tn)‖

= Chχ
∥∥∥∥ ∫ tn

0

1

2πi

∫
Γθ,κ

ez(tn−s)zα−1∆
1
2χ(zα −∆)−1f(·, s)dzds

∥∥∥∥
≤ Chχ

∫ tn

0

∫
Γθ,κ

|ez(tn−s)||z|α−1‖∆ 1
2χ(zα −∆)−1‖‖f(·, s)‖|dz|ds

≤ Chχ
∫ tn

0

∫
Γθ,κ

|ez(tn−s)||z| 12χα−1‖f(·, s)‖|dz|ds (here we use (3.16))

≤ Chχ
∫ tn

0

(tn − s)−
1
2χα‖f(·, s)‖ds. (4.15)

The estimates (4.14) and (4.15) imply

‖v(·, tn)− v(h)(·, tn)‖ ≤ Chχ
∫ tn

0

(tn − s)−
1
2χα‖f(·, s)‖ds

≤ Chχ‖f‖
L

2
2−χα ,1(0,T ;L2(O))

, (here we use (2.1))

completing the proof in Case 3.
The combination of Cases 1, 2 and 3 yields

‖v(·, tn)− v(h)(·, tn)‖ ≤ C
(
‖ψ0‖Ḣχ(O) + ‖f‖

L
2

2−χα ,1(0,T ;L2(O))

)
hχ

≤ C
(
‖ψ0‖Ḣχ(O) + ‖f‖

L
4

2+αd
,1
(0,T ;L2(O))

)
hχ, (4.16)

where we have used the fact 2
2−χα ≤

4
2+αd in the last inequality.

4.2 Temporal discretization: estimate of ‖v(h)(·, tn)− v(h)n ‖

To estimate ‖v(h)(·, tn)− v(h)n ‖, we consider the following three cases:
Case 1’: ψ0 6= 0, f = 0, α ∈ (0, 1] ∩ (0, 2d ).
Case 2’: ψ0 6= 0, f = 0, α ∈ (1, 2d ). (This requires d = 1, cf. Theorem 1)
Case 3’: ψ0 = 0, f 6= 0.

In Case 1’, it is straightforward to verify that the solutions of (4.2) and (2.22) are

given by v(h)(·, tn) = v
(h)
n = Phψ0, n = 1, 2, . . . Consequently, we have

v(h)(·, tn)− v(h)n = 0. (4.17)
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In Case 2’, by using the Laplace transform, we can derive the following error repre-
sentation (see Appendix B):

v(h)(·, tn)− v(h)n =
1

2πi

∫
Γθ,κ

eztnz−1(zα −∆h)−1∆hPhψ0dz

− 1

2πi

∫
Γ

(τ)
θ,κ

eztne−zτδτ (e−zτ )−1(δτ (e−zτ )α −∆h)−1∆hPhψ0 dz

=
1

2πi

∫
Γ

(τ)
θ,κ

eztnD
(1)
h (z)∆γ

hPhψ0 dz

+
1

2πi

∫
Γθ,κ\Γ (τ)

θ,κ

eztnz−1∆1−γ
h (zα −∆h)−1∆γ

hPhψ0dz

=: I(h)n + J (h)
n , (4.18)

where γ ∈ [0, 1] and

D
(1)
h (z) = z−1∆1−γ

h (zα −∆h)−1 − e−zτδτ (e−zτ )−1∆1−γ
h (δτ (e−zτ )α −∆h)−1.

Lemma 1 and Lemma 5 imply

‖D(1)
h (z)‖ ≤ C|z|−1

(
‖∆1−γ

h (zα −∆h)−1‖+ ‖∆1−γ
h (δτ (e−zτ )α −∆h)−1‖

)
≤ C|z|−γα−1 (here we use (3.16))

and

‖D(1)
h (z)‖ ≤ C|z|−1‖∆1−γ

h [(zα −∆h)−1 − (δτ (e−zτ )α −∆h)−1]‖
+ C|z−1 − e−zτδτ (e−zτ )−1|‖∆1−γ

h (δτ (e−zτ )α −∆h)−1‖
≤ C|z|−1|zα − δτ (e−zτ )α|‖∆1−γ

h (δτ (e−zτ )α −∆h)−1‖‖(zα −∆h)−1‖
+ C|(δτ (e−zτ )− z) + (1− e−zτ )z||z|−1|δτ (e−zτ )|−1|z|−γα (use (3.16))

≤ C|z|−γατ.

The last two inequalities further imply

‖D(1)
h (z)‖ ≤ C|z|−γα−1+ητη ∀ η ∈ [0, 1].

Then, we have

‖I(h)n ‖ ≤ C
∫
Γ

(τ)
θ,κ

|eztn |‖D(1)
h (z)‖‖∆γ

hPhψ0‖ |dz|

≤ C
∫
Γ

(τ)
θ,κ

|eztn ||z|−γα−1+ητη‖∆γ
hPhψ0‖ |dz|

≤ Cτη‖∆γ
hPhψ0‖

(∫ π
τ sin(θ)

κ

ertn cos(θ)r−γα−1+η dr +

∫ θ

−θ
eκtn cos(ϕ) κ−γα+ηdϕ

)
≤ Cτη‖∆γ

hPhψ0‖
(
tγα−ηn

∫ tnπ
τ sin(θ)

κtn

e−s| cos(θ)|s−γα−1+η ds+ κ−γα+η
)

≤ Cτγα(1 + κ−γα+η)‖∆γ
hPhψ0‖ (this requires η > γα)

≤ Cτγα‖ψ0‖Ḣ2γ(O), (4.19)

where we have used (2.14) in the last inequality. Similarly, by using Lemma 5 we have

‖J (h)
n ‖ ≤ C

∫
Γθ,κ\Γ (τ)

θ,κ

|eztn ||z|−1‖∆1−γ
h (zα −∆h)−1‖‖∆γ

hPhψ0‖|dz|
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≤ C‖∆γ
hPhψ0‖

∫ ∞
π

τ sin(θ)

e−rtn| cos(θ)|r−1−γαdr (here we use (3.16))

≤ Cτ1+γα‖∆γ
hPhψ0‖

∫ ∞
π

τ sin(θ)

e−rtn| cos(θ)|dr

≤ Cτγα‖∆γ
hPhψ0‖

≤ Cτγα‖ψ0‖Ḣ2γ(O), (4.20)

where we have used (2.14) again in the last inequality. By choosing γ = 1
2α −

d
4 ∈ (0, 1)

and η > 1
2−

αd
4 ∈ (0, 1) (recall that 1 < α < 2

d ), substituting (4.19) and (4.20) into (4.18)
yields

‖v(h)(·, tn)− v(h)n ‖ ≤ Cτ
1
2−

αd
4 ‖ψ0‖

Ḣ
1
α
− d

2 (O)
≤ Cτ 1

2−
αd
4 ‖ψ0‖Ḣχ(O), (4.21)

where we have noted that 1
α −

d
2 ≤ χ for α > 1.

In Case 3’, with α ∈ (0, 2), we have

v(h)(·, tn) =

∫ tn

0

E(h)(tn − s)Phf(·, s)ds, (4.22)

v(h)n =

∫ tn

0

E(h)
τ (tn − s)Phfτ (·, s)ds, (4.23)

where E
(h)
τ (t) is given by (3.11) and fτ is the piecewise constant (in time) function defined

in (2.2). The difference of the two expressions (4.22) and (4.23) yields

v(h)(·, tn)− v(h)n =

∫ tn

0

[
E(h)(tn − s)− E(h)

τ (tn − s)
]
Phfτ (·, s)ds

+

∫ tn

0

E(h)(tn − s)
[
Phf(·, s)− Phfτ (·, s)

]
ds

=: K(h)
n + L(h)

n . (4.24)

In the following, we estimate K(h)
n and L(h)

n separately.
By the inverse Laplace transform rule L−1(f̂ ĝ)(t) =

∫ t
0
L−1(f̂)(t− s)L−1(ĝ)(s)ds, we

have

K(h)
n =

1

2πi

∫
Γθ,κ

eztnzα−1(zα −∆h)−1Phf̂τ (·, z)dz

− 1

2πi

∫
Γ

(τ)
θ,κ

eztn
zτ

ezτ − 1
δτ (e−zτ )α−1(δτ (e−zτ )α −∆h)−1Phf̂τ (·, z) dz

=
1

2πi

∫
Γθ,κ\Γ (τ)

θ,κ

eztnD̂
(2)
h (z)Phf̂τ (·, z)dz − 1

2πi

∫
Γ

(τ)
θ,κ

eztnD̂
(3)
h (z)Phf̂τ (·, z) dz

=

∫ tn

0

D
(2)
h (tn − s)Phfτ (·, s)ds+

∫ tn

0

D
(3)
h (tn − s)Phfτ (·, s)ds, (4.25)

where

D̂
(2)
h (z) = zα−1(zα −∆h)−1,

D̂
(3)
h (z) = zα−1(zα −∆h)−1 − zτ

ezτ − 1
δτ (e−zτ )α−1(δτ (e−zτ )α −∆h)−1,

and

D
(2)
h (t)φ =

1

2πi

∫
Γθ,κ\Γ (τ)

θ,κ

eztD̂
(2)
h (z)φdz, D

(3)
h (t)φ =

1

2πi

∫
Γ

(τ)
θ,κ

eztD̂
(3)
h (z)φdz.
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Using the similar method as introduced in [12, Lemma 3.4] (as well as the inequalities
(3.15) in Lemma 5 and (C.1) in Appendix C), it is easy to see that

‖D̂(2)
h (z)‖+ ‖D̂(3)

h (z)‖ ≤ C|z|−1 and ‖D̂(3)
h (z)‖ ≤ Cτ. (4.26)

The last two inequalities further imply

‖D̂(3)
h (z)‖ ≤ C|z|−θτ1−θ ∀ θ ∈ [0, 1]. (4.27)

Consequently,

‖D(2)
h (t)‖ ≤ C

∫
Γθ,κ\Γ (τ)

θ,κ

|ezt|‖D̂(2)
h (z)‖|dz|

≤ C
∫ ∞

π
τ sin(θ)

ert cos(θ)r−1dr

≤ Cτ
∫ ∞

π
τ sin(θ)

ert cos(θ)dr

≤ Ct−1τ
∫ ∞

tπ
τ sin(θ)

es cos(θ)ds

≤ Ct−1τ
≤ Ct−1/qτ1/q ∀ q > 1, t ≥ τ,

and

‖D(2)
h (t)‖ ≤ C

∫
Γθ,κ\Γ (τ)

θ,κ

|ezt|‖D̂(2)
h (z)‖|dz|

≤ C
∫ ∞

π
τ sin(θ)

ert cos(θ)r−1dr

≤ C
∫ ∞

tπ
τ sin(θ)

es cos(θ)s−1ds

≤ C
∫ ∞
1

es cos(θ)s−1ds+ C

∫ 1

tπ
τ sin(θ)

es cos(θ)s−1ds

≤ C + C ln
(
t−1τ

)
≤ Ct−1/qτ1/q ∀ q > 1, t ∈ (0, τ).

A combination of the last two estimates gives the following estimate of ‖D(2)
h (t)‖:

‖D(2)
h (t)‖ ≤ Ct−1/qτ1/q ∀ q > 1, t ≥ 0. (4.28)

Similarly, we have

‖D(3)
h (t)‖ ≤ C

∫
Γ

(τ)
θ,κ

|ezt|‖D̂(3)
h (z)‖|dz|

≤ Cτ1/q
∫
Γ

(τ)
θ,κ

|ezt||z|−(1−1/q)|dz| (set θ = 1− 1/q in (4.27))

≤ Cτ1/q
∫ π

τ sin(θ)

κ

ert cos(θ)r−(1−1/q)dr + Cτ1/q
∫ θ

−θ
eκt cos(ϕ)κ1/qdϕ

≤ Ct−1/qτ1/q
∫ tπ

τ sin(θ)

κt

es cos(θ)ds+ Cκ1/qτ1/qeκT

≤ Ct−1/qτ1/q + CT−1/qτ1/q

≤ Ct−1/qτ1/q ∀ q > 1, t ∈ (0, T ].

(4.29)
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Substituting (4.28) and (4.29) into (4.25) yields

‖K(h)
n ‖ =

∥∥∥∥∫ tn

0

D(2)(tn − s)Phfτ (·, s)ds+

∫ tn

0

D(3)(tn − s)Phfτ (·, s)ds
∥∥∥∥

≤ Cτ1/q
∫ tn

0

(tn − s)−1/q‖Phfτ (·, s)‖ds

≤ Cτ1/q‖fτ‖Lq′,1(0,tn;L2(O))

≤ Cτ1/q‖f‖Lq′,1(0,tn;L2(O)), (4.30)

where the last inequality follows from (2.3). This completes the estimate of the first term
in (4.24).

The second term in (4.24) can be estimated as follows:

‖L(h)
n ‖ =

∥∥∥∥ n∑
j=1

∫ tj

tj−1

E(h)(tn − s)
[
Phf(·, s)− Phfτ (·, s)

]
ds

∥∥∥∥
=

∥∥∥∥ n∑
j=1

∫ tj

tj−1

(
E(h)(tn − s)− E(h)(tn − tj−1)

)[
Phf(·, s)− Phfτ (·, s)

]
ds

∥∥∥∥
≤

n∑
j=1

∫ tj

tj−1

‖E(h)(tn − s)− E(h)(tn − tj−1)‖‖Phf(·, s)− Phfτ (·, s)‖ds

≤
n∑
j=1

∫ tj

tj−1

Cτ1/q(tn − s)−1/q‖Phf(·, s)− Phfτ (·, s)‖ds

≤ Cτ1/q‖f − fτ‖Lq′,1(0,tn;L2(O))

≤ Cτ1/q‖f‖Lq′,1(0,tn;L2(O)), (4.31)

where we have used the following identity to obtain the second equality in (4.31):∫ tj

tj−1

E(h)(tn − tj−1)Phfτ (·, s)ds

=
1

2πi

∫ tj

tj−1

∫
Γθ,κ

ez(tn−tj)zα−1(zα −∆h)−1Phfτ (·, s)ds (use (A.5) here)

=
1

2πi

∫ tj

tj−1

∫
Γθ,κ

ez(tn−tj)zα−1(zα −∆h)−1
1

τ

∫ tj

tj−1

Phf(·, ξ)dξds (use (2.2) here)

=
1

2πi

∫ tj

tj−1

∫
Γθ,κ

ez(tn−tj)zα−1(zα −∆h)−1Phf(·, ξ)dξ

=

∫ tj

tj−1

E(h)(tn − tj−1)Phf(·, s)ds,

and we have used the following estimate to obtain the second inequality in (4.31): for
q > 1,

‖E(h)(tn − s)− E(h)(tn − tj−1)‖

≤ C
∫
Γθ,κ

|ez(tn−s) − ez(tn−tj−1)||z|α−1‖(zα −∆h)−1‖|dz|

≤ C
∫
Γθ,κ

|ez(tn−s)||1− ez(s−tj−1)||z|−1|dz| (here we use (3.15))

≤ C
∫
Γθ,κ

|ez(tn−s)|τ1/q|z|−(1−1/q)|dz| (here we use (C.2))
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≤ Cτ1/q(tn − s)−1/q. (4.32)

By choosing q > 1 to satisfy 1
q = 1

2 −
αd
4 , we have q′ = 4

2+αd . Then substituting (4.30)

and (4.31) into (4.24) yields

‖v(h)n − v(h)(·, tn)‖ ≤ Cτ 1
2−

αd
4 ‖f‖

L
4

2+αd
,1
(0,tn;L2(O))

, (4.33)

completing the proof of Case 3.

By combining (4.17), (4.21) and (4.33) (the results of Cases 1, 2 and 3), we obtain

‖v(h)n − v(h)(·, tn)‖ ≤ C
(
‖ψ0‖Ḣχ(O) + ‖f‖

L
4

2+αd
,1
(0,tn;L2(O))

)
τ

1
2−

αd
4 . (4.34)

The estimates (4.16) and (4.34) imply (4.1), completing the proof of Theorem 1. ut

5 Numerical examples

In this section, we present numerical examples to illustrate the theoretical analyses.

We consider the one-dimensional stochastic partial integro-differential equation (1.1)
for 0 ≤ x ≤ 1, 0 < t ≤ 1, with homogeneous Dirichlet boundary condition and initial
condition ψ0(x) = x(1− x). Here, we let σ = 1 in (1.1) and

f(x, t) =


1 for 0 ≤ x ≤ 1

2
,

− 1 for
1

2
< x ≤ 1.

The problem (1.1) is discretized by using the scheme (2.16)-(2.17).

To investigate the convergence rate in space, we first solve the problem (1.1) by taking
the mesh size hk = 1/Mk = 2−k, k = 2, 3, 4, 5, and using a sufficiently small time step
τ = 2−14 so that the temporal discretization error is relatively negligible. Then, the error

E(hk) =
1

I

I∑
i=1

‖ψ(hk)
N (ωi)− ψ

(hk−1)
N (ωi)‖

is computed for k = 3, 4, 5, by using I = 10000 independent realizations for each spatial
mesh size. By Theorem 1, the error E(hk) is expected to have the convergence rate

O(h
1
α−

1
2 ) for α ∈ [ 12 , 2), and O(h

3
2 ) for α ∈ (0, 12 ) in one-dimensional spatial domain. The

numerical results are presented in Table 1 and consistent with the theoretical analyses
that the spatial order of convergence increases as α decreases and stays at the order 3

2
when α further decreases.

Secondly, we solve the problem (1.1) by using the time step τk = 2−k, k = 6, 7, 8, 9.
In order to focus on the temporal discretization error, a sufficiently small spatial mesh
size h = 1/M = 2−10 is used such that the spatial discretization error can be relatively
negligible. Similarly, we consider I = 10000 independent realizations for each time step
and compute the error E(τk) by

E(τk) =
1

I

I∑
i=1

‖ψ(h)
N,τk

(ωi)− ψ(h)
N,τk−1

(ωi)‖

for k = 7, 8, 9, which is expected to have the convergence rate O(τ
1
2−

α
4 ) by Theorem 1.

Clearly, the results in Table 2 illustrate the sharp convergence rate.
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Table 1 E(hk) and convergence rates in space

α\hk 2−3 2−4 2−5 order
α = 0.25 1.1669e-02 3.9124e-03 1.3519e-03 1.555 (1.500)
α = 0.75 2.4353e-02 1.2987e-02 6.6322e-03 0.938 (0.833)
α = 1.25 8.3694e-02 6.7186e-02 5.4196e-02 0.314 (0.300)

Table 2 E(τk) and convergence rates in time

α\τk 2−7 2−8 2−9 order
α = 0.25 2.2103e-03 1.7275e-03 1.3454e-03 0.359 (0.4375)
α = 0.75 1.5613e-02 1.2621e-02 1.0177e-02 0.309 (0.3125)
α = 1.25 5.0056e-02 4.4012e-02 3.8869e-02 0.183 (0.1875)

A Mild solution of (1.1)

In the case α ∈ (1, 2), the boundary condition ∂1−αt ψ = 0 is equivalent to ψ = 0 on ∂Ω (this can be
checked by taking Laplace transform in time). Similarly, in the case α ∈ (0, 1], the boundary condition
∂1−αt ψ = 0 is equivalent to ψ − ψ0 = 0 on ∂Ω × [0,∞), where ψ0 = ψ(·, 0) is the initial value in (1.1).

In the case σ = 0, the solution of the corresponding deterministic problem of (1.1) can be expressed
by (via Laplace transform, cf. [22, (3.11) and line 4 of page 12] in the case α ∈ (1, 2))

ψ(·, t) =


ψ0 +

∫ t

0
E(t− s)f(·, s)ds if α ∈ (0, 1],

E(t)ψ0 +

∫ t

0
E(t− s)f(·, s)ds if α ∈ (1, 2),

(A.1)

where the operator E(t) : L2(O)→ L2(O) is given by

E(t)φ :=
1

2πi

∫
Γθ,κ

eztzα−1(zα −∆)−1φdz ∀φ ∈ L2(O) (A.2)

with integration over a contour Γθ,κ on the complex plane.
Correspondingly, the mild solution of the stochastic problem (1.1) is defined as (cf. [17, Proposition

2.7] and [23])

ψ(·, t) =


ψ0 +

∫ t

0
E(t− s)f(·, s)ds+ σ

∫ t

0
E(t− s)dW (·, s) if α ∈ (0, 1],

E(t)ψ0 +

∫ t

0
E(t− s)f(·, s)ds+ σ

∫ t

0
E(t− s)dW (·, s) if α ∈ (1, 2).

(A.3)

For any given initial data ψ0 ∈ L2(O) and source f ∈ L1(0, T ;L2(O)), the expression (A.3) defines a
mild solution ψ ∈ C([0, T ];L2(Ω;L2(O))). In the case ψ0 = f = 0 and σ 6= 0, a simple proof of this
result can be found in [12, Appendix]; in the case σ = 0 (ψ0 and f may not be zero), the result is a
consequence of the boundedness of the operator E(t) : L2(O)→ L2(O), i.e.,

‖E(t)v‖ ≤ C
∫
Γθ,κ

|ezt||z|α−1‖(zα −∆)−1v‖|dz|

≤ C‖v‖
∫ ∞
κ

e−rt| cos(θ)|r−1dr + C‖v‖
∫ θ

−θ
eκt cos(ϕ)dϕ

≤ C‖v‖ ∀ v ∈ L2(O). (A.4)

Similarly, the discrete operator E(h)(t) : Xh → Xh defined by

E(h)(t)φ :=
1

2πi

∫
Γθ,κ

eztzα−1(zα −∆h)−1φdz ∀φ ∈ Xh, (A.5)

is also bounded on the finite element subspace Xh, i.e.,

‖E(h)(t)v‖ ≤ C‖v‖ ∀ v ∈ Xh, (A.6)

where the constant C is independent of the mesh size h.



24

B Representation of the discrete solutions

For f = 0 we prove the following representation of the solutions of (4.2) and (2.23):

v(h)(·, tn) = Phψ0 +
1

2πi

∫
Γθ,κ

eztnz−1(zα −∆h)−1∆hPhψ0dz, (B.1)

v
(h)
n = Phψ0 +

1

2πi

∫
Γ

(τ)
θ,κ

etnze−zτ δ(e−zτ )−1
(
δ(e−zτ )α −∆h

)−1
∆hPhψ0 dz, (B.2)

which are used in (4.18) in estimating the error of temporal discretization.

In fact, (B.1) is a consequence of (A.3): replacing E(t) by E(h)(t) and substituting φ = Phψ0 yield

v(h)(·, tn) =
1

2πi

∫
Γθ,κ

eztzα−1(zα −∆h)−1Phψ0 dz

=
1

2πi

∫
Γθ,κ

eztz−1(zα −∆h +∆h)(zα −∆h)−1Phψ0 dz

=
1

2πi

∫
Γθ,κ

eztz−1Phψ0 dz +
1

2πi

∫
Γθ,κ

eztz−1(zα −∆h)−1∆hPhψ0 dz

= Phψ0 +
1

2πi

∫
Γθ,κ

eztz−1(zα −∆h)−1∆hPhψ0 dz,

where we have used the identity 1
2πi

∫
Γθ,κ

eztz−1dz = 1 (i.e., the inverse Laplace transform of z−1 is 1).

It remains to prove (B.2). To this end, we rewrite (2.23) as

∂̄τ (v
(h)
n − Phψ0)−∆h∂̄1−ατ (v

(h)
n − Phψ0) = ∆h∂̄

1−α
τ (Phψ0)n, (B.3)

where ∂̄1−ατ (Phψ0)n := 1
τ1−α

∑n
j=1 bn−jPhψ0. Since we are only interested in the solutions v

(h)
n , n =

1, . . . , N , we define

ṽ
(h)
n =

{
v
(h)
n 1 ≤ n ≤ N,

Phψ0 n ≥ N + 1,

which satisfies the equation

∂̄τ (ṽ
(h)
n − Phψ0)−∆h∂̄1−ατ (ṽ

(h)
n − Phψ0) = ∆h∂̄

1−α
τ (Phψ0)n + gn, (B.4)

with gn = 0 for 1 ≤ n ≤ N . The right-hand side of (B.4) differs from (B.3) only for n ≥ N + 1, that

‖gn‖ ≤ ‖∆h∂̄1−ατ (ṽ
(h)
n − Phψ0)‖+ ‖∆h∂̄1−ατ (Phψ0)n‖

≤
1

τ1−α

N∑
j=1

|bn−j |‖ṽ
(h)
j − Phψ0‖+

1

τ1−α

n∑
j=1

|bn−j |‖Phψ0‖

≤ Cτα−1
( N∑
j=1

|bn−j |+
n∑
j=1

|bn−j |
)

≤ Cτα−1nα−1,

as n→∞. Thus
∑∞
n=N+1 gnζ

n is an analytic function of ζ for |ζ| < 1.

By (2.8), summing up (B.4) times ζn for n = 1, 2, . . . , yields

(
1− ζ
τ
−
(

1− ζ
τ

)1−α
∆h

) ∞∑
n=1

(ṽ
(h)
n − Phψ0)ζn = ∆h

(
1− ζ
τ

)1−α ζ

1− ζ
Phψ0 +

∞∑
n=N+1

gnζ
n,

which implies

∞∑
n=1

(ṽ
(h)
n − Phψ0)ζn =

(
1− ζ
τ

)−1((1− ζ
τ

)α
−∆h

)−1

∆hPhψ0
ζ

τ

+

(
1− ζ
τ

)α−1((1− ζ
τ

)α
−∆h

)−1 ∞∑
n=N+1

gnζ
n.
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For κ > 0 and %κ = e−(κ+1)τ ∈ (0, 1), the Cauchy integral formula implies that

ṽ
(h)
n − Phψ0

=
1

2πi

∫
|ζ|=%κ

ζ−n−1
∞∑
n=1

(v
(h)
n − Phψ0)ζndζ

=
1

2πi

∫
|ζ|=%κ

ζ−n
(

1− ζ
τ

)−1((1− ζ
τ

)α
−∆h

)−1 1

τ
∆hPhψ0dζ

+
1

2πi

∫
|ζ|=%κ

(
1− ζ
τ

)α−1((1− ζ
τ

)α
−∆h

)−1 ∞∑
m=N+1

gmζ
m−n−1dζ.

(B.5)

For 1 ≤ n ≤ N the function
( 1−ζ
τ

)α−1(( 1−ζ
τ

)α − ∆h)−1∑∞
m=N+1 gmζ

m−n−1 is analytic in |ζ| < 1.
Consequently, Cauchy’s integral theorem implies

1

2πi

∫
|ζ|=%κ

(
1− ζ
τ

)α−1((1− ζ
τ

)α
−∆h

)−1 ∞∑
m=N+1

gmζ
m−n−1dζ = 0.

Substituting this identity into (B.5) yields, for 1 ≤ n ≤ N ,

ṽ
(h)
n − Phψ0

= v
(h)
n − Phψ0

=
1

2πi

∫
|ζ|=%κ

ζ−n
(

1− ζ
τ

)−1((1− ζ
τ

)α
−∆h

)−1 1

τ
∆hPhψ0dζ

=
1

2πi

∫
Γτ

etnze−zτ
(

1− e−τz

τ

)−1((1− e−τz

τ

)α
−∆h

)−1

∆hPhψ0 dz

=
1

2πi

∫
Γτ

etnze−zτ δ(e−zτ )−1
(
δ(e−zτ )α −∆h

)−1
∆hPhψ0 dz,

(B.6)

where we have used the change of variable ζ = e−zτ , which converts the path of integration to the
contour

Γ τ = {z = κ+ 1 + iy : y ∈ R and |y| ≤ π/τ} .

The angle condition (3.4) and [3, Theorem 3.7.11] imply that the integrand on the right-hand side of
(B.6) is analytic in the region

Στθ,κ =
{
z ∈ C : |arg(z)| ≤ θ, |z| ≥ κ, |Im(z)| ≤

π

τ
, Re(z) ≤ κ+ 1

}
,

enclosed by the four paths Γ τ , Γ
(τ)
θ,κ and R±iπ/τ , where Γ

(τ)
θ,κ =

{
z ∈ Γθ,κ : |Im(z)| ≤ π

τ

}
. Then Cauchy’s

theorem allows us to deform the integration path from Γ τ to Γ
(τ)
θ,κ in the integral (B.6) (the integrals on

R± iπ/τ cancels each other). This yields the desired representation (B.2).

C Some inequalities

In this appendix, we prove the following two inequalities:

C#
0 |z|τ ≤ |1− e

zτ | ≤ C#
1 |z|τ, ∀ z ∈ Γ (τ)

θ,κ , (C.1)

|1− ezτ | ≤ C|z|1/qτ1/q , ∀ z ∈ Γθ,κ, 1 ≤ q ≤ ∞, (C.2)

which have been used in (3.27), (4.26) and (4.32).
Proof of (C.1). Note that

Γ
(τ)
θ,κ = {z ∈ C : |z| = κ, | arg z| ≤ θ} ∪

{
z ∈ C : z = ρe±iθ, ρ ≥ κ, |Im(z)| ≤

π

τ

}
=: Γ

(τ),1
θ,κ ∪ Γ (τ),2

θ,κ . (C.3)

For z ∈ Γ (τ)
θ,κ we have |z|τ ≤ π/ sin(θ). Since |z|τ is bounded, the following Taylor expansion holds:

1− ezτ = −zτ +O(|z|2τ2), (C.4)
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which imiplies

|1− ezτ | ≤ C+
1 |z|τ, if z ∈ Γ (τ)

θ,κ .

This proves the right-half inequality of (C.1).
From (C.4) we also see that there exists a small constant γ such that

C+
0 |z|τ ≤ |1− e

zτ |, if z ∈ Γ (τ)
θ,κ , |z|τ < γ. (C.5)

If |z|τ ≥ γ, then the following inequality holds for θ satisfying the condition of Lemma 1:

γ ≤ |z|τ ≤
π

sin(θ)
≤ π

√
1 + 4/π2 ≤

3

2
π.

Since the function g(w) := |1− ew| is not zero for γ ≤ |w| ≤ 3
2
π, the function g(w) must have a positive

minimum value $ for γ ≤ |w| ≤ 3
2
π, i.e., g(w) ≥ $. Consequently, we have

$
sin(θ)

π
|z|τ ≤ $ ≤ |1− ezτ |, if z ∈ Γ (τ)

θ,κ , |z|τ ≥ γ, (C.6)

where we have used the inequality
sin(θ)
π
|z|τ ≤ 1 in the last inequality. Combining (C.5) and (C.6) yields

(C.1). ut
Proof of (C.2). If z ∈ Γθ,κ and |z|τ ≤ π/ sin(θ), then z ∈ Γ (τ)

θ,κ . In this case, (C.1) implies

|1− ezτ | ≤ C|z|τ ∀ z ∈ Γθ,κ, |z|τ ≤ π/ sin(θ),

|1− ezτ | ≤ C ∀ z ∈ Γθ,κ, |z|τ ≤ π/ sin(θ).

The combination of the two inequalities above yields

|1− ezτ | ≤ C|z|1/qτ1/q ∀ z ∈ Γθ,κ, |z|τ ≤ π/ sin(θ). (C.7)

If z ∈ Γθ,κ and |z|τ ≥ π/ sin(θ), then

|ezτ | = e−|z|τ cos(θ) ≤ e−π/ tan(θ),

which implies

|1− ezτ | ≤ 1 + e−π/ tan(θ) ≤ 2 ≤ 2

(
sin(θ)

π

) 1
q

|z|1/qτ1/q ∀ z ∈ Γθ,κ, |z|τ ≥ π/ sin(θ). (C.8)

Combining (C.7) and (C.8) yields (C.2). ut
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